Grenzwerte und Stetigkeit

Größe: px
Ab Seite anzeigen:

Download "Grenzwerte und Stetigkeit"

Transkript

1 KAPITEL 3 Grenzwerte und Stetigkeit 3.1 Grenzwerte Stetigkeit Lernziele 3 Grenzwerte ε-δ-definition des Grenzwerts, einseitige Grenzwerte, einfache Grenzwerte, Regeln für das Rechnen mit Grenzwerten, Rechnen mit Unendlich, Verkettung von Grenzwerten, Vergleichskriterium. Stetigkeit, Stetigkeit von rechts bzw. links. 3.1 Grenzwerte Gegeben sei I R ein Intervall, a I {, } und f : I\{a} R. Die Funktion f kann sehr wohl auch an der Stelle = a erklärt sein, wir wollen aber nur wissen wie sich die Funktion in der Umgebung des Punktes = a verhält, deshalb genügt es alle a zu betrachten. 49

2 3 Grenzwerte und Stetigkeit Definition 3.1 (Grenzwert) Die Funktion f : I\{a} R hat in = a den Grenzwert c, wenn für alle ε > 0 ein δ = δ(ε) gibt, so dass für alle I\{a} mit a < δ gilt f () c < ε. Man schreibt dafür a f () = c. Bemerkung 3.2 Was bedeutet das? 1. Offensichtlich soll, wenn nur nahe genug an a ist, auch f () nahe an c sein. In Formeln bedeutet das: a < δ f () c < ε. 2. c kann aber nur dann Grenzwert sein, wenn f () beliebig nahe an c heran kommt, d.h. Für alle ε > 0 eisitert ein δ = δ(ε), so dass aus a < δ folgt f () c < ε. (Das ist eine äquivalente Definition des Grenzwerts.) 3. Dabei muss es nicht für = a gelten, da wir ja gerade den Grenzwert betrachten und damit das Verhalten an der konkreten Stelle nicht bekannt ist bzw. nicht von Interesse ist. Bemerkung 3.3 Wir schränken die Betrachtung auf das Intervall I ein, da die Funktion nur in einem kleinen Intervall um a (aber nicht in a) definiert sein muss. Bemerkung 3.4 Diese Definition gilt nicht nur für endliche Werte a und c, sondern auch für a, c {, } Man schreibt f () = c bzw. f () = c. Definition 3.5 (Grenzwerte mit Unendlich) Die Funktion f : (b, ) R hat für den Grenzwert c, wenn für alle ε > 0 ein K = K (ε) > 0 gibt, so dass für alle > K gilt f () c < ε. Analog: Die Funktion f : (, b) R hat für den Grenzwert c, wenn für alle ε > 0 ein L = L(ε) < 0 gibt, so dass für alle < L gilt f () c < ε. Die Funktion f : I\{a} R hat in = a den Grenzwert, wenn für alle K > 0 ein δ = δ(k ) > 0 gibt, so dass für alle I\{a} mit a < δ gilt f () > K. Analog: Die Funktion f : I\{a} R hat in = a den Grenzwert, wenn für alle L < 0 ein δ = δ(l) > 0 gibt, so dass für alle I\{a} mit a < δ gilt f () < L. 50

3 3.1 Grenzwerte Definition 3.6 (einseitige Grenzwerte) Die Funktion f : I\{a} R hat in = a den rechtsseitigen Grenzwert (bzw. linksseitigen Grenzwert) c, wenn für alle ε > 0 ein δ = δ(ε) gibt, so dass für alle > a (bzw. < a) mit a < δ gilt f () c < ε. Man schreibt dafür f () = c bzw. f () = c oder auch f () = c bzw. f () = c. a+ a a+0 a 0 Wie interpretiert man das? Beispiel 3.7 Weil 1, 96 = 1, 4 ist, raten wir, dass gilt = 1, 4. 1,96 Um dies nachzuweisen gehen wir zunächst so vor, dass wir 1, 4 durch 1, 96 abschätzen: 1, 4 = ( 1, 4)( + 1, 4) 1, 96 1, 96 =. + 1, 4 + 1, 4 1, 4 Hieraus schliessen wir, dass sich immer mehr und beliebig nahe an 1, 4 annähert, wenn sich immer mehr an 1, 96 annähert. In Formeln bedeutet das, dass für alle mit 1, 96 < δ = ε 1,4 die Funktionswerte 1, 96 < ε sind und das für jedes ε > 0. Beispiel 3.8 Wir betrachten die Funktion f () = 2 4 2, R\{2}. Die Funktion ist an der Stelle = 2 nicht definiert, da die Division durch Null nicht erklärt ist. Setzt man = 2 in die Funktion ein, so ergibt sich ein Ausdruck 0 0. Wegen 2 4 = ( +2)( 2) 51

4 3 Grenzwerte und Stetigkeit raten wir, dass der Grenzwert f () = 4 für 2 ist. Für 2 gilt = 2 4 4( 2) 2 = = ( 2) 2 2 = 2 alternativ könnte man sofort kürzen, d.h = ( 2)( + 2) 4 2 = = 2. Damit folgt aus 2 < δ < ε = δ. Damit haben wir nachgewiesen, dass = 4 ist. Beispiel 3.9 { Es sei f () = ( 1) 2, < 1, Der Grenzwert 1 f () eistiert nicht. Für eine Zahl c, 1. ungleich 1 bzw. 2 kann man immer δ-intervalle um 1 finden, so dass die mit 1 < δ Funktionswerte haben, die außerhalb von f () c < ε für hinreichend kleines ε > 0 liegen: Für c = 1 kann man analog immer δ-intervalle um 1 finden, so dass die > 1 mit mit 1 < δ Funktionswerte haben, die außerhalb von f () c < ε für hinreichend kleines ε > 0 liegen. Dies gilt analog für c = 2 und < 1. Deshalb eistiert der Grenzwert nicht. Man kann aber zeigen, dass die einseitigen Grenzwerte eistieren, es gilt f () = 1 und f () =

5 3.1 Grenzwerte Da der Nachweis über die Definition aufwendig ist, gibt es einige Regeln für die Grenzwertbestimmung, die man zur Vereinfachung verwenden kann Elementare Methoden der Grenzwertbestimmung Satz 3.10 Aus a f () = L und a g() = K für L, K R und damit endlich, folgt: 1. a (f () ± g()) = L ± K, 2. a (f () g()) = L K, insbesondere ist a αf () = α L für α R. f () 3. a g() = L, falls K 0. K Diese Regeln gelten auch für a = ± aber nur für endliche Grenzwerte L und K. Folgerung 3.11 Falls der Grenzwert eistiert und endlich ist, ist der eindeutig bestimmt. Nachweis: Sei c 1 = a f () und c 2 = a f (). Nach Regel 1. folgt c 1 c 2 = a f () a f () = a (f () f ()) = a 0 = 0 c 1 = c 2. Beispiel Es gilt 2 2 = ( 2) = 0 4 = 0, da alle Teilgrenzwerte endlich sind und nicht durch Null dividiert wird. Beispiel 3.13 Wir betrachten den Grenzwert Sowohl der Grenzwert des Zählers als auch der Grenzwert des Nenners eistieren, sind aber beide Null. Wir können den Quotienten nicht bilden. Aber unsere Rechnung zeigt, dass = 3 Nullstelle des Zählers und des Nenners ist, deshalb klammern wir in Zähler und Nenner 3 aus und erhalten: ( 3)( 2 + 9) 3 2 = 9 3 ( 3)( + 3) = = 18 6 = 3. Nun können aber auch Grenzwerte ± auftreten. Um diese Ausrechnen zu können, benutzen wir die folgenden Regeln: 53

