Bericht zur Prüfung im Oktober 2006 über Finanzmathematik und Investmentmanagement

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Bericht zur Prüfung im Oktober 2006 über Finanzmathematik und Investmentmanagement"

Transkript

1 Berich zur Prüfung im Okober 006 über Finnzmhemik und Invesmenmngemen Grundwissen Peer Albrech Mnnheim Am 07. Okober 006 wurde zum ersen Ml eine Prüfung im Fch Finnzmhemik und Invesmenmngemen nch PO III Grundwissen Teil A durchgeführ. Es wren 9 Teilnehmerinnen und Teilnehmer zu verzeichnen. Die Prüfung besnd us einer 90-minüigen Klusur, in der vier Aufgben gesell wurden, die sämlich zu berbeien wren. Um die Klusur zu besehen, mussen mindesens 40 von 90 möglichen Punken erziel werden. Aufgbe : 3 Punke Unersellen ie für den Bsisiel einer Terminposiion einen zweiperiodigen Binomilgierprozess mi rwer s 0 00 und einer prozenulen Aufwärsbewegung von 0% bzw. einer prozenulen Abwärsbewegung von 0% pro Periode. Der einperiodige Zinssz für eine sichere Kpilnlge bzw. Kpilufnhme berge 5%. Besimmen ie uf Bsis des Duplikionsprinzips den rbirgefreien Preis in 0 eines zweiperiodigen Forwrdkonrkes uf den Bsisiel. Welche Beziehung weisen der rbirgefreie Forwrdpreis und der rwer des Bsisiels uf? b Besimmen ie uf Bsis des Duplikionsprinzips den rbirgefreien Preis in 0 einer zweiperiodigen Cllopion uf den Bsisiel. Der Ausübungspreis der Opion sei 6. Lösungsskizze: Enwicklung Bsisiel: 00 u 0 d 90 uu 44 ud 08 dd 8 0 eie von 8

2 Für die Forwrdposiion gil ensprechend us ich des Invesors: 44 F F 0 8 F 0 0 Dbei is F 0 der zu besimmende rbirgefreie Forwrdpreis. Erwirb der Invesor in 0 Einheien des Bsisiels und y der sicheren Anlge, so gelen für die Duplikionsposiion in die folgenden Bedingungen: y 44 F y 08 F y 8 F 0. Aus beispielsweise resulier und somi. Aus resulier dnn y F chließlich muss in 0 gelen Lw of One Price 0 00 y 00 F Hierus resulier insgesm F Der Forwrdpreis ensprich somi dem um zwei Perioden ufgezinsen Ksspreis Cos of Crry-Formel. b Die ückflüsse der zweiperiodigen Cllopion mi rike 6 ergeben sich zu C uu, C ud, C dd 8, 0, 0. Der Opionspreis is im Unerschied zu Aufgbeneil rekursiv zu besimmen. eie von 8

3 Wir fiieren nun den Zusnd u zum Zeipunk. Die weiere Enwicklung des Prozesses ensprich dnn dem einperiodigen Binomilfll. Erwirb der Invesor in Einheien des Bsisiels und y der sicheren Anlge, so gelen für die Duplikionsposiion in dnn die folgenden Bedingungen: 44.05y y 0. Hierus folg ½ und y In ergib sich hierus C u 0 y D C ud, C dd 0, 0, muss uch C d 0 sein. Duplikion von C u, C d erforder in nloger Weise 0.05y y 0. Hierus folg und dmi Für y resulier hierus y In 0 resulier hierus schließlich C 0 00 y Der gesuche Wer der zweijährigen Cllopion is somi Aufgbe : Punke Gegeben sei der Prozess > 0 s ep{ m W }, 0 wobei W den ndrd-wienerprozess bezeichne. eie 3 von 8

4 Besimmen ie den Drifkoeffizienen, und den Diffusionskoeffizienen, dieses Prozesses. b Weisen ie uf der Grundlge von nch, dss die sochsische Differenilgleichung dln md dw eine äquivlene Drsellung der sochsischen Differenilgleichung d / d dw is, wenn m /. Lösungsskizze: Bezeichne W 0 und W Drif und Diffusion des ndrd-wienerprozesses. Es gil zunächs F, W mi F F, s 0 epm. Dmi gil weier F m s 0 epm mf F s 0 epm F F s 0 epm F. Nch Ios Lemm gil für Drif, und Diffusion, des Prozesses { }: F F F F W F W F F W / / m /F F Fzi:,,,. eie 4 von 8

5 b Gemäß is der Prozess s 0 ep m W durch die sochsische Differenilgleichungen d d dw bzw. äquivlen d / d dw chrkerisier. Es genüg somi nchzuweisen, dss { } uch die sochsische Differenilgleichung dln md dw erfüll. Es gil nun ln ln s 0 m W, d.h. es gil ln F, W mi F, ln s 0 m. Dmi gil weier: F m, F, F 0. Nch Ios Lemm gil somi für Drif ln, und Diffusion ln, des Prozesses {ln }: ln F F W F W/ m F, ln W wobei wieder W 0 und W Drif und Diffusion des ndrd-wienerprozesses bezeichnen. Dmi is der Nchweis geführ. eie 5 von 8

6 eie 6 von 8 Aufgbe 3: Punke Gegeben sei der Zwei-Werppier-Fll sowie die Präferenzfunkion V E Vr. Die Invesmengewiche seien nich uf den Werebereich [0,] beschränk. Besimmen ie einen llgemeinen Ausdruck für die Invesmengewiche des opimlen Porfolios! b Gegeben sei eine Puopion, die nch Blck/choles bewere is. Wie hoch is die ndrdbweichung der Änderung des Weres der Opionsposiion über ein Inervll der Länge h uner Anwendung der Del-Norml-Mehode? Hinweise: Ds Pu-Del uf Bsis der Blck/choles-Formel is gegeben durch ]. [ / d N P Die endie h des Bsisobjeks sei gegeben durch, ~ h h N h. Lösungsskizze: Im Zwei-Werppier-Fll gil:,, Cov Vr Vr Vr E E E wobei, : Cov. Dmi gil: ] [ Vr E V 4 0 d dv Insgesm folg dmi: 4.

