Large-Scale Image Search

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Large-Scale Image Search"

Transkript

1 Large-Scale Image Search Visuelle Bildsuche in sehr großen Bildsammlungen Media Mining I Multimedia Computing, Universität Augsburg

2 Large-Scale Image Search Visuelle Bildsuche in sehr großen Bildsammlungen Media Mining I Multimedia Computing, Universität Augsburg

3 Large-Scale Image Search Visuelle Bildsuche in sehr großen Bildsammlungen Media Mining I Multimedia Computing, Universität Augsburg

4 Large-Scale Image Search Visuelle Bildsuche in sehr großen Bildsammlungen Media Mining I Multimedia Computing, Universität Augsburg

5 Große Bildsammlungen Internet Flickr mit über mit über 2 Milliarden Bildern (Stand 14. Nov. 2007) Seitdem kommen täglich zw. 2 und 3 Millionen Bilder dazu Bilder zum Teil mit Schlagworten versehen Familien Fotos seit 1994 ~1500 Bilder pro Jahr = ~120 Bilder pro Monat = ~4 pro Tag 5s pro Bild 3 Tage zum anschauen (bei 10h pro Tag) 5

6 Anfrage durch Beispiel Anfragebild 6

7 Was ist das? Anfragebild Golden Gate Golden Gate Golden Gate No. 1, beach Golden Gate Golden Gate, John, Rita Golden Gate, SF Presidio, SF 8

8 Stochastische Verfahren

9 Grundidee Fakt: Forschungsgebiet der Textsuche gibt es schon viel länger als das der visuellen Bildsuche Idee: Übertrage erfolgreiche Verfahren der Textsuche auf den Bildbereich Brauchen Analogien zu Dokumenten = Bild Endliche (und überschaubare) Menge an diskreten Worten =? 10

10 Visuelle Merkmale

11 Grundidee Ähnliche Objekte zeigen ähnliche lokale Merkmale wie: Farbe und Helligkeiten Muster und Texturen Kanten und Gradienten Formen Lokale Selbstähnlichkeitsstrukturen Ein Bild wird durch die Gesamtheit seiner lokalen Merkmale beschrieben 12

12 Selbstähnlichkeitsmerkmal (1) Folgende Bilder unterscheiden sich in so ziemlich allem (u.a. Farbe, Textur, Kanten). Nur das Konzept hinter dem zentralen Objekt ist gleich: ein Herz Grundidee: Bilder sind ähnlich bezüglich der räumlichen Anordnung der lokalen Selbstähnlichkeiten 13

13 Selbstähnlichkeitsmerkmal (2) Lokale Intensitätsmuster werden in der Nachbarschaft in charakteristischer geometrischer Anordnung wiederholt Ref: E. Shechtman, M. Irani. Matching Local Self-Similarities across Images and Videos. In CVPR2007,

14 Selbstähnlichkeitsmerkmal (3) 20 * 4 = 80 Komponenten 15

15 Suchbeispiel (a) Vorgabemuster (b) Beispiele, wo Vorgabemuster gefunden wurde 16

16 Regelmäßige Abtastung bzgl. Ort und Skala mit Umgebung fester Größe 17

17 Unregelmäßige Abtastung 18

18 Regelmäßige Abtastung bzgl. Ort und Skala mit Umgebung fester Größe 19

19 Visuelle Worte

20 Fakten über die Merkmale Pro Bild wird für alle Positionen in allen Skalen dieses Merkmal ausgerechnet zwischen 2,000 bis 10,000 Merkmale pro Bild Merkmale sind n-dimensionale reell-wertige Vektoren (hier n=80) Jeder Merkmalsvektor ist einmalig Damit Text-Suchverfahren angewendet werden können, müssen wir diese unendlich große Menge von Möglichkeiten auf eine endliche Größe quantisieren. 22

21 Quantisierungsbeispiel Annahmen Elektrisches Thermometer mit unendlicher Genauigkeit Messung der Außentemperatur Alle Werte zwischen -20 C und +40 C möglich z.b. 15,34 C oder -3,76 C Quantisierung auf die nächste ganzzahlige Temperatur z.b. 15 C oder -4 C 61 mögliche ganzzahlige Temperaturen Abbildung (Quantisierung) der reellen Werte aus [-20,40] auf nur 61 Werte 23

22 2D Quantisierungsbeispiel (1) D: 7 Wörter 2D: 7 2 =49 Wörter 3D: 7 3 =343 Wörter 4D: 7 4 =2401 Wörter 10D: 7 10 = D: *10 67 Wörter 49 Repräsentanten (Cluster-Zentren) 24

23 2D Quantisierungsbeispiel (2) Repräsentanten (Cluster-Zentren) 19 Repräsentanten (Cluster-Zentren) 25

24 Quantisierung Gegeben: Ziel: Menge X von n Vektoren X={x 1,, x n } aus dem d- dimensionalen Raum d Positive natürliche Zahl k: k Finde eine Menge von k Punkten C={c 1,, c k } aus dem d- dimensionalen Raum d, welche den durchschnittlichen quadratischen Abstand zwischen den Punkten und dem nächsten Mittelpunkt minimiert. Realität: ( c 1, c2,..., ck ) arg min min xi j ( c1, c2,..., ck ) i 1 kein exakter Algorithmus zur Suche des globalen Minimum in polynomer Zeit bekannt c Daher: Man begnügt sich mit dem lokalen Minimum: K-Means Clustering n j

25 K - Means Clustering (1) 1. Gebe gewünschte Anzahl der Repräsentanten (Cluster) vor (e.g., k=5). 27

26 K - Means Clustering (2) 1. Gebe gewünschte Anzahl der Repräsentanten (Cluster) vor (e.g., k=5). 2. Wähle zufällig k Cluster- Mittelpunkte. 28

27 K - Means Clustering (3) 1. Gebe gewünschte Anzahl der Repräsentanten (Cluster) vor (e.g., k=5). 2. Wähle zufällig k Cluster- Mittelpunkte. 3. Ordne jeden Punkt dem nächsten Clusterpunkt zu. 29

28 K - Means Clustering (4) 1. Gebe gewünschte Anzahl der Repräsentanten (Cluster) vor (e.g., k=5). 2. Wähle zufällig k Cluster- Mittelpunkte. 3. Ordne jeden Punkt dem räumlich nächsten Cluster- Mittelpunkt zu. 4. Berechne für jeden Cluster einen neuen Cluster- Mittelpunkt 30

29 K - Means Clustering (4) 1. Gebe gewünschte Anzahl der Repräsentanten (Cluster) vor (e.g., k=5). 2. Wähle zufällig k Cluster- Mittelpunkte. 3. Ordne jeden Punkt dem räumlich nächsten Cluster- Mittelpunkt zu. 4. Berechne für jeden Cluster einen neuen Cluster- Mittelpunkt 5. und setze gehe dort hin 6. und wiederhole ab 3. 31