6 3 Grenzwerte und Stetigkeit Lemma 3.1 (Rechnen mit Unendlich) Für jede reelle Zahl c R gilt + c = + + c =, c = + c = und c ± = 0. Für jede reelle Zahl c > 0 gilt c =, c ( ) = und ( c) ( ) =. + = und =. =, ( ) = und ( ) ( ) =. Dagegen sind 0 0,,, 0, 00, 0 und 1 unbestimmte Ausdrücke, d.h. der Grenzwert kann eistieren und endlich sein, kann unendlich sein oder eistiert überhaupt nicht. Beispiel Es gilt 0 = = 0, 0 Da, wie man leicht einsieht, gilt 0 2 = = aber 0 0+ = ist. eistiert nicht! Bemerkung 3.15 Grundtechniken zur Bestimmung von Grenzwerten sind 1. Ausklammern und Kürzen, 2. Erweitern mit der 3. binomischen Formel, 3. Anwendung der Rechenregeln, 4. Stetigkeitsargument (Ist die Funktion f () in a stetig, dann gilt a f () = f (a), siehe Stetigkeit von Funktionen.) Beispiel ( + 1 1)( ) = 0 ( = ) 0 ( ) = 1 = Achtung: Wir haben hier bereits die Stetigkeit der Wurzelfunktion benutzt indem wir den Grenzwert + 1 = 1 0 verwenden. 54

7 3.1 Grenzwerte Beispiel 3.17 Für 0 gilt cos 1 = (cos 1)(cos + 1) (cos + 1) = cos2 1 (cos + 1) = sin2 (cos + 1) = sin 1. cos + 1 sin Für 0 strebt auf der rechten Seite der erste Faktor gegen 1 (siehe Beispiel 3.19), der zweite gegen 1 und der dritte gegen 0. Also gilt 2 cos 1 = 0. 0 Satz 3.18 (Vergleichskriterium.) Wenn g() f () h() für alle in der Nähe von a gilt (bzw. für alle hinreichend großen ) und g() c und h() c für a (bzw. ) gilt, dann ist f () = c (bzw. f () = c). a Beweisidee: Da g() und h() für a gegen c streben, gibt es zu jedem ε > 0 reelle Zahlen δ 1 > 0 und δ 2 > mit g() c < ε ε + c < g() < c + ε für a < δ 1 und h() c < ε ε + c < h() < c + ε für a < δ 2, folglich gilt für δ = min(δ 1, δ 2 ) : a < δ ε + c < g() f () h() < c + ε f () c < ε # Beispiel 3.19 Der Ausdruck sin Skizze sin 0 = 1. ist ein sogenannter unbestimmter Ausdruck vom Typ 0. Aus der folgenden 0 55

8 3 Grenzwerte und Stetigkeit tan sin cos 1 liest man die folgende Abschätzung ab ( > 0): sin tan Damit ist für > 0 Hieraus folgt und damit 0 sin sin 1 und 1 sin cos sin 1 = 1. Analog kann man für < 0 aus 1 cos. sin tan auf die gewünschte Ungleichung schließen. Wegen cos 1 für 0 ergibt sich die Behauptung. Satz 3.20 (Grenzwert einer verketteten Funktion.) Seien f und g Funktionen mit g() = L und f () = f (L), a L dann gilt ( ) f (g()) = f g() = f (L). a a Beispiel 3.21 sin(4) = 4 sin(4) sin(4) = 4, da = Für welche Funktionen gilt L f () = f (L)? 56

9 3.2 Stetigkeit 3.2 Stetigkeit Was bedeutet unstetig? Wenn man den Graphen der Funktion nicht als durchgezogene Linie zeichnen kann. Was heißt das mathematisch? Dazu betrachten wir die Unstetigkeiten: Sprungstelle Polstellen Fehlstelle Sei I R ein Intervall. Definition 3.22 Man nennt eine Funktion f : I R in 0 I stetig, wenn bei der Annäherung 0 die Funktionswerte für f () gegen f ( 0 ) streben. Also d.h. f ist in 0 stetig 0 f () = f ( 0 ), der rechts- und linksseitige Grenzwert eistieren (folglich ist 0 keine Polstelle), und sind gleich (folglich ist 0 keine Sprungstelle), und sind gleich dem Funktionswert (folglich ist 0 keine Fehlstelle). Ist 0 ein Randpunkt von I, so ist 0 nur als einseitige Annäherung ( < 0 bzw. > 0 ) zu verstehen. Anschaulich bedeutet es, dass der Graph y = f () über I als eine zusammenhängende Linie (ohne Lücken, Sprünge oder Polstellen) dargestellt werden kann. Hat eine in 0 I zunächst noch nicht definierte Funktion f dort einen Grenzwert f () = c, 0 57

10 3 Grenzwerte und Stetigkeit dann kann diese Definitionslücke durch die Festsetzung f ( 0 ) = c geschlossen werden und die so definierte Funktion ist in = 0 stetig. Satz 3.23 (Stetigkeit) Eine Funktion f : I R in 0 I stetig, wenn für alle ε > 0 ein δ = δ(ε, 0 ) eistiert, so dass für alle I mit 0 < δ gilt f () f ( 0 ) < ε. Oder kurz ε > 0 δ > 0 : I : 0 < δ f () f ( 0 ) < ε. Satz 3.24 (Stetigkeit) 1. Sind f und g im Punkt b stetig, so gilt das auch für f + g, αf (α R) und fg. Ferner ist f stetig in b, wenn g(b) 0 ist. g 2. Ist f stetig in b und gilt a g() = b, dann ist oder anders ausgedrückt, f (g()) = f (b), a ( ) f (g()) = f g() = f (b). a a 3. Ist g stetig in a und f stetig mit g(a), dann ist auch die Verkettung (Komposition) h mit h() = f (g()) stetig in a.. Definition 3.25 Eine Funktion f : I R, heißt stetig auf dem Intervall I, wenn f in jedem Punkt I stetig ist. Beispiel 3.26 Die Funktion f () = 1 nicht stetig. ist stetig in allen 0. Für = 0 ist sie nicht definiert und damit auch Beispiel 3.27 Die Funktion f () = sin ist für alle 0 definiert und stetig. In = 0 ist sie nicht definiert, sin es eisitert aber der Grenzwert 0 = 1 (siehe Beispiel 3.19). Damit kann eine auf R 58

11 3.2 Stetigkeit stetige Funktion f () wie folgt definiert werden: { sin f () =, 0, 1, = 0. Die Lücke bei = 0 kann also zu definiert werden. Beispiel 3.28 Ebenso ist die Funktion für alle 0 definert und stetig. Es gilt g() = ( )( = ) 2 = ( ) 0 2 ( ) = 1 2 und damit ist die Funktion auf R stetig. g() = { , 0, 1 2, = 0 Beispiel 3.29 Die Treppenfunktion ist unstetig. f () = 0, 0 < 5000, 15, 5000 < 20000, 30, < , 50, Beispiel 3.30 Auch die verschachtelte Funktion f () = sin 4 + sin 2 + cos 2 (3 + 4) 2 ist für 0 stetig, wobei sie für = 0 entsprechend zu definiert werden muss sin 4 + sin( 2 ) sin 4 + sin( 2 ) = cos 2 (3 + 4) 2 + cos 2 (3 + 4). 59