7 b Del-Norml-Mehode: P h P h P. Nch Hinweis gil P / N [ d ]. Ferner gil: h h. Insgesm dmi: Folgerung: P ] h P N [ d h. P h P N [ d ] h. Aufgbe 4: 3 Punke Gegeben sei eine zweijährige Akiennleihe mi Kupon 50. Bei Fälligkei der Anleihe knn der Emien enweder den Nennwer in Höhe von 000 zurückzhlen oder 0 Fresenius- Akien ls Tilgungsleisung ndienen. Formlisieren ie den ückzhlungssrom dieser Akiennleihe us ich des Erwerbers der Anleihe Invesor. b Duplizieren ie diesen ückzhlungssrom uner Verwendung eines hor Pu. Wie luen Bsisobjek, Lufzei und Ausübungspreis des Pu? Welcher weiere Finnziel wird in diesem Flle zur Duplikion benöig? c Der Invesor besize bereis 0 Fresenius-Akien. Welche weieren Finnziel muss der Invesor erwerben, dmi seine Gesmposiion die gegebene Akiennleihe duplizier? Lösungsskizze: Der ückzhlungssrom us ich des Invesors is gegeben durch {50, 50 min000, 0 }, wobei den Wer der Freseniuskie zum Zeipunk bedeue. b Es gil min000, min0, min0, m0, 00 und dmi insgesm eie 7 von 8

8 {50, 50 min000, 0 } {50, 050} {0, 0 m0, 00 }. Der ückzhlungssrom wird dmi duplizier durch eine Anleihe mi Nennwer 000 und Kupon 50 sowie einer Europäischen hor Pu-Posiion, besehend us 0 Pus uf ds Bsisobjek mi zwei Jhren Lufzei und Ausübungspreis 00. c Es gil min000, 0 0 min 000 0, min00, m 00, 0. Für die Differenz zwischen ückzhlungssrom Akiennleihe und der besehenden Akienposiion gil somi {50, 50 min000, 0 } 0 {0, 0 } {50, m 00, 0} {0, 0 } {50, 50 0 m 00, 0} {50, 50} {0, 0 m 00, 0} {50, 0} {0, 50} {0, 0 m 00, 0}. Gesmposiion sez sich dher zusmmen us: Einem Zerobond mi Nennwer 50, fällig in b Einem Zerobond mi Nennwer 50, fällig in c Einer hor Cll-Posiion, besehend us 0 Clls uf ds Bsisobjek mi zwei Jhren Lufzei und Ausübungspreis 00. eie 8 von 8

Bericht zur Prüfung im Oktober 2007 über Finanzmathematik und Investmentmanagement

Bericht zur Prüfung im Oktober 2007 über Finanzmathematik und Investmentmanagement Berich zur Prüfung im Okober 7 über Finanzmahemaik und Invesmenmanagemen (Grundwissen) Peer Albrech (Mannheim) Am 5 Okober 7 wurde zum zweien Mal eine Prüfung im Fach Finanzmahemaik und Invesmenmanagemen

Mehr

SR MVP die Sharpe Ratio des varianzminimalen

SR MVP die Sharpe Ratio des varianzminimalen Prüfung inanzmahemaik und Invesmenmanagemen 4 Aufgabe : (4 Minuen) a) Gegeben seien zwei Akien mi zugehörigen Einperiodenrendien R und R. Es gele < ρ(r,r )

Mehr

Bericht zur Prüfung im Oktober 2008 über Finanzmathematik und Investmentmanagement

Bericht zur Prüfung im Oktober 2008 über Finanzmathematik und Investmentmanagement Beric zur rüfung im Okober 008 über Finanzmaemaik und Invesmenmanagemen (Grundwissen) eer Albrec (Manneim) Am 7 Okober 008 wurde zum drien Mal eine rüfung im Fac Finanzmaemaik und Invesmenmanagemen nac

Mehr

Hamburg Kernfach Mathematik Zentralabitur 2013 Erhöhtes Anforderungsniveau Analysis 2

Hamburg Kernfach Mathematik Zentralabitur 2013 Erhöhtes Anforderungsniveau Analysis 2 Hmburg Kernfch Mhemik Zenrlbiur 2013 Erhöhes Anforderungsniveu Anlysis 2 Smrphones Die Mrkeinführung eines neuen Smrphones vom Elekronikherseller PEAR wird ses ufgereg erwre. Zur Modellierung der Enwicklung

Mehr

Bericht zur Prüfung im Oktober 2009 über Grundprinzipien der Versicherungs- und Finanzmathematik (Grundwissen)

Bericht zur Prüfung im Oktober 2009 über Grundprinzipien der Versicherungs- und Finanzmathematik (Grundwissen) Berich zur Prüfung i Okober 9 über Grundrinziien der Versicherungs- und Finanzaheaik (Grundwissen Peer lbrech (Mannhei 6 Okober 9 wurde zu vieren Mal eine Prüfung i Fach Grundrinziien der Versicherungs-

Mehr

Nachtrag Nr. 71 a. gemäß 10 Verkaufsprospektgesetz (in der vor dem 1. Juli 2005 geltenden Fassung) Unvollständigen Verkaufsprospekt

Nachtrag Nr. 71 a. gemäß 10 Verkaufsprospektgesetz (in der vor dem 1. Juli 2005 geltenden Fassung) Unvollständigen Verkaufsprospekt London Brnch Nchrg Nr. 71 gemäß 10 Verkufsprospekgesez (in der vor dem 1. Juli 2005 gelenden Fssung) vom 6. Novemer 2006 zum Unvollsändigen Verkufsprospek vom 31. März 2005 üer Zerifike uf * üer FlexInves

