Hinweise zur Logik. Ergänzung zu den Übungen Mathematische Grundlagen der Ökonomie am 22. Oktober 2009

Größe: px
Ab Seite anzeigen:

Download "Hinweise zur Logik. Ergänzung zu den Übungen Mathematische Grundlagen der Ökonomie am 22. Oktober 2009"

Transkript

1 Hinweise zur Logik Ergänzung zu den Übungen Mathematische Grundlagen der Ökonomie am 22. Oktober 2009 Im folgenden soll an einige Grundsätze logisch korrekter Argumentation erinnert werden. Ihre Bedeutung beim Beweis mathematischer Aussagen sollte offensichtlich sein, grundsätzlich gelten die Regeln der Logik aber selbstverständlich bei jeder sachlichen Argumentation. In anderen Fächern wie Wirtschaft, Politik oder Philosophie werden Gedanken jedoch meist weniger mit Symbolen und mehr mit Worten formuliert, so dass die Verwendung der formalen Regeln möglicherweise weniger auffällt und die eindeutige Definition verwendeter Begriffe besondere Vorsicht erfordert. 1 Voraussetzung, Schluss, Behauptung Die deduktive Methode leitet ausgehend von als wahr erkannten Aussagen und getroffenen Annahmen durch logisches Schließen neue Aussagen ab. Voraussetzung = Behauptung 1.1 Voraussetzung Zuerst müssen also die Voraussetzungen, unter denen eine Behauptung gültig sein soll, klar und eindeutig formuliert sein. Deshalb ist es wichtig, dass alle verwendeten Begriffe eindeutig definiert sind. Eindeutige Definitionen festzulegen ist bei mathematischen Aussagen meist kein Problem. Sind Begriffe nicht eindeutig definiert, führt dies zwangsläufig zu Missverständnissen zwischen Diskussionsteilnehmern. In unsachlichen Diskussionen wird bisweilen sogar absichtlich versucht, vom Gegner verwendete Begriffe umzudeuten und ihm so Aussagen zu unterstellen, die so nicht beabsichtigt waren. Oder man möchte die eigene Position retten indem eine so nicht mehr haltbare Aussage nachträglich verändert wird. Mathematische Aussagen handeln davon, ob eine Aussage unter den gegebenen Voraussetzungen logisch gültig ist oder nicht (objektive Aussage), und nicht, ob etwas für gut oder schlecht befunden wird (normative Aussage). Deshalb hat die Frage, inwieweit durch Wahl von vorteilhaften 1

2 Hinweise zur Logik 2 oder nachteiligen Bezeichnungen die Ausgangsbedingungen einer Diskussion zu Gunsten einer Seite verschoben werden, eigentlich keine Bedeutung. Axiome heißen jene grundlegenden Voraussetzungen, von denen ausgehend die Theorie entwickelt wird. So lange sie in sich widerspruchsfrei sind, können aus ihnen durch logisches Schließen evtl. sehr weitreichende Aussagen abgeleitet werden. Wer die Axiome akzeptiert, kann sich dann auf die aus ihnen abgeleiteten Aussagen stützen und auf diesen weitere Schlüsse aufbauen. Wie nützlich eine Theorie ist, hängt natürlich davon ab, wie geeignet die Axiome sind. Dieses Vorgehen hat nichts mit dem Aufstellen bloßer Behauptungen zu tun: Es ist immer klar, was die Voraussetzungen sind und welche Schlüsse aus ihnen gezogen werden können. Man kann nicht zwei Aussagen gleichzeitig als wahr voraussetzen, die sich widersprechen Entweder wahr oder nicht wahr In der klassischen Logik ist eine Aussage entweder wahr oder nicht wahr. Nicht wahr heißt falsch. Solange eine Aussage unter den gegebenen Voraussetzungen weder bewiesen noch widerlegt ist, wissen wir nicht, ob sie wahr oder falsch ist und sie kann deshalb allenfalls als Vermutung gelten. Da es nur zwei sich ausschließende Möglichkeiten gibt, entspricht die doppelte Verneinung nicht (nicht A) wieder der Aussage A selbst. A oder B bedeutet nicht, dass nur eine der beiden Aussagen wahr sein kann ( entweder A oder B ), sondern schließt A und B mit ein. Das Gegenteil von A und B ist also (nicht A) oder (nicht B). Also ( De Morgan ) nicht (A und B) entspricht (nicht A) oder (nicht B), nicht (A oder B) entspricht (nicht A) und (nicht B). Es existiert ein x mit Eigenschaft E bedeutet, dass mindestens ein solches x existiert. Das Gegenteil von alle x haben Eigenschaft E ist also es existiert ein x das die Eigenschaft E nicht aufweist. 1.2 Implikation Welche Aussagen auseinander folgen wird symbolisch durch den Implikationspfeil = dargestellt. Hier sind einige sprachliche Varianten: A = B Aus A folgt B. A impliziert B. A ist hinreichend für B.

3 Hinweise zur Logik 3 Immer wenn A gilt, dann gilt auch B. (Aber wenn A nicht gilt, wird keine Aussage über B getroffen. D.h. auch wenn B gilt, kann A falsch sein.) (Nicht B) = (nicht A). B = A. B ist notwendig für A. Nur wenn B gilt, kann auch A gelten. (Aber Gültigkeit von B genügt nicht, um auf Gültigkeit von A zu schließen.) All diese Formulierungen sind gebräuchlich und drücken den gleichen logischen Sachverhalte aus: Die Möglichkeit, dass gleichzeitig A wahr und B falsch ist, wird ausgeschlossen. Implikationen sind transitiv: wenn sowohl A = B als auch B = C gelten, dann gilt auch A = C. 1.3 Äquivalenz Gilt die Implikation in beide Richtungen, haben wir eine Äquivalenz: A B Sowohl A = B als auch B = A. A und B sind äquivalent. A ist notwendig und hinreichen für B. A gilt genau dann wenn B gilt. (Nicht A) (nicht B). Entweder sind die Aussagen A und B beide wahr oder beide sind falsch. B A Transitivität überträgt sich von der Implikation auf die Äquivalenz, die Äquivalenz ist darüber hinaus symmetrisch. Bemerkung: Im Falle einer Äquivalenz gilt die Implikation in beide Richtungen. Schon das zeigt, dass bei einer Implikation keine Beziehung zwischen Ursache und Wirkung unterstellt wird, sondern nur einen logischen Zusammenhang zwischen der Gültigkeit zweier Aussagen.

