Organisationsformen der Speicherstrukturen

Größe: px
Ab Seite anzeigen:

Download "Organisationsformen der Speicherstrukturen"

Transkript

1 Organisationsformen der Speicherstrukturen Bäume und Hashing 1

2 Motivation Ablage von Daten soll einfachen, schnellen und inhaltsbezogenen Zugriff ermöglichen (z.b. Zeige alle Schüler des Lehrers X am heutigen Tag) Probleme: Große Datenmengen passen nicht vollständig in den Arbeitsspeicher des Rechners, sondern müssen auf langsameren Sekundärspeichern gelagert werden Sequentielle Suche (also alle Elemente anfassen) dauert zu lange DBMS-Intern wird daher oft mit Seiten (Pages) gearbeitet: Größe durch Datenbankadministrator festgelegt (typischerweise 4 32 KB) Seiten enthalten Header und eine Menge an Datensätzen Seiten können als Block im Arbeitsspeicher gepuffert werden Dadurch: feste Größen (gut für die Performance) Aber: Welcher Datensatz befindet sich in welcher Seite? 2

3 Lösung: Mehrwegbäume und Hashing Bäume = Spezielle Struktur (Graphentheorie) zur Speicherung von Elementen Besteht aus Kanten, inneren Knoten und Blättern Zu jedem Knoten kann man sagen, ob (und welche) Kinder er hat Damit kann man sich einfach über die Eltern zu einem Kind durchhangeln und muss sich nicht alle Elemente ansehen, um ein spezielles Kind zu finden Hashing = Eine feste Funktion, über die sich der Speicherort ermitteln lässt Für jeden Datensatz wird ein Hashwert berechnet, wodurch der Datensatz wesentlich schneller gefunden werden kann 3

4 Ein Beispielbaum Quelle: 4

5 Arten von Bäumen Wurzelbaum: Spezieller gerichteter Graph mit Knoten und gerichteten Kanten Ausgezeichnete Wurzel mit nur ausgehenden Kanten Knoten ohne ausgehende Kanten heißen Blätter Binärbaum: Alle Knoten haben maximal zwei Kinder Häufig gefordert: Kind ist entweder linkes oder rechtes Kind Binärer Suchbaum: Effizientes Suchen durch eine Totalordnung Suchaufwand ist proportional zur Baumhöhe Vollständige Balanciertheit: Höhe aller Blätter unterscheidet sich maximal um 1 Vermeidet die Entartung des Suchbaumes 5

6 Arten von Bäumen II Mehrwegbaum: Ausgangspunkt: Vollständig balancierter binärer Suchbaum Problem: großer Baum passt nicht vollständig in den Primärspeicher Zielstellung: Zusammenfassung mehrerer Elemente zu einem Knoten Höherer Verzweigungsgrad = niedrigere Baumhöhe Beispiele: B- und B+-Baum 6

7 B-Baum Vorschlag von R. Bayer und E. McCreight (1970) Daten und Suchinformationen in Baumstruktur angeordnet Baumknoten werden auf Seiten abgebildet, die vom DBMS verwaltet werden Definition eines B-Baumes mit Ordnung n: Jeder Weg von der Wurzel zum Blatt hat die gleiche Länge h Jeder innere Knoten hat mindestens n+1 Kinder Die Wurzel ist ein Blatt oder hat mindestens zwei Kinder Jedes Blatt besitzt mindestens n Einträge Jeder Knoten hat höchstens 2n+1 Kinder 7

8 Beispiel B-Baum 8

9 Suchen im B-Baum Suche nach Schlüssel k liefert speichernden Knoten x und Position i innerhalb des Knotens bzw. ein nicht enthalten Abfolge: 1. Die Suche beginnt im Wurzelknoten 2. Ist der aktuelle Knoten ein innerer Knoten? 1. Ja: Bestimme die Position des kleinsten Schlüssels, der größer oder gleich k ist. Wurde eine solche Position gefunden? 1. Ja, es handelt sich sogar um den gesuchten Schlüssel Fertig. Gefunden! 2. Ja, aber es handelt sich nicht um den gesuchten Schlüssel Weitersuchen im angehängten Unterknoten 3. Nein. Weitersuchen im letzten Kindknoten 2. Nein, es ist ein Blattknoten. k in den Schlüsseln von x suchen. Entweder Gefunden! oder nicht enthalten. 9

10 Einfügen im B-Baum Einfügen von Datensatz d mit Schlüssel s Abfolge: 1. Suche s im Baum 1. Gefunden Fehlermeldung, fertig! 2. Nicht gefunden Merke Blatt b, in dem die Suche endete 2. Füge (s,d) in Blatt b ein 1. Wenn genug Platz ist, alles i.o. 2. Wenn nicht genug Platz ist: 1. Teile b in der Mitte in zwei Unterbäume 2. Der neue Vaterknoten ist das Mittelelement 10

11 Löschen im B-Baum Löschen von Datensatz mit Schlüssel s Abfolge: Suche s im Baum Nicht gefunden Fertig! Gefunden merke Knoten k, in dem s gefunden wurde Lösche den Datensatz Wenn aus einem Blatt gelöscht wurde, überprüfen ob das Blatt noch gebraucht wird Wenn aus einem inneren Knoten gelöscht wurde, muss ein neuer Wurzelknoten bestimmt werden! 11

12 Bewertung B-Baum Robust gegen Entartung durch Reorganisation Je flacher der Baum ist, desto höher ist die Performance Möglichst große Seiten helfen also Man könnte den Baum noch deutlich effizienter machen, wenn man die eigentlichen Daten nicht für die Suche brauchen würde 12

13 B+-Baum Vorschlag von Donald Knuth (1973) Häufigste Art der Index-Implementierung in DBMS Indexbaum: Keine Datensätze, sondern Schlüssel und Zeiger auf Kinder Datensätze befinden sich ausschließlich in der Blattebene des B+-Baumes Mehr Platz pro Schlüssel pro Seite! Lösch-Vorgang einfacher als im B-Baum Daten werden nur in Blättern entfernt Schlüssel im inneren Knoten bleiben als Wegweiser erhalten Weniger Seiten müssen geändert werden Sequentieller sortierter Zugriff und wahlfreier Schlüsselzugriff sind effizient Bereichsanfragen, Extremwertanfragen gehen besonders performant 13

14 B+-Bäume in der Praxis Typische Werte: Ordnung: 100 Höhe: 3-4 Füllfaktor: 70% Durchschnittliche Anzahl von Kindern: 133 Kapazität bei Höhe 3: Kapazität bei Höhe 4: Pufferung Indexbaum bis Ebene 1: Pufferung Indexbaum bis Ebene 2: 2 Mio. Datensätze 300 Mio. Datensätze 1MB 133 MB 14