30 Erstelle Visuelles Wörterbuch Viele lokale Merkmalsvektoren pro Bild K-Means Clustering Wähle die Cluster- Mittelpunkte als visuelles Wörterbuch Visuellen Wörterbuch (hier: 2400 Worte) 32

31 Dokument Term - Matrix

32 Dokument Term - Matrix Gegeben: Eine Sammlung von N Textdokumenten D={d 1,,d N } mit Termen aus einem Vokabular W={w 1,,w M }, bei denen wir die Reihenfolge der Wörter völlig ignorieren Wortmengenmodell (Bag-of-Word Model) beschrieben durch die sog. Dokument Term - Matrix der Größe N x M d 1 d i d N w 1,, w j,, w M n(d i, w j ) Beinhaltet absolute Häufigkeiten (#), mit denen die Terme in den Dokumenten auftreten: N = ( n(d i, w j ) ) ij Dokumentvektor Termvektor 34

33 Kosinus-Abstandsmaß Der M-dimensionale Dokumentvektor d ist unser Merkmalsvektor pro Bild (M = # der Wörter im Wörterbuch) Jeder Merkmalsvektor beschreibt einen Punkt im M-dimensionalen Raum M Die Merkmalsvektoren zweier zu vergleichender Merkmale spannen eine Winkel θ auf. cos( d, d 1 Abstandsmaß: 2 d 1, d2 ) cos( ) d d d 1 2 M M w 1 w 1 d d 2 1i 1i d 2i M w 1 d 2 2i d1, d ) 1 cos( ) ( 2 d 1 d i d N d q w 1,, w j,, w M d 1 θ d2 n(d i, w j ) Dokumentvektor w 1,, w j,, w M 36

34 Problem mit Dokumentvektor Tischtennis Ping- Pong Pferd Esel Flugzeug Flughafen Synonyme Verschiedene Worte, die das Gleiche bedeuten Visuell Ähnliches Ähnliches oder Dinge der gleichen Art Wortfelder Existieren in der gleiche Szene/am gleichen Ort 37

35 Wahrscheinlichkeiten Anzahl der Worte: n n( d i, w j ) i, j Wahrscheinlichkeit für das Auftreten eines Wortes w j in einem Dokument d i : p( di, wj ) n( di, wj ) / n d 1 d i w 1,, w j,, w M n(d i, w j ) d N Wahrscheinlichkeit für ein Dokument: p ( di ) p( di, wj ) j Dokumentvektor Termvektor 38

36 Probabilistic Latent Semantic Analysis Erzeugermodell für Beobachtungspaare (d i,w j ): Wähle ein Dokument d i mit Wahrscheinlichkeit p(d i ) Wähle einen verborgenen Aspekt z k mit Wahrscheinlichkeit p(z k d i ) Erzeuge ein Wort w j mit Wahrscheinlichkeit p(w j z k ) D Z W ) ( i d P ) ( i z k d P ) ( k w j z P K k k j i k i K k k j i k i K k j k i j i z w P d z P d p z w P d z P d p w z d P w d P ) ( ) ( ) ( ) ( ) ( ) ( ),, ( ), ( Annahme: w j unabhängig von d i gegeben z k : p(w j d i,z k ) = p(w j z k ) 39

37 Probabilistic LSA (plsa) P( d, w i ) Kompression: j Bespiel: P( d ) # der Worte=1000, # der Bilder=1 Mio., # der Aspekte = 40 Ohne Aspekte: Wir brauchen 1,000,000 x 1000 = 1 Milliarden Wahrscheinlichkeiten Mit Aspekten: i K k 1 P( z Wir brauchen 1,000,000 x x 1000 Wahrscheinlichkeiten k d ) P( w i j z k ) EM-Lernen: L N ln L i 1 j 1 N i 1 j 1 N M M i 1 j 1 P( d M Ausgabe: P(w j z k ), p(z k d i ) i ln P( d n( d, w i j, w, w )lnp( d EM Klassifikation von d: Gegeben p(w j z k ), bestimme p(z k d) i ) j n( d, w i j ) j ) max n( d, w i i j ), w j ) max 40

38 Beispielergebnisse auf Text (1) Die 2 Aspekte, die am wahrscheinlichsten das Word flight erzeugen. Die 2 Aspekte, die am wahrscheinlichsten das Word love erzeugen. Topic Detection and Tracking corpus (TDT1) ~ 7 Mio Wörter Dokumente K=128 Die Wortstämme, die für den jeweiligen Aspekt am wahrscheinlichsten sind: p(w j z k ) Ref: Thomas Hoffmann. Unsupervised Learning by Probabilistic 2008 Prof. Dr. Rainer Lienhart, Multimedia Latent Computing, Semantic Institut für Analysis. Informatik, Universität Machine Augsburg Learning, Vol. 42, Issue 1-2, 41 pp , 2001.

39 Visuelle Suche

40 Bildklassifikationsmodel Metapher -- Zusammenfassung: Bild Textdokument Objektkategorien Aspekte (z.b. Mensch, Grass, Haus, etc.) Lokale visuelle Worte Worten im Text Visuelle Worte werden durch Diskretisierung der kontinuierlichen Merkmale zur Beschreibung lokaler visueller Muster erzeugt. Ein Bild mit mehreren Objekten wird als Dokument mit mehreren Aspekten modelliert. Dokumente werden bezüglich ihrer Aspektverteilung verglichen, d.h. bezüglich p(z k d i ) 44

41 Realistische Bilddatenbank (1) 253,460 Bilder wurden von Flickr heruntergeladen, von denen jedes mit mindestens einem der 23 Wörter rechts beschriftet war. Die Datenbank wurde ohne jede Nachverarbeitung so wie heruntergeladen benutzt. Category # OR list of tags # of image 1 wildlife animal animals cat cats dog dogs bird birds flower flowers graffiti sign signs surf surfing night food building buildings goldengate goldengatebridge baseball Total # of Images (Note images may have multiple tags) 253,460 45

42 Real World Database (2) 46

43 Realistische Database (3) Falsche Beschriftungen 47

44 plsa - Gebäude 48

45 plsa - Grafitti 49

46 plsa - Baseball 50

47 plsa Golden Gate 51

48 plsa - Text 52

49 Ausblick Andere stochastische Verfahren LDA Deep Belief Networks Andere Modalitäten Schlagworte Usergruppen Cosine JS L1 IR measure 0.5 Andere Ähnlichkeitsmaße LDA+IR measure plsa+ir measure 53

Exploration und Klassifikation von BigData

Exploration und Klassifikation von BigData Exploration und Klassifikation von BigData Inhalt Einführung Daten Data Mining: Vorbereitungen Clustering Konvexe Hülle Fragen Google: Riesige Datenmengen (2009: Prozessieren von 24 Petabytes pro Tag)

Mehr

Vorlesung Text und Data Mining S9 Text Clustering. Hans Hermann Weber Univ. Erlangen, Informatik