Mehr

Freie ungedämpfte Schwingung eines Massenpunktes (Federschwinger) = 2a. Die allgemeine Lösung der DGL ist dann eine Linearkombination beider Lösungen:

Freie ungedämpfte Schwingung eines Massenpunktes (Federschwinger) = 2a. Die allgemeine Lösung der DGL ist dann eine Linearkombination beider Lösungen: Die Schwingungs-Differenilgleichung Freie ungedämpfe Schwingung eines Mssenpunes Federschwinger Bei Auslenung des Mssenpunes: Hooesches Gesez F - Federonsne Die Bewegungsgleichung lue dher: d m oder m

Mehr

DIE ZUTEILUNGSREGELN 2008 2012: BRANCHENBEISPIEL PAPIER- UND ZELLSTOFFERZEUGUNG (TÄTIGKEITEN XIV UND XV TEHG)

DIE ZUTEILUNGSREGELN 2008 2012: BRANCHENBEISPIEL PAPIER- UND ZELLSTOFFERZEUGUNG (TÄTIGKEITEN XIV UND XV TEHG) 26. November 2007 DIE ZUTEILUNGSREGELN 2008 2012: BRANCHENBEISPIEL PAPIER- UND ZELLSTOFFERZEUGUNG (TÄTIGKEITEN XIV UND XV TEHG) Informion zur Anwendung der gesezlichen Regelungen zur Zueilung von Kohlendioxid-Emissionsberechigungen

Mehr

Thema 6: Kapitalwert bei nicht-flacher Zinsstruktur:

Thema 6: Kapitalwert bei nicht-flacher Zinsstruktur: Thema 6: Kapialwer bei nich-flacher Zinssrukur: Markzinsmehode Bislang unersell: i i kons. (, K, T) (flache Zinskurve) Verallgemeinerung der KW-Formel auf den Fall beliebiger Zinskurven jedoch ohne weieres

Mehr

Aufgabenblatt 1. Lösungen. A1: Was sollte ein Arbitrageur tun?

Aufgabenblatt 1. Lösungen. A1: Was sollte ein Arbitrageur tun? Aufgabenbla 1 Lösungen 1 A1: Was solle ein Arbirageur un? Spo-Goldpreis: $ 5 / Unze Forward-Goldpreis (1 Jahr): $ 7 / Unze Risikoloser Zins: 1% p.a. Lagerkosen: Es gib zwei Handelssraegien, um in einem

Mehr

5. Value at Risk als Instrument zur Risikomessung. 5.1. Allgemeines zum Value at Risk

5. Value at Risk als Instrument zur Risikomessung. 5.1. Allgemeines zum Value at Risk 5. Vlue Risk ls Insrumen zur Risikomessung 5.1. Allgemeines zum Vlue Risk Folien: Tnj Dresel, Luz Johnning,. Hns-Peer Burghof 61 5.1 Allgemeines zum Vlue--Risk Der Vlue--Risk einer Einzel- oder Gesmposiion

Mehr

8. Abtastung. Kontinuierliches Signal: Signalspektrum: Abgetastetes Signal: ( t) Abtastfunktion: 1 f a. Spektrum der Abtastfunktion:

8. Abtastung. Kontinuierliches Signal: Signalspektrum: Abgetastetes Signal: ( t) Abtastfunktion: 1 f a. Spektrum der Abtastfunktion: Pro. Dr.-In. W.-P. Buchwld Sinl- und Sysemheorie 8. Absun Koninuierliches Sinl: u() Sinlspekrum: U() Abesees Sinl: ( ) = u( ) ( ) u Absunkion: + n= ( ) = δ ( n ) Spekrum der Absunkion: + n= Spekrum des

Mehr

Die Sensitivität ist eine spezielle Form der Zinselastizität: Aufgabe 1

Die Sensitivität ist eine spezielle Form der Zinselastizität: Aufgabe 1 Neben anderen Risiken unerlieg die Invesiion in ein fesverzinsliches Werpapier dem Zinsänderungsrisiko. Dieses Risiko läss sich am einfachsen verdeulichen, indem man die Veränderung des Markweres der Anleihe

Mehr

1. Mathematische Grundlagen und Grundkenntnisse

1. Mathematische Grundlagen und Grundkenntnisse 8 1. Mahemaische Grundlagen und Grundkennnisse Aufgabe 7: Gegeben sind: K = 1; = 18; p = 1 (p.a.). Berechnen Sie die Zinsen z. 18 1 Lösung: z = 1 = 5 36 Man beache, dass die kaufmännische Zinsformel als

Mehr

Mikro-Controller-Pass 1

Mikro-Controller-Pass 1 Mikro-Conroller-Pss Lernsyseme MC 85 eie: rdl. Logik_B rundlgen logische Verknüpfungen Inhlserzeichnis Vorwor eie Binäre Aussgen in der Technik eie Funkionseschreiungen der Digilechnik eie 5 Funkionselle

Mehr

Mehrstufige Spiele mit beobachtbaren Handlungen

Mehrstufige Spiele mit beobachtbaren Handlungen 3. Wiederhole Spiele und kooperives Verhlen Mehrsufige Spiele mi beobchbren Hndlungen Idee: Ds Spiel sez sich us K+ Sufen zusmmen, wobei eine Sufe k us einem Teilspiel mi simulner Whl von Akionen k i beseh

Mehr

Der Zeitwert des Geldes - Vom Umgang mit Zinsstrukturkurven -

Der Zeitwert des Geldes - Vom Umgang mit Zinsstrukturkurven - - /8 - Der Zeiwer des Geldes - Vom Umgang mi Zinssrukurkurven - Dr. rer. pol. Helmu Sieger PROBLEMSELLUNG Zinsänderungen beeinflussen den Wer der Zahlungssröme, die Krediinsiue, Versicherungen und sonsige