4 Hinweise zur Logik 4 2 Direkter und indirekter Beweis 2.1 Direkter Beweis Voraussetzung: Wir nehmen an, es gelte A. Behauptung: Unter dieser Voraussetzung gilt B. Beweis: Wir wissen, dass A = B. Evtl. sind dazu mehrere Schritte nötig, also etwa zuerst A = C und dann C = B. Ein Beweis für die geometrische Summe: Voraussetzung: Es sei n {1, 2, 3,... } eine natürliche Zahl und r = 1 eine reelle Zahl ungleich eins. Behauptung: (Also r + r 2 + r 3 r n = rn+1 r r 1.) Beweis: Es ist (r 1) n n r k = rn+1 r r k = n+1 r k n r k = r n+1 r. k=2 (Man erhält eine Teleskopsumme, bei der sich alle Summanden bis auf den ersten und den letzten gegenseitig aufheben.) Da r = 1 können wir durch (r 1) = 0 teilen und erhalten n r k = rn+1 r 2.2 Indirekter Beweis ( Widerspruchsbeweis ) Voraussetzung: Wir nehmen an, es gelte A. Behauptung: Unter dieser Voraussetzung gilt B. Beweis: Wir zeigen nicht direkt A = B, sondern wir zeigen die gleichbedeutende Implikation (nicht B) = (nicht A). Da neben den ausdrücklich formulierten Voraussetzungen auch andere für wahr erkannte Aussagen vorausgesetzt werden (z.b. die Gültigkeit der allgemeinen Rechenregeln oder Aussagen, deren Gültigkeit unter der Voraussetzung A bereits bewiesen ist), kann der Widerspruchsbeweis

5 Hinweise zur Logik 5 auch in der Art (nicht B) = (eine unter A erwiesermaßen falsche Aussage) geführt werden. Formuliert wird dies etwa wie folgt: Nehme für einen Augenblick an, B sei falsch. Wir zeigen einen Widerspruch zu A (oder einer anderen Aussage, von der bereits bewiesen ist, dass sie unter der Voraussetzung A wahr ist). Das widerspricht der Voraussetzung, dass A wahr ist. Wir haben also eine Folgerung erhalten, die nicht stimmt ( reductio ad absurdum ). Wenn der Schuss (nicht B) = (nicht A) logisch zwingend ist, kann also unsere augenblickliche Annahme B sei falsch nicht stimmen. Folglich muss B wahr sein. Ein Vorteil dieser Beweismethode kann darin liegen, dass wir zu Beginn nicht unbedingt wissen müssen, auf welchen Widerspruch unsere Argumentation führen wird. Denn neben der ausdrücklich formulierten Voraussetzung A gelten auch alle unter dieser Voraussetzung bereits bewiesenen Aussagen. Oft werden Widerspruchsbeweise verwendet, um die Existenz bestimmter Objekte auszuschließen. Folgender Beweis wird Euklid von Alexandria zugeschrieben: Behauptung: Es gibt unendlich viele Primzahlen. (Oder gleichbedeutend: Es gibt keine größte Primzahl.) Beweisskizze: Nehme an, es gäbe nur endlich viele Primzahlen. Ihre Anzahl sei n und die Primzahlen seien mit p 1, p 2,..., p n bezeichnet. Definiere die Zahl p := p 1 p 2 p n + 1, also p 1 sei das Produkt aller existierenden Primzahlen. Die Zahl p ist durch keine Primzahl teilbar, denn immer bleibt ein Rest von 1. p ist aber auch keine der Zahlen p 1, p 2,..., p n, also nach unserer Annahme keine Primzahl. Damit führt die Annahme, es gäbe nur endlich viele Primzahlen, zu einem Widerspruch. Die Annahme muss also falsch sein und es gibt unendlich viele Primzahlen. Widerspruchsbeweise beruhen darauf, dass eine Aussage entweder wahr oder falsch ist. Zudem ist die Widerspruchsfreiheit der Voraussetzungen wichtig. (Denn wären die Voraussetzungen widersprüchlich, also logisch falsch, so könnte man aus ihnen beliebiges folgern. Da die Voraussetzungen immer falsch wären, würde eine Implikation nichts darüber aussagen, ob die Behauptung wahr oder falsch ist.) Deshalb ist bei Argumenten mit einer reductio ad absurdum besonders außerhalb der Mathematik in Diskussionen um gut oder schlecht und bei Verwendung nicht ganz genau und eindeutig definierter Begriffe große Vorsicht angebracht.

6 Hinweise zur Logik 6 3 Beispiel, Gegenbeispiel, Induktion 3.1 Beispiel, Gegenbeispiel, Fallunterscheidung Die vorhergehenden Beweismethoden sind deduktiv, d.h. sie leiten von Voraussetzungen und bekannten Aussagen neue Aussagen ab. Induktion bedeutet, von Beispielen auf eine allgemeine Regel schließen zu wollen. Das ist nur möglich, wenn die Induktion vollständig ist, also wirklich alle möglichen Fälle betrachtet werden. Ansonsten genügen auch sehr viele Beispiele nicht, um eine allgemeine Aussage zu beweisen. Im allgemeinen können Beispiele eine Aussage also nur veranschaulichen, nicht aber ihre Gültigkeit beweisen. Hingegen genügt ein einziges Gegenbeispiel, um eine Behauptung zu widerlegen! (Man vergewissere sich aber, dass das Gegenbeispiel wirklich die Voraussetzungen erfüllt.) Möglich ist natürlich eine vollständige Fallunterscheidung. Wer also eine Aussage für alle reellen x beweisen möchte, kann z.b. die Fälle x < 0, x = 0 und x > 0 einzeln untersuchen. 3.2 Vollständige Induktion Man möchte eine Aussage A(n), die von einer natürlichen Zahl n = 1, 2, 3,... abhängt, beweisen. Eine gewöhnliche Fallunterscheidung ist bei unendlich vielen Fällen nicht möglich. Aber man kann dennlich alle Fälle behandeln, wenn man zeigen kann, dass aus einem Fall immer der nächste folgt. Man wirft man sozusagen den ersten der unendlich vielen Dominosteine um und zeigt, dass an jeder Stelle n ein Stein A(n) den nächsten Stein A(n + 1) umwirft (wobei in diesem Bild umgeworfenen Dominosteine die Rolle bewiesener Aussagen übernehmen): Induktionsanfang n = 1: Wir zeigen, dass A(1) gilt. Induktionsschritt n n + 1: Wir halten innerhalb des Induktionsschrittes für einen Augenblick ein n {1, 2, 3,... } fest und nehmen für dieses n an, es sei schon beweisen, dass A(n) gelte. Unter dieser Annahme zeigen wir, dass A(n + 1) ebenfalls gilt. Da der Induktionsschritt für jedes n {1, 2, 3,... } ausführbar sein muss, können wir jedoch keine weitergehenden Annahmen über n selbst treffen. Der Schluss A(n) = A(n + 1) muss für jedes n {1, 2, 3,... } möglich sein. Der Unterschied zum direkten Beweis ist also, dass wir beim Beweis von A(n + 1) neben den allgemeinen Voraussetzungen auch noch annehmen können, dass A(n) bereits bewiesen ist. Noch ein Beweis für die geometrische Summe, diesmal mittels vollständiger Induktion:

7 Hinweise zur Logik 7 Voraussetzung: Es sei n {1, 2, 3,... } eine natürliche Zahl und r = 1 eine reelle Zahl ungleich eins. Behauptung: n r k = rn+1 r Beweis: In diesem Fall ist die Aussage A(n) die Gültigkeit der Formel für n. Induktionsanfang n = 1: 1 r k = r = r2 r (Statt eine Seite in die andere umzuformen, ist es oft einfacher zu zeigen, dass die Differenz der beiden Seiten gleich Null ist. Das gilt auch für den Induktionsschritt.) Induktionsschritt n n + 1: Wir nehmen jetzt also an, die Formel sei für n gültig und wollen zeigen, dass sie auch für n + 1 gilt. = r n+1 + rn+1 r r 1 n+1 r k = r n+1 n + r k = rn+2 r n+1 + r n+1 r r 1 = rn+2 r Die Induktionsannahme wurde verwendet, um von der ersten zur zweiten Zeile zu gelangen. Auf den Induktionsanfang kann nicht verzichtet werden. Zudem ist es wichtig, dass der Induktionsschritt wirklich für jedes beliebige n {1, 2, 3,... } ausführbar ist. Nicht immer ist eine falsche Anwendung so offensichtlich wie in dem folgenden Beispiel: Voraussetzung: Es sind n beliebige Personen in einem Raum. Falsche Behauptung: Alle n Personen sind gleich groß. Falscher Beweisversuch mittels angeblich vollständiger Induktion: Induktionsanfang n = 1: Ist eine Person in einem Raum, sind alle anwesenden gleich groß.

8 Hinweise zur Logik 8 Induktionsschritt n n + 1: Es sind n + 1 Personen in einem Raum. Wir schicken eine Person hinaus. Nach der Induktionsannahme sind die n verbliebenen Personen gleich groß. Die Person kommt zurück, und eine andere von der selben Körpergröße wie die übrigen im Raum geht hinaus. Wieder sind nach der Induktionsannahme die n verbliebenen Personen gleich groß. Also sind alle n + 1 Personen gleich groß. Der Fehler in diesem Beweisversuch ist natürlich, dass der Induktionsschritt 1 2 nicht funktioniert. Denn beim abwechselnden Hinausschicken der beiden Personen verbleibt keine dritte im Raum, mit der die Größe der beiden anderen verglichen werden könnte. Dass die als zweite hinausgeschickte Person von der selben Körpergröße wie die übrigen im Raum ist, ist für den Induktionsschritt wichtig, aber bei 1 2 gibt es keine übrigen im Raum zum Vergleich. 4 Modell und Wirklichkeit Von einzelnen Fällen auf eine allgemeine Regel zu schließen ist ( unvollständige Induktion ) ist keine mathematische Beweismethode. In den Natur- und Wirtschaftswissenschaften ist die Beobachtung einer möglichst großen aber meist notgedrungen unvollständigen Anzahl von Fällen ein Mittel zum Erkenntnisgewinn. Und zur Erklärung der Beobachtungen wird nicht selten ein mathematisches Modell entwickelt. Innerhalb dieses Modells gelten jedoch uneingeschränkt die Regeln der Logik. Stimmen logische Schlussfolgerungen aus den Modellannahmen nicht mit den Beobachtungen überein, ist das Modell zur Erklärung der Beobachtungen offenbar nicht geeignet und muss verändert werden. Die Mathematik kann logische Folgerungen aus den Modellannahmen beweisen aber keine Aussagen über die Welt außerhalb des Modells. Dementsprechend hängt die Nützlichkeit anhand eines Modells getroffener Schlussfolgerungen und Voraussagen davon ab, wie geeignet das Modell zur Beschreibung des zu untersuchenden Sachverhalts ist.

Vorkurs: Mathematik für Informatiker

Vorkurs: Mathematik für Informatiker Vorkurs: Mathematik für Informatiker Teil 3 Wintersemester 2016/17 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 2016 Steven Köhler Wintersemester 2016/17 Inhaltsverzeichnis Teil 1 Teil

Mehr

Elementare Beweismethoden

Elementare Beweismethoden Elementare Beweismethoden Christian Hensel 404015 Inhaltsverzeichnis Vortrag zum Thema Elementare Beweismethoden im Rahmen des Proseminars Mathematisches Problemlösen 1 Einführung und wichtige Begriffe

Mehr

Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Mittwoch den

Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Mittwoch den Fachbereich Mathematik Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Mittwoch den 8.9.011 Vorkurs Mathematik WS 011/1 Die mit * gekennzeichneten Aufgaben sind etwas schwerer. Dort braucht

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

mathe plus Aussagenlogik Seite 1

mathe plus Aussagenlogik Seite 1 mathe plus Aussagenlogik Seite 1 1 Aussagenlogik 1.1 Grundbegriffe Def 1 Aussage Eine Aussage ist ein beschriebener Sachverhalt, dem eindeutig einer der Wahrheitswerte entweder wahr oder falsch zugeordnet

Mehr

Vorlesung. Vollständige Induktion 1

Vorlesung. Vollständige Induktion 1 WS 015/16 Vorlesung Vollständige Induktion 1 1 Einführung Bei der vollständigen Induktion handelt es sich um ein wichtiges mathematisches Beweisverfahren, mit dem man Aussagen, die für alle natürlichen

Mehr

Mathematische Grundlagen der Ökonomie Übungsblatt 8

Mathematische Grundlagen der Ökonomie Übungsblatt 8 Mathematische Grundlagen der Ökonomie Übungsblatt 8 Abgabe Donnerstag 7. Dezember, 0:5 in H 5+7+8 = 20 Punkte Mit Lösungshinweisen zu einigen Aufgaben 29. Das Bisektionsverfahren sucht eine Nullstelle

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Brückenkurs Mathematik 6.10. - 17.10. Vorlesung 1 Logik,, Doris Bohnet Universität Hamburg - Department Mathematik Mo 6.10.2008 Zeitplan Tagesablauf: 9:15-11:45 Vorlesung Audimax I 13:00-14:30 Übung Übungsräume

Mehr

Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Donnerstag den x > 1 3x > 3 3x + 3 > 6 6x + 3 > 3x + 6.

Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Donnerstag den x > 1 3x > 3 3x + 3 > 6 6x + 3 > 3x + 6. Fachbereich Mathematik Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Donnerstag den 7.9.01 Vorkurs Mathematik WS 01/13 Die mit * gekennzeichneten Aufgaben sind etwas schwerer. Dort braucht

Mehr

Donnerstag, 11. Dezember 03 Satz 2.2 Der Name Unterraum ist gerechtfertigt, denn jeder Unterraum U von V ist bzgl.

Donnerstag, 11. Dezember 03 Satz 2.2 Der Name Unterraum ist gerechtfertigt, denn jeder Unterraum U von V ist bzgl. Unterräume und Lineare Hülle 59 3. Unterräume und Lineare Hülle Definition.1 Eine Teilmenge U eines R-Vektorraums V heißt von V, wenn gilt: Unterraum (U 1) 0 U. (U ) U + U U, d.h. x, y U x + y U. (U )

Mehr

II. Wissenschaftliche Argumentation

II. Wissenschaftliche Argumentation Gliederung I. Motivation II. Wissenschaftliche Argumentation i. Direkter Beweis ii. iii. Indirekter Beweis Beweis durch vollständige Induktion Seite 35 II. Wissenschaftliche Argumentation Ein Beweis ist

Mehr

De Morgan sche Regeln

De Morgan sche Regeln De Morgan sche Regeln Durch Auswerten der Wahrheitswertetabelle stellen wir fest, dass allgemeingültig ist; ebenso (p q) p q (p q) p q. Diese beiden Tautologien werden als die De Morgan schen Regeln bezeichnet,

Mehr

Brückenkurs Mathematik. Dienstag Freitag

Brückenkurs Mathematik. Dienstag Freitag Brückenkurs Mathematik Dienstag 29.09. - Freitag 9.10.2015 Vorlesung 2 Mengen, Zahlen, Logik Kai Rothe Technische Universität Hamburg-Harburg Mittwoch 30.09.2015 Mengen.................................