Vorlesung Text und Data Mining S9 Text Clustering. Hans Hermann Weber Univ. Erlangen, Informatik Vorlesung Text und Data Mining S9 Text Clustering Hans Hermann Weber Univ. Erlangen, Informatik Document Clustering Überblick 1 Es gibt (sehr viele) verschiedene Verfahren für das Bilden von Gruppen Bei

Mehr

Entwicklung eines Distanzmaßes zwischen Bildern über dem Modell der Fields of Visual Words

Entwicklung eines Distanzmaßes zwischen Bildern über dem Modell der Fields of Visual Words Entwicklung eines Distanzmaßes zwischen Bildern über dem Modell der Fields of Visual Words André Viergutz 1 Inhalt Einführung. Einordnung der Arbeit in die zugrunde liegenden Konzepte Das Modell der Fields

Mehr

Einführung. Information Retrieval. IR-Aufgaben. IR in Beispielen. Adhoc-Suche: Web. IR in Beispielen. Was ist IR? Norbert Fuhr

Einführung. Information Retrieval. IR-Aufgaben. IR in Beispielen. Adhoc-Suche: Web. IR in Beispielen. Was ist IR? Norbert Fuhr Einführung Information Retrieval Norbert Fuhr 13. Oktober 2011 IR in Beispielen Was ist IR? Daten Information Wissen Dimensionen des IR Rahmenarchitektur für IR-Systeme Adhoc-Suche: Web IR in Beispielen

Mehr

Integration geometrischer und fotogrammetrischer Information zum Wiederfinden von Bildern

Integration geometrischer und fotogrammetrischer Information zum Wiederfinden von Bildern Integration geometrischer und fotogrammetrischer Information zum Wiederfinden von Bildern Björn Burow SE Mustererkennung in Bildern und 3D-Daten Lehrstuhl Graphische Systeme BTU Cottbus Inhaltsübersicht

Mehr

Seminar Visual Analytics and Visual Data Mining

Seminar Visual Analytics and Visual Data Mining Seminar Visual Analytics and Visual Data Mining Dozenten:, AG Visual Computing Steffen Oeltze, AG Visualisierung Organisatorisches Seminar für Diplom und Bachelor-Studenten (max. 18) (leider nicht für

Mehr

Computer Vision: AdaBoost. D. Schlesinger () Computer Vision: AdaBoost 1 / 10

Computer Vision: AdaBoost. D. Schlesinger () Computer Vision: AdaBoost 1 / 10 Computer Vision: AdaBoost D. Schlesinger () Computer Vision: AdaBoost 1 / 10 Idee Gegeben sei eine Menge schwacher (einfacher, schlechter) Klassifikatoren Man bilde einen guten durch eine geschickte Kombination

Mehr

Wie Google Webseiten bewertet. François Bry

Wie Google Webseiten bewertet. François Bry Wie Google Webseiten bewertet François Bry Heu6ge Vorlesung 1. Einleitung 2. Graphen und Matrizen 3. Erste Idee: Ranking als Eigenvektor 4. Fragen: Exisi6ert der Eigenvektor? Usw. 5. Zweite Idee: Die Google

Mehr

Universität Duisburg-Essen, Standort Duisburg Institut für Informatik und interaktive Systeme Fachgebiet Informationssysteme

Universität Duisburg-Essen, Standort Duisburg Institut für Informatik und interaktive Systeme Fachgebiet Informationssysteme Universität Duisburg-Essen, Standort Duisburg Institut für Informatik und interaktive Systeme Fachgebiet Informationssysteme Studienprojekt Invisible Web (Dipl.-Inform. Gudrun Fischer - WS 2003/04) Blockseminar

Mehr

Dokumenten-Clustering. Norbert Fuhr

Dokumenten-Clustering. Norbert Fuhr Dokumenten-Clustering Norbert Fuhr Dokumenten-Clustering (Dokumenten-)Cluster: Menge von ähnlichen Dokumenten Ausgangspunkt Cluster-Hypothese : die Ähnlichkeit der relevanten Dokumente untereinander und

Mehr

Vektormodelle. Universität zu Köln HS: Systeme der maschinellen Sprachverarbeitung Prof. Dr. J. Rolshoven Referentin: Alena Geduldig

Vektormodelle. Universität zu Köln HS: Systeme der maschinellen Sprachverarbeitung Prof. Dr. J. Rolshoven Referentin: Alena Geduldig Vektormodelle Universität zu Köln HS: Systeme der maschinellen Sprachverarbeitung Prof. Dr. J. Rolshoven Referentin: Alena Geduldig Gliederung Vektormodelle Vector-Space-Model Suffix Tree Document Model

Mehr

Ideen der Informatik. Maschinelles Lernen. Kurt Mehlhorn Adrian Neumann Max-Planck-Institut für Informatik

Ideen der Informatik. Maschinelles Lernen. Kurt Mehlhorn Adrian Neumann Max-Planck-Institut für Informatik Ideen der Informatik Maschinelles Lernen Kurt Mehlhorn Adrian Neumann Max-Planck-Institut für Informatik Übersicht Lernen: Begriff Beispiele für den Stand der Kunst Spamerkennung Handschriftenerkennung

Mehr

Selbstorganisierende Karten

Selbstorganisierende Karten Selbstorganisierende Karten Yacin Bessas yb1@informatik.uni-ulm.de Proseminar Neuronale Netze 1 Einleitung 1.1 Kurzüberblick Die Selbstorganisierenden Karten, auch Self-Organizing (Feature) Maps, Kohonen-

Mehr

Data Mining und Knowledge Discovery in Databases

Data Mining und Knowledge Discovery in Databases Data Mining und Knowledge Discovery in Databases Begriffsabgrenzungen... Phasen der KDD...3 3 Datenvorverarbeitung...4 3. Datenproblematik...4 3. Möglichkeiten der Datenvorverarbeitung...4 4 Data Mining

Mehr

Eine Einführung in R: Hochdimensionale Daten: n << p Teil II

Eine Einführung in R: Hochdimensionale Daten: n << p Teil II Eine Einführung in R: Hochdimensionale Daten: n

Mehr

Einführung in Bildverarbeitung und Computervision

Einführung in Bildverarbeitung und Computervision Einführung in Bildverarbeitung und Computervision Vorlesung 1: Grundlagen Dipl.-Math. Dimitri Ovrutskiy SS 2010 HTWdS Auf Basis der Vorlesungen von und mit Danksagung an Hr. Prof. Dr. J. Weikert Bildverarbeitung

Mehr

Kapitel IR:III (Fortsetzung)

Kapitel IR:III (Fortsetzung) Kapitel IR:III (Fortsetzung) III. Retrieval-Modelle Modelle und Prozesse im IR Klassische Retrieval-Modelle Bool sches Modell Vektorraummodell Retrieval-Modelle mit verborgenen Variablen Algebraisches

Mehr

Voraussetzung wieder: Datenraum mit Instanzen, mehrere Attribute - kein ausgezeichnetes Zielattribut, keine vorgegebenen Klassen