Mehr

Der Zusammenhang zwischen Investitionsentscheidung, Finanzierung und steuerlichem Totalerfolg

Der Zusammenhang zwischen Investitionsentscheidung, Finanzierung und steuerlichem Totalerfolg Universiä Augsburg Prof. Dr. Hns Ulrich Buhl Kernkompeenzzenrum Finnz- & Informionsmngemen Lehrsuhl für BWL, Wirschfsinformik, Informions- & Finnzmngemen Diskussionsppier WI-7 Der Zusmmenhng zwischen Invesiionsenscheidung,

Mehr

Finanzierung und Investition

Finanzierung und Investition ruschwiz/husmann (2012) Finanzierung und Invesiion 1/46 ruschwiz/husmann (2012) Finanzierung und Invesiion 2/46 Finanzierung und Invesiion ruschwiz/husmann (2012) Oldenbourg Verlag München 7. Auflage,

Mehr

Die Put-Call Symmetrie und deren Anwendung bei der Bewertung von Barriereoptionen

Die Put-Call Symmetrie und deren Anwendung bei der Bewertung von Barriereoptionen Die Pu-Call Symmerie und deren Anwendung bei der Bewerung von Barriereopionen Maserarbei von Sefanie Tiemann 06. 08. 013 Bereuer: Privadozen Dr. Volker Paulsen Insiu für mahemaische Saisik Fachbereich

Mehr

Motivation. Finanzmathematik in diskreter Zeit

Motivation. Finanzmathematik in diskreter Zeit Moivaion Finanzmahemaik in diskreer Zei Eine Hinführung zu akuellen Forschungsergebnissen Alber-Ludwigs-Universiä Freiburg Prof. Dr. Thorsen Schmid Abeilung für Mahemaische Sochasik Freiburg, 22. April

Mehr

12 Schweißnahtberechnung

12 Schweißnahtberechnung 225 12 Schweißnherechnung 12 Schweißnherechnung Die Berechnung der ufreenden Spnnungen in Schweißnähen erfolg im Regelfll mi Hilfe der elemenren Gleichungen der esigkeislehre. Auf weierführende Berechnungsverfhren,

Mehr

Vorlesung. Einführung in die mathematische Sprache und naive Mengenlehre

Vorlesung. Einführung in die mathematische Sprache und naive Mengenlehre Vorlesung Einführung in die mthemtische Sprche und nive Mengenlehre 1 Allgemeines RUD26 Erwin-Schrödinger-Zentrum (ESZ) RUD25 Johnn-von-Neumnn-Hus Fchschft Menge ller Studenten eines Institutes Fchschftsrt

Mehr

Analysis: Exponentielles Wachstum Analysis Übungsaufgaben zum Exponentiellen Wachstum zum Einstieg Gymnasium Klasse 10

Analysis: Exponentielles Wachstum Analysis Übungsaufgaben zum Exponentiellen Wachstum zum Einstieg Gymnasium Klasse 10 www.mhe-ufgben.com Anlysis: Eponenielles Wchsum Anlysis Übungsufgben zum Eponeniellen Wchsum zum Einsieg Gymnsium Klsse 1 Alender Schwrz www.mhe-ufgben.com Jnur 214 1 www.mhe-ufgben.com Anlysis: Eponenielles

Mehr

Brush-up Kurs Wintersemester 2015. Optionen. Was ist eine Option? Terminologie. Put-Call-Parität. Binomialbäume. Black-Scholes Formel

Brush-up Kurs Wintersemester 2015. Optionen. Was ist eine Option? Terminologie. Put-Call-Parität. Binomialbäume. Black-Scholes Formel Opionen Opionen Was is eine Opion? Terminologie Pu-Call-Pariä Binomialbäume Black-Scholes Formel 2 Reche und Pflichen bei einer Opion 1. Für den Käufer der Opion (long posiion): Rech (keine Pflich!) einen

Mehr

Großübung Balkenbiegung Biegelinie

Großübung Balkenbiegung Biegelinie Großüung Bkeniegung Biegeinie Es geen die in der Voresung geroffenen Annhmen: - Der Bken is unese gerde. - Ds eri sei üer den Querschni homogen und iner esisch. - Die Besung erfog durch Biegemomene und

Mehr

WORKING PAPERS Arbeitspapiere der Betrieblichen Finanzwirtschaft

WORKING PAPERS Arbeitspapiere der Betrieblichen Finanzwirtschaft WORKING PAPERS Arbeispapiere der Berieblichen Finanzwirschaf Lehrsuhl für Beriebswirschafslehre, insbes. Beriebliche Finanzwirschaf Bfw29V/03 Zusandsabhängige Bewerung mi dem sochasischen Diskonierungsfakor

Mehr

Thema : Rendite und Renditemessung

Thema : Rendite und Renditemessung Thema : Rendie und Rendiemessung Lernziele Es is wichig, die Zeigewichung der Rendie als ennzahl zu versehen, den Unerschied zwischen einer koninuierlichen und einer diskreen erzinsung zu begreifen und

Mehr

Investment under Uncertainty Princeton University Press, New Jersey, 1994

Investment under Uncertainty Princeton University Press, New Jersey, 1994 Technische Universiä Dresden Fakulä Wirschafswissenschafen Lehrsuhl für Energiewirschaf (EE 2 ) Prof. Dr. C. v. Hirschhausen / Dipl.-Vw. A. Neumann Lesebeweis: Avinash K. Dixi und Rober S. Pindyck Invesmen

Mehr

Kapitel 11 Produktion, Sparen und der Aufbau von Kapital

Kapitel 11 Produktion, Sparen und der Aufbau von Kapital apiel 11 Produkion, Sparen und der Aufbau von apial Vorbereie durch: Florian Barholomae / Sebasian Jauch / Angelika Sachs Die Wechselwirkung zwischen Produkion und apial Gesamwirschafliche Produkionsfunkion:

Mehr

HfB Working Paper Series

HfB Working Paper Series HfB Working Paper Series No. 62 by Norber Kluß, Marcus Bayer, Heinz Cremers March 25 Sonnemannsr. 9 634 Frankfur an Main, Germany Phone: +49 () 69 54 8 Fax: +49 () 69 54 8 728 Inerne: www.hfb.de Wersicherungssraegien

Mehr

Bericht zur Prüfung im Oktober 2014 über Mathematik der Personenversicherung (Grundwissen)

Bericht zur Prüfung im Oktober 2014 über Mathematik der Personenversicherung (Grundwissen) UTSCH KTURVRIIGUG e.v. Berich ur rüfug im Okober 24 über hemik der eroevericherug (Grudwie Jürge Srobel (Köl m..24 wurde i Köl die viere rüfug über hemik der eroevericherug (Grudwie ch der rüfugordug der

Mehr

Seminar Bewertungsmethoden in der Personenversicherungsmathematik

Seminar Bewertungsmethoden in der Personenversicherungsmathematik Seminar Bewerungsmehoden in der Personenversicherungsmahemaik Technische Reserven und Markwere I Sefanie Schüz Mahemaisches Insiu der Universiä zu Köln Sommersemeser 2010 Bereuung: Prof. Hanspeer Schmidli,

Mehr

Finanz- und Risikomanagement. Finanz- und Risikomanagement, Prof. Dr. Gabriele Gühring

Finanz- und Risikomanagement. Finanz- und Risikomanagement, Prof. Dr. Gabriele Gühring Finanz- und Risikomanagemen 1 Vorlesungsinhale 1. Basisgüer und Grundbegriffe - Eineilung nach Ar der Basisgüer - Eineilung nach Börsen- oder OTC-Handel - Eineilung in Spo-Geschäfe oder Termingeschäfe

Mehr

Stochastische Volatilität vs. Traders Rule of Thumb Bewertung exotischer Optionen im Vergleich

Stochastische Volatilität vs. Traders Rule of Thumb Bewertung exotischer Optionen im Vergleich Sochasische Volailiä vs. Traders Rule of Thumb Bewerung exoischer Opionen im Vergleich Uwe Wysup Universiä Trier 21. Juli 2005 Devisenopionen Vanilla exoische Opionen heue =0 Ausübungszeipunk =T Vanillaopion

Mehr

Kondensator und Spule im Gleichstromkreis

Kondensator und Spule im Gleichstromkreis E2 Kondensaor und Spule im Gleichsromkreis Es sollen experimenelle nersuchungen zu Ein- und Ausschalvorgängen bei Kapaziäen und ndukiviäen im Gleichsromkreis durchgeführ werden. Als Messgerä wird dabei

Mehr

Übungsblatt zu Funktionenscharen

Übungsblatt zu Funktionenscharen Übungsbl zu Funkionenschren Seie von Gnzrionle Funkionen Ohne Inegrlrechnung Bei Funkionenschren Beispiel: f 6 erhäl mn für ein besimmes jeweils eine Funkion: Beispiel: : f : f Diese Funkionen hben Unerschiede,

Mehr

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009 UNIVERSIÄ KARLSRUHE Institut für Anlysis HDoz. Dr. P. C. Kunstmnn Dipl.-Mth. M. Uhl Sommersemester 9 Höhere Mthemti II für die Fchrichtungen Eletroingenieurwesen, Physi und Geodäsie inlusive Komplexe Anlysis

Mehr

Warum ist die Frage, wem ein Leasingobjekt zugerechnet wird, wichtig? Welche Vorteile kann ein Leasinggeber (eine Leasinggesellschaft) ggf. erzielen?

Warum ist die Frage, wem ein Leasingobjekt zugerechnet wird, wichtig? Welche Vorteile kann ein Leasinggeber (eine Leasinggesellschaft) ggf. erzielen? 1) Boschafen von Kapiel 7 Welche Eigenschafen ha ein Finanzierungs-Leasing-Verrag? Warum is die Frage, wem ein Leasingobjek zugerechne wird, wichig? FLV, vollkommener Kapialmark und Gewinnseuer Welche

Mehr

Übungen zur Vorlesung Physikalische Chemie I Lösungsvorschlag zu Blatt 3

Übungen zur Vorlesung Physikalische Chemie I Lösungsvorschlag zu Blatt 3 Übungen zur Vorlesung Physiklische Chemie I Lösungsvorschlg zu Bltt 3 Prof. Dr. Norbert Hmpp 1. Aufgbe ) Die gegebene Verteilung besteht nur us diskreten Werten! Die durchgezogene Linie würde nur bei einer

Mehr

DSS1. Digitaler Sprachspeicher Einschub mit RAM- und Flash- Speicherbänken. Abb. DSS1 (L- Nr. 2.600) 16 Speicheradressen für Sprachaufzeichnung:

DSS1. Digitaler Sprachspeicher Einschub mit RAM- und Flash- Speicherbänken. Abb. DSS1 (L- Nr. 2.600) 16 Speicheradressen für Sprachaufzeichnung: mi RAM- und Flash- peicherbänken Abb. (L- Nr. 2.600) Auf einen Blick: 16 peicheradressen für prachaufzeichnung: - bis zu 8 Bänke im RAM- peicher (flüchig) - bis zu 8 Bänke im Flash- peicher (permanen)

Mehr

Untersuchung von Gleitentladungen und deren Modellierung durch Funkengesetze im Vergleich zu Gasentladungen

Untersuchung von Gleitentladungen und deren Modellierung durch Funkengesetze im Vergleich zu Gasentladungen Unersuchung von Gleienladungen und deren Modellierung durch Funkengeseze im Vergleich zu Gasenladungen Dipl.-Ing. Luz Müller, Prof. Dr.-Ing. Kur Feser Insiu für Energieüberragung und Hochspannungsechnik,