15 Statisches Hashing Grundidee: Warum den Speicherort nicht aus dem Schlüssel ableiten? Hashtabelle als Indexstruktur Berechnung der Speicheradresse eines Datensatzes über den Schlüssel Dazu: Spezielle Hashfunktion, die zu einem beliebigen Schlüssel die richtige Seite liefert Beispiel einer Hashfunktion: Divisionsrestverfahren Eine gute Hashfunktion verteilt die Schlüssel möglichst gleichmäßig auf die verfügbaren Seiten 15

16 Typische Operationen bei statischem Hashing Einfügen: Generierung der zukünftigen Speicheradresse Datensatz an entsprechender Adresse speichern Direkte Suche: Ermittlung der zugehörigen Speicheradresse Auslesen des Datensatzes an der Speicheradresse Sequentielle Suche: Da die Daten durch das Hashing in den Seiten verstreut sind, schwierig! Löschen: Ermittlung der zugehörigen Speicheradresse Löschen des Datensatzes an der Speicheradresse 16

17 Kollisionsbehandlung bei statischem Hashing Kollisionen treten immer auf, wenn die Hashfunktion für unterschiedliche Eingabewerte gleiche Ausgabewerte bestimmt. Wie wahrscheinlich sind Kollisionen? Kollisionsbehandlung: Finden einer alternativen freien Speicheradresse Sicherstellen, dass der Datensatz auch wiedergefunden werden kann Offenes Hashing: Synonyme im Primärbereich Suche nach noch nicht belegter Adresse z.b. durch doppeltes Hashen Problem beim Löschen: Einträge einfach löschen ändert die Voraussetzungen Geschlossenes Hashing: separater Überlaufbereich Überlauf für alle Kollisionen oder pro Adresse Gefahr der Entartung zu Listensystem Je mehr Kollisionen, desto komplizierter wird die Verwaltung 17

18 Fazit statisches Hashing Bei Kollisionsfreiheit extrem schnelle Grundoperationen Kein sequentieller Zugriff auf Daten möglich Hashfunktion entscheidet über die Qualität des Verfahrens (dummerweise gibt es nicht DIE Hashfunktion) Ineffizient bei stark wachsenden Datenmengen: Viel leerer Speicher am Anfang Wachsende Überlaufketten Nachträgliche Anpassung der Größe kompliziert (Re-Hashing) 18

19 Erweiterterbares Hashing I Zielstellung: Dynamisches Wachsen und Schrumpfen des benötigten Speicherplatzes Vermeidung der totalen Reorganisation der Hashtabelle Konstantes Laufzeitverhalten Grundidee: Hashfunktion kann gröber oder feiner auflösen Dazu: Hashtabelle gliedert sich in Directory und mehrere Hashbuckets fester Kapazität Zugriff auf die Hashbuckets nur über Directory Wenn ein Bucket voll wird, wird ein neuer Bucket hinzugefügt und die Hashwerte werden auf beide Buckets aufgeteilt, indem ein zusätzliches Bit des Hashwertes mit beachtet wird Es entstehen lokal unterschiedliche Tiefen 19

20 Beispiel erweiterbares Hashing I Schrittweiser Aufbau einer Hashtabelle durch sukzessives Einfügen der Werte in vorgegebener Reihenfolge Unten: Situation nach Einfügen der Werte 134, 8, 113 und 89 20

21 Beispiel erweiterbares Hashing II Einfügen von Wert 20: Bucket-Überlauf in B1 Splitting von B1 in zwei Buckets Erhöhung der lokalen Tiefe an der Splittstelle um 1 (andere Tiefen werden nicht verändert) Bucket-Zugehörigkeit bestimmt das erste Bit des Pseudoschlüssels Wiederholung des Vorgangs bei jedem Bucket-Überlauf 21

22 Beispiel erweiterbares Hashing III Einfügen von Wert 118: Problemlos Einfügen von Wert 30: Überlauf in B2 Splitting in B2 und B3 Neue lokale Tiefe 2 Jetzt bestimmen hier die ersten zwei Bits im Hashwert den Bucket 22

23 Erweiterbares Hashing II Suche: Hashfunktion liefert den zugehörigen Pseudoschlüssel Directory liefert das zugehörige Bucket Bucket laden und Wert entnehmen Löschen: leere Buckets wieder entfernen? Hashfunktion auch hier entscheidend für die Performance (möglichst gleichverteiltes Ergebnis und Bitmuster) Eine Einfügung kann mehrere Directory-Verdopplungen erzeugen 23

24 Fazit Organisationsformen der Speicherstrukturen Die Informatik beschäftigt sich seit langem mit effektiven Speicherstrukturen Gerade für ein DBMS ist das ein wichtiges Thema Performancekritisch, da Einfügen, Suchen und Löschen Grundoperationen Bäume und Hashing sind deutlich effizienter als einfache Listen Jedes Verfahren hat jedoch Vor- und Nachteile Zu wählendes Verfahren ist abhängig von der Aufgabenstellung Wenn die Performance wichtig ist, DBMS hinterfragen / korrekt einstellen! 24

Datenbanksysteme I WS 2012/13 - Übung 0 - Bernhard Pietsch Friedrich-Schiller-Universität Jena Lehrstuhl für Datenbanken und Informationssysteme

Datenbanksysteme I WS 2012/13 - Übung 0 - Bernhard Pietsch Friedrich-Schiller-Universität Jena Lehrstuhl für Datenbanken und Informationssysteme Datenbanksysteme I WS 2012/13 - Übung 0 - Bernhard Pietsch Friedrich-Schiller-Universität Jena Lehrstuhl für Datenbanken und Informationssysteme Organisatorisches (I) http://www.informatik.unijena.de/dbis/lehre/ws2012/dbs1/index.html

Mehr

Bäume, Suchbäume und Hash-Tabellen

Bäume, Suchbäume und Hash-Tabellen Im folgenden Fokus auf Datenstrukturen, welche den assoziativen Zugriff (über einen bestimmten Wert als Suchkriterium) optimieren Bäume: Abbildung bzw. Vorberechnung von Entscheidungen während der Suche

Mehr

Baum-Indexverfahren. Einführung

Baum-Indexverfahren. Einführung Baum-Indexverfahren Prof. Dr. T. Kudraß 1 Einführung Drei Alternativen, wie Dateneinträge k* im Index aussehen können: 1. Datensatz mit Schlüsselwert k 2.

Mehr

Baum-Indexverfahren. Prof. Dr. T. Kudraß 1

Baum-Indexverfahren. Prof. Dr. T. Kudraß 1 Baum-Indexverfahren Prof. Dr. T. Kudraß 1 Einführung Drei Alternativen, wie Dateneinträge k* im Index aussehen können: 1. Datensatz mit Schlüsselwert k 2.

Mehr

Klausur Informatik B April Teil I: Informatik 3

Klausur Informatik B April Teil I: Informatik 3 Informatik 3 Seite 1 von 8 Klausur Informatik B April 1998 Teil I: Informatik 3 Informatik 3 Seite 2 von 8 Aufgabe 1: Fragekatalog (gesamt 5 ) Beantworten Sie folgende Fragen kurz in ein oder zwei Sätzen.