Mehr

Diskrete Strukturen Kapitel 2: Grundlagen (Beweise)

Diskrete Strukturen Kapitel 2: Grundlagen (Beweise) WS 2014/15 Diskrete Strukturen Kapitel 2: Grundlagen (Beweise) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_14

Mehr

Kapitel 1. Grundlegendes

Kapitel 1. Grundlegendes Kapitel 1 Grundlegendes Abschnitt 1.4 Vollständige Induktion Charakterisierung der natürlichen Zahlen Die Menge N 0 = {0, 1, 2, 3,...} der natürlichen Zahlen läßt sich wie folgt charakterisieren: 1. 0

Mehr

5.1 Drei wichtige Beweistechniken... 55 5.2 Erklärungen zu den Beweistechniken... 56

5.1 Drei wichtige Beweistechniken... 55 5.2 Erklärungen zu den Beweistechniken... 56 5 Beweistechniken Übersicht 5.1 Drei wichtige Beweistechniken................................. 55 5. Erklärungen zu den Beweistechniken............................ 56 Dieses Kapitel ist den drei wichtigsten

Mehr

3 Vollständige Induktion

3 Vollständige Induktion 3.1 Natürliche Zahlen In den vorherigen Kapiteln haben wir die Menge der natürlichen Zahlen schon mehrfach als Beispiel benutzt. Das Konzept der natürlichen Zahlen erscheint uns einfach, da wir es schon

Mehr

Fachwissenschaftliche Grundlagen

Fachwissenschaftliche Grundlagen Fachwissenschaftliche Grundlagen Vorlesung im Wintersemester 2011/2012, Universität Landau Roland Gunesch 9. Vorlesung Roland Gunesch (Mathematik) Fachwissenschaftliche Grundlagen 9. Vorlesung 1 / 17 Themen

Mehr

Induktion und Rekursion

Induktion und Rekursion Induktion und Rekursion Induktion und Rekursion Vorkurs Informatik Theoretischer Teil WS 013/14. Oktober 013 Vorkurs Informatik WS 013/14 1/1 Vollständige Induktion Vorkurs Informatik WS 013/14 /1 Ziel

Mehr

Kapitel 3. Natürliche Zahlen und vollständige Induktion

Kapitel 3. Natürliche Zahlen und vollständige Induktion Kapitel 3 Natürliche Zahlen und vollständige Induktion In Kapitel 1 haben wir den direkten Beweis, den modus ponens, kennen gelernt, der durch die Tautologie ( A (A = B) ) = B gegeben ist Dabei war B eine

Mehr

Kapitel 1. Grundlagen Mengen

Kapitel 1. Grundlagen Mengen Kapitel 1. Grundlagen 1.1. Mengen Georg Cantor 1895 Eine Menge ist die Zusammenfassung bestimmter, wohlunterschiedener Objekte unserer Anschauung oder unseres Denkens, wobei von jedem dieser Objekte eindeutig

Mehr

Kapitel 11 Beweisführung. Mathematischer Vorkurs TU Dortmund Seite 125 / 254

Kapitel 11 Beweisführung. Mathematischer Vorkurs TU Dortmund Seite 125 / 254 Kapitel 11 Beweisführung Kapitel 11 Beweisführung Mathematischer Vorkurs TU Dortmund Seite 125 / 254 Kapitel 11 Beweisführung Grundsätzlich: ein mathematischer Satz ist eine Aussage der Form wenn... gilt,

Mehr

Vorkurs Mathematik und Informatik Mengen, natürliche Zahlen, Induktion

Vorkurs Mathematik und Informatik Mengen, natürliche Zahlen, Induktion Vorkurs Mathematik und Informatik Mengen, natürliche Zahlen, Induktion Saskia Klaus 07.10.016 1 Motivation In den ersten beiden Vorträgen des Vorkurses haben wir gesehen, wie man aus schon bekannten Wahrheiten

Mehr

Jeweils am Montag um 18:30 treffen sich Studenten in Seminarraum 3 zum gemeinsamen Lernen.

Jeweils am Montag um 18:30 treffen sich Studenten in Seminarraum 3 zum gemeinsamen Lernen. Jeweils am Montag um 18:30 treffen sich Studenten in Seminarraum 3 zum gemeinsamen Lernen. Betrachtungen zu Sprache, Logik und Beweisen Sprache Wir gehen von unserem Alphabet einigen Zusatzsymbolen aus.

Mehr

2 Der Beweis. Themen: Satz und Beweis Indirekter Beweis Kritik des indirekten Beweises

2 Der Beweis. Themen: Satz und Beweis Indirekter Beweis Kritik des indirekten Beweises 2 Der Beweis Themen: Satz und Beweis Indirekter Beweis Kritik des indirekten Beweises Satz und Beweis Ein mathematischer Satz besteht aus einer Voraussetzung und einer Behauptung. Satz und Beweis Ein mathematischer

Mehr

Folgen und endliche Summen

Folgen und endliche Summen Kapitel 2 Folgen und endliche Summen Folgen und ihre Eigenschaften Endliche arithmetische und geometrische Folgen und Reihen Vollständige Induktion Anwendungen Folgen/endliche Summen Eigenschaften Folgen

Mehr

Einführung in die Mathematik (Vorkurs 1 )

Einführung in die Mathematik (Vorkurs 1 ) Einführung in die Mathematik (Vorkurs 1 ) Wintersemester 2008/09 Dr. J. Jordan Institut für Mathematik Universität Würzburg Germany 1 Modulbezeichnung 10-M-VKM 1 Inhaltsverzeichnis 1 Aussagen und Beweise

Mehr

Vorkurs Mathematik für Informatiker 6 Logik, Teil 2

Vorkurs Mathematik für Informatiker 6 Logik, Teil 2 6 Logik, Teil 2 Michael Bader, Thomas Huckle, Stefan Zimmer 1. 9. Oktober 2008 Kap. 6: Logik, Teil 2 1 Aussagenformen Aussage mit Parameter (zum Beispiel x) Aussage wahr oder falsch abhängig vom Parameter

Mehr

Kapitel 1. Grundlagen

Kapitel 1. Grundlagen Kapitel 1. Grundlagen 1.1. Mengen Georg Cantor 1895 Eine Menge ist die Zusammenfassung bestimmter, wohlunterschiedener Objekte unserer Anschauung oder unseres Denkens, wobei von jedem dieser Objekte eindeutig

