Vorlesung: Relationale Datenbanksysteme

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Vorlesung: Relationale Datenbanksysteme"

Transkript

1 Vorlesung: Relationale Datenbanksysteme Softwareentwicklungsprojekt 1+2 Softwaretechnik 2 Dienstorientiertes Rechnen in der Praxis Dipl.-Inf. Andreas Göbel Friedrich-Schiller-Universität Jena Lehrstuhl für Datenbanken und Informationssysteme

2 AGENDA 1. Motivation 2. ANSI-SPARC-Architektur 3. Relationales Datenbankmodell 4. SQL 5. Zwischenpräsentation der Projekte Kompromiss zwischen RDBMS und NoSQL (DBIS-Oberseminar ) Folie 2

3 MOTIVATION ANWENDUNGSSYSTEME In sehr vielen Anwendungssystemen stehen Datenbestände im Mittelpunkt der Betrachtungen Unternehmensdaten Stammdaten: Daten über Kunden, Artikel, Personal, Filialen, etc. Bewegungsdaten: Aufträge, Lieferungen, Rechnungen, s, etc. Bestandsdaten: Lagerangaben, Bestandsmengen Datenbestände werden zum Zugriff und zur Veränderung bereitgestellt Zugriff über eine Anwendung oder direkt (Ad-hoc) Kompromiss zwischen RDBMS und NoSQL (DBIS-Oberseminar ) Folie 3

4 MOTIVATION BEGRIFFE Anwender/ Benutzer Anwendungs programm DBMS DB (DBS) Datenbanksystem (DBS) Entspricht DBMS + DB, üblicherweise auf separatem DB-Server Datenbankmanagementsystem (DBMS) Verwaltet den Datenbestand und alle Zugriffe darauf Datenbank (DB) Strukturierte Sammlung von Datensätzen Kompromiss zwischen RDBMS und NoSQL (DBIS-Oberseminar ) Folie 4

5 MOTIVATION ANFORDERUNGEN Persistente Datenhaltung Sicherheit vor Datenverlust Hohe Verfügbarkeit der Daten Sicherheit vor unberechtigtem Zugriff / Verändern Sehr schneller Datenzugriff Hohe Benutzerfreundlichkeit Paralleler Zugriff Verwaltung sehr großer Datenmengen Hohe Flexibilität bezüglich der Datenverteilung Hohe Flexibilität bezüglich der Lastverteilung Hoher Grad an semantischer Integrität Hoher Grad an Datenunabhängigkeit Kompromiss zwischen RDBMS und NoSQL (DBIS-Oberseminar ) Folie 5

6 AGENDA 1. Motivation 2. ANSI-SPARC-Architektur 3. Relationales Datenbankmodell 4. SQL 5. Zwischenpräsentation der Projekte Kompromiss zwischen RDBMS und NoSQL (DBIS-Oberseminar ) Folie 6

7 ANSI-SPARC-ARCHITEKTUR Anwender/ Benutzer Externes Schema 1 Logische Datenunabhängigkeit Konzeptuelles Schema Physische Datenunabhängigkeit Internes Schema DB Anwendungs programm Externes Schema 2 Spezielle Sichten des Gesamtmodells nutzer- oder anwendungsspezifische Sichten auf den Datenbestand bzw. einen Ausschnitt Gesamtmodell der Miniwelt Gesamtdarstellung des Datenmodells auf logischer, systemunabhängiger und anwendungsunabhängiger Ebene Interne, physische Darstellung der Daten Wo und wie werden die Daten physisch abgelegt und welche Hilfsstrukturen stehen zur Effizienzsteigerung zur Verfügung Kompromiss zwischen RDBMS und NoSQL (DBIS-Oberseminar ) Folie 7

8 AGENDA 1. Motivation 2. ANSI-SPARC-Architektur 3. Relationales Datenbankmodell 4. SQL 5. Zwischenpräsentation der Projekte Kompromiss zwischen RDBMS und NoSQL (DBIS-Oberseminar ) Folie 8

9 RELATIONALES DATENBANKMODELL ZIELSTELLUNG Einfaches Daten(bank)modell mit mathematisch fundierter Grundlage Einfache Datenbanksprache Ebenfalls mit mathematisch fundierter Grundlage Deskriptive Anfragen statt Navigation Trennung von logischen (was) und physischen Aspekten (wie) DBMS verwaltet den Zugriff zu den Daten und kann durch den Optimizer eine optimale Ausführungsstrategie wählen Ermöglicht neben Zugriffen durch Anwendungsprogramme auch Ad-hoc- Anfragen Kompromiss zwischen RDBMS und NoSQL (DBIS-Oberseminar ) Folie 9

10 RELATIONALES DATENBANKMODELL BEGRIFFE Bestandteile eines Relationenschemas Schemaname Menge von Attributnamen A 1, A 2,..., A n Menge von Wertebereichen (Domänen) D 1, D 2,..., D n Integritätsbedingungen: Keine angestellten Bergmänner aus Schneeberg Datenbankschema: Menge von Relationenschemata + relationenübergreifende Integritätsbedingungen Relation R D 1 D 2... D n Tupel r є R mit r = (d 1, d 2,..., d n ), wobei gilt: d i є D i Schemaname Tupel (als Tabellenzeilen dargestellt) Müller Meier Schulze Schreiner Schmied Bergmann Attribut(name) A i mit zugehörigem Wertebereich D i Angest Name Beruf Wohnort GebJahr Jena Jena Seiffen Attribut(wert) Schema Daten, konkrete Relation Kompromiss zwischen RDBMS und NoSQL (DBIS-Oberseminar ) Folie 10

11 RELATIONALES DATENBANKMODELL SCHLÜSSEL Relationen sind Mengen, es dürfen also in einer Relation keine identischen Tupel auftauchen unzulässig Angest Name Beruf Wohnort GebJahr Müller Müller Schreiner Schreiner Jena Jena Relationenmodell verlangt für jede Relation einen Schlüssel (identifizierende Attributkombination) Angest Angest PNR Name Beruf Wohnort GebJahr Müller Meier Schulze Schreiner Schmied Bergmann Jena Jena Seiffen Falls für eine Relation mehrere Schlüssel(kandidaten) existieren, muss einer ausgewählt werden als Primärschlüssel Kompromiss zwischen RDBMS und NoSQL (DBIS-Oberseminar ) Folie 11

12 RELATIONALES DATENBANKMODELL VIEWS UND INDIZES Anwender/ Benutzer Externes Schema 1 Anwendungs programm Externes Schema 2 Spezielle Sichten des Gesamtmodells: Views Konzeptuelles Schema Gesamtmodell der Miniwelt: Tabellen Internes Schema Interne, physische Darstellung der Daten: Indizes 1 Müller Schreiber Jena Meier Schmied Jena Schulz Bergmann Seiffen , Meier 1, Meier 3, Schulz DB Kompromiss zwischen RDBMS und NoSQL (DBIS-Oberseminar ) Folie 12

13 AGENDA 1. Motivation 2. ANSI-SPARC-Architektur 3. Relationales Datenbankmodell 4. SQL 5. Zwischenpräsentation der Projekte Kompromiss zwischen RDBMS und NoSQL (DBIS-Oberseminar ) Folie 13