Mehr

Grundlagen der Informatik. Prof. Dr. Stefan Enderle NTA Isny

Grundlagen der Informatik. Prof. Dr. Stefan Enderle NTA Isny Grundlagen der Informatik Prof. Dr. Stefan Enderle NTA Isny 2 Datenstrukturen 2.1 Einführung Syntax: Definition einer formalen Grammatik, um Regeln einer formalen Sprache (Programmiersprache) festzulegen.

Mehr

Algorithmen und Datenstrukturen 1

Algorithmen und Datenstrukturen 1 Algorithmen und Datenstrukturen 1 7. Vorlesung Peter F. Stadler Universität Leipzig Institut für Informatik studla@informatik.uni-leipzig.de aufbauend auf den Kursen der letzten Jahre von E. Rahm, G. Heyer,

Mehr

4. Hashverfahren. geg.: Wertebereich D, Schlüsselmenge S = {s 1,..., s n } D. Menge A von Speicheradressen; oft: A = {0,..., m 1}

4. Hashverfahren. geg.: Wertebereich D, Schlüsselmenge S = {s 1,..., s n } D. Menge A von Speicheradressen; oft: A = {0,..., m 1} 105 4. Hashverfahren geg.: Wertebereich D, Schlüsselmenge S = {s 1,..., s n } D Menge A von Speicheradressen; oft: A = {0,..., m 1} jedes Speicherverfahren realisiert h : D A mögliche Implementierungen

Mehr

Dynamisches Huffman-Verfahren

Dynamisches Huffman-Verfahren Dynamisches Huffman-Verfahren - Adaptive Huffman Coding - von Michael Brückner 1. Einleitung 2. Der Huffman-Algorithmus 3. Übergang zu einem dynamischen Verfahren 4. Der FGK-Algorithmus 5. Überblick über

Mehr

Kapitel 4: Dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2012/13. Prof. Dr. Sándor Fekete

Kapitel 4: Dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2012/13. Prof. Dr. Sándor Fekete Kapitel 4: Dynamische Datenstrukturen Algorithmen und Datenstrukturen WS 2012/13 Prof. Dr. Sándor Fekete 4.4 Binäre Suche Aufgabenstellung: Rate eine Zahl zwischen 100 und 114! Algorithmus 4.1 INPUT: OUTPUT:

Mehr

Nachtrag zu binären Suchbäumen

Nachtrag zu binären Suchbäumen Nachtrag zu binären Suchbäumen (nicht notwendigerweise zu AVL Bäumen) Löschen 1 3 2 10 4 12 1. Fall: Der zu löschende Knoten ist ein Blatt: einfach löschen 2. Fall: Der zu löschende Knoten hat ein Nachfolgeelement

Mehr

Proseminar Kodierverfahren bei Dr. Ulrich Tamm Sommersemester 2003 Thema: Codierung von Bäumen (Prüfer Codes...)

Proseminar Kodierverfahren bei Dr. Ulrich Tamm Sommersemester 2003 Thema: Codierung von Bäumen (Prüfer Codes...) Proseminar Kodierverfahren bei Dr. Ulrich Tamm Sommersemester 2003 Thema: Codierung von Bäumen (Prüfer Codes...) Inhalt: Einleitung, Begriffe Baumtypen und deren Kodierung Binäre Bäume Mehrwegbäume Prüfer

Mehr

Programmiertechnik II

Programmiertechnik II 2007 Martin v. Löwis Priority Queues and Heapsort 2007 Martin v. Löwis 2 Priority Queue Abstrakter Datentyp Inhalt: Elemente mit Priorität Operationen: Einfügen: Angabe des Elements und seiner Priorität

Mehr

Übung zur Vorlesung Algorithmische Geometrie

Übung zur Vorlesung Algorithmische Geometrie Übung zur Vorlesung Algorithmische Geometrie Dipl.-Math. Bastian Rieck Arbeitsgruppe Computergraphik und Visualisierung Interdisziplinäres Zentrum für Wissenschaftliches Rechnen 8. Mai 2012 B. Rieck (CoVis)

Mehr

Verkettete Datenstrukturen: Bäume

Verkettete Datenstrukturen: Bäume Verkettete Datenstrukturen: Bäume 1 Graphen Gerichteter Graph: Menge von Knoten (= Elementen) + Menge von Kanten. Kante: Verbindung zwischen zwei Knoten k 1 k 2 = Paar von Knoten (k 1, k 2 ). Menge aller

Mehr

Datenstrukturen & Algorithmen

Datenstrukturen & Algorithmen Datenstrukturen & Algorithmen Matthias Zwicker Universität Bern Frühling 2010 Übersicht Binäre Suchbäume Einführung und Begriffe Binäre Suchbäume 2 Binäre Suchbäume Datenstruktur für dynamische Mengen

Mehr

B-Bäume, Hashtabellen, Cloning/Shadowing, Copy-on-Write

B-Bäume, Hashtabellen, Cloning/Shadowing, Copy-on-Write B-Bäume, Hashtabellen, Cloning/Shadowing, Copy-on-Write Thomas Maier Proseminar: Ein- / Ausgabe Stand der Wissenschaft Seite 1 von 13 Gliederung 1. Hashtabelle 3 2.B-Baum 3 2.1 Begriffserklärung 3 2.2

Mehr

Seminar Datenbanken Martin Gerstmann

Seminar Datenbanken Martin Gerstmann Seminar Datenbanken Martin Gerstmann Gliederung 1. Ziele 2. Arten 2.1. erweiterbares Hashing 2.2. lineares Hashing 2.3. virtuelles Hashing 3. Bewertung 1. Ziele wachsende/schrumpfende Datenmengen verwalten

Mehr

Datenstrukturen. einfach verkettete Liste

Datenstrukturen. einfach verkettete Liste einfach verkettete Liste speichert Daten in einer linearen Liste, in der jedes Element auf das nächste Element zeigt Jeder Knoten der Liste enthält beliebige Daten und einen Zeiger auf den nächsten Knoten

Mehr

! DBMS organisiert die Daten so, dass minimal viele Plattenzugriffe nötig sind.