Mehr

WS 2013/14. Diskrete Strukturen

WS 2013/14. Diskrete Strukturen WS 2013/14 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws1314

Mehr

Technische Universität München Zentrum Mathematik Mathematik 1 (Elektrotechnik) Übungsblatt 1

Technische Universität München Zentrum Mathematik Mathematik 1 (Elektrotechnik) Übungsblatt 1 Technische Universität München Zentrum Mathematik Mathematik 1 (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 1 Hausaufgaben Aufgabe 1.1 Zeigen Sie mit vollständiger Induktion:

Mehr

Fachwissenschaftliche Grundlagen

Fachwissenschaftliche Grundlagen Fachwissenschaftliche Grundlagen Vorlesung im Wintersemester 2011/2012, Universität Landau Roland Gunesch 8. Vorlesung Roland Gunesch (Mathematik) Fachwissenschaftliche Grundlagen 8. Vorlesung 1 / 25 Themen

Mehr

Logik und Beweise. Logik und Beweise. Vorsemesterkurs SoSe März 2016

Logik und Beweise. Logik und Beweise. Vorsemesterkurs SoSe März 2016 Logik und Beweise Logik und Beweise Vorsemesterkurs SoSe16 Ronja Düffel 21. März 2016 Logik und Beweise Wozu Beweise in der Informatik?... um Aussagen wie 1 Das Programm erfüllt die gewünschte Aufgabe.

Mehr

Handout zu Beweistechniken

Handout zu Beweistechniken Handout zu Beweistechniken erstellt vom Lernzentrum Informatik auf Basis von [Kre13],[Bün] Inhaltsverzeichnis 1 Was ist ein Beweis? 2 2 Was ist Vorraussetzung, was ist Behauptung? 2 3 Beweisarten 3 3.1

Mehr

Inhaltsverzeichnis. Inhaltsverzeichnis

Inhaltsverzeichnis. Inhaltsverzeichnis Inhaltsverzeichnis Inhaltsverzeichnis 1 Beweistechniken 1.1 Prädikatenlogik..................................... 1. Direkter Beweis.................................... 3 1.3 Indirekter Beweis....................................

Mehr

Dem Anschein nach werden diese Zahlen kleiner und kleiner und streben gegen Null. Was sollen sie sonst auch tun? Aber der Begriff

Dem Anschein nach werden diese Zahlen kleiner und kleiner und streben gegen Null. Was sollen sie sonst auch tun? Aber der Begriff 47 5 Irrationales 5.1 Folgen, Konvergenz und Vollständigkeit Eine Abbildung a : N R definiert eine Folge von reellen Werten a 1 = a(1), a 2 = a(2), a 3 = a(3),... Solche Zahlenfolgen werden uns dazu dienen,

Mehr

Reihen/Partialsummenfolgen und vollständige Induktion. Robert Klinzmann

Reihen/Partialsummenfolgen und vollständige Induktion. Robert Klinzmann Reihen/Partialsummenfolgen und vollständige Induktion Robert Klinzmann 3. Mai 00 Reihen / Partialsummen 1 Inhaltsverzeichnis 1 Vorwort Das Prinzip der vollständigen Induktion 3 3 Herleitung der Gauß schen

Mehr

Elementare Mengenlehre

Elementare Mengenlehre Vorkurs Mathematik, PD Dr. K. Halupczok WWU Münster Fachbereich Mathematik und Informatik 5.9.2013 Ÿ2 Elementare Mengenlehre Der grundlegendste Begri, mit dem Objekte und Strukturen der Mathematik (Zahlen,

Mehr

2. Teilbarkeit. Euklidischer Algorithmus

2. Teilbarkeit. Euklidischer Algorithmus O. Forster: Einführung in die Zahlentheorie 2. Teilbarkeit. Euklidischer Algorithmus 2.1. Wir benutzen die folgenden Bezeichnungen: Z = {0, ±1, ±2, ±3,...} Menge aller ganzen Zahlen N 0 = {0, 1, 2, 3,...}

Mehr

TU8 Beweismethoden. Daniela Andrade

TU8 Beweismethoden. Daniela Andrade TU8 Beweismethoden Daniela Andrade daniela.andrade@tum.de 12.12.2016 1 / 21 Kleine Anmerkung Meine Folien basieren auf den DS Trainer von Carlos Camino, den ihr auf www.carlos-camino.de/ds findet ;) 2

Mehr

Induktion und Rekursion

Induktion und Rekursion Mathematische Beweistechniken Vorkurs Informatik SoSe13 10. April 013 Mathematische Beweistechniken Ziel Mathematische Beweistechniken Ziel beweise, dass eine Aussage A(n) für alle n N gilt. Beispiel Für

Mehr

Schnupperkurs: Ausgewählte Methoden zur Aufgabenlösung

Schnupperkurs: Ausgewählte Methoden zur Aufgabenlösung Mathematisches Institut II.06.004 Universität Karlsruhe Priv.-Doz. Dr. N. Grinberg SS 05 Schnupperkurs: Ausgewählte Methoden zur Aufgabenlösung Vorlesung 3: Elementare Beweismethoden: Direkter Beweis,

Mehr

3 Vom Zählen zur Induktion

3 Vom Zählen zur Induktion 7 3 Vom Zählen zur Induktion 3.1 Natürliche Zahlen und Induktions-Prinzip Seit unserer Kindheit kennen wir die Zahlen 1,, 3, 4, usw. Diese Zahlen gebrauchen wir zum Zählen, und sie sind uns so vertraut,

Mehr

Dezimaldarstellung ganzer Zahlen (Division mit Rest) 1 Division mit Rest in der Hochschule

Dezimaldarstellung ganzer Zahlen (Division mit Rest) 1 Division mit Rest in der Hochschule Berufsfeldbezogenes Fachseminar - Zahlentheorie Lisa Laudan Prof. Dr. Jürg Kramer Wintersemester 2014/2015 Dezimaldarstellung ganzer Zahlen (Division mit Rest) 1 Division mit Rest in der Hochschule 1.1

Mehr

Mathem.Grundlagen der Computerlinguistik I, WS 2004/05, H. Leiß 1

Mathem.Grundlagen der Computerlinguistik I, WS 2004/05, H. Leiß 1 Mathem.Grundlagen der Computerlinguistik I, WS 2004/05, H. Leiß 1 1 Vorbemerkungen Mathematische Begriffe und Argumentationsweisen sind in vielen Fällen nötig, wo man über abstrakte Objekte sprechen und

Mehr

Mengen. Eigenschaften. Spezielle Mengen (1) Prominente Mengen. ! Mengenzugehörigkeit

Mengen. Eigenschaften. Spezielle Mengen (1) Prominente Mengen. ! Mengenzugehörigkeit Mengen! Definition (Intuitive Mengenlehre) Eine Menge ist die Zusammenfassung von Elementen unserer Anschauung zu einem wohldefinierten Ganzen. (Georg Cantor)! Notation 1. Aufzählung aller Elemente: {