Mehr

Phillips Kurve (Blanchard Ch.8) JKU Linz Riese, Kurs Einkommen, Inflation und Arbeitslosigkeit SS 2008

Phillips Kurve (Blanchard Ch.8) JKU Linz Riese, Kurs Einkommen, Inflation und Arbeitslosigkeit SS 2008 Phillips Kurve (Blanchard Ch.8) 151 Einleiung Inflaion und Arbeislosigkei in den Vereinigen Saaen, 1900-1960 In der beracheen Periode war in den USA eine niedrige Arbeislosigkei ypischerweise von hoher

Mehr

Grundlagen in Mathematik für die 1. Klassen der HMS und der FMS

Grundlagen in Mathematik für die 1. Klassen der HMS und der FMS Grundlgen in Mthemtik für die. Klssen der HMS und der FMS Einleitung In der Mthemtik wird häufig uf bereits Gelerntem und Beknntem ufgebut. Wer die Grundlgen nicht beherrscht, ht deshlb oft Mühe und Schwierigkeiten,

Mehr

Zwei Rechenbeispiele für die einfache lineare Regression

Zwei Rechenbeispiele für die einfache lineare Regression Einfache Regression mi Ecel Prof. Dr. Peer von der Lippe Zwei Rechenbeispiele für die einfache lineare Regression 1.1. Daen 1. Mindeslöhne Beispiel 1 Ennommen aus Rolf Ackermann, pielball des Lobbyisen,

Mehr

Bericht zur Prüfung im Oktober 2009 über Finanzmathematik und Investmentmanagement

Bericht zur Prüfung im Oktober 2009 über Finanzmathematik und Investmentmanagement Beric zur Prüfung im Okober 9 über Finanzmaemaik und Invesmenmanagemen (Grundwissen Peer Albrec (Manneim Am 6 Okober 9 wurde zum vieren Mal eine Prüfung im Fac Finanzmaemaik und Invesmenmanagemen nac PO

Mehr

Arbitragefreie Preise

Arbitragefreie Preise Arbiragefreie Preise Maren Schmeck 24. Okober 2006 1 Einleiung P i () Preis von Anleihe i zur Zei, i = 1,..., n x i Anzahl an Einheien der Anleihe i V () = n i=1 x ip i () Wer eines Porfolios mi x i Einheien

Mehr

Bewertung von Versicherungsrisiken mittels des Äquivalenznutzenprinzips

Bewertung von Versicherungsrisiken mittels des Äquivalenznutzenprinzips Bewerung von Versicherungsrisiken miels des Äquivalenznuzenprinzips Diplomarbei zur Erlangung des akademischen Grades Diplom-Wirschafsmahemaiker der Fakulä für Mahemaik und Wirschafswissenschafen der Universiä

Mehr

Lehrstuhl für Finanzierung

Lehrstuhl für Finanzierung Lehrsuhl für Finanzierung Klausur im Fach Finanzmanagemen im Winersemeser 1998/99 1. Aufgabe Skizzieren Sie allgemein die von Kassenhalungsproblemen miels (sochasischer) dynamischer Programmierung! Man

Mehr

Aufgaben zur Vorlesung Analysis II Prof. Dr. Holger Dette SS 2012 Lösungen zu Blatt 6

Aufgaben zur Vorlesung Analysis II Prof. Dr. Holger Dette SS 2012 Lösungen zu Blatt 6 Aufgben zur Vorlesung Anlysis II Prof. Dr. Holger Dette SS 0 Lösungen zu Bltt 6 Aufgbe. Die Funktion f : [, ) R sei in jedem endlichen Teilintervll von [, ) Riemnnintegrierbr. Für n N sei I n := f() d.

Mehr

Abitur - Leistungskurs Mathematik. Sachsen-Anhalt 1999

Abitur - Leistungskurs Mathematik. Sachsen-Anhalt 1999 Abitur - Leistungskurs Mthemtik Schsen-Anhlt 999 Gebiet L - Anlysis Augbe.. y, D, R,. Die Funktionenschr sei gegeben durch Die Grphen der Funktionen der Schr werden mit G bezeichnet. ) Ermitteln Sieden

Mehr

I MECHANIK. 1. EINFÜHRUNG Grundlagen, Kinematik, Dynamik (Wiederholung der Schulphysik)

I MECHANIK. 1. EINFÜHRUNG Grundlagen, Kinematik, Dynamik (Wiederholung der Schulphysik) Physik EI1 Mechnik - Einfühung Seie I MECHNIK 1. EINÜHRUNG Gundlgen, Kinemik, Dynmik (Wiedeholung de Schulphysik) _Mechnik_Einfuehung1_Bneu.doc - 1/9 Die einfühenden Kpiel weden wi zunächs uf dem Niveu

Mehr

Hedging von Renten Futures im Modell von Heath, Jarrow und Morton

Hedging von Renten Futures im Modell von Heath, Jarrow und Morton Hedging von Renen Fuures im Modell von Heah, Jarrow und Moron Andreas Löffler Version: November 998 Zusammenfassung In dieser Arbei werden der Bund und der Bobl Fuure sowie der ers kürzlich aufgelege Jumbo

Mehr

2.1 Produktion und Wirtschaftswachstum - Das BIP

2.1 Produktion und Wirtschaftswachstum - Das BIP 2.1 Produkion und Wirschafswachsum - Das BIP DieVolkswirschafliche Gesamrechnung(VGR)is das Buchführungssysem des Saaes. Sie wurde enwickel, um die aggregiere Wirschafsakiviä zu messen. Die VGR liefer

Mehr

Preisniveau und Staatsverschuldung

Preisniveau und Staatsverschuldung Annahme: Preisniveau und Saasverschuldung Privae Wirschafssubjeke berücksichigen bei ihren Enscheidungen die Budgeresrikion des Saaes. Wenn sich der Saa in der Gegenwar sark verschulde, dann muss der zusäzliche

Mehr

So prüfen Sie die Verjährung von Ansprüchen nach altem Recht

So prüfen Sie die Verjährung von Ansprüchen nach altem Recht Akademische Arbeisgemeinschaf Verlag So prüfen Sie die von Ansprüchen nach alem Rech Was passier mi Ansprüchen, deren vor dem bzw. 15. 12. 2004 begonnen ha? Zum (Sichag) wurde das srech grundlegend reformier.