! DBMS organisiert die Daten so, dass minimal viele Plattenzugriffe nötig sind. Unterschiede von DBMS und files Speichern von Daten! DBMS unterstützt viele Benutzer, die gleichzeitig auf dieselben Daten zugreifen concurrency control.! DBMS speichert mehr Daten als in den Hauptspeicher

Mehr

Binäre Suchbäume. Mengen, Funktionalität, Binäre Suchbäume, Heaps, Treaps

Binäre Suchbäume. Mengen, Funktionalität, Binäre Suchbäume, Heaps, Treaps Binäre Suchbäume Mengen, Funktionalität, Binäre Suchbäume, Heaps, Treaps Mengen n Ziel: Aufrechterhalten einer Menge (hier: ganzer Zahlen) unter folgenden Operationen: Mengen n Ziel: Aufrechterhalten einer

Mehr

Vorlesung Datenstrukturen

Vorlesung Datenstrukturen Vorlesung Datenstrukturen Binärbaum Suchbaum Dr. Frank Seifert Vorlesung Datenstrukturen - Sommersemester 2016 Folie 356 Datenstruktur Binärbaum Strukturrepräsentation des mathematischen Konzepts Binärbaum

Mehr

Datenstrukturen und Algorithmen

Datenstrukturen und Algorithmen Datenstrukturen und Algorithmen VO 708.031 Bäume robert.legenstein@igi.tugraz.at 1 Inhalt der Vorlesung 1. Motivation, Einführung, Grundlagen 2. Algorithmische Grundprinzipien 3. Sortierverfahren 4. Halden

Mehr

Algorithmik II. a) Fügen Sie in einen anfangs leeren binären Baum die Schlüsselfolge 20, 28, 35, 31, 9, 4, 13, 17, 37, 25 ein.

Algorithmik II. a) Fügen Sie in einen anfangs leeren binären Baum die Schlüsselfolge 20, 28, 35, 31, 9, 4, 13, 17, 37, 25 ein. Aufgabe 10 Binäre Bäume a) Fügen Sie in einen anfangs leeren binären Baum die Schlüsselfolge, 28, 35, 31, 9, 4,, 17, 37, 25 ein. 1. Einfügen von : 3. Einfugen von 35: 2. Einfügen von 28: 28 28 10. Einfügen

Mehr

Bäume. 2006 Jiri Spale, Algorithmen und Datenstrukturen - Bäume 1

Bäume. 2006 Jiri Spale, Algorithmen und Datenstrukturen - Bäume 1 Bäume 2006 Jiri Spale, Algorithmen und Datenstrukturen - Bäume 1 Inhalt Grundbegriffe: Baum, Binärbaum Binäre Suchbäume (Definition) Typische Aufgaben Suchaufwand Löschen allgemein, Methode Schlüsseltransfer

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Dipl. Inform. Andreas Wilkens aw@awilkens.com Überblick Grundlagen Definitionen Elementare Datenstrukturen Rekursionen Bäume 2 1 Datenstruktur Baum Definition eines Baumes

Mehr

Tutorium Algorithmen & Datenstrukturen

Tutorium Algorithmen & Datenstrukturen June 16, 2010 Binärer Baum Binärer Baum enthält keine Knoten (NIL) besteht aus drei disjunkten Knotenmengen: einem Wurzelknoten, einem binären Baum als linken Unterbaum und einem binären Baum als rechten

Mehr

3.2 Binäre Suche. Usr/local/www/ifi/fk/menschen/schmid/folien/infovk.ppt 1

3.2 Binäre Suche. Usr/local/www/ifi/fk/menschen/schmid/folien/infovk.ppt 1 3.2 Binäre Suche Beispiel 6.5.1: Intervallschachtelung (oder binäre Suche) (Hier ist n die Anzahl der Elemente im Feld!) Ein Feld A: array (1..n) of Integer sei gegeben. Das Feld sei sortiert, d.h.: A(i)

Mehr

Es sei a 2 und b 2a 1. Definition Ein (a, b)-baum ist ein Baum mit folgenden Eigenschaften:

Es sei a 2 und b 2a 1. Definition Ein (a, b)-baum ist ein Baum mit folgenden Eigenschaften: Binäre Suchbäume (a, b)-bäume (Folie 173, Seite 56 im Skript) Es sei a 2 und b 2a 1. Definition Ein (a, b)-baum ist ein Baum mit folgenden Eigenschaften: 1 Jeder Knoten hat höchstens b Kinder. 2 Jeder

Mehr

Theoretische Informatik 1 WS 2007/2008. Prof. Dr. Rainer Lütticke

Theoretische Informatik 1 WS 2007/2008. Prof. Dr. Rainer Lütticke Theoretische Informatik 1 WS 2007/2008 Prof. Dr. Rainer Lütticke Inhalt der Vorlesung Grundlagen - Mengen, Relationen, Abbildungen/Funktionen - Datenstrukturen - Aussagenlogik Automatentheorie Formale

Mehr

Übersicht. Rot-schwarz Bäume. Rot-schwarz Bäume. Beispiel. Eigenschaften. Datenstrukturen & Algorithmen. Rot-schwarz Bäume Eigenschaften Einfügen

Übersicht. Rot-schwarz Bäume. Rot-schwarz Bäume. Beispiel. Eigenschaften. Datenstrukturen & Algorithmen. Rot-schwarz Bäume Eigenschaften Einfügen Datenstrukturen & Algorithmen Übersicht Rot-schwarz Bäume Eigenschaften Einfügen Matthias Zwicker Universität Bern Frühling 2009 2 Rot-schwarz Bäume Binäre Suchbäume sind nur effizient wenn Höhe des Baumes

Mehr

Algorithmen & Datenstrukturen Lösungen zu Blatt 9 HS 16

Algorithmen & Datenstrukturen Lösungen zu Blatt 9 HS 16 Eidgenössische Technische Hochschule Zürich Ecole polytechnique fédérale de Zurich Politecnico federale di Zurigo Federal Institute of Technology at Zurich Departement Informatik 24. November 2016 Markus

Mehr

Inhaltsverzeichnis. Einführende Bemerkungen 11. Das Fach Informatik 11 Zielsetzung der Vorlesung Grundbegriffe

Inhaltsverzeichnis. Einführende Bemerkungen 11. Das Fach Informatik 11 Zielsetzung der Vorlesung Grundbegriffe Inhaltsverzeichnis Einführende Bemerkungen 11 Das Fach Informatik 11 Zielsetzung der Vorlesung 12 1. Grundbegriffe 1 3 1.1 1.2 1.3 1.4 1.5 1.6 1.7 Information und Nachricht 1.1.1 Information 1.1.2 Nachricht

Mehr

Abschnitt 18: Effizientes Suchen in Mengen

Abschnitt 18: Effizientes Suchen in Mengen Abschnitt 18: Effizientes Suchen in Mengen 18. Effizientes Suchen in Mengen 18.1 Vollständig ausgeglichene binäre Suchbäume 18.2 AVL-Bäume 18.3 Operationen auf AVL-Bäumen 18.4 Zusammenfassung 18 Effizientes

Mehr

Höhe eines B + -Baums

Höhe eines B + -Baums Höhe eines B + -Baums Anzahl der Blätter bei minimaler Belegung Anzahl von (eindeutigen) Elementen bei minimaler Belegung Anzahl der Blätter bei maximaler Belegung Anzahl von Elementen bei maximaler Belegung

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Algorithmen und Datenstrukturen Suchbaum

Algorithmen und Datenstrukturen Suchbaum Algorithmen und Datenstrukturen Suchbaum Matthias Teschner Graphische Datenverarbeitung Institut für Informatik Universität Freiburg SS 12 Motivation Datenstruktur zur Repräsentation dynamischer Mengen