14 SQL GRUNDLAGEN DIE Datenbanksprache zur Definition, Manipulation und Abfrage von Daten in relationalen Datenbanken Entstand in 1970er Jahren im Rahmen des IBM-Projekts System R unter dem Namen SEQUEL (Structured English QUEry Language) Von allen bedeutenden DBMS verwendet Kommerziell: Oracle Database, IBM DB2, Microsoft SQL Server, Informix (IBM), Sybase (SAP), etc. Open Source: PostgreSQL, MySQL, Ingres, etc Kompromiss zwischen RDBMS und NoSQL (DBIS-Oberseminar ) Folie 14

15 SQL NORMIERUNG Durch American National Standards Institute, ISO (und DIN) Meilensteine 1987, 1989, 1992, 1999, 2003, 2006, 2008 Produkte sind weitgehend SQL-89 konform, teils SQL-92 Sie bieten zudem zahlreiche Spezialitäten und Eigenheiten, die nicht normkonform sind werden ggf. später in die Norm aufgenommen Aufnahme jedoch meist in veränderter Form Kompromiss zwischen RDBMS und NoSQL (DBIS-Oberseminar ) Folie 15

16 SQL DATENDEFINITION Anwender/ Benutzer Externes Schema 1 Anwendungs programm Externes Schema 2 Spezielle Sichten des Gesamtmodells: Views create view drop view Konzeptuelles Schema Internes Schema Gesamtmodell der Miniwelt: Tabellen create table alter table drop table Interne, physische Darstellung der Daten: Indizes create index alter index drop index 1 Müller Schreiner Jena Meier Schmied Jena Schulz Bergmann Seiffen , Meier 1, Meier 3, Schulz DB Kompromiss zwischen RDBMS und NoSQL (DBIS-Oberseminar ) Folie 16

17 SQL DATENDEFINITION (CREATE TABLE) Angest PNR Name Beruf Wohnort GebJahr Syntax am Beispiel: CREATE TABLE Angest( pnr CHAR(3) PRIMARY KEY, name VARCHAR(20) NOT NULL, beruf VARCHAR(30) NOT NULL, wohnort VARCHAR(30) NOT NULL, gebjahr INTEGER CHECK (gebjahr >= 0));... Tabelle ist nach dem Anlegen leer, d.h. sie enthält keine Tupel Die not null Klausel verbietet das Auftreten von Nullwerten (Null Values, undefiniert ) in jenen Spalten Kompromiss zwischen RDBMS und NoSQL (DBIS-Oberseminar ) Folie 17

18 SQL DATENDEFINITION (ALTER TABLE) Änderung von Relationenschemata (Schemaevolution) Beispiele: Hinzufügen neuer Attribute (Spalten) zu einer Tabelle ALTER TABLE Angest ADD COLUMN nationalitaet CHAR(3) NOT NULL DEFAULT 'GER'; Löschen von Attributen (Spalten) ALTER TABLE Angest DROP COLUMN nationalitaet; (Sehr eingeschränktes) Ändern von Eigenschaften von Tabellenattributen ALTER TABLE Angest ALTER wohnort SET DEFAULT 'Jena'; Kompromiss zwischen RDBMS und NoSQL (DBIS-Oberseminar ) Folie 18

19 SQL DATENDEFINITION (ALTER TABLE) Mehr Möglichkeiten in Produkten wären wünschenswert Schemaänderungen sind generell ein heikles Thema Was geschieht mit den vorhandenen Daten bei einer Schemaevolution? Sofortige Transformation in neues Format Verzögerte Transformation in neues Format Was, wenn Transformation scheitert / nicht automatisch durchführbar? Auswirkungen auf vorhandene Anwendungen? Bisher genutzte SQL-Anfragen müssen geändert werden Sichten (Views) lösen das Problem teilweise Kompromiss zwischen RDBMS und NoSQL (DBIS-Oberseminar ) Folie 19

20 SQL DATENDEFINITION (DROP TABLE) Löschen von Tabellen (Relationsschema und Daten) Syntax: drop table tablename {restrict cascade} restrict-angabe: Das Löschen unterbleibt, wenn noch Bezugnahme von außen auf die Tabelle via Integritätsbedingungen/Sichtdefinitionen cascade-angabe: Bezugnehmende Integritätsbedingungen/Sichten werden mitgelöscht Beispiel: drop table Angest cascade Kompromiss zwischen RDBMS und NoSQL (DBIS-Oberseminar ) Folie 20

21 SQL DATENÄNDERUNG ALTER TABLE zur Änderung des Relationenschemas Änderungen der Daten in SQL: Update, Insert, Delete (+Select) Alle Änderungsanweisungen sind dazu in der Lage, mengenorientiert zu arbeiten (Verarbeitung von 1Tupel je Anweisung) Benutzungsvorteile und Effizienzvorteile Beispiele: Angest PNR Name Beruf Wohnort GebJahr INSERT INTO Angest(pnr, name, beruf, wohnort) VALUES ('P01', 'Müller', 'Schreiner', 'Jena'), ('P02', 'Meier', 'Schmied', 'Jena'), ('P03', 'Schulze', 'Bergmann', 'Seiffen'); UPDATE Angest SET wohnort='lichtstadt' WHERE wohnort='jena'; DELETE FROM Angest WHERE beruf='bergmann' Kompromiss zwischen RDBMS und NoSQL (DBIS-Oberseminar ) Folie 21...

22 SQL DATENZUGRIFF Geschieht über SELECT-FROM-WHERE-Konstrukt (kurz SFW) SELECT: bestimmt Ergebnisstruktur einer Anfrage FROM: Definiert, welche Relationen zur Beantwortung der Anfrage benötigt werden WHERE: legt fest, welche Daten genau geholt werden sollen Beispiel: SELECT Name, Beruf FROM Angest WHERE Wohnort = 'Jena' OR Wohnort = 'Lichtstadt'; Ergebnis ist Multimenge, die Duplikate erlaubt Kompromiss zwischen RDBMS und NoSQL (DBIS-Oberseminar ) Folie 22

23 ERGÄNZUNGEN ZUM SFW-KONSTRUKT explizites Verbieten von Duplikaten über DISTINCT-Klausel SELECT DISTINCT Name, Beruf FROM Angest Sortiertes Anfrageergebnis über ORDER BY SELECT Name, Beruf FROM Angest ORDER BY Name DESC Nutzung eingebauter Funktionen wie COUNT, SUM, AVG, MIN, MAX SELECT COUNT(*) FROM Angest SELECT MIN(GebJahr) FROM Angest Weitere Details in der Veranstaltung Datenbanksysteme 1 Gruppierung durch GROUP BY, HAVING Relationenübergreifende Anfragen via Joins und Subqueries Kompromiss zwischen RDBMS und NoSQL (DBIS-Oberseminar ) Folie 23

24 AGENDA 1. Motivation 2. ANSI-SPARC-Architektur 3. Relationales Datenbankmodell 4. SQL 5. Zwischenpräsentation der Projekte Kompromiss zwischen RDBMS und NoSQL (DBIS-Oberseminar ) Folie 24