12 3 Grenzwerte und Stetigkeit Satz 3.31 Für jede auf dem abgeschlossenen Intervall a b stetige Funktion f gilt: 1. Schrankensatz. Es gibt eine Schranke (positive reelle Zahl) K mit f () K für alle [a, b]. Man sagt, die stetige Funktion f () ist auf dem abgeschlossenen Intervall beschränkt. 2. Minimum und Maimum. Es gibt stets Werte 0 und 1 in [a, b], so dass f ( 0 ) f () f ( 1 ) für alle [a, b] gilt. Man sagt, dass die auf dem abgeschlossenen Intervall stetige Funktion f () ihr Minimum und Maimum annimmt. 3. Zwischenwertsatz. Zu jeder Zahl c, die zwischen dem Minimum f ( 0 ) und dem Maimum f ( 1 ) der stetigen Funktion f () liegt, d.h. f ( 0 ) c f ( 1 ), gibt es wenigstens ein [a, b] mit f ( ) = c. 4. Gleichmäßige Stetigkeit. Zu jeder beliebig kleinen Zahl ɛ > 0 gibt es eine nur von ɛ und nicht von 0 abhängige Zahl δ = δ(ɛ) > 0, so dass für alle, 0 [a, b] gilt: 0 δ f () f ( 0 ) < ɛ. Eine einfache Folgerung ist der Satz 3.32 (Nullstellensatz.) 1. Ist f : [a, b] R stetig und haben f (a) und f (b) entgegengesetzte Vorzeichen (f (a)f (b) < 0), dann gibt es wenigstens eine Nullstelle im Innern von [a, b], also a < < b mit f ( ) = Jedes Polynom ungeraden Grades ( 1) hat in R wenigstens eine Nullstelle. 60

ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN

ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN CHRISTIAN HARTFELDT. Zweiter Mittelwertsatz Der Mittelwertsatz Satz VI.3.4) lässt sich verallgemeinern zu Satz.. Seien f, g : [a, b] R auf [a,

Mehr

Beispiel 11.2. Wenn p ein Polynom vom Grad größer gleich 1 ist, ist q : C Ĉ definiert durch q (z) =

Beispiel 11.2. Wenn p ein Polynom vom Grad größer gleich 1 ist, ist q : C Ĉ definiert durch q (z) = Funktionentheorie, Woche Funktionen und Polstellen. Meromorphe Funktionen Definition.. Sei U C offen und sei f : U gilt, nennt man f meromorph auf U: Ĉ eine Funktion. Wenn folgendes. P := f hat keine Häufungspunkte;.

Mehr

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Wintersemester 3/4 (.3.4). (a) Für z = + i und z = 3 4i berechne man z z und z z. Die Ergebnisse sind in kartesischer Form anzugeben.

Mehr

Beispiele zur Kurvendiskussion (Gebrochen rationale Funktionen)

Beispiele zur Kurvendiskussion (Gebrochen rationale Funktionen) Beispiele zur Kurvendiskussion (Gebrochen rationale Funktionen) Beispiel 1 Diskutiere die durch f(x) = x2 3x 4 x + 2 gegebene Funktion f. a) Definitionsbereich: Der Nenner eines Bruches darf nicht gleich

Mehr

11.3 Komplexe Potenzreihen und weitere komplexe Funktionen

11.3 Komplexe Potenzreihen und weitere komplexe Funktionen .3 Komplexe Potenzreihen und weitere komplexe Funktionen Definition.) komplexe Folgen: z n = x n + j. y n mit zwei reellen Folgen x n und y n.) Konvergenz: Eine komplexe Folge z n = x n + j. y n heißt

Mehr

Vorlesung. Funktionen/Abbildungen 1

Vorlesung. Funktionen/Abbildungen 1 Vorlesung Funktionen/Abbildungen 1 1 Grundlagen Hinweis: In dieser Vorlesung werden Funktionen und Abbildungen synonym verwendet. In der Schule wird eine Funktion häufig als eindeutige Zuordnung definiert.

Mehr

Zuammenfassung: Reelle Funktionen

Zuammenfassung: Reelle Funktionen Zuammenfassung: Reelle Funktionen 1 Grundlegendes a) Zahlenmengen IN = {1; 2; 3; 4;...} Natürliche Zahlen IN 0 = IN {0} Natürliche Zahlen mit 0 ZZ = {... ; 2; 1; 0; 1; 2;...} Ganze Zahlen Q = { z z ZZ,

Mehr

Vorlesung Wirtschaftsmathematik II SS 2015, 3/2 SWS. Prof. Dr. M. Voigt

Vorlesung Wirtschaftsmathematik II SS 2015, 3/2 SWS. Prof. Dr. M. Voigt Vorlesung Wirtschaftsmathematik II SS 2015, 3/2 SWS Prof. Dr. M. Voigt 2. März 2015 II Inhaltsverzeichnis 5 Grundlagen 1 5.1 Funktionen einer Variablen...................... 1 5.2 spezielle Funktionen.........................

Mehr

3. Zusammenhang. 22 Andreas Gathmann

3. Zusammenhang. 22 Andreas Gathmann 22 Andreas Gathmann 3. Zusammenhang Eine der anschaulichsten Eigenschaften eines topologischen Raumes ist wahrscheinlich, ob er zusammenhängend ist oder aus mehreren Teilen besteht. Wir wollen dieses Konzept

Mehr

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2013/14 Hochschule Augsburg : Gliederung 1 Aussagenlogik 2 Lineare Algebra 3 Lineare Programme 4 Folgen

Mehr

13. Abzählen von Null- und Polstellen

13. Abzählen von Null- und Polstellen 13. Abzählen von Null- und Polstellen 77 13. Abzählen von Null- und Polstellen Als weitere Anwendung des Residuensatzes wollen wir nun sehen, wie man ot au einache Art berechnen kann, wie viele Null- bzw.

Mehr

Das Mathematik-Abitur im Saarland

Das Mathematik-Abitur im Saarland Informationen zum Abitur Das Mathematik-Abitur im Saarland Sie können Mathematik im Abitur entweder als grundlegenden Kurs (G-Kurs) oder als erhöhten Kurs (E-Kurs) wählen. Die Bearbeitungszeit für die

Mehr

Ergänzungen zur Analysis I

Ergänzungen zur Analysis I 537. Ergänzungsstunde Logik, Mengen Ergänzungen zur Analysis I Die Behauptungen in Satz 0.2 über die Verknüpfung von Mengen werden auf die entsprechenden Regelnfür die Verknüpfung von Aussagen zurückgeführt.