Mehr

HM I Tutorium 1. Lucas Kunz. 27. Oktober 2016

HM I Tutorium 1. Lucas Kunz. 27. Oktober 2016 HM I Tutorium 1 Lucas Kunz 27. Oktober 2016 Inhaltsverzeichnis 1 Theorie 2 1.1 Logische Verknüpfungen............................ 2 1.2 Quantoren.................................... 3 1.3 Mengen und ihre

Mehr

$Id: reell.tex,v /10/28 14:16:56 hk Exp hk $ Axiome genannt, bei den reellen Zahlen haben wir dann die

$Id: reell.tex,v /10/28 14:16:56 hk Exp hk $ Axiome genannt, bei den reellen Zahlen haben wir dann die $Id: reell.tex,v 1.14 2013/10/28 14:16:56 hk Exp hk $ 1 Die reellen Zahlen Wir wollen diese Vorlesung mit den reellen Zahlen beginnen, diese sind die normalen Zahlen und man kann sie sich etwa als alle

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Beweise und Beweisstrategien andreas.kucher@uni-graz.at Institute for Mathematics and Scientific Computing Karl-Franzens-Universität Graz Graz, September 5, 2015 Hinweis zu den Folien Diese Folien sind

Mehr

Studienmaterial Einführung in das Rechnen mit Resten

Studienmaterial Einführung in das Rechnen mit Resten Studienmaterial Einführung in das Rechnen mit Resten H.-G. Gräbe, Institut für Informatik, http://www.informatik.uni-leipzig.de/~graebe 12. April 2000 Die folgenden Ausführungen sind aus Arbeitsmaterialien

Mehr

1. Einleitung wichtige Begriffe

1. Einleitung wichtige Begriffe 1. Einleitung wichtige Begriffe Da sich meine besondere Lernleistung mit dem graziösen Färben (bzw. Nummerieren) von Graphen (speziell von Bäumen), einem Teilgebiet der Graphentheorie, beschäftigt, und

Mehr

Frage 8.3. Wozu dienen Beweise im Rahmen einer mathematischen (Lehramts-)Ausbildung?

Frage 8.3. Wozu dienen Beweise im Rahmen einer mathematischen (Lehramts-)Ausbildung? 8 Grundsätzliches zu Beweisen Frage 8.3. Wozu dienen Beweise im Rahmen einer mathematischen (Lehramts-)Ausbildung? ˆ Mathematik besteht nicht (nur) aus dem Anwenden auswendig gelernter Schemata. Stattdessen

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Große Übung #2 Phillip Keldenich, Arne Schmidt 10.11.2016 Organisatorisches Fragen? Checkliste: Anmeldung kleine Übungen Anmeldung Mailingliste Dies ersetzt nicht die Prüfungsanmeldung!

Mehr

Mengen und Abbildungen

Mengen und Abbildungen Mengen und Abbildungen Der Mengenbegriff Durchschnitt, Vereinigung, Differenzmenge Kartesisches Produkt Abbildungen Prinzip der kleinsten natürlichen Zahl Vollständige Induktion Mengen und Abbildungen

Mehr

8 Summen von Quadraten

8 Summen von Quadraten 8 Summen von Quadraten A. Summen von zwei Quadraten. Sei p eine Primzahl. Beispiele. = 1 + 1, 5 = 1 +, 13 = + 3 Aber 3 und 7 sind nicht Summen von zwei Quadraten. 8.1 Satz. Genau dann ist p Summe von zwei

Mehr

Vorlesung. Einführung in die mathematische Sprache und naive Mengenlehre

Vorlesung. Einführung in die mathematische Sprache und naive Mengenlehre Vorlesung Einführung in die mathematische Sprache und naive Mengenlehre Allgemeines RUD26 Erwin-Schrödinger-Zentrum (ESZ) RUD25 Johann-von-Neumann-Haus Fachschaft Menge aller Studenten eines Institutes

Mehr

2 Rationale und reelle Zahlen

2 Rationale und reelle Zahlen 2 Rationale und reelle Zahlen 2.1 Körper Ein Körper ist eine Struktur der Form à = (K,0,1,+, mit einer Grundmenge K, zwei zweistelligen Operationen + und, für die die Körperaxiome gelten: (K1 (K, 0, +

Mehr

1. Gruppen. 1. Gruppen 7

1. Gruppen. 1. Gruppen 7 1. Gruppen 7 1. Gruppen Wie schon in der Einleitung erläutert wollen wir uns in dieser Vorlesung mit Mengen beschäftigen, auf denen algebraische Verknüpfungen mit gewissen Eigenschaften definiert sind.

Mehr

Wie werden die Vorlesungen/Übungen organisiert?

Wie werden die Vorlesungen/Übungen organisiert? Wie werden die Vorlesungen/Übungen organisiert? Mein Name: Prof Vladimir Matveev Sprechstunden: nach jeder Vorlesung bzw in der Pause Homepage der Vorlesung: http://usersminetuni-jenade/~matveev/lehre/la13/

Mehr

Rhetorik und Argumentationstheorie.

Rhetorik und Argumentationstheorie. Rhetorik und Argumentationstheorie 2 [frederik.gierlinger@univie.ac.at] Teil 2 Was ist ein Beweis? 2 Wichtige Grundlagen Tautologie nennt man eine zusammengesetzte Aussage, die wahr ist, unabhängig vom

Mehr

Grundlagen der Mathematik

Grundlagen der Mathematik Universität Hamburg Winter 2016/17 Fachbereich Mathematik Janko Latschev Grundlagen der Mathematik Lösungsskizzen 2 Präsenzaufgaben (P2) Wir betrachten drei Teilmengen der natürlichen Zahlen: - A = {n

Mehr

Also kann nur A ist roter Südler und B ist grüner Nordler gelten.

Also kann nur A ist roter Südler und B ist grüner Nordler gelten. Aufgabe 1.1: (4 Punkte) Der Planet Og wird von zwei verschiedenen Rassen bewohnt - dem grünen und dem roten Volk. Desweiteren sind die Leute, die auf der nördlichen Halbkugel geboren wurden von denen auf

Mehr

Erinnerung 1. Erinnerung 2

Erinnerung 1. Erinnerung 2 Erinnerung 1 Ein Argument ist eine Folge von Aussagesätzen, mit der der Anspruch verbunden ist, dass ein Teil dieser Sätze (die Prämissen) einen Satz der Folge (die Konklusion) in dem Sinne stützen, dass

Mehr

Wie beweise ich etwas? 9. Juli 2012

Wie beweise ich etwas? 9. Juli 2012 Schülerzirkel Mathematik Fakultät für Mathematik. Universität Regensburg Wie beweise ich etwas? 9. Juli 2012 1 Was ist ein Beweis? 1.1 Ein Beispiel Nimm einen Stift und ein Blatt Papier und zeichne fünf

Mehr

1 Vorbereitung: Potenzen 2. 2 Einstieg und typische Probleme 3

1 Vorbereitung: Potenzen 2. 2 Einstieg und typische Probleme 3 Das vorliegende Skript beschäftigt sich mit dem Thema Rechnen mit Kongruenzen. Das Skript entsteht entlang einer Unterrichtsreihe in der Mathematischen Schülergesellschaft (MSG) im Jahr 2013. Die vorliegende