25 ZWISCHENPRÄSENTATION DER PROJEKTE Zwischenvortrag für ALLE Studenten zum Status des jeweiligen Projekts Organisatorisches: Termin: Mittwoch, , 10-11Uhr, SR 130 CZ3 Jedes Team erhält 15 Minuten Jedes Team-Mitglied soll in etwa dieselbe Redezeit haben Inhalt: Bisherige Tätigkeiten, aktuelle Arbeiten erste Erfahrungen, weitere Planung Weitere Zwischentermine: Anfang Juni (15 Minuten je Team) Abschlusspräsentation (30 Minuten je Team) Kompromiss zwischen RDBMS und NoSQL (DBIS-Oberseminar ) Folie 25

26 FRAGEN Vielen Dank für Ihre Aufmerksamkeit! Kompromiss zwischen RDBMS und NoSQL (DBIS-Oberseminar ) Folie 26

Logischer Entwurf von Datenbanken

Logischer Entwurf von Datenbanken Logischer Entwurf von Datenbanken Relationales Datenbankschema Wintersemester 16/17 DBIS 1 Typischer Datenbankentwurf Anforderungsanalyse und -spezifikation Miniwelt Konzeptioneller Entwurf E/R-Diagramm

Mehr

SQL für Trolle. mag.e. Dienstag, 10.2.2009. Qt-Seminar

SQL für Trolle. mag.e. Dienstag, 10.2.2009. Qt-Seminar Qt-Seminar Dienstag, 10.2.2009 SQL ist......die Abkürzung für Structured Query Language (früher sequel für Structured English Query Language )...ein ISO und ANSI Standard (aktuell SQL:2008)...eine Befehls-

Mehr

DATENBANKEN SQL UND SQLITE VON MELANIE SCHLIEBENER

DATENBANKEN SQL UND SQLITE VON MELANIE SCHLIEBENER DATENBANKEN SQL UND SQLITE VON MELANIE SCHLIEBENER INHALTSVERZEICHNIS 1. Datenbanken 2. SQL 1.1 Sinn und Zweck 1.2 Definition 1.3 Modelle 1.4 Relationales Datenbankmodell 2.1 Definition 2.2 Befehle 3.

Mehr

SQL. SQL: Structured Query Language. Früherer Name: SEQUEL. Standardisierte Anfragesprache für relationale DBMS: SQL-89, SQL-92, SQL-99

SQL. SQL: Structured Query Language. Früherer Name: SEQUEL. Standardisierte Anfragesprache für relationale DBMS: SQL-89, SQL-92, SQL-99 SQL Früherer Name: SEQUEL SQL: Structured Query Language Standardisierte Anfragesprache für relationale DBMS: SQL-89, SQL-92, SQL-99 SQL ist eine deklarative Anfragesprache Teile von SQL Vier große Teile:

Mehr

4. Datenbanksprache SQL

4. Datenbanksprache SQL 4. Datenbanksprache SQL Standard-Sprache für das Arbeiten mit relationalen Datenbanken: Structured Query Language Datendefinition: Anlegen, Ändern und Löschen von Datenbankstrukturen Datenmanipulation:

Mehr

SQL structured query language

SQL structured query language Umfangreiche Datenmengen werden üblicherweise in relationalen Datenbank-Systemen (RDBMS) gespeichert Logische Struktur der Datenbank wird mittels Entity/Realtionship-Diagrammen dargestellt structured query

Mehr

Einführung in SQL. Sprachumfang: Indizes. Datensätzen. Zugriffsrechten

Einführung in SQL. Sprachumfang: Indizes. Datensätzen. Zugriffsrechten Einführung in SQL Die Sprache SQL (Structured Query Language) ist eine Programmiersprache für relationale Datenbanksysteme, die auf dem ANSI-SQL-Standard beruht. SQL wird heute von fast jedem Datenbanksystem

Mehr

Dieser Foliensatz darf frei verwendet werden unter der Bedingung, dass diese Titelfolie nicht entfernt wird.

Dieser Foliensatz darf frei verwendet werden unter der Bedingung, dass diese Titelfolie nicht entfernt wird. Thomas Studer Relationale Datenbanken: Von den theoretischen Grundlagen zu Anwendungen mit PostgreSQL Springer, 2016 ISBN 978-3-662-46570-7 Dieser Foliensatz darf frei verwendet werden unter der Bedingung,

Mehr

Auf einen Blick. Abfrage und Bearbeitung. Erstellen einer Datenbank. Komplexe Abfragen. Vorwort 13

Auf einen Blick. Abfrage und Bearbeitung. Erstellen einer Datenbank. Komplexe Abfragen. Vorwort 13 Auf einen Blick Vorwort 13 Teil 1 Vorbereitung Kapitel 1 Einleitung 17 Kapitel 2 SQL - der Standard relationaler Datenbanken 21 Kapitel 3 Die Beispieldatenbanken 39 Teil 2 Abfrage und Bearbeitung Kapitel

Mehr

Mengenvergleiche: Alle Konten außer das, mit dem größten Saldo.

Mengenvergleiche: Alle Konten außer das, mit dem größten Saldo. Mengenvergleiche: Mehr Möglichkeiten als der in-operator bietet der θany und der θall-operator, also der Vergleich mit irgendeinem oder jedem Tupel der Unteranfrage. Alle Konten außer das, mit dem größten

Mehr

Grober Überblick zu Datendefinitionsanweisungen in SQL

Grober Überblick zu Datendefinitionsanweisungen in SQL 5.2 Datendefinition mit SQL (DDL) Grober Überblick zu Datendefinitionsanweisungen in SQL Konzeptuelle Ebene - CREATE TABLE, ALTER TABLE, DROP TABLE - CREATE DOMAIN, ALTER DOMAIN, DROP DOMAIN -... Interne

Mehr

Daten-Definitionssprache (DDL) Bisher: Realwelt -> ERM -> Relationen-Modell -> normalisiertes Relationen-Modell. Jetzt: -> Formulierung in DDL

Daten-Definitionssprache (DDL) Bisher: Realwelt -> ERM -> Relationen-Modell -> normalisiertes Relationen-Modell. Jetzt: -> Formulierung in DDL Daten-Definitionssprache (DDL) Bisher: Realwelt -> ERM -> Relationen-Modell -> normalisiertes Relationen-Modell Jetzt: -> Formulierung in DDL Daten-Definitionssprache (DDL) DDL ist Teil von SQL (Structured

Mehr

5. SQL. Einleitung / Historie / Normierung. Datendefinition mit SQL (DDL) Datenänderung/-zugriff mit SQL (DML) Datenkontrolle mit SQL (DCL)

5. SQL. Einleitung / Historie / Normierung. Datendefinition mit SQL (DDL) Datenänderung/-zugriff mit SQL (DML) Datenkontrolle mit SQL (DCL) 5. SQL Einleitung / Historie / Normierung Datendefinition mit SQL (DDL) Datenänderung/-zugriff mit SQL (DML) Datenkontrolle mit SQL (DCL) Ausblick: Transaktionsverwaltung/Fehlerbehandlung Praktischer Teil

Mehr

ISU 1. Ue_08/02_Datenbanken/SQL. 08 Datenbanken. Übung. SQL Einführung. Eckbert Jankowski. www.iit.tu-cottbus.de

ISU 1. Ue_08/02_Datenbanken/SQL. 08 Datenbanken. Übung. SQL Einführung. Eckbert Jankowski. www.iit.tu-cottbus.de 08 Datenbanken Übung SQL Einführung Eckbert Jankowski www.iit.tu-cottbus.de Datenmodell (Wiederholung, Zusammenfassung) Objekte und deren Eigenschaften definieren Beziehungen zwischen den Objekten erkennen/definieren

Mehr

SQL Tutorial. SQL - Tutorial SS 06. Hubert Baumgartner. INSO - Industrial Software

SQL Tutorial. SQL - Tutorial SS 06. Hubert Baumgartner. INSO - Industrial Software SQL Tutorial SQL - Tutorial SS 06 Hubert Baumgartner INSO - Industrial Software Institut für Rechnergestützte Automation Fakultät für Informatik Technische Universität Wien Inhalt des Tutorials 1 2 3 4

Mehr

SQL: Weitere Funktionen

SQL: Weitere Funktionen Vergleich auf Zeichenketten SQL: Weitere Funktionen LIKE ist ein Operator mit dem in Zeichenketten andere Zeichenketten gesucht werden; zwei reservierte Zeichen mit besonderer Bedeutung sind hier % (manchmal

Mehr

MySQL-Befehle. In diesem Tutorial möchte ich eine kurze Übersicht der wichtigsten Befehle von MySQL geben.