Mehr

3. Die Eigenschaften der reellen Zahlen II: Geordnete Körper

3. Die Eigenschaften der reellen Zahlen II: Geordnete Körper 32 Andreas Gathmann 3. Die Eigenschaften der reellen Zahlen II: Geordnete Körper Wir haben bisher von den reellen Zahlen nur die Körpereigenschaften, also die Eigenschaften der vier Grundrechenarten ausgenutzt

Mehr

3.1. Die komplexen Zahlen

3.1. Die komplexen Zahlen 3.1. Die komplexen Zahlen Es gibt viele Wege, um komplexe Zahlen einzuführen. Wir gehen hier den wohl einfachsten, indem wir C R als komplexe Zahlenebene und die Punkte dieser Ebene als komplexe Zahlen

Mehr

1 Ableiten der Sinus- und Kosinusfunktion

1 Ableiten der Sinus- und Kosinusfunktion Schülerbuchseite 6 8 Lösungen vorläufig Ableiten der Sinus- und Kosinusfunktion S. 6 Vermutung: Da das Zeit-Weg-Diagramm eine Sinuskurve und das zugehörige Zeit-Geschwindigkeits-Diagramm 8 eine Kosinuskurve

Mehr

Mathematik I Internationales Wirtschaftsingenieurwesen

Mathematik I Internationales Wirtschaftsingenieurwesen Mathematik I Internationales Wirtschaftsingenieurwesen Integralrechnung 03.12.08 Das unbestimmte Integral/Stammfunktion Das bestimmte Integral/Flächenberechnung Integral als Umkehrung der Ableitung Idee:

Mehr

Numerische Verfahren und Grundlagen der Analysis

Numerische Verfahren und Grundlagen der Analysis Numerische Verfahren und Grundlagen der Analysis Rasa Steuding Hochschule RheinMain Wiesbaden Wintersemester 2011/12 R. Steuding (HS-RM) NumAna Wintersemester 2011/12 1 / 16 4. Groß-O R. Steuding (HS-RM)

Mehr

Mathematikaufgaben zur Vorbereitung auf das Studium

Mathematikaufgaben zur Vorbereitung auf das Studium Hochschule für Technik und Wirtschaft Dresden (FH) Fachbereich Informatik/Mathematik Mathematikaufgaben zur Vorbereitung auf das Studium Studiengänge Informatik Medieninformatik Wirtschaftsinformatik Wirtschaftsingenieurwesen

Mehr

Technische Mathematik

Technische Mathematik Lehrplan Technische Mathematik Fachschule für Technik Fachrichtungsbezogener Lernbereich Ministerium für Bildung, Kultur und Wissenschaft Hohenzollernstraße 60, 66117 Saarbrücken Postfach 10 24 52, 66024

Mehr

Lösung zur Übung 3. Aufgabe 9)

Lösung zur Übung 3. Aufgabe 9) Lösung zur Übung 3 Aufgabe 9) Lissajous-Figuren sind Graphen in einem kartesischen Koordinatensystem, bei denen auf der Abszisse und auf der Ordinate jeweils Funktionswerte von z.b. Sinusfunktionen aufgetragen

Mehr

2.12 Potenzreihen. 1. Definitionen. 2. Berechnung 2.12. POTENZREIHEN 207. Der wichtigste Spezialfall von Funktionenreihen sind Potenzreihen.

2.12 Potenzreihen. 1. Definitionen. 2. Berechnung 2.12. POTENZREIHEN 207. Der wichtigste Spezialfall von Funktionenreihen sind Potenzreihen. 2.2. POTENZREIHEN 207 2.2 Potenzreihen. Definitionen Der wichtigste Spezialfall von Funktionenreihen sind Potenzreihen. Eine Potenzreihe mit Entwicklungspunkt x 0 ist eine Reihe a n x x 0 n. Es gilt: es

Mehr

ax 2 + bx + c = 0, (4.1)

ax 2 + bx + c = 0, (4.1) Kapitel 4 Komplexe Zahlen Wenn wir uns auf die reellen Zahlen beschränken, ist die Operation des Wurzelziehens (also die Umkehrung der Potenzierung) nicht immer möglich. Zum Beispiel können wir nicht die

Mehr

Übungsbuch Algebra für Dummies

Übungsbuch Algebra für Dummies ...für Dummies Übungsbuch Algebra für Dummies von Mary Jane Sterling, Alfons Winkelmann 1. Auflage Wiley-VCH Weinheim 2012 Verlag C.H. Beck im Internet: www.beck.de ISBN 978 3 527 70800 0 Zu Leseprobe

Mehr

Bitte unbedingt beachten: a) Gewertet werden alle acht gestellten Aufgaben.

Bitte unbedingt beachten: a) Gewertet werden alle acht gestellten Aufgaben. Mathematik I für Wirtschaftswissenschaftler Klausur für alle gemeldeten Fachrichtungen außer Immobilientechnik und Immobilienwirtschaft am 9..9, 9... Bitte unbedingt beachten: a) Gewertet werden alle acht

Mehr

7 Rechnen mit Polynomen

7 Rechnen mit Polynomen 7 Rechnen mit Polynomen Zu Polynomfunktionen Satz. Zwei Polynomfunktionen und f : R R, x a n x n + a n 1 x n 1 + a 1 x + a 0 g : R R, x b n x n + b n 1 x n 1 + b 1 x + b 0 sind genau dann gleich, wenn

Mehr

Umgekehrte Kurvendiskussion

Umgekehrte Kurvendiskussion Umgekehrte Kurvendiskussion Bei einer Kurvendiskussion haben wir eine Funktionsgleichung vorgegeben und versuchen ihre 'Besonderheiten' herauszufinden: Nullstellen, Extremwerte, Wendepunkte, Polstellen

Mehr

Mathematik für Informatiker Band 2: Analysis und Statistik

Mathematik für Informatiker Band 2: Analysis und Statistik Gerald Teschl Susanne Teschl Mathematik für Informatiker Band 2: Analysis und Statistik 2 Auflage Mit 02 Abbildungen 23 Gerald Teschl Universität Wien Fakultät für Mathematik Nordbergstraße 5 090 Wien,

Mehr

Mathematik Abitur Zusammenfassung Marius Buila

Mathematik Abitur Zusammenfassung Marius Buila Mathematik Abitur Zusammenfassung Marius Buila 1.Analysis 1.1 Grundlagen: Ableitung f (u) ist Steigung in Punkt P (u/f(u)) auf K f(x) = a * x r f (x) = a * r * x r-1 Tangentengleichung: y= f (u) * (x-u)

Mehr

Mathematik 1. Lösungsvorschläge zum 2. Übungsblatt

Mathematik 1. Lösungsvorschläge zum 2. Übungsblatt Hochschule Regensburg Fakultät Informatik/Mathematik Christoph Böhm Wintersemester 0/0 Wirtschaftsinformatik Bachelor IW Informatik Bachelor IN Vorlesung Mathematik Mathematik Lösungsvorschläge zum Übungsblatt

Mehr

Abiturprüfung Mathematik 2008 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1

Abiturprüfung Mathematik 2008 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1 Abiturprüfung Mathematik (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe Für jedes t f t () + t R ist die Funktion f t gegeben durch = mit R. Das Schaubild von f t heißt K t.. (6 Punkte)

Mehr

der einzelnen Aussagen den Wahrheitswert der zusammengesetzten Aussage falsch falsch falsch falsch wahr falsch wahr falsch falsch wahr wahr wahr

der einzelnen Aussagen den Wahrheitswert der zusammengesetzten Aussage falsch falsch falsch falsch wahr falsch wahr falsch falsch wahr wahr wahr Kapitel 2 Grundbegriffe der Logik 2.1 Aussagen und deren Verknüpfungen Eine Aussage wie 4711 ist durch 3 teilbar oder 2 ist eine Primzahl, die nur wahr oder falsch sein kann, heißt logische Aussage. Ein

Mehr

Die reellen Lösungen der kubischen Gleichung

Die reellen Lösungen der kubischen Gleichung Die reellen Lösungen der kubischen Gleichung Klaus-R. Löffler Inhaltsverzeichnis 1 Einfach zu behandelnde Sonderfälle 1 2 Die ganzrationale Funktion dritten Grades 2 2.1 Reduktion...........................................