Voraussetzung wieder: Datenraum mit Instanzen, mehrere Attribute - kein ausgezeichnetes Zielattribut, keine vorgegebenen Klassen 7. Clusteranalyse (= Häufungsanalyse; Clustering-Verfahren) wird der multivariaten Statistik zugeordnet Voraussetzung wieder: Datenraum mit Instanzen, mehrere Attribute - kein ausgezeichnetes Zielattribut,

Mehr

Clustern. Teile nicht kategorisierte Beispiele in disjunkte Untermengen, so genannte Cluster, ein, so dass:

Clustern. Teile nicht kategorisierte Beispiele in disjunkte Untermengen, so genannte Cluster, ein, so dass: Text-Clustern 1 Clustern Teile nicht kategorisierte Beispiele in disjunkte Untermengen, so genannte Cluster, ein, so dass: Beispiele innerhalb eines Clusters sich sehr ähnlich Beispiele in verschiedenen

Mehr

Clustering Seminar für Statistik

Clustering Seminar für Statistik Clustering Markus Kalisch 03.12.2014 1 Ziel von Clustering Finde Gruppen, sodas Elemente innerhalb der gleichen Gruppe möglichst ähnlich sind und Elemente von verschiedenen Gruppen möglichst verschieden

Mehr

Vorbereitungsaufgaben

Vorbereitungsaufgaben Praktikum Bildverarbeitung / Bildinformationstechnik Versuch BV 4 / BIT 3: Mustererkennung Paddy Gadegast, CV00, 160967 Alexander Opel, CV00, 16075 Gruppe 3 Otto-von-Guericke Universität Magdeburg Fakultät

Mehr

Grundlagen der Monte Carlo Simulation

Grundlagen der Monte Carlo Simulation Grundlagen der Monte Carlo Simulation 10. Dezember 2003 Peter Hofmann Inhaltsverzeichnis 1 Monte Carlo Simulation.................... 2 1.1 Problemstellung.................... 2 1.2 Lösung durch Monte

Mehr

Bioinformatik I (Einführung)

Bioinformatik I (Einführung) Kay Diederichs, Sommersemester 2015 Bioinformatik I (Einführung) Algorithmen Sequenzen Strukturen PDFs unter http://strucbio.biologie.unikonstanz.de/~dikay/bioinformatik/ Klausur: Fr 17.7. 10:00-11:00

Mehr

0 Einführung: Was ist Statistik

0 Einführung: Was ist Statistik 0 Einführung: Was ist Statistik 1 Datenerhebung und Messung 2 Univariate deskriptive Statistik 3 Multivariate Statistik 4 Regression 5 Ergänzungen Explorative Datenanalyse EDA Auffinden von Strukturen

Mehr

Text Mining Praktikum. Durchführung: Andreas Niekler Email: aniekler@informatik.uni-leipzig.de Zimmer: Paulinum (P) 818

Text Mining Praktikum. Durchführung: Andreas Niekler Email: aniekler@informatik.uni-leipzig.de Zimmer: Paulinum (P) 818 Text Mining Praktikum Durchführung: Andreas Niekler Email: aniekler@informatik.uni-leipzig.de Zimmer: Paulinum (P) 818 Rahmenbedingungen Gruppen von 2- (max)4 Personen Jede Gruppe erhält eine Aufgabe Die

Mehr

Web Information Retrieval. Zwischendiskussion. Überblick. Meta-Suchmaschinen und Fusion (auch Rank Aggregation) Fusion

Web Information Retrieval. Zwischendiskussion. Überblick. Meta-Suchmaschinen und Fusion (auch Rank Aggregation) Fusion Web Information Retrieval Hauptseminar Sommersemester 2003 Thomas Mandl Überblick Mehrsprachigkeit Multimedialität Heterogenität Qualität, semantisch, technisch Struktur Links HTML Struktur Technologische

Mehr

Statistik I für Betriebswirte Vorlesung 5

Statistik I für Betriebswirte Vorlesung 5 Statistik I für Betriebswirte Vorlesung 5 PD Dr. Frank Heyde TU Bergakademie Freiberg Institut für Stochastik 07. Mai 2015 PD Dr. Frank Heyde Statistik I für Betriebswirte Vorlesung 5 1 Klassische Wahrscheinlichkeitsdefinition

Mehr

WEKA A Machine Learning Interface for Data Mining

WEKA A Machine Learning Interface for Data Mining WEKA A Machine Learning Interface for Data Mining Frank Eibe, Mark Hall, Geoffrey Holmes, Richard Kirkby, Bernhard Pfahringer, Ian H. Witten Reinhard Klaus Losse Künstliche Intelligenz II WS 2009/2010

Mehr

Bildverarbeitung Herbstsemester 2012. Kanten und Ecken

Bildverarbeitung Herbstsemester 2012. Kanten und Ecken Bildverarbeitung Herbstsemester 01 Kanten und Ecken 1 Inhalt Einführung Kantendetektierung Gradientenbasierende Verfahren Verfahren basierend auf der zweiten Ableitung Eckpunkterkennung Harris Corner Detector

Mehr

Data Mining - Clustering. Sven Elvers

Data Mining - Clustering. Sven Elvers Agenda Data Mining Clustering Aktuelle Arbeiten Thesis Outline 2 Agenda Data Mining Clustering Aktuelle Arbeiten Thesis Outline 3 Data Mining Entdecken versteckter Informationen, Muster und Zusammenhänge

Mehr

Proseminar - Data Mining

Proseminar - Data Mining Proseminar - Data Mining SCCS, Fakultät für Informatik Technische Universität München SS 2012, SS 2012 1 Data Mining Pipeline Planung Aufbereitung Modellbildung Auswertung Wir wollen nützliches Wissen

Mehr

WMS Block: Management von Wissen in Dokumentenform PART: Text Mining. Myra Spiliopoulou

WMS Block: Management von Wissen in Dokumentenform PART: Text Mining. Myra Spiliopoulou WMS Block: Management von Wissen in nform PART: Text Mining Myra Spiliopoulou WIE ERFASSEN UND VERWALTEN WIR EXPLIZITES WISSEN? 1. Wie strukturieren wir Wissen in nform? 2. Wie verwalten wir nsammlungen?