MySQL-Befehle. In diesem Tutorial möchte ich eine kurze Übersicht der wichtigsten Befehle von MySQL geben. MySQL-Befehle 1. Einleitung In diesem Tutorial möchte ich eine kurze Übersicht der wichtigsten Befehle von MySQL geben. 2. Arbeiten mit Datenbanken 2.1 Datenbank anlegen Eine Datenbank kann man wie folgt

Mehr

Abfragen (Queries, Subqueries)

Abfragen (Queries, Subqueries) Abfragen (Queries, Subqueries) Grundstruktur einer SQL-Abfrage (reine Projektion) SELECT [DISTINCT] {* Spaltenname [[AS] Aliasname ] Ausdruck} * ; Beispiele 1. Auswahl aller Spalten SELECT * ; 2. Auswahl

Mehr

Konstante Relationen

Konstante Relationen Konstante Relationen values-syntax erzeugt konstante Relation values ( [, Konstante] * )[, ( [, Konstante] * )]* Beispiel values (1, eins ), (2, zwei ), (3, drei ); Resultat ist eine

Mehr

IV. Datenbankmanagement

IV. Datenbankmanagement Wirtschaftsinformatik 2 (PWIN) IV. Datenbankmanagement Kapitel 2: Datenmanipulationssprache SQL Wirtschaftsinformatik 2 (PWIN) SS 2009, Professur für Mobile Business & Multilateral Security 1 Agenda 1.

Mehr

Datenbanksysteme Kapitel: SQL Data Definition Language

Datenbanksysteme Kapitel: SQL Data Definition Language Datenbanksysteme Kapitel: SQL Data Definition Language Prof. Dr. Peter Chamoni Mercator School of Management Lehrstuhl für Wirtschaftsinformatik, insb. Business Intelligence Prof. Dr. Peter Chamoni - Prof.

Mehr

5.3 Datenänderung/-zugriff mit SQL (DML)

5.3 Datenänderung/-zugriff mit SQL (DML) 5.3 Datenänderung/-zugriff mit SQL (DML) Hinweis: - DML-Anweisungen sind mengenorientiert - Mit einer Anweisungen kann mehr als ein Tupel eingefügt, geändert, gelöscht oder gelesen werden Benutzungs- und

Mehr

Views in SQL. 2 Anlegen und Verwenden von Views 2

Views in SQL. 2 Anlegen und Verwenden von Views 2 Views in SQL Holger Jakobs bibjah@bg.bib.de, holger@jakobs.com 2010-07-15 Inhaltsverzeichnis 1 Wozu dienen Views? 1 2 Anlegen und Verwenden von Views 2 3 Schreibfähigkeit von Views 3 3.1 Views schreibfähig

Mehr

Einführung in SQL. 1. Grundlagen SQL. Structured Query Language. Viele Dialekte. Unterteilung: i. DDL (Data Definition Language)

Einführung in SQL. 1. Grundlagen SQL. Structured Query Language. Viele Dialekte. Unterteilung: i. DDL (Data Definition Language) Einführung in SQL 1. Grundlagen Structured Query Language Viele Dialekte Unterteilung: i. DDL (Data Definition Language) ii. iii. DML (Data Modifing Language) DRL (Data Retrival Language) 1/12 2. DDL Data

Mehr

Inhalt. Ein Einführung in die Nutzung von SQL-Datenbanken am Beispiel Oracle. Daten und Tabellen - ein Beispiel. Daten und Tabellen - Normalisierung

Inhalt. Ein Einführung in die Nutzung von SQL-Datenbanken am Beispiel Oracle. Daten und Tabellen - ein Beispiel. Daten und Tabellen - Normalisierung Inhalt Ein Einführung in die Nutzung von SQL-Datenbanken am Beispiel Oracle Daten und Tabellen Normalisierung, Beziehungen, Datenmodell SQL - Structured Query Language Anlegen von Tabellen Datentypen (Spalten,

Mehr

Relationales Modell: SQL-DDL. SQL als Definitionssprache. 7. Datenbankdefinitionssprachen. Anforderungen an eine relationale DDL

Relationales Modell: SQL-DDL. SQL als Definitionssprache. 7. Datenbankdefinitionssprachen. Anforderungen an eine relationale DDL Relationales Modell: SQLDDL SQL als Definitionssprache SQLDDL umfaßt alle Klauseln von SQL, die mit Definition von Typen Wertebereichen Relationenschemata Integritätsbedingungen zu tun haben Externe Ebene

Mehr

6. Datendefinition in SQL

6. Datendefinition in SQL 6. Datendefinition in SQL Datendefinition Schema, Datentypen, Domains Erzeugen von Tabellen (CREATE TABLE) Schemaevolution: Ändern/Löschen von Tabellen Sichtkonzept (Views) CREATE VIEW / DROP VIEW Problemfälle

Mehr

SQL. strukturierte Datenbankabfragesprache eine Datenbanksprache zur. Structured Query Language:

SQL. strukturierte Datenbankabfragesprache eine Datenbanksprache zur. Structured Query Language: SQL Structured Query Language: strukturierte Datenbankabfragesprache eine Datenbanksprache zur Definition, Abfrage und Manipulation von Daten in relationalen Datenbanken In der SQL-Ansicht arbeiten In

Mehr

Einführung in die Spezialisierungsrichtungen

Einführung in die Spezialisierungsrichtungen Einführung in die Spezialisierungsrichtungen SQL Dr. Matthias Baumgart 23. November 2012 Einführung Logische Datenbankorganisation Die logische Datenbankorganisation erfolgt in drei Schritten: 1 Aufstellen

Mehr

Datenbanken SQL. Insert, Update, Delete, Drop. Krebs

Datenbanken SQL. Insert, Update, Delete, Drop. Krebs Datenbanken SQL Insert, Update, Delete, Drop Krebs Inhalt 1. Datensätze einfügen: INSERT 2. Datensätze verändern: UPDATE 3. Datensätze löschen: DROP vs. DELETE Beispiel Datenbank Schule Klasse P_Klasse

Mehr

Kapitel 3: Datenbanksysteme

Kapitel 3: Datenbanksysteme LUDWIG- MAXIMILIANS- UNIVERSITY MUNICH DEPARTMENT INSTITUTE FOR INFORMATICS Skript zur Vorlesung: Einführung in die Informatik: Systeme und Anwendungen Sommersemester 2009 Kapitel 3: Datenbanksysteme Vorlesung:

Mehr

Labor 3 - Datenbank mit MySQL

Labor 3 - Datenbank mit MySQL Labor 3 - Datenbank mit MySQL Hinweis: Dieses Labor entstand z.t. aus Scripten von Prof. Dr. U. Bannier. 1. Starten des MySQL-Systems MySQL ist ein unter www.mysql.com kostenlos erhältliches Datenbankmanagementsystem.