Mehr

Nichtlineare Optimierung ohne Nebenbedingungen

Nichtlineare Optimierung ohne Nebenbedingungen Kapitel 2 Nichtlineare Optimierung ohne Nebenbedingungen In diesem Abschnitt sollen im wesentlichen Verfahren zur Bestimmung des Minimums von nichtglatten Funktionen in einer Variablen im Detail vorgestellt

Mehr

Vorlesung. 1 Zahlentheorie in Z. Leitfaden. 1.1 Teilbarkeit. Angela Holtmann. Algebra und Zahlentheorie. (natürliche Zahlen ohne die Null)

Vorlesung. 1 Zahlentheorie in Z. Leitfaden. 1.1 Teilbarkeit. Angela Holtmann. Algebra und Zahlentheorie. (natürliche Zahlen ohne die Null) Algebra und Zahlentheorie Vorlesung Algebra und Zahlentheorie Leitfaden 1 Zahlentheorie in Z Bezeichnungen: Z := {..., 3, 2, 1, 0, 1, 2, 3,...} (ganze Zahlen) und N := {1, 2, 3,...} (natürliche Zahlen

Mehr

= 26 60 (Hauptnenner) 15x 12x + 10x = 26 60 zusammenfassen 13x = 26 60 :13 (Variable isolieren) x =

= 26 60 (Hauptnenner) 15x 12x + 10x = 26 60 zusammenfassen 13x = 26 60 :13 (Variable isolieren) x = WERRATALSCHULE HERINGEN KOMPENSATION MATHEMATIK JG. 11 1 Lineare Gleichungen Das Lösen linearer Gleichungen ist eine wichtige Rechenfertigkeit, die immer wieder gefordert wird und für den Mathematikunterricht

Mehr

Bayern FOS BOS 12 Fachabiturprüfung 2015 Mathematik (Nichttechnische Ausbildungsrichtungen) Analysis A I

Bayern FOS BOS 12 Fachabiturprüfung 2015 Mathematik (Nichttechnische Ausbildungsrichtungen) Analysis A I Bayern FOS BOS Fachabiturprüfung 05 Mathematik (Nichttechnische Ausbildungsrichtungen) Analysis A I.0 Nebenstehende Abbildung zeigt den Graphen G f ' der ersten Ableitungsfunktion einer in ganz 0 definierten

Mehr

1. Gruppenübung zur Vorlesung. Höhere Mathematik 2. Sommersemester 2013

1. Gruppenübung zur Vorlesung. Höhere Mathematik 2. Sommersemester 2013 O. Alaya, R. Bauer K. Sanei Kashani, F. Kissling, B. Krinn, J. Schmid, T. Vassias. Gruppenübung zur Vorlesung Höhere Mathematik Sommersemester Dr. M. Künzer Prof. Dr. M. Stroppel Lösungshinweise zu den

Mehr

Kapitel 3 Mathematik. Kapitel 3.3. Algebra Gleichungen

Kapitel 3 Mathematik. Kapitel 3.3. Algebra Gleichungen TG TECHNOLOGISCHE GRUNDLAGEN Kapitel 3 Mathematik Kapitel 3.3 Algebra Gleichungen Verfasser: Hans-Rudolf Niederberger Elektroingenieur FH/HTL Vordergut 1, 877 Nidfurn 055-654 1 87 Ausgabe: Februar 009

Mehr

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema 2x 4 + x 3 + x + 3 div x 2 + x 1 = 2x 2 x + 3 (2x 4 + 2x 3 2x 2 ) x 3 + 2x 2 + x + 3 ( x

Mehr

Wintersemester 2005/2006 Gedächtnisprotokoll der mündlichen Prüfung

Wintersemester 2005/2006 Gedächtnisprotokoll der mündlichen Prüfung Wintersemester 2005/2006 Gedächtnisprotokoll der mündlichen Prüfung Ulrich Loup 24.03.2006 Prüfungsstoff: Alegebra I, Analysis IV, Graphentheorie I Prüfer: Prof. Dr. Wilhelm Plesken Protokollant: Dipl.

Mehr

MatheBasics Teil 1 Grundlagen der Mathematik

MatheBasics Teil 1 Grundlagen der Mathematik Fernstudium Guide Online Vorlesung Wirtschaftswissenschaft MatheBasics Teil 1 Grundlagen der Mathematik Version 2016 Dieses Werk ist urheberrechtlich geschützt. Jegliche unzulässige Form der Entnahme,

Mehr

DIFFERENTIALGLEICHUNGEN

DIFFERENTIALGLEICHUNGEN DIFFERENTIALGLEICHUNGEN GRUNDBEGRIFFE Differentialgleichung Eine Gleichung, in der Ableitungen einer unbekannten Funktion y = y(x) bis zur n-ten Ordnung auftreten, heisst gewöhnliche Differentialgleichung

Mehr

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wirtschftsmthemtik für Interntionl Mngement (BA) und Betriebswirtschft (BA) Wintersemester 2013/14 Stefn Etschberger Hochschule Augsburg Mthemtik: Gliederung 1 Aussgenlogik 2 Linere Algebr 3 Linere

Mehr

Luisenburg-Gymnasium Wunsiedel

Luisenburg-Gymnasium Wunsiedel Luisenurg-Gymnasium Wunsiedel Grundwissen für das Fach Mathematik Jahrgangsstufe 0 KREIS und KUGEL Bogenlänge rπα = 80 Das Verhältnis r πα = 80 heißt Bogenmaß, ist nur vom Mittelpunktswinkel α ahängig

Mehr

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt - 17 - Die Frage ist hier also: Für welche x R gilt x = x + 1? Das ist eine quadratische Gleichung für x. Es gilt x = x + 1 x x 3 = 0, und man kann quadratische Ergänzung machen:... ( ) ( ) x x + = 3 +

Mehr

Füllmenge. Füllmenge. Füllmenge. Füllmenge. Mean = 500,0029 Std. Dev. = 3,96016 N = 10.000. 485,00 490,00 495,00 500,00 505,00 510,00 515,00 Füllmenge

Füllmenge. Füllmenge. Füllmenge. Füllmenge. Mean = 500,0029 Std. Dev. = 3,96016 N = 10.000. 485,00 490,00 495,00 500,00 505,00 510,00 515,00 Füllmenge 2.4 Stetige Zufallsvariable Beispiel. Abfüllung von 500 Gramm Packungen einer bestimmten Ware auf einer automatischen Abfüllanlage. Die Zufallsvariable X beschreibe die Füllmenge einer zufällig ausgewählten

Mehr

Die quadratische Gleichung und die quadratische Funktion

Die quadratische Gleichung und die quadratische Funktion Die quadratische Gleichung und die quadratische Funktion 1. Lösen einer quadratischen Gleichung Quadratische Gleichungen heißen alle Gleichungen der Form a x x c = 0, woei a,, c als Parameter elieige reelle

Mehr

Ungewöhnliche Gleichungssysteme bei der Mathematik- Olympiade

Ungewöhnliche Gleichungssysteme bei der Mathematik- Olympiade Eric Müller Ungewöhnliche Gleichungssysteme bei der Mathematik- Olympiade Unter den in den vier Runden der Mathematik-Olympiade (MO) gestellten Aufgaben finden sich immer wieder Systeme von Gleichungen

Mehr

Wirtschaftsmathematik. Studienskript.