Mehr

Praktikum Grundlagen der Elektrotechnik Versuch 5. Matrikelnummer:... ...

Praktikum Grundlagen der Elektrotechnik Versuch 5. Matrikelnummer:... ... FH D FB 3 Fachhochschule Düsseldorf Universiy of Applied Sciences Fachbereich Elekroechnik Deparmen of Elecrical Engineering Prakikum Grundlagen der Elekroechnik Versuch 5 Name Marikelnummer:... Anesa

Mehr

Analog-Elektronik Protokoll - Transitorgrundschaltungen. Janko Lötzsch Versuch: 07. Januar 2002 Protokoll: 25. Januar 2002

Analog-Elektronik Protokoll - Transitorgrundschaltungen. Janko Lötzsch Versuch: 07. Januar 2002 Protokoll: 25. Januar 2002 Analog-Elekronik Prookoll - Transiorgrundschalungen André Grüneberg Janko Lözsch Versuch: 07. Januar 2002 Prookoll: 25. Januar 2002 1 Vorberachungen Bei Verwendung verschiedene Transisor-Grundschalungen

Mehr

Teilfachprüfung Mathematik Studiengang: Wirtschaft Neue Diplomprüfungsordnung (NPO)

Teilfachprüfung Mathematik Studiengang: Wirtschaft Neue Diplomprüfungsordnung (NPO) Fchhochschule Düsseldorf SS 2007 Teilfchprüfung Mthemtik Studiengng: Wirtschft Neue Diplomprüfungsordnung (NPO) Prüfungsdtum: 29..2007 Prüfer: Prof. Dr. Horst Peters / Dipl. Volkswirt Lothr Schmeink Prüfungsform:

Mehr

Abiurprüfung Mahemaik 013 Baden-Würemberg (ohne CAS) Wahleil - Aufgaben Analysis A 1 Aufgabe A 1.1 Der Querschni eines 50 Meer langen Bergsollens wird beschrieben durch die x-achse und den Graphen der

Mehr

Gestagenpille. Pille. (nur Gestagenhormon, kein Östrogen) (kombiniert)

Gestagenpille. Pille. (nur Gestagenhormon, kein Östrogen) (kombiniert) Pille (kombiier) 9 Gesgepille (ur Gesgehormo, kei Ösroge) 10 - der Eisprug wird uerdrück - der Schleim im Gebärmuerhls wird verdick dmi die Spermie ich eidrige köe - der Aufbu der Gebärmuerschleimhu wird

Mehr

Flip - Flops 7-1. 7 Multivibratoren

Flip - Flops 7-1. 7 Multivibratoren Flip - Flops 7-7 Mulivibraoren Mulivibraoren sind migekoppele Digialschalungen. Ihre Ausgangsspannung spring nur zwischen zwei fesen Weren hin und her. Mulivibraoren (Kippschalungen) werden in bisabile,

Mehr

7.3. Partielle Ableitungen und Richtungsableitungen

7.3. Partielle Ableitungen und Richtungsableitungen 7.3. Parielle Ableiungen und Richungsableiungen Generell vorgegeben sei eine Funkion f von einer Teilmenge A der Ebene R oder allgemeiner des n-dimensionalen Raumes R n nach R. Für x [x 1,..., x n ] aus

Mehr

Zinsstruktur und Barwertberechnung

Zinsstruktur und Barwertberechnung 5A-0 Kapiel Zinssrukur und Barwerberechnung 5A-1 Kapielübersich 5A.1 Zinssrukur (Einführung) 5A.2 Zinssrukur und Rendie 5A.3 Spo- und Terminzinssäze 5A.4 Formen und graphische Darsellung 5A.5 Zusammenfassung

Mehr

Thema 13 Integrale, die von einem Parameter abhängen, Integrale von Funktionen auf Teilmengen von R n

Thema 13 Integrale, die von einem Parameter abhängen, Integrale von Funktionen auf Teilmengen von R n Them 13 Integrle, die von einem Prmeter bhängen, Integrle von Funktionen uf Teilmengen von R n Wir erinnern drn, dß eine Funktion h : [, b] R eine Treppenfunktion ist, flls es eine Unterteilung x < x 1

Mehr

Finanzmathematik. Wolfgang Müller. Institut für Statistik Technische Universität Graz

Finanzmathematik. Wolfgang Müller. Institut für Statistik Technische Universität Graz Finanzmahemaik Wolfgang Müller 213 Insiu für Saisik Technische Universiä Graz Inhalsverzeichnis 1. Markmodelle in diskreer Zei 1 1.1. Das Binomialmodell................................ 1 1.2. Das allgemeine

Mehr

Canon Nikon Sony. Deutschland 55 45 25. Österreich 40 35 35. Schweiz 30 30 20. Resteuropa 60 40 30 55 45 25 40 35 35 J 30 30 20 60 40 30

Canon Nikon Sony. Deutschland 55 45 25. Österreich 40 35 35. Schweiz 30 30 20. Resteuropa 60 40 30 55 45 25 40 35 35 J 30 30 20 60 40 30 15 Mtrizenrechnung 15 Mtrizenrechnung 15.1 Mtrix ls Zhlenschem Eine Internetfirm verkuft über einen eigenen Shop Digitlkmers. Es wird jeweils nur ds Topmodel der Firmen Cnon, Nikon und Sony ngeboten. Verkuft