Mehr

Vorlesung Informatik II

Vorlesung Informatik II Vorlesung Informatik II Universität Augsburg Wintersemester 2011/2012 Prof. Dr. Bernhard Bauer Folien von: Prof. Dr. Robert Lorenz Lehrprofessur für Informatik 08. Exkurs: Datenbanken 1 Motivation Datenbanksysteme

Mehr

WS 2010/11 Datenbanksysteme Fr 15:15 16:45 R 1.008. Vorlesung #5. SQL (Teil 3)

WS 2010/11 Datenbanksysteme Fr 15:15 16:45 R 1.008. Vorlesung #5. SQL (Teil 3) Vorlesung #5 SQL (Teil 3) Fahrplan Besprechung der Übungsaufgaben Rekursion Rekursion in SQL-92 Rekursion in DBMS- Dialekten (Oracle und DB2) Views (Sichten) - gespeicherte Abfragen Gewährleistung der

Mehr

Inhaltsverzeichnis Vorwort zur vierten Auflage Vorwort zur dritten Auflage Vorwort zur zweiten Auflage Vorwort zur ersten Auflage Hinweise zur CD

Inhaltsverzeichnis Vorwort zur vierten Auflage Vorwort zur dritten Auflage Vorwort zur zweiten Auflage Vorwort zur ersten Auflage Hinweise zur CD Vorwort zur vierten Auflage 11 Vorwort zur dritten Auflage 13 Vorwort zur zweiten Auflage 15 Vorwort zur ersten Auflage 17 Hinweise zur CD 19 1 Datenbanken und Datenbanksysteme 21 1.1 Zentralisierung der

Mehr

Kapitel 3: Datenbanksysteme

Kapitel 3: Datenbanksysteme LUDWIG- MAXIMILIANS- UNIVERSITY MUNICH DEPARTMENT INSTITUTE FOR INFORMATICS Skript zur Vorlesung: Einführung in die Informatik: Systeme und Anwendungen Sommersemester 2015 Kapitel 3: Datenbanksysteme Vorlesung:

Mehr

Abstraktionsschichten. Das Relationale Datenmodell

Abstraktionsschichten. Das Relationale Datenmodell Abstraktionsschichten. Das Relationale Datenmodell Verschiedene Abstraktionsebene Data in Beziehung zur Application Data in Beziehung zur Datenmodell Data in Beziehung zur physischen Darstellung Datenunabhängigkeit

Mehr

Informations- und Wissensmanagement

Informations- und Wissensmanagement Übung zur Vorlesung Informations- und Wissensmanagement (Übung 1) Frank Eichinger IPD, Lehrstuhl für Systeme der Informationsverwaltung Zur Person Beruflicher Hintergrund Studium an der TU Braunschweig

Mehr

Garten -Daten Bank. Was ist das? Dr. Karsten Tolle PRG2 SS 2013

Garten -Daten Bank. Was ist das? Dr. Karsten Tolle PRG2 SS 2013 Garten -Daten Bank Was ist das? Dr. Karsten Tolle PRG2 SS 2013 Inhalt heute Kurz: Motivation und Begriffe SQL (am Beispiel MySQL und Workbench) create table(tabelle erzeugen) insert into(einfügen) select

Mehr

XAMPP-Systeme. Teil 3: My SQL. PGP II/05 MySQL

XAMPP-Systeme. Teil 3: My SQL. PGP II/05 MySQL XAMPP-Systeme Teil 3: My SQL Daten Eine Wesenseigenschaft von Menschen ist es, Informationen, in welcher Form sie auch immer auftreten, zu ordnen, zu klassifizieren und in strukturierter Form abzulegen.

Mehr

Einteilung von Datenbanken

Einteilung von Datenbanken Datenbanksysteme (c) A.Kaiser; WU-Wien 1 Einteilung von Datenbanken 1. formatierte Datenbanken 2. unformatierte Datenbanken Information Retrieval Systeme 2 Wozu Datenbanken? Speicherung und Verwaltung

Mehr

Herbstsemester 2009. Datenbanken mit Übungen Kapitel 4: SQL. H. Schuldt. Inhalt

Herbstsemester 2009. Datenbanken mit Übungen Kapitel 4: SQL. H. Schuldt. Inhalt Herbstsemester 2009 Datenbanken mit Übungen Kapitel 4: SQL H. Schuldt Inhalt Datenmanipulationssprache SQL: SQL (Structured Query Language) ist die Standardsprache für die Datendefinition und Datenmanipulation

Mehr

Web-Technologien. Prof. Dr. rer. nat. Nane Kratzke SQL. Praktische Informatik und betriebliche Informationssysteme

Web-Technologien. Prof. Dr. rer. nat. Nane Kratzke SQL. Praktische Informatik und betriebliche Informationssysteme Handout zur Unit Web-Technologien SQL 1 Prof. Dr. rer. nat. Nane Kratzke Praktische Informatik und betriebliche Informationssysteme Raum: 17-0.10 Tel.: 0451 300 5549 Email: nane.kratzke@fh-luebeck.de (Praktische

Mehr

ACCESS SQL ACCESS SQL

ACCESS SQL ACCESS SQL ACCESS SQL Datenbankabfragen mit der Query-Language ACCESS SQL Datenbankpraxis mit Access 34 Was ist SQL Structured Query Language Bestehend aus Datendefinitionssprache (DDL) Datenmanipulationssprache

Mehr

Semantische Integrität (auch: Konsistenz) der in einer Datenbank gespeicherten Daten als wichtige Anforderung

Semantische Integrität (auch: Konsistenz) der in einer Datenbank gespeicherten Daten als wichtige Anforderung 6. Datenintegrität Motivation Semantische Integrität (auch: Konsistenz) der in einer Datenbank gespeicherten Daten als wichtige Anforderung nur sinnvolle Attributwerte (z.b. keine negativen Semester) Abhängigkeiten

Mehr

Informatik Datenbanken SQL-Einführung

Informatik Datenbanken SQL-Einführung Informatik Datenbanken SQL-Einführung Gierhardt Inhaltsverzeichnis 1 Vorbemerkungen 1 2 Auswahl-Abfragen mit SELECT 2 2.1 Selektion...................................... 2 2.2 Projektion.....................................