Wirtschaftsmathematik. Studienskript. y y = f() F F3 a F b Wirtschaftsmathematik. Studienskript. Betriebswirtschaftslehre (B.A.) BWMA0 Impressum Impressum Herausgeber: Internationale Hochschule Bad Honnef Bonn International University of Applied

Mehr

Mathematik I für Wirtschaftswissenschaftler

Mathematik I für Wirtschaftswissenschaftler 1 Mathematik I für Wirtschaftswissenschaftler Lösungsvorschläge zur Klausur am 01.08.2003. Bitte unbedingt beachten: a) Verlangt und gewertet werden alle vier gestellten Aufgaben. Alle Aufgaben sind gleichwertig.

Mehr

4. QUADRATISCHE GLEICHUNGEN, GLEICHUNGEN HÖHEREN GRADES

4. QUADRATISCHE GLEICHUNGEN, GLEICHUNGEN HÖHEREN GRADES 4. QUADRATISCHE GLEICHUNGEN, GLEICHUNGEN HÖHEREN GRADES 4.1. Quadratische Gleichungen (a) Definition Beispiel: Das Produkt zweier aufeinanderfolgender gerader Zahlen beträgt 808. Wie lauten die beiden

Mehr

Didaktik der Zahlbereiche 4. Die Menge der ganzen Zahlen. Mathematikunterricht in der Jahrgangsstufe 7. Zahlbereichserweiterungen in der Hauptschule

Didaktik der Zahlbereiche 4. Die Menge der ganzen Zahlen. Mathematikunterricht in der Jahrgangsstufe 7. Zahlbereichserweiterungen in der Hauptschule Zahlbereichserweiterungen in der Hauptschule Didaktik der Zahlbereiche 4 Dr. Christian Groß Lehrstuhl Didaktik der Mathematik Universität Augsburg Wintersemester 2006/07 Natürliche Zahlen, : Klasse 5 positive

Mehr

Wie viele Nullstellen hat ein Polynom?

Wie viele Nullstellen hat ein Polynom? Wie viele Nullstellen hat ein Polynom? Verena Pölzl 0812265 Sabine Prettner 8930280 Juni 2013 1 Inhaltsverzeichnis 1 Warum will man wissen, wie viele Nullstellen ein Polynom hat? 3 2 Oligonome 4 3 Die

Mehr

Vorlesung. Komplexe Zahlen

Vorlesung. Komplexe Zahlen Vorlesung Komplexe Zahlen Motivation Am Anfang der Entwicklung der komplexen Zahlen stand ein algebraisches Problem: die Bestimmung der Lösung der Gleichung x 2 + 1 = 0. 1 Mit der Lösung dieses Problems

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3 1. Semester ARBEITSBLATT 3 RECHNEN MIT GANZEN ZAHLEN

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3 1. Semester ARBEITSBLATT 3 RECHNEN MIT GANZEN ZAHLEN ARBEITSBLATT 3 RECHNEN MIT GANZEN ZAHLEN Wir wollen nun die Rechengesetze der natürlichen Zahlen auf die Zahlenmenge der ganzen Zahlen erweitern und zwar so, dass sie zu keinem Widerspruch mit bisher geltenden

Mehr

Approximation durch Taylorpolynome

Approximation durch Taylorpolynome TU Berlin Fakultät II - Mathematik und Naturwissenschaften Sekretariat MA 4-1 Straße des 17. Juni 10623 Berlin Hochschultag Approximation durch Taylorpolynome Im Rahmen der Schülerinnen- und Schüler-Uni

Mehr

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009 UNIVERSIÄ KARLSRUHE Institut für Anlysis HDoz. Dr. P. C. Kunstmnn Dipl.-Mth. M. Uhl Sommersemester 9 Höhere Mthemti II für die Fchrichtungen Eletroingenieurwesen, Physi und Geodäsie inlusive Komplexe Anlysis

Mehr

Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14. Auswahl vorausgesetzter Vorkenntnisse

Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14. Auswahl vorausgesetzter Vorkenntnisse UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 MATHEMATIK Dipl.-Math. Kevin Everard Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14 Auswahl vorausgesetzter Vorkenntnisse

Mehr

11. Primfaktorzerlegungen

11. Primfaktorzerlegungen 78 Andreas Gathmann 11 Primfaktorzerlegungen Euch ist sicher aus der Schule bekannt, dass sich jede positive ganze Zahl a als Produkt a = p 1 p n von Primzahlen schreiben lässt, und dass diese Darstellung

Mehr

Serie 13: Online Test

Serie 13: Online Test D-ERDW, D-HEST, D-USYS Mathematik I HS 3 Dr. Ana Cannas Serie 3: Online Test Einsendeschluss: 3. Januar 4 Bei allen Aufgaben ist genau eine Antwort richtig. Lösens des Tests eine Formelsammlung verwenden.

Mehr

x 2 + px + q = 0 ) x 1;2 = p 2 r p 2 2

x 2 + px + q = 0 ) x 1;2 = p 2 r p 2 2 Komplexe Zahlen Komplexe Zahlen treten in der Schule zum ersten Mal bei der Lösung von quadratischen Gleichungen auf. Wir nehmen die Gleichung x 2 + 6x + 25 als Beispiel. Diesen Gleichungstyp können wir

Mehr

1. Mathematik-Schularbeit 6. Klasse AHS

1. Mathematik-Schularbeit 6. Klasse AHS . Mathematik-Schularbeit 6. Klasse AHS Arbeitszeit: 50 Minuten Lernstoff: Mathematische Grundkompetenzen: (Un-)Gleichungen und Gleichungssysteme: AG. Einfache Terme und Formeln aufstellen, umformen und

Mehr

u + v = v + u. u + (v + w) = (u + v) + w. 0 V + v = v + 0 V = v v + u = u + v = 0 V. t (u + v) = t u + t v, (t + s) u = t u + s u.

u + v = v + u. u + (v + w) = (u + v) + w. 0 V + v = v + 0 V = v v + u = u + v = 0 V. t (u + v) = t u + t v, (t + s) u = t u + s u. Universität Stuttgart Fachbereich Mathematik Prof. Dr. C. Hesse PD Dr. P. H. Lesky Dipl. Math. D. Zimmermann Msc. J. Köllner FAQ 3 Höhere Mathematik I 4..03 el, kyb, mecha, phys Vektorräume Vektorräume

Mehr

Die Weierstraßsche Funktion

Die Weierstraßsche Funktion Die Weierstraßsche Funktion Nicolas Weisskopf 7. September 0 Zusammenfassung In dieser Arbeit führen wir die Weierstraßsche Funktion ein und untersuchen einige ihrer Eigenschaften. Wir zeigen, dass jede

Mehr

Seminararbeit für das SE Reine Mathematik- Graphentheorie

Seminararbeit für das SE Reine Mathematik- Graphentheorie Seminararbeit für das SE Reine Mathematik- Graphentheorie Der binäre Rang, der symplektische Graph, die Spektralzerlegung und rationale Funktionen Vortrag am 24.01.2012 Heike Farkas 0410052 Inhaltsverzeichnis

Mehr

Public-Key-Algorithmen WS2015/2016

Public-Key-Algorithmen WS2015/2016 Public-Key-Algorithmen WS2015/2016 Lernkontrollfragen Michael Braun Was bedeuten die kryptographischen Schutzziele Vertraulichkeit, Integrität, Nachrichtenauthentizität, Teilnehmerauthentizität, Verbindlichkeit?