Mehr

Bestimmung einer ersten

Bestimmung einer ersten Kapitel 6 Bestimmung einer ersten zulässigen Basislösung Ein Problem, was man für die Durchführung der Simplexmethode lösen muss, ist die Bestimmung einer ersten zulässigen Basislösung. Wie gut das geht,

Mehr

Maschinelles Lernen: Neuronale Netze. Ideen der Informatik Kurt Mehlhorn

Maschinelles Lernen: Neuronale Netze. Ideen der Informatik Kurt Mehlhorn Maschinelles Lernen: Neuronale Netze Ideen der Informatik Kurt Mehlhorn 16. Januar 2014 Übersicht Stand der Kunst im Bilderverstehen: Klassifizieren und Suchen Was ist ein Bild in Rohform? Biologische

Mehr

6 Conways Chequerboard-Armee

6 Conways Chequerboard-Armee 6 Conways Chequerboard-Armee Spiele gehören zu den interessantesten Schöpfungen des menschlichen Geistes und die Analyse ihrer Struktur ist voller Abenteuer und Überraschungen. James R. Newman Es ist sehr

Mehr

RapidMiner als Werkzeug für die textorientierten Geisteswissenschaften Katharina Morik

RapidMiner als Werkzeug für die textorientierten Geisteswissenschaften Katharina Morik technische universität RapidMiner als Werkzeug für die textorientierten Geisteswissenschaften Katharina Morik Name Autor Ort und Datum Informatik: Linguistik: Methoden + Verfahren Forschungsfragen, Anforderungen

Mehr

Data Mining-Modelle und -Algorithmen

Data Mining-Modelle und -Algorithmen Data Mining-Modelle und -Algorithmen Data Mining-Modelle und -Algorithmen Data Mining ist ein Prozess, bei dem mehrere Komponenten i n- teragieren. Sie greifen auf Datenquellen, um diese zum Training,

Mehr

Visualisierung hochdimensionaler Daten. Hauptseminar SS11 Michael Kircher

Visualisierung hochdimensionaler Daten. Hauptseminar SS11 Michael Kircher Hauptseminar SS11 Inhalt Einführung zu hochdimensionalen Daten Visualisierungsmöglichkeiten dimensionale Teilmengen dimensionale Schachtelung Achsenumgestaltung Algorithmen zur Dimensionsreduktion Zusammenfassung

Mehr

Web Data Mining. Alexander Hinneburg Sommersemester 2007

Web Data Mining. Alexander Hinneburg Sommersemester 2007 Web Data Mining Alexander Hinneburg Sommersemester 2007 Termine Vorlesung Mi. 10:00-11:30 Raum?? Übung Mi. 11:45-13:15 Raum?? Klausuren Mittwoch, 23. Mai Donnerstag, 12. Juli Buch Bing Liu: Web Data Mining

Mehr

Faktorisierung ganzer Zahlen mittels Pollards ρ-methode (1975)

Faktorisierung ganzer Zahlen mittels Pollards ρ-methode (1975) Dass das Problem, die Primzahlen von den zusammengesetzten zu unterscheiden und letztere in ihre Primfaktoren zu zerlegen zu den wichtigsten und nützlichsten der ganzen Arithmetik gehört und den Fleiss

Mehr

Information Retrieval in P2P-Netzen

Information Retrieval in P2P-Netzen Information Retrieval in P2P-Netzen Vorstellung der Vortragsthemen zum Seminar Henrik Nottelmann 30. Oktober 2003 Henrik Nottelmann 1/21 Grundstruktur A) Filesharing-Systeme (3 Themen) B) Zugriffsstrukturen

Mehr

Proseminar - Data Mining

Proseminar - Data Mining Proseminar - Data Mining SCCS, Fakultät für Informatik Technische Universität München SS 2014, SS 2014 1 Data Mining: Beispiele (1) Hausnummererkennung (Klassifikation) Source: http://arxiv.org/abs/1312.6082,

Mehr

Inhalt. Bildaufnahme / Digitale Bilder. Kameras CCD Sensoren Auge Sampling / Aliasing Quantisierung

Inhalt. Bildaufnahme / Digitale Bilder. Kameras CCD Sensoren Auge Sampling / Aliasing Quantisierung Inhalt Bildaufnahme / Digitale Bilder Kameras CCD Sensoren Auge Sampling / Aliasing Quantisierung Abtastung, Parameter Aliasing-Beispiel: Unterabtastung einer periodischen Funktion. Rekonstruktion ergibt

Mehr

Teil II Optimierung. Peter Buchholz 2016. Modellgestützte Analyse und Optimierung Kap. 9 Einführung Optimierung

Teil II Optimierung. Peter Buchholz 2016. Modellgestützte Analyse und Optimierung Kap. 9 Einführung Optimierung Teil II Optimierung Gliederung 9 Einführung, Klassifizierung und Grundlagen 10 Lineare Optimierung 11 Ganzzahlige und kombinatorische Optimierung 12 Dynamische Optimierung Literatur: zu 10-12: Neumann,

Mehr

Seminar Textmining SS 2015 Grundlagen des Maschinellen Lernens

Seminar Textmining SS 2015 Grundlagen des Maschinellen Lernens Seminar Textmining SS 2015 Grundlagen des Maschinellen Lernens Martin Hacker Richard Schaller Künstliche Intelligenz Department Informatik FAU Erlangen-Nürnberg 17.04.2015 Entscheidungsprobleme beim Textmining

Mehr

Kapitel ML: I. I. Einführung. Beispiele für Lernaufgaben Spezifikation von Lernproblemen

Kapitel ML: I. I. Einführung. Beispiele für Lernaufgaben Spezifikation von Lernproblemen Kapitel ML: I I. Einführung Beispiele für Lernaufgaben Spezifikation von Lernproblemen ML: I-8 Introduction c STEIN/LETTMANN 2005-2010 Beispiele für Lernaufgaben Autoeinkaufsberater Welche Kriterien liegen

Mehr

Clusteranalyse. Clusteranalyse. Fragestellung und Aufgaben. Abgrenzung Clusteranalyse - Diskriminanzanalyse. Rohdatenmatrix und Distanzmatrix

Clusteranalyse. Clusteranalyse. Fragestellung und Aufgaben. Abgrenzung Clusteranalyse - Diskriminanzanalyse. Rohdatenmatrix und Distanzmatrix TECHNISCHE UNIVERSITÄT MÜNCHEN-WEIHENSTEPHAN MATHEMATIK UND STATISTIK INFORMATIONS- UND DOKUMENTATIONSZENTRUM R. Biometrische und Ökonometrische Methoden II SS 00 Fragestellung und Aufgaben Abgrenzung

Mehr

Optimierung I. 1 Einführung. Luise Blank. Wintersemester 2012/13. Universität Regensburg

Optimierung I. 1 Einführung. Luise Blank. Wintersemester 2012/13. Universität Regensburg Universität Regensburg Wintersemester 2012/13 1 Einführung Anwendungen Finanzwirtschaft: maximale Gewinnrate unter Beschränkungen an das Risiko; Portfolio von Investments Produktion: maximiere Gewinn bei

Mehr

Clustering von Dokumenten (k-means, HCL)

Clustering von Dokumenten (k-means, HCL) Clustering von Dokumenten (k-means, HCL) Jonas Wolz Universität Ulm Zusammenfassung Ein Überblick über das Clustering von Dokumenten. Außerdem werden zwei dafür verwendete Algorithmen vorgestellt (k-means

Mehr

Moderne Methoden der KI: Maschinelles Lernen

Moderne Methoden der KI: Maschinelles Lernen Moderne Methoden der KI: Maschinelles Lernen Prof. Dr.Hans-Dieter Burkhard Vorlesung Entscheidungsbäume Darstellung durch Regeln ID3 / C4.5 Bevorzugung kleiner Hypothesen Overfitting Entscheidungsbäume

Mehr

MUSTER 2 FÜR DIE ABITURPRÜFUNG AM BERUFLICHEN GYMNASIUM AB DEM SCHULJAHR 2016/2017. Teil 1: Keine Hilfsmittel zugelassen.