Mehr

Suchen in Listen und Hashtabellen

Suchen in Listen und Hashtabellen Kapitel 12: Suchen in Listen und Hashtabellen Einführung in die Informatik Wintersemester 2007/08 Prof. Bernhard Jung Übersicht Einleitung Lineare Suche Binäre Suche (in sortierten Listen) Hashverfahren

Mehr

1. Einfach verkettete Liste unsortiert 2. Einfach verkettete Liste sortiert 3. Doppelt verkettete Liste sortiert

1. Einfach verkettete Liste unsortiert 2. Einfach verkettete Liste sortiert 3. Doppelt verkettete Liste sortiert Inhalt Einführung 1. Arrays 1. Array unsortiert 2. Array sortiert 3. Heap 2. Listen 1. Einfach verkettete Liste unsortiert 2. Einfach verkettete Liste sortiert 3. Doppelt verkettete Liste sortiert 3. Bäume

Mehr

1. Motivation / Grundlagen 2. Sortierverfahren 3. Elementare Datenstrukturen / Anwendungen 4. Bäume / Graphen 5. Hashing 6. Algorithmische Geometrie

1. Motivation / Grundlagen 2. Sortierverfahren 3. Elementare Datenstrukturen / Anwendungen 4. Bäume / Graphen 5. Hashing 6. Algorithmische Geometrie Gliederung 1. Motivation / Grundlagen 2. Sortierverfahren 3. Elementare Datenstrukturen / Anwendungen 4. Bäume / Graphen 5. Hashing 6. Algorithmische Geometrie 4/2, Folie 1 2014 Prof. Steffen Lange - HDa/FbI

Mehr

Der linke Teilbaum von v enthält nur Schlüssel < key(v) und der rechte Teilbaum enthält nur Schlüssel > key(v)

Der linke Teilbaum von v enthält nur Schlüssel < key(v) und der rechte Teilbaum enthält nur Schlüssel > key(v) Ein Baum T mit Knotengraden 2, dessen Knoten Schlüssel aus einer total geordneten Menge speichern, ist ein binärer Suchbaum (BST), wenn für jeden inneren Knoten v von T die Suchbaumeigenschaft gilt: Der

Mehr

Was bisher geschah ADT Menge mit Operationen: Suche nach einem Element Einfügen eines Elementes Löschen eines Elementes Realisierung durch

Was bisher geschah ADT Menge mit Operationen: Suche nach einem Element Einfügen eines Elementes Löschen eines Elementes Realisierung durch Was bisher geschah ADT Menge mit Operationen: Suche nach einem Element Einfügen eines Elementes Löschen eines Elementes Realisierung durch verschiedene Datenstrukturen: lineare Datenstrukturen: Array,

Mehr

Quadtrees. Christian Höner zu Siederdissen

Quadtrees. Christian Höner zu Siederdissen Quadtrees Christian Höner zu Siederdissen Quadtrees Zum Verständnis benötigt... Was sind Quadtrees Datenstruktur Wofür Quadtrees Operationen auf dem Baum Vor- und Nachteile (spezialisierte Formen) Zum

Mehr

Informatik II, SS 2014

Informatik II, SS 2014 Informatik II SS 2014 (Algorithmen & Datenstrukturen) Vorlesung 10 (3.6.2014) Binäre Suchbäume I Algorithmen und Komplexität Zusätzliche Dictionary Operationen Dictionary: Zusätzliche mögliche Operationen:

Mehr

C für Java-Programmierer

C für Java-Programmierer Carsten Vogt C für Java-Programmierer ISBN-10: 3-446-40797-9 ISBN-13: 978-3-446-40797-8 Inhaltsverzeichnis Weitere Informationen oder Bestellungen unter http://www.hanser.de/978-3-446-40797-8 sowie im

Mehr

368 4 Algorithmen und Datenstrukturen

368 4 Algorithmen und Datenstrukturen Kap04.fm Seite 368 Dienstag, 7. September 2010 1:51 13 368 4 Algorithmen und Datenstrukturen Java-Klassen Die ist die Klasse Object, ein Pfeil von Klasse A nach Klasse B bedeutet Bextends A, d.h. B ist

Mehr

Sortierverfahren für Felder (Listen)

Sortierverfahren für Felder (Listen) Sortierverfahren für Felder (Listen) Generell geht es um die Sortierung von Daten nach einem bestimmten Sortierschlüssel. Es ist auch möglich, daß verschiedene Daten denselben Sortierschlüssel haben. Es

Mehr

Kap. 4.4: B-Bäume Kap. 4.5: Dictionaries in der Praxis

Kap. 4.4: B-Bäume Kap. 4.5: Dictionaries in der Praxis Kap. 4.4: B-Bäume Kap. 4.5: Dictionaries in der Praxis Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 13./14. VO DAP2 SS 2009 2./4. Juni 2009 1 2. Übungstest

Mehr

Kapiteltests zum Leitprogramm Binäre Suchbäume

Kapiteltests zum Leitprogramm Binäre Suchbäume Kapiteltests zum Leitprogramm Binäre Suchbäume Björn Steffen Timur Erdag überarbeitet von Christina Class Binäre Suchbäume Kapiteltests für das ETH-Leitprogramm Adressaten und Institutionen Das Leitprogramm

Mehr

Bäume. Informatik B - Objektorientierte Programmierung in Java. Vorlesung 10: Collections 4. Inhalt. Bäume. Einführung. Bäume.

Bäume. Informatik B - Objektorientierte Programmierung in Java. Vorlesung 10: Collections 4. Inhalt. Bäume. Einführung. Bäume. Universität Osnabrück 1 Bäume 3 - Objektorientierte Programmierung in Java Vorlesung 10: Collections 4 Einführung Bäume sind verallgemeinerte Listenstrukturen Lineare Liste Jedes Element hat höchstens

Mehr

OPERATIONEN AUF EINER DATENBANK

OPERATIONEN AUF EINER DATENBANK Einführung 1 OPERATIONEN AUF EINER DATENBANK Ein Benutzer stellt eine Anfrage: Die Benutzer einer Datenbank können meist sowohl interaktiv als auch über Anwendungen Anfragen an eine Datenbank stellen:

Mehr

Dateiorganisation und Zugriffsstrukturen

Dateiorganisation und Zugriffsstrukturen Dateiorganisation und Zugriffsstrukturen Prof. Dr. T. Kudraß 1 Mögliche Dateiorganisationen Viele Alternativen existieren, jede geeignet für bestimmte Situation (oder auch nicht) Heap-Dateien: Geeignet

Mehr

Untersuchen Sie, inwiefern sich die folgenden Funktionen für die Verwendung als Hashfunktion eignen. Begründen Sie Ihre Antwort.