Mehr

105.3 SQL-Datenverwaltung

105.3 SQL-Datenverwaltung LPI-Zertifizierung 105.3 SQL-Datenverwaltung Copyright ( ) 2009 by Dr. W. Kicherer. This work is licensed under the Creative Commons Attribution-Noncommercial-Share Alike 2.0 Germany License. To view a

Mehr

Datenbanken SQL Einführung Datenbank in MySQL einrichten mit PhpMyAdmin

Datenbanken SQL Einführung Datenbank in MySQL einrichten mit PhpMyAdmin Datenbanken SQL Einführung Datenbank in MySQL einrichten mit PhpMyAdmin PhpMyAdmin = grafsches Tool zur Verwaltung von MySQL-Datenbanken Datenbanken erzeugen und löschen Tabellen und Spalten einfügen,

Mehr

Access Grundkurs. M. Eng. Robert Maaßen

Access Grundkurs. M. Eng. Robert Maaßen Access Grundkurs M. Eng. Robert Maaßen Wer steht da? M. Eng. Robert Maaßen ich@robertmaassen.de www.robertmaassen.de Studium: Informatik Vertiefungsrichtung Medientechnik, Diplom Ingenieur (FH), HAWK,

Mehr

7. Datenbankdefinitionssprachen

7. Datenbankdefinitionssprachen 7. Datenbankdefinitionssprachen SQL-DDL Teil der Standardsprache für relationale Datenbanksysteme: SQL ODL (Object Definition Language) für objektorientierte Datenbanksysteme nach dem ODMG-Standard VL

Mehr

INFORMATIONSUNTERLAGEN. Grundzüge der SQL-Programmierung. Vag 09/2005

INFORMATIONSUNTERLAGEN. Grundzüge der SQL-Programmierung. Vag 09/2005 INFORMATIONSUNTERLAGEN zu Grundzüge der SQL-Programmierung Vag 09/2005 1. SQL 1.1. Einführung Die Sprache SQL (structured query language) wird als einer der Hauptgründe für den kommerziellen Erfolg von

Mehr

Kapitel DB:VI (Fortsetzung)

Kapitel DB:VI (Fortsetzung) Kapitel DB:VI (Fortsetzung) VI. Die relationale Datenbanksprache SQL Einführung SQL als Datenanfragesprache SQL als Datendefinitionssprache SQL als Datenmanipulationssprache Sichten SQL vom Programm aus

Mehr

Referenzielle Integrität SQL

Referenzielle Integrität SQL Referenzielle Integrität in SQL aus Referential Integrity Is Important For Databases von Michael Blaha (Modelsoft Consulting Corp) VII-45 Referenzielle Integrität Definition: Referenzielle Integrität bedeutet

Mehr

Datenbanktechnologie mit praktischen Übungen in MySQL und PHP

Datenbanktechnologie mit praktischen Übungen in MySQL und PHP Datenbanktechnologie mit praktischen Übungen in MySQL und PHP Übung, Sommersemester 2013 22. April 2013 - MySQL Sebastian Cuy sebastian.cuy@uni-koeln.de Datenbanken Was sind eigentlich Datenbanken? Eine

Mehr

OM Datenbanken. OM Datenbanken. 8.1 Was ist ein Datenbanksystem? Motivation

OM Datenbanken. OM Datenbanken. 8.1 Was ist ein Datenbanksystem? Motivation 1 Inhalt: Relationale Datenbanken 8.1 Was ist ein Datenbanksystem? 8.2 Relationale Datenbanksysteme 8.3 Abbildung des objektorientierten Modells auf Tabellen 2 8.1 Was ist ein Datenbanksystem? Motivation

Mehr

SQL-Befehlsliste. Vereinbarung über die Schreibweise

SQL-Befehlsliste. Vereinbarung über die Schreibweise Vereinbarung über die Schreibweise Schlüsselwort [optionale Elemente] Beschreibung Befehlsworte in SQL-Anweisungen werden in Großbuchstaben geschrieben mögliche, aber nicht zwingend erforderliche Teile

Mehr

Uni Duisburg-Essen Fachgebiet Informationssysteme Prof. Dr. N. Fuhr

Uni Duisburg-Essen Fachgebiet Informationssysteme Prof. Dr. N. Fuhr Raum: LF 230 Bearbeitung: 9.-11. Mai 2005 Datum Gruppe Vorbereitung Präsenz Aktuelle Informationen unter: http://www.is.informatik.uni-duisburg.de/courses/dbp_ss03/ Tabellen in IBM DB2 Tabellen Eine relationale

Mehr

Kapitel 7: Referentielle Integrität

Kapitel 7: Referentielle Integrität Kapitel 7: Referentielle Integrität Im Allgemeinen sind nur solche Instanzen einer Datenbank erlaubt, deren Relationen die der Datenbank bekannten Integritätsbedingungen (IB) erfüllen. Integritätsbedingungen

Mehr

Datenbank- und Informationssysteme - Übungsblatt 6 -

Datenbank- und Informationssysteme - Übungsblatt 6 - Datenbank- und Informationssysteme - Übungsblatt 6 - Prof. Dr. Klaus Küspert Dipl.-Inf. Andreas Göbel Friedrich-Schiller-Universität Jena Lehrstuhl für Datenbanken und Informationssysteme 0) Vorbereitung

Mehr

6. Datenintegrität. Integritätsbedingungen

6. Datenintegrität. Integritätsbedingungen 6. Integritätsbedingungen dienen zur Einschränkung der Datenbankzustände auf diejenigen, die es in der realen Welt tatsächlich gibt. sind aus dem erstellten Datenmodell ableitbar (semantisch) und können

Mehr

Datenbanksysteme I. Klausur zum Praktikum. Mehrere Professoren prüfen mit genau einem Beisitzer genau einen Studenten.

Datenbanksysteme I. Klausur zum Praktikum. Mehrere Professoren prüfen mit genau einem Beisitzer genau einen Studenten. Lehrstuhl für Datenbanken und Informationssysteme Wintersemester 1999/2000 Universität Augsburg, Institut für Informatik 25. Februar 2000 Prof. Dr. Werner Kießling A. Leubner, M. Wagner Datenbanksysteme

Mehr

Übung Datenbanken in der Praxis. Datenmodifikation mit SQL

Übung Datenbanken in der Praxis. Datenmodifikation mit SQL Datenmodifikation mit SQL Folie 45 SQL - Datenmodifikation Einfügen INSERT INTO Relation [(Attribut, Attribut,...)] VALUES (Wert, Wert,...) INSERT INTO Relation [(Attribut, Attribut,...)] SFW-Anfrage Ändern

Mehr

Marcus Throll, Oliver Bartosch. Einstieg in SQL. Verstehen, einsetzen, nachschlagen. Galileo Press

Marcus Throll, Oliver Bartosch. Einstieg in SQL. Verstehen, einsetzen, nachschlagen. Galileo Press Marcus Throll, Oliver Bartosch Einstieg in SQL Verstehen, einsetzen, nachschlagen Galileo Press Auf einen Blick 1 Einleitung 15 2 Datenbankentwurf 23 3 Datenbankdefinition 43 4 Datensätze einfügen (INSERT

Mehr

Arbeiten mit ACCESS 2013

Arbeiten mit ACCESS 2013 Dipl.-Hdl., Dipl.-Kfm. Werner Geers Arbeiten mit ACCESS 2013 Datenbanken mit Datenmodellierung Tabellen, Abfragen, Formularen und Berichten Beziehungen Makros Datenaustausch SQL Structured Query Language

Mehr

U 8 SQL. = Structured Query Language (heute auch Standard Query Language) ALLGEMEIN:

U 8 SQL. = Structured Query Language (heute auch Standard Query Language) ALLGEMEIN: U 8 SQL = Structured Query Language (heute auch Standard Query Language) ALLGEMEIN: - Abfragesprache für relationale Datenbanken, die plattformübergreifend verwendet wird - Vereinfachte Verwendung über