Mehr

a n + 2 1 auf Konvergenz. Berechnen der ersten paar Folgenglieder liefert:

a n + 2 1 auf Konvergenz. Berechnen der ersten paar Folgenglieder liefert: Beispiel: Wir untersuchen die rekursiv definierte Folge a 0 + auf Konvergenz. Berechnen der ersten paar Folgenglieder liefert: ( ) (,, 7, 5,...) Wir können also vermuten, dass die Folge monoton fallend

Mehr

Bestimmung einer ersten

Bestimmung einer ersten Kapitel 6 Bestimmung einer ersten zulässigen Basislösung Ein Problem, was man für die Durchführung der Simplexmethode lösen muss, ist die Bestimmung einer ersten zulässigen Basislösung. Wie gut das geht,

Mehr

Kapitel 4. Euklidische Ringe und die Jordansche Normalform. 4.1 Euklidische Ringe

Kapitel 4. Euklidische Ringe und die Jordansche Normalform. 4.1 Euklidische Ringe Kapitel 4 Euklidische Ringe und die Jordansche Normalform 4.1 Euklidische Ringe Die Ringe der ganzen Zahlen, Z, sowie Polynomringe über Körpern, K[X], wobei K ein Körper ist, haben die folgenden Gemeinsamheiten:

Mehr

Gleichungen und Ungleichungen

Gleichungen und Ungleichungen Gleichungen Ungleichungen. Lineare Gleichungen Sei die Gleichung ax = b gegeben, wobei x die Unbekannte ist a, b reelle Zahlen sind. Diese Gleichung hat als Lösung die einzige reelle Zahl x = b, falls

Mehr

Lernziele Matbu. ch 8

Lernziele Matbu. ch 8 Lernziele Matbu. ch 8 Beachte auch den Refernzrahmen des Stellwerk8 www. stellwerk- check. ch LU Priorität Grobziel (aus Mathbu.ch 8) Lernziele Begriffe 2 1 Mit gebrochenen Zahlen operieren: Gebrochene

Mehr

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 9.. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 Die Grundfrage bei der Anwendung des Satzes über implizite Funktionen betrifft immer die folgende Situation: Wir haben eine Funktion f : V W und eine Stelle x

Mehr

Mathematik für das Ingenieurstudium Lösungen der Aufgaben. 4. Dezember 2014

Mathematik für das Ingenieurstudium Lösungen der Aufgaben. 4. Dezember 2014 Mathematik für das Ingenieurstudium Lösungen der Aufgaben Jürgen Koch Martin Stämpfle 4. Dezember 4 Inhaltsverzeichnis Grundlagen 5 Lineare Gleichungsssteme 9 Vektoren 7 4 Matrizen 5 Funktionen 9 6 Differenzialrechnung

Mehr

Abitur - Grundkurs Mathematik. Sachsen-Anhalt 2002. Gebiet G1 - Analysis

Abitur - Grundkurs Mathematik. Sachsen-Anhalt 2002. Gebiet G1 - Analysis Abitur - Grundkurs Mathematik Sachsen-Anhalt Gebiet G - Analsis Aufgabe.. Der Graph einer ganzrationalen Funktion f dritten Grades mit einer Funktionsgleichung der Form f a b c d a,b,c,d, R schneidet die

Mehr

Kapitel 15: Differentialgleichungen

Kapitel 15: Differentialgleichungen FernUNI Hagen WS 00/03 Kapitel 15: Differentialgleichungen Differentialgleichungen = Gleichungen die Beziehungen zwischen einer Funktion und mindestens einer ihrer Ableitungen herstellen. Kommen bei vielen

Mehr

Hinweise zu Anforderungen des Faches Mathematik in Klasse 11 des Beruflichen Gymnasiums Wirtschaft

Hinweise zu Anforderungen des Faches Mathematik in Klasse 11 des Beruflichen Gymnasiums Wirtschaft Berufsbildende Schule 11 der Region Hannover Hinweise zu Anforderungen des Faches Mathematik in Klasse 11 des Beruflichen Gymnasiums Wirtschaft Das folgende Material soll Ihnen helfen sich einen Überblick

Mehr

Absolute Stetigkeit von Maßen

Absolute Stetigkeit von Maßen Absolute Stetigkeit von Maßen Definition. Seien µ und ν Maße auf (X, Ω). Dann heißt ν absolut stetig bezüglich µ (kurz ν µ ), wenn für alle A Ω mit µ(a) = 0 auch gilt dass ν(a) = 0. Lemma. Sei ν ein endliches

Mehr

Einführung in die Statistik

Einführung in die Statistik Einführung in die Statistik Dr. C.J. Luchsinger 2 Zufallsgrössen Literatur Kapitel 2 * Statistik in Cartoons: Kapitel 4 * Krengel: 3.1 und 3.2 in 3 und (Honours Program) 10 sowie 11.1, 11.2 und 11.3 in

Mehr

JOHANNES BONNEKOH. Analysis. Allgemeine Hochschulreife und Fachabitur

JOHANNES BONNEKOH. Analysis. Allgemeine Hochschulreife und Fachabitur JOHANNES BONNEKOH Analysis Allgemeine Hochschulreife und Fachabitur Vorwort Vorwort Mathematik ist eine Sprache, die uns hilft die Natur und allgemeine naturwissenschaftliche Vorgänge zu beschreiben. Johannes

Mehr

Die Kalkulation von PKV-Tarifen unter Einbeziehung des Übertragungswertes

Die Kalkulation von PKV-Tarifen unter Einbeziehung des Übertragungswertes Die Kalkulation von PKV-Tarifen unter Einbeziehung des Übertragungswertes Anna Wallner und Hans-Joachim Zwiesler Preprint Series: 2009-25 Fakultät für Mathematik und Wirtschaftswissenschaften UNIVERSITÄT

Mehr

Höhere Mathematik 3. Apl. Prof. Dr. Norbert Knarr. Wintersemester 2015/16. FB Mathematik

Höhere Mathematik 3. Apl. Prof. Dr. Norbert Knarr. Wintersemester 2015/16. FB Mathematik Höhere Mathematik 3 Apl. Prof. Dr. Norbert Knarr FB Mathematik Wintersemester 2015/16 4. Homogene lineare Dierentialgleichungen 4.1. Grundbegrie 4.1.1. Denition. Es sei J R ein Intervall und a 0 ; : :

Mehr

Lernzettel Mathe Inhaltsverzeichnis

Lernzettel Mathe Inhaltsverzeichnis Lernzettel Mathe Inhaltsverzeichnis Aufgabe 1 - Vollständige Induktion 2 Aufgabe 2 - Grenzwertbestimmung 2 Aufgabe 3 - Lin/Log 2 Aufgabe 4 - Barwert/Endwert 3 Aufgabe 5 - Maximalstellen, steigend/fallend