Untersuchen Sie, inwiefern sich die folgenden Funktionen für die Verwendung als Hashfunktion eignen. Begründen Sie Ihre Antwort. Prof. aa Dr. Ir. Joost-Pieter Katoen Christian Dehnert, Friedrich Gretz, Benjamin Kaminski, Thomas Ströder Tutoraufgabe 1 (Güte von Hashfunktionen): Untersuchen Sie, inwiefern sich die folgenden Funktionen

Mehr

Programmiertechnik II

Programmiertechnik II Bäume Symboltabellen Suche nach Werten (items), die unter einem Schlüssel (key) gefunden werden können Bankkonten: Schlüssel ist Kontonummer Flugreservierung: Schlüssel ist Flugnummer, Reservierungsnummer,...

Mehr

TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Alfons Kemper, Ph.D.

TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Alfons Kemper, Ph.D. TU München, Fakultät für Inforatik Lehrstuhl III: Datenbanksystee Prof. Alfons Keper, Ph.D. Blatt Nr. 11 Übung zur Vorlesung Grundlagen: Datenbanken i WS15/16 Harald Lang, Linnea Passing (gdb@in.tu.de)

Mehr

Kap. 4.2: Binäre Suchbäume

Kap. 4.2: Binäre Suchbäume Kap. 4.2: Binäre Suchbäume Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 11. VO DAP2 SS 2009 26. Mai 2009 1 Zusätzliche Lernraumbetreuung Morteza Monemizadeh:

Mehr

Algorithmen und Datenstrukturen Balancierte Suchbäume

Algorithmen und Datenstrukturen Balancierte Suchbäume Algorithmen und Datenstrukturen Balancierte Suchbäume Matthias Teschner Graphische Datenverarbeitung Institut für Informatik Universität Freiburg SS 12 Überblick Einführung Einfügen und Löschen Einfügen

Mehr

Multiplikationsmethode. Informatik I. goldener Schnitt. Der goldene Schnitt. Einführung. Rainer Schrader. 30. Mai Konstruktionsmethode

Multiplikationsmethode. Informatik I. goldener Schnitt. Der goldene Schnitt. Einführung. Rainer Schrader. 30. Mai Konstruktionsmethode Multiplikationsethode Inforatik I Einführung Rainer Schrader Zentru für Angewandte Inforatik Köln 30. Mai 005 zu (): Irrationale Zahlen sind eine gute Wahl. Erinnerung: Φ = 1 + 5 = 1.6180339887... ˆΦ =

Mehr

Bäume. Text. Prof. Dr. Margarita Esponda SS 2012 O4 O5 O6 O ALP2-Vorlesung, M. Esponda

Bäume. Text. Prof. Dr. Margarita Esponda SS 2012 O4 O5 O6 O ALP2-Vorlesung, M. Esponda Bäume O1 O2 Text O3 O4 O5 O6 O7 Prof. Dr. Margarita Esponda SS 2012 22. ALP2-Vorlesung, M. Esponda Inhalt 1. Einführung 2. Warum Bäume? 3. Listen und Arrays vs. Bäume 4. Einfach verkettete binäre Suchbäume

Mehr

Zeichnen von Graphen. graph drawing

Zeichnen von Graphen. graph drawing Zeichnen von Graphen graph drawing WS 2006 / 2007 Gruppe: D_rot_Ala0607 Christian Becker 11042315 Eugen Plischke 11042351 Vadim Filippov 11042026 Gegeben sei ein Graph G = (V; E) Problemstellung V E =

Mehr

Informatik II, SS 2014

Informatik II, SS 2014 Informatik II SS 2014 (Algorithmen & Datenstrukturen) Vorlesung 13 (18.6.2014) Binäre Suchbäume IV (Rot Schwarz Bäume) Algorithmen und Komplexität Rot Schwarz Bäume Ziel: Binäre Suchbäume, welche immer

Mehr

Kapitel : Andere dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2012/13. Prof. Dr. Sándor Fekete

Kapitel : Andere dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2012/13. Prof. Dr. Sándor Fekete Kapitel 4.8-4.11: Andere dynamische Datenstrukturen Algorithmen und Datenstrukturen WS 2012/13 Prof. Dr. Sándor Fekete 4.6 AVL-Bäume 4.8 Rot-Schwarz-Bäume Idee: Verwende Farben, um den Baum vertikal zu

Mehr

R-Baum R + -Baum X-Baum M-Baum

R-Baum R + -Baum X-Baum M-Baum R-Baum und Varianten R-Baum R + -Baum X-Baum M-Baum staab@uni-koblenz.de 1 R-Baum R-Baum: Guttman 1984 Erweiterung B-Baum um mehrere Dimensionen Standardbaum zur Indexierung im niedrigdimensionalen Raum

Mehr

Folge 19 - Bäume. 19.1 Binärbäume - Allgemeines. Grundlagen: Ulrich Helmich: Informatik 2 mit BlueJ - Ein Kurs für die Stufe 12

Folge 19 - Bäume. 19.1 Binärbäume - Allgemeines. Grundlagen: Ulrich Helmich: Informatik 2 mit BlueJ - Ein Kurs für die Stufe 12 Grundlagen: Folge 19 - Bäume 19.1 Binärbäume - Allgemeines Unter Bäumen versteht man in der Informatik Datenstrukturen, bei denen jedes Element mindestens zwei Nachfolger hat. Bereits in der Folge 17 haben

Mehr

Algorithmen und Datenstrukturen SoSe 2008 in Trier. Henning Fernau Universität Trier

Algorithmen und Datenstrukturen SoSe 2008 in Trier. Henning Fernau Universität Trier Algorithmen und Datenstrukturen SoSe 2008 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 1 Algorithmen und Datenstrukturen Gesamtübersicht Organisatorisches / Einführung Grundlagen: RAM,

Mehr

Grundlagen der Programmierung

Grundlagen der Programmierung Grundlagen der Programmierung Algorithmen und Datenstrukturen Die Inhalte der Vorlesung wurden primär auf Basis der angegebenen Literatur erstellt. Darüber hinaus sind viele Teile direkt aus der Vorlesung

Mehr

Vorlesung 04.12.2006: Binäre Entscheidungsdiagramme (BDDs) Dr. Carsten Sinz

Vorlesung 04.12.2006: Binäre Entscheidungsdiagramme (BDDs) Dr. Carsten Sinz Vorlesung 04.12.2006: Binäre Entscheidungsdiagramme (BDDs) Dr. Carsten Sinz Datenstruktur BDD 1986 von R. Bryant vorgeschlagen zur Darstellung von aussagenlogischen Formeln (genauer: Booleschen Funktionen)

Mehr

B-Bäume I. Algorithmen und Datenstrukturen 220 DATABASE SYSTEMS GROUP

B-Bäume I. Algorithmen und Datenstrukturen 220 DATABASE SYSTEMS GROUP B-Bäume I Annahme: Sei die Anzahl der Objekte und damit der Datensätze. Das Datenvolumen ist zu groß, um im Hauptspeicher gehalten zu werden, z.b. 10. Datensätze auf externen Speicher auslagern, z.b. Festplatte