MUSTER 2 FÜR DIE ABITURPRÜFUNG AM BERUFLICHEN GYMNASIUM AB DEM SCHULJAHR 2016/2017. Teil 1: Keine Hilfsmittel zugelassen. MINISTERIUM FÜR KULTUS, JUGEND UND SPORT BADEN-WÜRTTEMBERG MUSTER 2 FÜR DIE ABITURPRÜFUNG AM BERUFLICHEN GYMNASIUM AB DEM SCHULJAHR 21/217 Hauptprüfung LÖSUNGSVORSCHLAG FÜR DAS FACH Arbeitszeit Hilfsmittel

Mehr

Web Data Management Systeme

Web Data Management Systeme Web Data Management Systeme Seminar: Web-Qualitätsmanagement Arne Frenkel Agenda Einführung Suchsysteme Suchmaschinen & Meta-Suchmaschinen W3QS WebSQL WebLog Information Integration Systems Ariadne TSIMMIS

Mehr

Maschinelles Lernen Entscheidungsbäume

Maschinelles Lernen Entscheidungsbäume Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Maschinelles Lernen Entscheidungsbäume Paul Prasse Entscheidungsbäume Eine von vielen Anwendungen: Kreditrisiken Kredit - Sicherheiten

Mehr

Bildverarbeitung Herbstsemester 2012. Fourier-Transformation

Bildverarbeitung Herbstsemester 2012. Fourier-Transformation Bildverarbeitung Herbstsemester 2012 Fourier-Transformation 1 Inhalt Fourierreihe Fouriertransformation (FT) Diskrete Fouriertransformation (DFT) DFT in 2D Fourierspektrum interpretieren 2 Lernziele Sie

Mehr

Computer Vision I. Nikos Canterakis. Lehrstuhl für Mustererkennung, Universität Freiburg,

Computer Vision I. Nikos Canterakis. Lehrstuhl für Mustererkennung, Universität Freiburg, Nikos Canterakis Lehrstuhl für Mustererkennung, Universität Freiburg, Literatur Richard Hartle and Andrew Zisserman. Multiple View Geometr in computer vision, Cambridge Universit Press, 2 nd Ed., 23. O.D.

Mehr

(query by image content)

(query by image content) Proseminar Multimedia Information-Retrieval-Systeme (query by image content) Das QBIC Projekt 1. Einleitung 1.1 Was ist QBIC 1.2 Wo wird es verwendet 2. QBIC im Detail 2.1 technische Grundlagen 2.2 Aufbau

Mehr

Computer Vision: 3D-Geometrie. D. Schlesinger () Computer Vision: 3D-Geometrie 1 / 17

Computer Vision: 3D-Geometrie. D. Schlesinger () Computer Vision: 3D-Geometrie 1 / 17 Computer Vision: 3D-Geometrie D. Schlesinger () Computer Vision: 3D-Geometrie 1 / 17 Lochkamera Modell C Projektionszentrum, Optische Achse, Bildebene, P Hauptpunkt (optische Achse kreuzt die Bildebene),

Mehr

Modellierung von Geodaten

Modellierung von Geodaten Modellierung von Geodaten Universität Augsburg Fachbereich Informatik Seminar: Datenbankunterstützung für mobile GIS Sommersemester 2011 Zeev Turevsky Betreuer: Dipl.-Informatiker Florian Wenzel Gliederung

Mehr

Computer Vision: Optische Flüsse

Computer Vision: Optische Flüsse Computer Vision: Optische Flüsse D. Schlesinger TUD/INF/KI/IS Bewegungsanalyse Optischer Fluss Lokale Verfahren (Lukas-Kanade) Globale Verfahren (Horn-Schunck) (+ kontinuierliche Ansätze: mathematische

Mehr

Digitale Bildverarbeitung (DBV)

Digitale Bildverarbeitung (DBV) Digitale Bildverarbeitung (DBV) Prof. Dr. Ing. Heinz Jürgen Przybilla Labor für Photogrammetrie Email: heinz juergen.przybilla@hs bochum.de Tel. 0234 32 10517 Sprechstunde: Montags 13 14 Uhr und nach Vereinbarung

Mehr

8. Clusterbildung, Klassifikation und Mustererkennung

8. Clusterbildung, Klassifikation und Mustererkennung 8. Clusterbildung, Klassifikation und Mustererkennung Begriffsklärung (nach Voss & Süße 1991): Objekt: wird in diesem Kapitel mit einem zugeordneten Merkmalstupel (x 1,..., x M ) identifiziert (Merkmalsextraktion

Mehr

Termin3 Klassifikation multispektraler Daten unüberwachte Verfahren

Termin3 Klassifikation multispektraler Daten unüberwachte Verfahren Ziel Termin3 Klassifikation multispektraler Daten unüberwachte Verfahren Einteilung (=Klassifikation) der Pixel eines multispektralen Datensatzes in eine endliche Anzahl von Klassen. Es sollen dabei versucht

Mehr

Seminar Komplexe Objekte in Datenbanken

Seminar Komplexe Objekte in Datenbanken Seminar Komplexe Objekte in Datenbanken OPTICS: Ordering Points To Identify the Clustering Structure Lehrstuhl für Informatik IX - Univ.-Prof. Dr. Thomas Seidl, RWTH-Aachen http://www-i9.informatik.rwth-aachen.de

Mehr

SEMINAR AUTOMATISCHE GESICHTSERKENNUNG

SEMINAR AUTOMATISCHE GESICHTSERKENNUNG SEMINAR AUTOMATISCHE GESICHTSERKENNUNG OBERSEMINAR AUTOMATISCHE ANALYSE VON GESICHTSAUSDRÜCKEN Organisation, Überblick, Themen Überblick heutige Veranstaltung 1. Organisatorisches 2. Überblick über beide

Mehr

Übung 3: Einfache Graphiken und Näherungen durch Regression

Übung 3: Einfache Graphiken und Näherungen durch Regression Übung 3: Einfache Graphiken und Näherungen durch Regression M. Schlup, 9. August 010 Aufgabe 1 Einfache Graphik Für die abgegebene Leistung P = UI eines linearen, aktiven Zweipols mit Leerlaufspannung

Mehr

Textmining Klassifikation von Texten Teil 1: Naive Bayes

Textmining Klassifikation von Texten Teil 1: Naive Bayes Textmining Klassifikation von Texten Teil 1: Naive Bayes Dept. Informatik 8 (Künstliche Intelligenz) Friedrich-Alexander-Universität Erlangen-Nürnberg (Informatik 8) Klassifikation von Texten 1: Naive

Mehr

Einsatz moderner Technologien der Bild- und Videoanalyse in der Fashionbranche

Einsatz moderner Technologien der Bild- und Videoanalyse in der Fashionbranche Workshop Fashion Future Einsatz moderner Technologien der Bild- und Videoanalyse in der Fashionbranche Adrian Ulges Deutsches Forschungszentrum für Künstliche Intelligenz (DFKI) Kompetenzzentrum Multimediaanalyse

Mehr

Betrachtung von Verfahren zur Posenbestimmung und Merkmalsexktraktion. Thorsten Jost INF-MA SR Wintersemester 2008/2009 1.