Mehr

2 Die Körper-Axiome. I. Axiome der Addition (A.1) Assoziativgesetz. Für alle x, y, z R gilt (x + y)+z = x +(y + z).

2 Die Körper-Axiome. I. Axiome der Addition (A.1) Assoziativgesetz. Für alle x, y, z R gilt (x + y)+z = x +(y + z). 17 Wir setzen in diesem Buch die reellen Zahlen als gegeben voraus. Um auf sicherem Boden zu stehen, werden wir in diesem und den folgenden Paragraphen einige Axiome formulieren, aus denen sich alle Eigenschaften

Mehr

2.2.4 Logische Äquivalenz

2.2.4 Logische Äquivalenz 2.2.4 Logische Äquivalenz (I) Penélope raucht nicht und sie trinkt nicht. (II) Es ist nicht der Fall, dass Penélope raucht oder trinkt. Offenbar behaupten beide Aussagen denselben Sachverhalt, sie unterscheiden

Mehr

2. Symmetrische Gruppen

2. Symmetrische Gruppen 14 Andreas Gathmann 2 Symmetrische Gruppen Im letzten Kapitel haben wir Gruppen eingeführt und ihre elementaren Eigenschaften untersucht Wir wollen nun eine neue wichtige Klasse von Beispielen von Gruppen

Mehr

Rechenregeln für Summen

Rechenregeln für Summen Rechenregeln für Summen Im Umgang mit Summen sind gewisse Regeln zu beachten. 1 Summe gleicher Summanden Betrachten wir folgende Summe: x Hier enthält x keinen Summationsindex, d.h. es wird x einfach n-mal

Mehr

Weitere Beweistechniken und aussagenlogische Modellierung

Weitere Beweistechniken und aussagenlogische Modellierung Weitere Beweistechniken und aussagenlogische Modellierung Vorlesung Logik in der Informatik, HU Berlin 2. Übungsstunde Aussagenlogische Modellierung Die Mensa versucht ständig, ihr Angebot an die Wünsche

Mehr

Konstruktion reeller Zahlen aus rationalen Zahlen

Konstruktion reeller Zahlen aus rationalen Zahlen Konstruktion reeller Zahlen aus rationalen Zahlen Wir nehmen an, daß der Körper der rationalen Zahlen bekannt ist. Genauer wollen wir annehmen: Gegeben ist eine Menge Q zusammen mit zwei Verknüpfungen

Mehr

Vollständige Induktion

Vollständige Induktion Seite 1 Klaus Messner, klaus_messner@web.de Seite 2 Problem: Problem Man hat eine Aussage (z.b. eine Formel) und soll zeigen, dass diese Aussage für alle natürlichen Zahlen gilt. Beispiel: Es soll gezeigt

Mehr

ANALYSIS I FÜR TPH WS 2016/17 1. Übung Übersicht

ANALYSIS I FÜR TPH WS 2016/17 1. Übung Übersicht . Übung Übersicht Aufgaben zu Kapitel und 2 Aufgabe : Drei klassische Ungleichungen Aufgabe 2: ) Beweis einer Summenformel Induktion) Aufgabe : ) Teleskopsummen Aufgabe 4: Noch etwas Formelmanipulation

Mehr

Weitere Eigenschaften

Weitere Eigenschaften Weitere Eigenschaften Erklärung der Subtraktion: x y := x + ( y) (5) Die Gleichung a + x = b hat die eindeutig bestimmte Lösung x = b a. Beweis: (a) Zunächst ist x = b a eine Lösung, denn a + x = a + (b

Mehr

Brückenkurs. Beweise. Anja Haußen Brückenkurs, Seite 1/23

Brückenkurs. Beweise. Anja Haußen Brückenkurs, Seite 1/23 Brückenkurs Beweise Anja Haußen 30.09.2016 Brückenkurs, 30.09.2016 Seite 1/23 Inhalt 1 Einführung 2 Sätze 3 Beweise 4 direkter Beweis Brückenkurs, 30.09.2016 Seite 2/23 Einführung Die höchste Form des

Mehr

Vertiefungskurs Mathematik

Vertiefungskurs Mathematik Vertiefungskurs Mathematik Anforderungen für das Universitäts-Zertifikat im Schuljahr 01/13 Grundvoraussetzung: Teilnahme am Vertiefungskurs Mathematik in Klasse 11. Inhaltliche Voraussetzungen: Aussagenlogik

Mehr

Technische Universität München Zentrum Mathematik Propädeutikum Diskrete Mathematik. Weihnachtsblatt

Technische Universität München Zentrum Mathematik Propädeutikum Diskrete Mathematik. Weihnachtsblatt Technische Universität München Zentrum Mathematik Propädeutikum Diskrete Mathematik Prof. Dr. A. Taraz, Dipl-Math. A. Würfl, Dipl-Math. S. König Weihnachtsblatt Aufgabe W.1 Untersuchen Sie nachstehenden

Mehr

Thema: Logik: 2. Teil. Übersicht logische Operationen Name in der Logik. Negation (Verneinung) Nicht

Thema: Logik: 2. Teil. Übersicht logische Operationen Name in der Logik. Negation (Verneinung) Nicht Thema: Logik: 2. Teil Übersicht logische Operationen Name in der Logik Symbol Umgangssprachlicher Name Negation (Verneinung) Nicht Konjunktion ^ Und Disjunktion v Oder Subjunktion (Implikation) Bijunktion

Mehr

Ferienkurs Analysis 1: Übungsblatt 1

Ferienkurs Analysis 1: Übungsblatt 1 Ferienkurs Analysis : Übungsblatt Marta Krawczyk, Andreas Schindewolf, Simon Filser 5.3.00 Aufgaben zur vollständigen Induktion. Verallgemeinerte geometrische Summenformel. Zeigen Sie mittels vollständiger

Mehr

Vollständige Induktion

Vollständige Induktion Schweizer Mathematik-Olympiade smo osm Vollständige Induktion Aktualisiert: 1 Dezember 01 vers 100 Eine der wichtigsten Beweistechniken der Mathematik überhaupt ist die (vollständige) Induktion Wir nehmen

Mehr

24 KAPITEL 2. REELLE UND KOMPLEXE ZAHLEN

24 KAPITEL 2. REELLE UND KOMPLEXE ZAHLEN 24 KAPITEL 2. REELLE UND KOMPLEXE ZAHLEN x 2 = 0+x 2 = ( a+a)+x 2 = a+(a+x 2 ) = a+(a+x 1 ) = ( a+a)+x 1 = x 1. Daraus folgt dann, wegen x 1 = x 2 die Eindeutigkeit. Im zweiten Fall kann man für a 0 schreiben

Mehr

Vorkurs: Mathematik für Informatiker

Vorkurs: Mathematik für Informatiker Vorkurs: Mathematik für Informatiker Lösungen Wintersemester 2016/17 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 2016 Steven Köhler Wintersemester 2016/17 Kapitel I: Mengen Aufgabe

Mehr

Mathematische Grundlagen der Computerlinguistik

Mathematische Grundlagen der Computerlinguistik Mengen und Mengenoperationen (Teil II) Centrum für Informations- und Sprachverarbeitung (CIS) 2. Juni 2014 Table of Contents 1 2 3 Definition Mengenfamilie Eine Menge, deren sämtliche Elemente selbst wiederum

Mehr

1.2 Mengenlehre I-Einführung in die reellen Zahlen

1.2 Mengenlehre I-Einführung in die reellen Zahlen .2 Mengenlehre I-Einführung in die reellen Zahlen Inhaltsverzeichnis Checkliste 2 2 Repetition 2 3 Dezimalzahlen 3 4 Die Darstellung von Brüchen als Dezimalzahlen 3 5 irrationale Zahlen 4 6 Beispiele von

Mehr

Surjektive, injektive und bijektive Funktionen.