Mehr

Datenbanksysteme II Indexstrukturen Felix Naumann

Datenbanksysteme II Indexstrukturen Felix Naumann Datenbanksysteme II Indexstrukturen (Kapitel 13) 5.5.2008 Felix Naumann Klausur 2 Mittwoch, 23.7. 9 13 Uhr 4 Stunden Umfang auf 1,5 Stunden ausgelegt Keine Hilfsmittel Motivation 3 Platzierung der Tupel

Mehr

Balancierte Bäume. Martin Wirsing. in Zusammenarbeit mit Moritz Hammer und Axel Rauschmayer. http://www.pst.ifi.lmu.de/lehre/ss06/infoii/ SS 06

Balancierte Bäume. Martin Wirsing. in Zusammenarbeit mit Moritz Hammer und Axel Rauschmayer. http://www.pst.ifi.lmu.de/lehre/ss06/infoii/ SS 06 Balancierte Bäume Martin Wirsing in Zusammenarbeit mit Moritz Hammer und Axel Rauschmayer http://www.pst.ifi.lmu.de/lehre/ss06/infoii/ SS 06 2 Ziele AVL-Bäume als einen wichtigen Vertreter balancierter

Mehr

2 i. i=0. und beweisen Sie mittels eines geeigneten Verfahrens die Korrektheit der geschlossenen Form.

2 i. i=0. und beweisen Sie mittels eines geeigneten Verfahrens die Korrektheit der geschlossenen Form. für Informatik Prof. aa Dr. Ir. Joost-Pieter Katoen Christian Dehnert, Friedrich Gretz, Benjamin Kaminski, Thomas Ströder Tutoraufgabe (Vollständige Induktion): Finden Sie eine geschlossene Form für die

Mehr

Übung zu Einführung in die Informatik # 10

Übung zu Einführung in die Informatik # 10 Übung zu Einführung in die Informatik # 10 Tobias Schill tschill@techfak.uni-bielefeld.de 15. Januar 2016 Aktualisiert am 15. Januar 2016 um 9:58 Erstklausur: Mi, 24.02.2016 von 10-12Uhr Aufgabe 1* a),

Mehr

4. Jeder Knoten hat höchstens zwei Kinder, ein linkes und ein rechtes.

4. Jeder Knoten hat höchstens zwei Kinder, ein linkes und ein rechtes. Binäre Bäume Definition: Ein binärer Baum T besteht aus einer Menge von Knoten, die durch eine Vater-Kind-Beziehung wie folgt strukturiert ist: 1. Es gibt genau einen hervorgehobenen Knoten r T, die Wurzel

Mehr

Nachtrag zu binären Suchbäumen (nicht (nur) AVL Bäumen: Löschen von Elementen in binären Suchbäumen. 1. Fall: zu löschendes Element ist Blatt: löschen

Nachtrag zu binären Suchbäumen (nicht (nur) AVL Bäumen: Löschen von Elementen in binären Suchbäumen. 1. Fall: zu löschendes Element ist Blatt: löschen Nachtrag zu binären Suchbäumen (nicht (nur) AVL Bäumen: Löschen von Elementen in binären Suchbäumen 3 1. Fall: zu löschendes Element ist Blatt: löschen 1 2 4 9 10 11 12 13 2. Fall: zu löschendes Element

Mehr

Dynamische Mengen. Realisierungen durch Bäume

Dynamische Mengen. Realisierungen durch Bäume Dynamische Mengen Eine dynamische Menge ist eine Datenstruktur, die eine Menge von Objekten verwaltet. Jedes Objekt x trägt einen eindeutigen Schlüssel key[x]. Die Datenstruktur soll mindestens die folgenden

Mehr

Copyright, Page 1 of 8 AVL-Baum

Copyright, Page 1 of 8 AVL-Baum www.mathematik-netz.de Copyright, Page 1 of 8 AVL-Baum 1. Motivation und Einleitung Das Suchen, Einfügen und entfernen eines Schlüssels in einem zufällige erzeugten binären Suchbaum mit N Schlüsseln ist

Mehr

Übungen zu Datenbanksysteme

Übungen zu Datenbanksysteme Institut für Informatik Universität Osnabrück, 1.04.015 Prof. Dr. Oliver Vornberger http://www-lehre.inf.uos.de/~dbs Nils Haldenwang, M.Sc. Testat bis 9.04.015, 14:00 Uhr Übungen zu Datenbanksysteme Sommersemester

Mehr

B+-Baum mit Z-Ordnung. B+-Baum mit Z-Ordnung. Anforderungen. 7.3 Räumliche Zugriffsstrukturen

B+-Baum mit Z-Ordnung. B+-Baum mit Z-Ordnung. Anforderungen. 7.3 Räumliche Zugriffsstrukturen B+-Baum mit Z-Ordnung Window Query: 1. Ansatz Benutze den gewöhnlichen Algorithmus für Bereichsanfragen im B + -Baum: Suche mit dem kleinsten Z-Wert des Suchrechtecks (entspricht dem linken unteren Eckpunkt)

Mehr

Physische Datenorganisation

Physische Datenorganisation Physische Datenorganisation Physische Datenorganisation 2002 Prof. Dr. Rainer Manthey Informationssysteme 1 Übersicht Datenbanken, Relationen und Tupel werden auf der untersten Ebene der bereits vorgestellten

Mehr

Kapitel 9. Hashverfahren. 9.1 Einführung

Kapitel 9. Hashverfahren. 9.1 Einführung Kapitel 9 Hashverfahren 9.1 Einführung Uns sind bereits Verfahren bekannt, mit denen Datensätze mit einem eindeutigen Schlüssel gespeichert werden (z.b. B*-Bäume). Statt bei der Suche nach einem Schlüssel

Mehr

Name:... Vorname:... Matrikel-Nr.:... Unterschrift:...

Name:... Vorname:... Matrikel-Nr.:... Unterschrift:... Studiengang Bachelor of Computer Science Modulprüfung Praktische Informatik 1 Wintersemester 2010 / 2011 Name:... Vorname:... Matrikel-Nr.:... Unterschrift:... Hinweise: 1.) Schreiben Sie Ihren Namen und

Mehr

D1: Relationale Datenstrukturen (14)

D1: Relationale Datenstrukturen (14) D1: Relationale Datenstrukturen (14) Die Schüler entwickeln ein Verständnis dafür, dass zum Verwalten größerer Datenmengen die bisherigen Werkzeuge nicht ausreichen. Dabei erlernen sie die Grundbegriffe

Mehr

9.4 Binäre Suchbäume. Xiaoyi Jiang Informatik II Datenstrukturen und Algorithmen

9.4 Binäre Suchbäume. Xiaoyi Jiang Informatik II Datenstrukturen und Algorithmen 9.4 Binäre Suchbäume Erweiterung: Einfügen an der Wurzel Standardimplementierung: Der neue Schlüssel wird am Ende des Suchpfades angefügt (natürlich, weil zuerst festgestellt werden muss, ob der Schlüssel