Mehr

Teil II. Nichtlineare Optimierung

Teil II. Nichtlineare Optimierung Teil II Nichtlineare Optimierung 60 Kapitel 1 Einleitung In diesem Abschnitt wird die Optimierung von Funktionen min {f(x)} x Ω betrachtet, wobei Ω R n eine abgeschlossene Menge und f : Ω R eine gegebene

Mehr

Englische Division. ... und allgemeine Hinweise

Englische Division. ... und allgemeine Hinweise Das folgende Verfahren ist rechnerisch identisch mit dem Normalverfahren; es unterscheidet sich nur in der Schreibweise des Rechenschemas Alle Tipps und Anmerkungen, die über die Besonderheiten dieser

Mehr

Dr. Jürgen Roth. Fachbereich 6: Abteilung Didaktik der Mathematik. Elemente der Algebra. Dr. Jürgen Roth 3.1

Dr. Jürgen Roth. Fachbereich 6: Abteilung Didaktik der Mathematik. Elemente der Algebra. Dr. Jürgen Roth 3.1 .1 Dr. Jürgen Roth Fachbereich 6: Abteilung Didaktik der Mathematik Elemente der Algebra . Inhaltsverzeichnis Elemente der Algebra & Argumentationsgrundlagen, Gleichungen und Gleichungssysteme Quadratische

Mehr

2 Die Darstellung linearer Abbildungen durch Matrizen

2 Die Darstellung linearer Abbildungen durch Matrizen 2 Die Darstellung linearer Abbildungen durch Matrizen V und V seien Vektorräume über einem Körper K. Hom K (V, V ) bezeichnet die Menge der K linearen Abbildungen von V nach V. Wir machen Hom K (V, V )

Mehr

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung.

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung. Lineare Gleichungen mit einer Unbekannten Die Grundform der linearen Gleichung mit einer Unbekannten x lautet A x = a Dabei sind A, a reelle Zahlen. Die Gleichung lösen heißt, alle reellen Zahlen anzugeben,

Mehr

Elemente der Analysis I: Zusammenfassung und Formelsammlung

Elemente der Analysis I: Zusammenfassung und Formelsammlung Elemente der Analysis I: Zusammenfassung und Formelsammlung B. Schuster/ L. Frerick 9. Februar 200 Inhaltsverzeichnis Grundlagen 5. Mengen und Zahlen................................ 5.. Mengen...................................

Mehr

MATHEMATISCHER FITNESSTEST - LÖSUNGEN. (2) Welche Menge stellt die schraerte Fläche dar?

MATHEMATISCHER FITNESSTEST - LÖSUNGEN. (2) Welche Menge stellt die schraerte Fläche dar? MATHEMATISCHER FITNESSTEST - LÖSUNGEN DR. ROGER ROBYR Die Aufgaben sollten alle ohne Unterlagen und ohne programmierbare oder graphikfähige Rechner gelöst werden können. Lösung. ) Gegeben sind die Mengen

Mehr

1 Ordnung muß sein. 1.1 Angeordnete Körper. 1.2 Folgerungen aus den Anordnungsaxiomen. ( c) (b a) > 0. Somit a c b c > 0.

1 Ordnung muß sein. 1.1 Angeordnete Körper. 1.2 Folgerungen aus den Anordnungsaxiomen. ( c) (b a) > 0. Somit a c b c > 0. 1 Ordnung uß sein 1.1 Angeordnete Körper Wir nehen einal an, daß es in eine Körper Eleente gibt, die wir positiv nennen. Welche Eigenschaften sollen diese haben? O1) Wenn x und y positiv sind, dann auch

Mehr

Schulmathematik und Algorithmen der Computeralgebra

Schulmathematik und Algorithmen der Computeralgebra Schulmathematik und Algorithmen der Computeralgebra Prof. Dr. Wolfram Koepf Universität Kassel http://www.mathematik.uni-kassel.de/~koepf Tag der Mathematik 13. Dezember 2008 Universität Passau Überblick

Mehr

Rationale Zahlen. Vergleichen und Ordnen rationaler Zahlen

Rationale Zahlen. Vergleichen und Ordnen rationaler Zahlen Rationale Zahlen Vergleichen und Ordnen rationaler Zahlen Von zwei rationalen Zahlen ist die die kleinere Zahl, die auf der Zahlengeraden weiter links liegt.. Setze das richtige Zeichen. a) -3 4 b) - -3

Mehr

Abiturvorbereitung Mathematik -Dierentialrechnungc Max. Hoffmann

Abiturvorbereitung Mathematik -Dierentialrechnungc Max. Hoffmann Abiturvorbereitung Mathematik -Dierentialrechnungc Max Hoffmann 1 Ganzrationale Funktionen Im Folgenden wollen wir uns mit ganzrationale Funktionen und der Untersuchung solcher beschäftigen. Dabei werden

Mehr

Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. z(t) = at + b

Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. z(t) = at + b Aufgabe 1: Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. (a) Nehmen Sie lineares Wachstum gemäß z(t) = at + b an, wobei z die Einwohnerzahl ist und

Mehr

2 3 x3 17. x k dx = x k x k+1 k +1. Mit jeder weiteren partiellen Integration reduziert sich der Grad des Faktors x n, induktiv erhalten wir also

2 3 x3 17. x k dx = x k x k+1 k +1. Mit jeder weiteren partiellen Integration reduziert sich der Grad des Faktors x n, induktiv erhalten wir also Universität Konstanz Fachbereich Mathematik und Statistik Repetitorium Analysis 0 Dr DK Huynh Blatt 8 Aufgabe 6 Bestimmen Sie (a) (x + x 7x+)dx (c) (f) x n exp(x)dx (n N fest) sin (x)dx (g) (b) (d) ln(x)dx

Mehr

Vorkurs Mathematik Übungen zu Differentialgleichungen

Vorkurs Mathematik Übungen zu Differentialgleichungen Vorkurs Mathematik Übungen zu Differentialgleichungen Als bekannt setzen wir die folgenden Umformungen voraus: e ln(f(x)) = f(x) e f(x)+c = e f(x) e c e ln(f(x)) +c = f(x) e c = f(x) c f ( g(x) ) g (x)

Mehr

Standardisierte kompetenzorientierte schriftliche Reifeprüfung. Mathematik. Probeklausur März 2014. Teil-1-Aufgaben

Standardisierte kompetenzorientierte schriftliche Reifeprüfung. Mathematik. Probeklausur März 2014. Teil-1-Aufgaben Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik Probeklausur März 2014 Teil-1-Aufgaben Beurteilung Jede Aufgabe in Teil 1 wird mit 0 oder 1 Punkt bewertet, jede Teilaufgabe in

Mehr

Reelle Zahlen. Mathematische Grundlagen Lernmodul 4. Stand: Oktober 2010

Reelle Zahlen. Mathematische Grundlagen Lernmodul 4. Stand: Oktober 2010 Mathematische Grundlagen Lernmodul 4 Reelle Zahlen Stand: Oktober 200 Autoren: Prof. Dr. Reinhold Hübl, Professor Fakultät für Technik, Wissenschaftliche Leitung ZeMath, E-Mail: huebl@dhbw-mannheim.de

Mehr