Betrachtung von Verfahren zur Posenbestimmung und Merkmalsexktraktion. Thorsten Jost INF-MA SR Wintersemester 2008/2009 1. Betrachtung von Verfahren zur Posenbestimmung und Merkmalsexktraktion Thorsten Jost INF-MA SR Wintersemester 2008/2009 1. Dezember 2008 Agenda Motivation Feature Detection SIFT MOPS SURF SLAM Monte Carlo

Mehr

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s Nachtrag zur allgemeinen Vektorraum-Theorie. 1.5.15. Direkte Summen. Sei V ein Vektorraum, seien U 1,..., U t Unterräume, wir schreiben V = U 1 U 2 U t = t i=1 U i falls die folgenden beiden Bedingungen

Mehr

Simulation mit modernen Tools - runde und spitze Berechnung von π -

Simulation mit modernen Tools - runde und spitze Berechnung von π - Simulation mit modernen Tools - runde und spitze Berechnung von π - Prof. Dr. rer. nat. Stefan Ritter Fakultät EIT 7. April 01 Gliederung 1. Wozu Simulation?. Moderne Tools zur Simulation 1. Maple, Geogebra

Mehr

Pfinder: Real-Time Tracking of the Human Body

Pfinder: Real-Time Tracking of the Human Body Pfinder: Real-Time Tracking of the Human Body Christopher Wren, Ali Azarbayejani, Trevor Darrell, Alex Pentland aus: IEEE Transactions on Pattern Analysis and Machine Intelligence (pp. 780-785) 12. April

Mehr

Seminar Text- und Datamining Textmining-Grundlagen Erste Schritte mit NLTK

Seminar Text- und Datamining Textmining-Grundlagen Erste Schritte mit NLTK Seminar Text- und Datamining Textmining-Grundlagen Erste Schritte mit NLTK Martin Hacker Richard Schaller Künstliche Intelligenz Department Informatik FAU Erlangen-Nürnberg 16.05.2013 Gliederung 1 Vorverarbeitung

Mehr

TEXTKLASSIFIKATION. WS 2011/12 Computerlinguistik I Deasy Sukarya & Tania Bellini

TEXTKLASSIFIKATION. WS 2011/12 Computerlinguistik I Deasy Sukarya & Tania Bellini TEXTKLASSIFIKATION WS 2011/12 Computerlinguistik I Deasy Sukarya & Tania Bellini GLIEDERUNG 1. Allgemeines Was ist Textklassifikation? 2. Aufbau eines Textklassifikationssystems 3. Arten von Textklassifikationssystemen

Mehr

(Lineare) stochastische Optimierung

(Lineare) stochastische Optimierung (Lineare) stochastische Optimierung Bsp: Aus zwei Sorten Rohöl wird Benzin und Heizöl erzeugt. Die Produktivität sowie der Mindestbedarf (pro Woche) und die Kosten sind in folgender Tabelle angegeben:

Mehr

Informationstheorethisches Theorem nach Shannon

Informationstheorethisches Theorem nach Shannon Informationstheorethisches Theorem nach Shannon Beispiel zum Codierungsaufwand - Wiederholung: Informationstheorethisches Modell (Shannon) Sei x eine Aussage. Sei M ein Modell Wieviele Bits sind aussreichend,

Mehr

Lehrangebot. Fachgebiet Informationssysteme Prof. Dr. Norbert Fuhr. N. Fuhr, U. Duisburg-Essen. Lehrangebot

Lehrangebot. Fachgebiet Informationssysteme Prof. Dr. Norbert Fuhr. N. Fuhr, U. Duisburg-Essen. Lehrangebot Lehrangebot Fachgebiet Informationssysteme Prof. Dr. Norbert Fuhr N. Fuhr, U. Duisburg-Essen Lehrangebot 1 Lehrangebot des FG Informationssysteme Datenbanken Internet-Suchmaschinen Information Retrieval

Mehr

Prüfungsplan Master of Science in Wirtschaftsinformatik

Prüfungsplan Master of Science in Wirtschaftsinformatik Prüfungsplan Master of Science in Wirtschaftsinformatik Modul Art Creditpunkte Schwerpunkt Very Large Business Applications Module aus dem Bereich Wirtschaftsinformatik SWS Empfohlenes Semester Prüfungsart

Mehr

Entwicklung einer Entscheidungssystematik für Data- Mining-Verfahren zur Erhöhung der Planungsgüte in der Produktion

Entwicklung einer Entscheidungssystematik für Data- Mining-Verfahren zur Erhöhung der Planungsgüte in der Produktion Entwicklung einer Entscheidungssystematik für Data- Mining-Verfahren zur Erhöhung der Planungsgüte in der Produktion Vortrag Seminararbeit David Pogorzelski Aachen, 22.01.2015 Agenda 1 2 3 4 5 Ziel der

Mehr

Semestralklausur zur Vorlesung. Web Mining. Prof. J. Fürnkranz Technische Universität Darmstadt Sommersemester 2004 Termin: 22. 7.

Semestralklausur zur Vorlesung. Web Mining. Prof. J. Fürnkranz Technische Universität Darmstadt Sommersemester 2004 Termin: 22. 7. Semestralklausur zur Vorlesung Web Mining Prof. J. Fürnkranz Technische Universität Darmstadt Sommersemester 2004 Termin: 22. 7. 2004 Name: Vorname: Matrikelnummer: Fachrichtung: Punkte: (1).... (2)....

Mehr

Prinzip Weißlicht-Interferometer

Prinzip Weißlicht-Interferometer Prinzip Weißlicht-Interferometer Aufbau: Michelson-Interferometer Verwendet weißes Licht Geringe Kohärenzlänge Interferenz nur für identische Teilwege Streifensysteme (für jede Farbe) Verschiebung eines

Mehr

Event-Aggregation in Frühwarnsystemen. Till Dörges. 2009 by PRESENSE Technologies GmbH

Event-Aggregation in Frühwarnsystemen. Till Dörges. 2009 by PRESENSE Technologies GmbH Event-Aggregation in Frühwarnsystemen Till Dörges Gliederung Motivation Definitionen Aggregationsverfahren Implementierung Ergebnisse / Ausblick Folie 2 / Event-Aggregation 18. März 2009 Hamburg Motivation

Mehr

Wasserfall-Ansätze zur Bildsegmentierung

Wasserfall-Ansätze zur Bildsegmentierung Wasserfall-Ansätze zur Bildsegmentierung von Philipp Jester Seminar: Bildsegmentierung und Computer Vision 16.01.2006 Überblick 1. Problemstellung 2. Wiederholung: Wasserscheiden-Ansätze 3. Der Wasserfall-Ansatz

Mehr

Kamerabasierte Navigation im Inneren von Gebäuden Sebastian Hilsenbeck, Robert Huitl, Georg Schroth, Eckehard Steinbach

Kamerabasierte Navigation im Inneren von Gebäuden Sebastian Hilsenbeck, Robert Huitl, Georg Schroth, Eckehard Steinbach Technische Universität München Kamerabasierte Navigation im Inneren von Gebäuden Sebastian Hilsenbeck, Robert Huitl, Georg Schroth, Eckehard Steinbach Outdoor vs. Indoor Im Freien In Gebäuden No GPS reception

Mehr

Welche Textklassifikationen gibt es und was sind ihre spezifischen Merkmale?