Surjektive, injektive und bijektive Funktionen. Kapitel 1: Aussagen, Mengen, Funktionen Surjektive, injektive und bijektive Funktionen. Definition. Sei f : M N eine Funktion. Dann heißt f surjektiv, falls die Gleichung f(x) = y für jedes y N mindestens

Mehr

Vor(schau)kurs für Studienanfänger Mathematik: Aussagen und Mengen

Vor(schau)kurs für Studienanfänger Mathematik: Aussagen und Mengen Vor(schau)kurs für Studienanfänger Mathematik: Aussagen und Mengen 09.10.2014 Herzlich Willkommen zum 2. Teil des Vorschaukurses für Mathematik! Organisatorisches Der Vorkurs besteht aus sechs Blöcken

Mehr

Aristoteles Satz vom Widerspruch. Prof. Dr. Gregor Nickel: Philosophie der Mathematik. (Vorlesung im Sommersemester 2016)

Aristoteles Satz vom Widerspruch. Prof. Dr. Gregor Nickel: Philosophie der Mathematik. (Vorlesung im Sommersemester 2016) Aristoteles Satz vom Widerspruch Prof. Dr. Gregor Nickel: Philosophie der Mathematik (Vorlesung im Sommersemester 2016) Stand: 15.06.2016 Karsten Berg Ja, er gilt absolut! In der Logik und damit auch der

Mehr

Lösungen zur Vorrundenprüfung 2004

Lösungen zur Vorrundenprüfung 2004 Lösungen zur Vorrundenprüfung 2004 Zuerst einige Bemerkungen zum Punkteschema. Eine vollständige und korrekte Lösung einer Aufgabe ist jeweils 7 Punkte wert. Für komplette Lösungen mit kleineren Fehlern

Mehr

1. Übung zum G8-Vorkurs Mathematik (WiSe 2011/12)

1. Übung zum G8-Vorkurs Mathematik (WiSe 2011/12) Technische Universität München Zentrum Mathematik PD Dr. Christian Karpfinger http://www.ma.tum.de/mathematik/g8vorkurs 1. Übung zum G8-Vorkurs Mathematik (WiSe 2011/12) Aufgabe 1.1: Gehen Sie die Inhalte

Mehr

Logik für Informatiker. 1. Grundlegende Beweisstrategien. Viorica Sofronie-Stokkermans Universität Koblenz-Landau

Logik für Informatiker. 1. Grundlegende Beweisstrategien. Viorica Sofronie-Stokkermans Universität Koblenz-Landau Logik für Informatiker 1. Grundlegende Beweisstrategien Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Mathematisches Beweisen Mathematische ussagen - haben oft

Mehr

1 Das Prinzip der vollständigen Induktion

1 Das Prinzip der vollständigen Induktion 1 1 Das Prinzip der vollständigen Induktion 1.1 Etwas Logik Wir nennen eine Formel oder einen Satz der Alltagssprache eine Aussage, wenn sie wahr oder falsch sein kann. Die Formeln 2 = 3, 2 4, 5 5 sind

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Einheit 4: Wörter (und vollständige Induktion) Thomas Worsch Universität Karlsruhe, Fakultät für Informatik Oktober 2008 1/29 Überblick Wörter Wörter Das leere Wort Mehr zu

Mehr

1. [Aufgabe] Welche der folgenden Aussagen sind gültige Einwände gegen das Sprichwort Alles verstehen heisst alles verzeihen?

1. [Aufgabe] Welche der folgenden Aussagen sind gültige Einwände gegen das Sprichwort Alles verstehen heisst alles verzeihen? Lineare Algebra D-MATH, HS 2014 Prof. Richard Pink Lösung 1 1. [Aufgabe] Welche der folgenden Aussagen sind gültige Einwände gegen das Sprichwort Alles verstehen heisst alles verzeihen? a Niemand versteht

Mehr

Lösungen 3 zum Mathematik-Brückenkurs für alle, die sich für Mathematik interessieren

Lösungen 3 zum Mathematik-Brückenkurs für alle, die sich für Mathematik interessieren Lösungen 3 zum Mathematik-Brückenkurs für alle, die sich für Mathematik interessieren µfsr, TU Dresden Version vom 26. September 2016, Fehler und Verbesserungsvorschläge bitte an benedikt.bartsch@myfsr.de

Mehr

Analysis I - Einige Lösungen und Ergänzungen

Analysis I - Einige Lösungen und Ergänzungen Christian-Albrechts-Universität zu Kiel Mathematisch-Naturwissenschaftliche Fakultät Mathematisches Seminar Analysis I - Einige Lösungen und Ergänzungen von Dipl.-Math. Joscha Prochno Dipl.-Math. Dennis

Mehr

A N A L Y S I S I F Ü R T P H, U E ( ) 1. Übungstest (FR, ) (mit Lösung )

A N A L Y S I S I F Ü R T P H, U E ( ) 1. Übungstest (FR, ) (mit Lösung ) Institut für Analysis und Scientific Computing TU Wien W. Auzinger WS 05/6 A N A L Y S I S I F Ü R T P H, U E (03.088). Übungstest (FR, 6..05) (mit Lösung ) Aufgabe. a ) Wandeln Sie die periodische Dezimalzahl

Mehr

Formale Methoden 2. Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2015/2016

Formale Methoden 2. Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2015/2016 Formale Methoden 2 Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2015/2016 Teil 3: Kodierung 1 Motivation 2 Exkurs Grundlagen formaler Sprachen 3 Grundlagen 4 Beispielkodierungen FM2 (WS 2014/15,

Mehr

Was ist Logik? Was ist Logik? Aussagenlogik. Wahrheitstabellen. Geschichte der Logik eng verknüpft mit Philosophie

Was ist Logik? Was ist Logik? Aussagenlogik. Wahrheitstabellen. Geschichte der Logik eng verknüpft mit Philosophie Was ist Logik? Geschichte der Logik eng verknüpft mit Philosophie Begriff Logik wird im Alltag vielseitig verwendet Logik untersucht, wie man aus Aussagen andere Aussagen ableiten kann Beschränkung auf

Mehr