Mehr

5. SQL: Erstellen von Tabellen. Erzeugen und Löschen von Tabellen. Umgang mit Bedingungen (Constraints) Einfügen und Löschen von Daten

5. SQL: Erstellen von Tabellen. Erzeugen und Löschen von Tabellen. Umgang mit Bedingungen (Constraints) Einfügen und Löschen von Daten 5. SQL: Erstellen von Tabellen Erzeugen und Löschen von Tabellen Umgang mit Bedingungen (Constraints) Einfügen und Löschen von Daten 106 SQL Structured Query Language Historie: Anfänge ca. 1974 als SEQUEL

Mehr

Datenbanken. Ein DBS besteht aus zwei Teilen:

Datenbanken. Ein DBS besteht aus zwei Teilen: Datenbanken Wikipedia gibt unter http://de.wikipedia.org/wiki/datenbank einen kompakten Einblick in die Welt der Datenbanken, Datenbanksysteme, Datenbankmanagementsysteme & Co: Ein Datenbanksystem (DBS)

Mehr

1. Einführung. Datenbanken Grundlagen

1. Einführung. Datenbanken Grundlagen 1. Einführung Datenbanken Grundlagen Wo finden wir Datenbanken? Was sind Datenbanken/ Datenbankensysteme(DBS)? A collection of related data items mit folgenden Eigenschaften: Eine Datebank repräsentiert

Mehr

Dipl.-Hdl., Dipl.-Kfm. ACCESS 2007

Dipl.-Hdl., Dipl.-Kfm. ACCESS 2007 Dipl.-Hdl., Dipl.-Kfm. Werner Geers Arbeiten mit ACCESS 2007 Datenbanken mit Datenmodellierung Tabellen, Abfragen, Formularen und Berichten Beziehungen Makros Datenaustausch SQL Structured Query Language

Mehr

Datenbanken. Datenintegrität + Datenschutz. Tobias Galliat. Sommersemester 2012

Datenbanken. Datenintegrität + Datenschutz. Tobias Galliat. Sommersemester 2012 Datenbanken Datenintegrität + Datenschutz Tobias Galliat Sommersemester 2012 Professoren PersNr Name Rang Raum 2125 Sokrates C4 226 Russel C4 232 2127 Kopernikus C3 310 2133 Popper C3 52 2134 Augustinus

Mehr

Sructred Query Language

Sructred Query Language Sructred Query Language Michael Dienert 11. November 2010 Inhaltsverzeichnis 1 Ein kurzer Versionsüberblick 1 2 SQL-1 mit einigen Erweiterungen aus SQL-92 2 3 Eine Sprache zur Beschreibung anderer Sprachen

Mehr

Unterabfragen (Subqueries)

Unterabfragen (Subqueries) Unterabfragen (Subqueries) Die kürzeste Formulierung ist folgende: SELECT Felderliste FROM Tabelle1 WHERE Tabelle1.Feldname Operator (SELECT Feldname FROM Tabelle2 WHERE Bedingung); wobei Tabelle1 und

Mehr

6. Sichten, Integrität und Zugriffskontrolle. Vorlesung "Informa=onssysteme" Sommersemester 2015

6. Sichten, Integrität und Zugriffskontrolle. Vorlesung Informa=onssysteme Sommersemester 2015 6. Sichten, Integrität und Zugriffskontrolle Vorlesung "Informa=onssysteme" Sommersemester 2015 Überblick Sichten Integritätsbedingungen Zugriffsrechte SQL- Schema und SQL- Katalog Das Informa=onsschema

Mehr

Einstieg in relationale Datenbanken mit MySQL. Dr. Kerstin Puschke September 2009

Einstieg in relationale Datenbanken mit MySQL. Dr. Kerstin Puschke September 2009 Einstieg in relationale Datenbanken mit MySQL Dr. Kerstin Puschke September 2009 1 Lizenz Lizenz Dieser Text steht unter einer Creative Commons Attribution-Share Alike 3.0 Germany Lizenz, siehe http://creativecommons.org/licenses/by-sa/3.0/de/

Mehr

Inhaltsverzeichnis. jetzt lerne ich

Inhaltsverzeichnis. jetzt lerne ich Inhaltsverzeichnis jetzt lerne ich Einführung 15 1 Erste Schritte 21 1.1 Datenbanken und Datenbank-Managementsysteme 21 1.2 Zugriff auf Datenbanken 22 1.3 Was der Großvater noch wusste... 22 1.4 Einordnung

Mehr

Datendefinition und Datenmanipulation in SQL

Datendefinition und Datenmanipulation in SQL SQL Datendefinition und Datenmanipulation in SQL 2002 Prof. Dr. Rainer Manthey Informationssysteme 1 SQL: Geschichte SQL (Structured Query Language) ist heute die bei weitestem populärste und verbreitetste

Mehr

Bibliografische Informationen digitalisiert durch http://d-nb.info/995021198

Bibliografische Informationen digitalisiert durch http://d-nb.info/995021198 Auf einen Blick 1 Einleitung 15 2 Datenbankentwurf 23 3 Datenbankdefinition 43 4 Datensätze einfügen (INSERT INTO) 95 5 Daten abfragen (SELECT) 99 6 Daten aus mehreren Tabellen abfragen (JOIN) 143 7 Unterabfragen

Mehr

Taschenbuch der Wirtschaftsinformatik und Wirtschaftsmathematik

Taschenbuch der Wirtschaftsinformatik und Wirtschaftsmathematik Taschenbuch der Wirtschaftsinformatik und Wirtschaftsmathematik von Wolfgang König, Heinrich Rommelfanger, Dietrich Ohse, Oliver Wendt, Markus Hofmann, Michael Schwind, Klaus Schäfer, Helmut Kuhnle, Andreas

Mehr

2) Nennen Sie die Namen der 3 Ebenen des 3-Ebenen-Modells, und geben Sie an, was in jeder Ebene dargestellt wird.

2) Nennen Sie die Namen der 3 Ebenen des 3-Ebenen-Modells, und geben Sie an, was in jeder Ebene dargestellt wird. Übungen und Lösungen 1. Einführung Datenbanken 1) Welche Datenbanktypen kennen Sie? Wodurch sind sie gekennzeichnet? Hierarchische Datenbanken: Zwischen den Datensätzen besteht eine untergeordnete Rangfolge.