Mehr

Grundlagen der Programmierung 2. Bäume

Grundlagen der Programmierung 2. Bäume Grundlagen der Programmierung 2 Bäume Prof. Dr. Manfred Schmidt-Schauÿ Künstliche Intelligenz und Softwaretechnologie 24. Mai 2006 Graphen Graph: Menge von Knoten undzugehörige (gerichtete oder ungerichtete)

Mehr

Kapitel : Andere dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2013/14. Prof. Dr. Sándor Fekete

Kapitel : Andere dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2013/14. Prof. Dr. Sándor Fekete Kapitel 4.8-4.11: Andere dynamische Datenstrukturen Algorithmen und Datenstrukturen WS 2013/14 Prof. Dr. Sándor Fekete 1 4.6 AVL-Bäume 2 4.8 Rot-Schwarz-Bäume Rudolf Bayer Idee: Verwende Farben, um den

Mehr

13. Binäre Suchbäume

13. Binäre Suchbäume 1. Binäre Suchbäume Binäre Suchbäume realiesieren Wörterbücher. Sie unterstützen die Operationen 1. Einfügen (Insert) 2. Entfernen (Delete). Suchen (Search) 4. Maximum/Minimum-Suche 5. Vorgänger (Predecessor),

Mehr

Wiederholung ADT Menge Ziel: Verwaltung (Finden, Einfügen, Entfernen) einer Menge von Elementen

Wiederholung ADT Menge Ziel: Verwaltung (Finden, Einfügen, Entfernen) einer Menge von Elementen Was bisher geschah abstrakter Datentyp : Signatur Σ und Axiome Φ z.b. ADT Menge zur Verwaltung (Finden, Einfügen, Entfernen) mehrerer Elemente desselben Typs Spezifikation einer Schnittstelle Konkreter

Mehr

Suchbäume mit inneren Knoten verschiedener Knotengrade.

Suchbäume mit inneren Knoten verschiedener Knotengrade. Was bisher geschah rekursive Datenstrukturen: lineare Datenstrukturen: Liste, Stack, Queue hierarchische Datenstrukturen: Bäume allgemeine Bäume Binäre Bäume Unäre Bäume = Listen Tiefe eines Knotens in

Mehr

AVL-Bäume Analyse. Theorem Ein AVL-Baum der Höhe h besitzt zwischen F h und 2 h 1 viele Knoten. Definition Wir definieren die nte Fibonaccizahl:

AVL-Bäume Analyse. Theorem Ein AVL-Baum der Höhe h besitzt zwischen F h und 2 h 1 viele Knoten. Definition Wir definieren die nte Fibonaccizahl: AVL-Bäume Analyse (Folie 85, Seite 39 im Skript) Theorem Ein AVL-Baum der Höhe h besitzt zwischen F h und 2 h 1 viele Knoten. Definition Wir definieren die nte Fibonaccizahl: 0 falls n = 0 F n = 1 falls

Mehr

Physische Datenorganisation. Kapitel 6 245 / 520

Physische Datenorganisation. Kapitel 6 245 / 520 Kapitel 6 Physische Datenorganisation 245 / 520 Speicherhierarchie Speicherhierarchie Verschiedene Schichten der Speicherung Je höher in der Hierarchie, desto schneller, teurer und kleiner Unterschiede

Mehr

Eine Baumstruktur sei folgendermaßen definiert. Eine Baumstruktur mit Grundtyp Element ist entweder

Eine Baumstruktur sei folgendermaßen definiert. Eine Baumstruktur mit Grundtyp Element ist entweder Programmieren in PASCAL Bäume 1 1. Baumstrukturen Eine Baumstruktur sei folgendermaßen definiert. Eine Baumstruktur mit Grundtyp Element ist entweder 1. die leere Struktur oder 2. ein Knoten vom Typ Element

Mehr

Tutoraufgabe 1 (Vollständige Induktion): Tutoraufgabe 2 (Rotationen): Datenstrukturen und Algorithmen SS15 Übungsblatt 5 (Abgabe 3.6.

Tutoraufgabe 1 (Vollständige Induktion): Tutoraufgabe 2 (Rotationen): Datenstrukturen und Algorithmen SS15 Übungsblatt 5 (Abgabe 3.6. Prof. aa Dr. Ir. Joost-Pieter Katoen Allgemeine Hinweise: Christian Dehnert, Friedrich Gretz, Benjamin Kaminski, Thomas Ströder Die Hausaufgaben sollen in Gruppen von je - Studierenden aus der gleichen

Mehr

Aufgabe 1 Indexstrukturen

Aufgabe 1 Indexstrukturen 8. Übung zur Vorlesung Datenbanken im Sommersemester 2006 mit Musterlösungen Prof. Dr. Gerd Stumme, Dr. Andreas Hotho, Dipl.-Inform. Christoph Schmitz 25. Juni 2006 Aufgabe 1 Indexstrukturen Zeichnen Sie

Mehr

Datenbanksysteme Kapitel 3: Datenorganisation

Datenbanksysteme Kapitel 3: Datenorganisation Datenbanksysteme Kapitel 3: Datenorganisation Prof. Dr. Peter Chamoni Mercator School of Management Lehrstuhl für Wirtschaftsinformatik, insb. Business Intelligence Prof. Dr. Peter Chamoni - Prof. Datenbanksysteme

Mehr

Klausur. Betriebssysteme SS 2007

Klausur. Betriebssysteme SS 2007 Matrikelnummer: 9999999 Klausur FB Informatik und Mathematik Prof. R. Brause Betriebssysteme SS 2007 Vorname: Nachname: Matrikelnummer: Geburtsdatum: Studiengang: Bitte tragen Sie auf jeder Seite Ihre

Mehr

Studientag zur Algorithmischen Mathematik

Studientag zur Algorithmischen Mathematik Studientag zur Algorithmischen Mathematik Eulertouren, 2-Zusammenhang, Bäume und Baumisomorphismen Winfried Hochstättler Diskrete Mathematik und Optimierung FernUniversität in Hagen 22. Mai 2011 Outline

Mehr

Grundlagen der Programmierung

Grundlagen der Programmierung Grundlagen der Programmierung Algorithmen und Datenstrukturen Die Inhalte der Vorlesung wurden primär auf Basis der angegebenen Literatur erstellt. Darüber hinaus wurden ausgewählte Teile in Abstimmung

Mehr

TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Dr. Thomas Neumann

TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Dr. Thomas Neumann TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Dr. Thomas Neumann Blatt Nr. 8 Übung zur Vorlesung Grundlagen: Datenbanken im WS14/15 Harald Lang (harald.lang@in.tum.de) http://www-db.in.tum.de/teaching/ws1415/grundlagen/

Mehr

Kapitel 8: Physischer Datenbankentwurf

Kapitel 8: Physischer Datenbankentwurf 8. Physischer Datenbankentwurf Seite 1 Kapitel 8: Physischer Datenbankentwurf Speicherung und Verwaltung der Relationen einer relationalen Datenbank so, dass eine möglichst große Effizienz der einzelnen

Mehr