Welche Textklassifikationen gibt es und was sind ihre spezifischen Merkmale? Text Welche Textklassifikationen gibt es und was sind ihre spezifischen Merkmale? Textklassifikationen Natürliche bzw. unstrukturierte Texte Normale Texte ohne besondere Merkmale und Struktur Semistrukturierte

Mehr

Das Small World Phenomenon. Aus http://www.tell6.com

Das Small World Phenomenon. Aus http://www.tell6.com Das Small World Phenomenon Aus http://www.tell6.com Das Experiment Durchgeführt von Stanley Milgram im Jahr 1969 [7] 296 Briefe an zufällig ausgewählte Personen in Nebraska und Boston Briefe sollten an

Mehr

Multimedia-Metadaten und ihre Anwendung

Multimedia-Metadaten und ihre Anwendung Multimedia-Metadaten und ihre Anwendung 14.02.2006 Video Retrieval und Video Summarization Maria Wagner Aspekte des Video Retrieval 2/14 Videoanalyse Analyse nötig, um Struktur und Metadaten zu erkennen

Mehr

Personalisierung. Der Personalisierungsprozess Nutzerdaten erheben aufbereiten auswerten Personalisierung. Data Mining.

Personalisierung. Der Personalisierungsprozess Nutzerdaten erheben aufbereiten auswerten Personalisierung. Data Mining. Personalisierung Personalisierung Thomas Mandl Der Personalisierungsprozess Nutzerdaten erheben aufbereiten auswerten Personalisierung Klassifikation Die Nutzer werden in vorab bestimmte Klassen/Nutzerprofilen

Mehr

Detecting Near Duplicates for Web Crawling

Detecting Near Duplicates for Web Crawling Detecting Near Duplicates for Web Crawling Gurmeet Singh Manku et al., WWW 2007* * 16th international conference on World Wide Web Detecting Near Duplicates for Web Crawling Finde near duplicates in großen

Mehr

Kapitel 0. Einführung. 0.1 Was ist Computergrafik? 0.2 Anwendungsgebiete

Kapitel 0. Einführung. 0.1 Was ist Computergrafik? 0.2 Anwendungsgebiete Kapitel 0 Einführung 0.1 Was ist Computergrafik? Software, die einen Computer dazu bringt, eine grafische Ausgabe (oder kurz gesagt: Bilder) zu produzieren. Bilder können sein: Fotos, Schaltpläne, Veranschaulichung

Mehr

Phishingerkennung mittels visuellem Ähnlichkeitsvergleich. Felix Hill Ruhr-Universität Bochum felix.hill@rub.de

Phishingerkennung mittels visuellem Ähnlichkeitsvergleich. Felix Hill Ruhr-Universität Bochum felix.hill@rub.de Phishingerkennung mittels visuellem Ähnlichkeitsvergleich Felix Hill Ruhr-Universität Bochum felix.hill@rub.de 1 ÜBERSICHT Entwicklung im Bereich Phishing Ansatz Bilderkennung Evaluation G DATA EINFACH

Mehr

Open Archives Initiative - Protocol for Metadata Harvesting (OAI-PMH)

Open Archives Initiative - Protocol for Metadata Harvesting (OAI-PMH) , XML LV BF23 (0F32) Open Archives Initiative - Protocol for Metadata Harvesting (OAI-PMH) Achim Oßwald FH Köln Institut für Informationswissenschaft Wintersemester 2010 (Stand: 3.12.10) 1/ 18 OAI-PMH

Mehr

Sentiment Analysis (SA) Robert Bärhold & Mario Sänger Text Analytics WS 2012/13 Prof. Leser

Sentiment Analysis (SA) Robert Bärhold & Mario Sänger Text Analytics WS 2012/13 Prof. Leser Sentiment Analysis (SA) Robert Bärhold & Mario Sänger Text Analytics WS 2012/13 Prof. Leser Gliederung Einleitung Problemstellungen Ansätze & Herangehensweisen Anwendungsbeispiele Zusammenfassung 2 Gliederung

Mehr

Sequential Pattern Analysis und Markov-Modelle. Christian Weiß Institut für Angewandte Mathematik und Statistitik Universität Würzburg

Sequential Pattern Analysis und Markov-Modelle. Christian Weiß Institut für Angewandte Mathematik und Statistitik Universität Würzburg Sequential Pattern Analysis und Markov-Modelle. Christian Weiß Institut für Angewandte Mathematik und Statistitik Universität Würzburg Sequential Pattern Analysis Historische Aspekte Data Mining als Teildisziplin

Mehr

Textbasierte Suche mit Hilfe von Anfrageerweiterungen - technische Realisierung und erste Erfahrungen

Textbasierte Suche mit Hilfe von Anfrageerweiterungen - technische Realisierung und erste Erfahrungen Textbasierte Suche mit Hilfe von Anfrageerweiterungen - technische Realisierung und erste Erfahrungen Dr. Thomas Böhme thomas.boehme@tu-ilmenau.de Dipl.-Inf. Mario Kubek mario.kubek@tu-ilmenau.de Dipl.-Inf.

Mehr

generiere aus Textdokumenten zunächst Metadaten, wende Data Mining - Techniken dann nur auf diese an

generiere aus Textdokumenten zunächst Metadaten, wende Data Mining - Techniken dann nur auf diese an 9. Text- und Web-Mining Text Mining: Anwendung von Data Mining - Verfahren auf große Mengen von Online-Textdokumenten Web Mining: Anwendung von Data Mining - Verfahren auf Dokumente aus dem WWW oder auf

Mehr

Realtime Human Body Tracking

Realtime Human Body Tracking Realtime Human Body Tracking Vortrag im Rahmen des Seminars Ausgewählte Themen zu Bildverstehen und Mustererkennung Lehrstuhl: Professor Dr. X. Jiang Referenten: Dipl.-Math. Kai Rothaus Dipl.-Inform. Steffen

Mehr

Vorlesung. Komplexe Zahlen

Vorlesung. Komplexe Zahlen Vorlesung Komplexe Zahlen Motivation Am Anfang der Entwicklung der komplexen Zahlen stand ein algebraisches Problem: die Bestimmung der Lösung der Gleichung x 2 + 1 = 0. 1 Mit der Lösung dieses Problems

Mehr