Mehr

5.8 Bibliotheken für PostgreSQL

5.8 Bibliotheken für PostgreSQL 5.8 Bibliotheken für PostgreSQL Haskell/WASH: Modul Dbconnect PHP: pqsql-funktionen Java/JSP: JDBC Perl: DBI database interface modul Vorläufige Version 80 c 2004 Peter Thiemann, Matthias Neubauer 5.9

Mehr

VO Datenmodellierung. Katrin Seyr

VO Datenmodellierung. Katrin Seyr Datenintegrität Datenintegrität VO Datenmodellierung Katrin Seyr Institut für Informationssysteme Technische Universität Wien Katrin Seyr Seite 1 Datenintegrität 1. Überblick Überblick 1 Überblick 2 Integritätsbedingungen

Mehr

Datenmodellierung und Datenbanksysteme. Vorlesung. Informationswissenschaft und Informationssysteme. Hans Uszkoreit & Brigi1e Jörg

Datenmodellierung und Datenbanksysteme. Vorlesung. Informationswissenschaft und Informationssysteme. Hans Uszkoreit & Brigi1e Jörg Vorlesung Informationswissenschaft und Informationssysteme Hans Uszkoreit & Brigi1e Jörg Definitionen Data modeling in software engineering is the process of creating a data model by applying formal data

Mehr

Integritätsbedingungen / Normalformen- Beispiel: Kontoführung

Integritätsbedingungen / Normalformen- Beispiel: Kontoführung Technische Universität München WS 2003/04, Fakultät für Informatik Datenbanksysteme I Prof. R. Bayer, Ph.D. Lösungsblatt 8 Dipl.-Inform. Michael Bauer Dr. Gabi Höfling 12.01. 2004 Integritätsbedingungen

Mehr

Daten, Datenbanken, Datenbankmanagmentsysteme

Daten, Datenbanken, Datenbankmanagmentsysteme banken bankmanagmentsysteme Wikipedia sagt Bspe.: : sind zum Zweck der Verarbeitung zusammengefasste Zeichen, die aufgrund bekannter oder unterstellter Abmachungen Informationen tragen. 15.03.2012 als

Mehr

Nachtrag: Farben. Farbblindheit. (Light und Bartlein 2004)

Nachtrag: Farben. Farbblindheit. (Light und Bartlein 2004) Nachtrag: Farben Farbblindheit (Light und Bartlein 2004) 1 Vorgeschlagene Farbskalen (Light and Bartlein 2004) Farbkodierung metrisch skalierter Daten Unterscheide: 1. Sequential Data (ohne Betonung der

Mehr

Web Technologien Klassische Datenbanken am Beispiel von MySQL

Web Technologien Klassische Datenbanken am Beispiel von MySQL Web Technologien Klassische Datenbanken am Beispiel von MySQL Univ.-Prof. Dr.-Ing. Wolfgang Maass Chair in Information and Service Systems Department of Law and Economics WS 2011/2012 Wednesdays, 8:00

Mehr

Datenbanksprache SQL. Datenbanksprache SQL. 5.1 Anfragesprache SQL-DQL. from-klausel SS 2005

Datenbanksprache SQL. Datenbanksprache SQL. 5.1 Anfragesprache SQL-DQL. from-klausel SS 2005 Webbasierte Informationssysteme SS 2005 8. SQL-Vertiefung Prof. Dr. Stefan Böttcher Universität Paderborn Datenbanksprache SQL Structured Query Language (SQL) - am IBM San Jose Research Laboratory entwickelt

Mehr

Einführung in SQL mit Oracle

Einführung in SQL mit Oracle Seminar Einführung in SQL mit Oracle von Prof. Dr. Rainer Schwenkert Hochschule München c Vervielfältigung nur mit Zustimmung des Autors Themenbereiche SQL-Historie Wichtige DDL- und DML-Anweisungen Der

Mehr

Datenmanipulation in SQL. Select Anweisung

Datenmanipulation in SQL. Select Anweisung Datenmanipulation in SQL Unter Datenmanipulation wird sowohl der lesende Zugriff auf die Daten (Select Statement) als auch die Änderung von Daten (Insert, Delete, Update) subsummiert. Wir beginnen mit

Mehr

SQL: statische Integrität

SQL: statische Integrität SQL: statische Integrität.1 SQL: statische Integrität Im allgemeinen sind nur solche Instanzen einer Datenbank erlaubt, deren Relationen die der Datenbank bekannten Integritätsbedingungen erfüllen. Integritätsbedingungen

Mehr

Relationale Datenbanken Datenbankgrundlagen

Relationale Datenbanken Datenbankgrundlagen Datenbanksystem Ein Datenbanksystem (DBS) 1 ist ein System zur elektronischen Datenverwaltung. Die wesentliche Aufgabe eines DBS ist es, große Datenmengen effizient, widerspruchsfrei und dauerhaft zu speichern

Mehr

Webbasierte Informationssysteme 8. Datenbanksprache SQL

Webbasierte Informationssysteme 8. Datenbanksprache SQL Universität Paderborn Datenbanksprache SQL Webbasierte Informationssysteme 8. Datenbanksprache SQL Prof. Dr. Gregor Engels Alexander Förster AG Datenbank- und Informationssysteme 1 umfasst Sprachanteile

Mehr

Einführung in die Informatik II

Einführung in die Informatik II Einführung in die Informatik II Die Structured Query Language SQL Prof. Dr. Nikolaus Wulff SQL Das E/R-Modell lässt sich eins zu eins auf ein Tabellenschema abbilden. Benötigt wird eine Syntax, um Tabellen

Mehr

Themenblock: Erstellung eines Cube

Themenblock: Erstellung eines Cube Themenblock: Erstellung eines Cube Praktikum: Data Warehousing und Data Mining Einführung relationale Datenbanken Problem Verwaltung großer Mengen von Daten Idee Speicherung der Daten in Form von Tabellen

Mehr

SQL Einstieg und Anwendung

SQL Einstieg und Anwendung Wolfgang D. Misgeld 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. SQL Einstieg und Anwendung Mit SQL-3, IBM DB2,

Mehr

5. Datendefinition in SQL

5. Datendefinition in SQL Datendefinition 5. Datendefinition in SQL Schema, Datentypen, Domains Erzeugen von Tabellen (CREATE TABLE) Schemaevolution: Ändern/Löschen von Tabellen Sichtkonzept (Views) CREATE VIEW / DROP VIEW Problemfälle

Mehr

7. Übung - Datenbanken

7. Übung - Datenbanken 7. Übung - Datenbanken Informatik I für Verkehrsingenieure Aufgaben inkl. Beispiellösungen 1. Aufgabe: DBS a Was ist die Kernaufgabe von Datenbanksystemen? b Beschreiben Sie kurz die Abstraktionsebenen

Mehr

Datenbanken in der FOR 600 Der Einsatz von Datenbanken in der empirischen Linguistik

Datenbanken in der FOR 600 Der Einsatz von Datenbanken in der empirischen Linguistik Datenbanken in der FOR 600 Der Einsatz von Datenbanken in der empirischen Linguistik Heinrich-Heine-Universität, FFF-Kolloquium Christof Rumpf 29.04.2009 1/34 Überblick Datenbanken Grundlagen Datenbanken

Mehr

Datenbanksysteme Kapitel 7: SQL Vorlesung vom Oliver Vornberger. Institut für Informatik Universität Osnabrück

Datenbanksysteme Kapitel 7: SQL Vorlesung vom Oliver Vornberger. Institut für Informatik Universität Osnabrück Datenbanksysteme 2013 Kapitel 7: SQL Vorlesung vom 6.05.2013 Oliver Vornberger Institut für Informatik Universität Osnabrück Sprung Transititve Hülle SQL 1970 Edgar Codd: A relational model for large shared

Mehr

Wie definieren wir das Relationen-

Wie definieren wir das Relationen- Wie definieren wir das Relationen- schema für eine Datenbank? Professoren PersNr Name Rang Raum 2125 Sokrates C4 226 2126 Russel C4 232 2127 Kopernikus C3 310 2133 Popper C3 52 2134 Augustinus C3 309 2136

Mehr