Mehr

Der Einfluss von Sozialkapital in der Asset Allocation von Privatanlegern

Der Einfluss von Sozialkapital in der Asset Allocation von Privatanlegern Universiä Augsburg Prof. Dr. Hans Ulrich Buhl Kernkompeenzzenrum Finanz- & Informaionsmanagemen Lehrsuhl für BWL, Wirschafsinformaik, Informaions- & Finanzmanagemen Diskussionspapier WI-236 Der Einfluss

Mehr

Aktien und Firmenanleihen übergewichten

Aktien und Firmenanleihen übergewichten Swisscano Asse Managemen AG Waisenhaussrasse 2 8021 Zürich Telefon +41 58 344 49 00 Fax +41 58 344 49 01 assemanagemen@swisscano.ch www.swisscano.ch Swisscano Anlagepoliik für März 2010 Akien und Firmenanleihen

Mehr

Kosten der Verzögerung einer Reform der Sozialen Pflegeversicherung. Forschungszentrum Generationenverträge Albert-Ludwigs-Universität Freiburg

Kosten der Verzögerung einer Reform der Sozialen Pflegeversicherung. Forschungszentrum Generationenverträge Albert-Ludwigs-Universität Freiburg Kosen der Verzögerung einer Reform der Sozialen Pflegeversicherung Forschungszenrum Generaionenverräge Alber-Ludwigs-Universiä Freiburg 1. Berechnungsmehode Die Berechnung der Kosen, die durch das Verschieben

Mehr

Nachtrag Nr. 93 a. gemäß 10 Verkaufsprospektgesetz (in der vor dem 1. Juli 2005 geltenden Fassung) Unvollständiger Verkaufsprospekt

Nachtrag Nr. 93 a. gemäß 10 Verkaufsprospektgesetz (in der vor dem 1. Juli 2005 geltenden Fassung) Unvollständiger Verkaufsprospekt Nachrag Nr. 93 a gemäß 10 Verkaufsprospekgesez (in der vor dem 1. Juli 2005 gelenden Fassung) vom 27. Okoer 2006 zum Unvollsändiger Verkaufsprospek vom 31. März 2005 üer Zerifikae auf * ezogen auf opzins

Mehr

Mathematik III DGL der Technik

Mathematik III DGL der Technik Mahemaik III DGL der Technik Grundbegriffe: Differenialgleichung: Bedingung in der Form einer Gleichung in der Ableiungen der zu suchenden Funkion bis zu einer endlichen Ordnung aufreen. Funkions- und

Mehr

und zeigen Sie, dass der Punkt P auf g liegt. (c) Bestimmen Sie den Schnittwinkel der Ebenen E und E

und zeigen Sie, dass der Punkt P auf g liegt. (c) Bestimmen Sie den Schnittwinkel der Ebenen E und E Übungen zum ABI 8 Geomerie (Lineare Algebra) - Lösung eie von 7 Aufgaben incl Lösungen: Aufgabe G Gegeben sind eine Ebenenscar E :( + ) x+ x + ( ) x+ + = mi, eine Ebene E: x+ x + = und der Punk P( ) (a)

Mehr

Checkliste Einkommensteuererklärung

Checkliste Einkommensteuererklärung Checklise Einkommenseuererklärung Persönliche Sammdaen enfäll Haben sich Änderungen im Bereich Ihrer persönlichen Daen (Konfession, Adresse, Beruf, Familiensand, Bankverbindung, Kinder und deren Beäigung

Mehr

1 Abtastung, Quantisierung und Codierung analoger Signale

1 Abtastung, Quantisierung und Codierung analoger Signale Abasung, Quanisierung und Codierung analoger Signale Analoge Signale werden in den meisen nachrichenechnischen Geräen heuzuage digial verarbeie. Um diese digiale Verarbeiung zu ermöglichen, wird das analoge

Mehr

Analysis I Probeklausur 2

Analysis I Probeklausur 2 WS /2 Mriescu/ Ert Alysis I Probeklusur 2. Aufgbe Die Folge (x ) N sei rekursiv defiiert durch x =, x + = 2+x. () Beweise, dss die Folge (x ) N streg mooto wchsed ist. (b) Beweise, dss (x ) N durch 2 ch

Mehr

Einser-Flächen. Online-Ergänzung HEINZ KLAUS STRICK. MNU 66/7 (15.10.2013) Seiten 1 5, ISSN 0025-5866, Verlag Klaus Seeberger, Neuss

Einser-Flächen. Online-Ergänzung HEINZ KLAUS STRICK. MNU 66/7 (15.10.2013) Seiten 1 5, ISSN 0025-5866, Verlag Klaus Seeberger, Neuss Einser-Flächen HEINZ KLAUS STRICK Online-Ergänzung MNU 66/7 (15.10.01) Seiten 1 5, ISSN 005-5866, Verlg Klus Seeberger, Neuss 1 HEINZ KLAUS STRICK Einser-Flächen Die bgebildeten Figuren hben eines gemeinsm:

Mehr

1KOhm + - y = x LED leuchtet wenn Schalter x gedrückt ist

1KOhm + - y = x LED leuchtet wenn Schalter x gedrückt ist . Ohm = LED leuchtet wenn chlter gedrückt ist 2. Ohm = NICH ( = NO ) LED leuchtet wenn chlter nicht gedrückt ist = ist die Negtion von? Gibt es so einen kleinen chlter (Mikrotster)? 2. Ohm = UND LED leuchtet

Mehr

4. Kippschaltungen mit Komparatoren

4. Kippschaltungen mit Komparatoren 4. Kippschalungen mi Komparaoren 4. Komparaoren Wird der Operaionsversärker ohne Gegenkopplung berieben, so erhäl man einen Komparaor ohne Hserese. Seine Ausgangsspannung beräg: a max für > = a min für

Mehr

5 Investitionsrechnung unter Berücksichtigung von Steuern

5 Investitionsrechnung unter Berücksichtigung von Steuern 156 Invesiionsrechnung uner Berücksichigung von Seuern 5 Invesiionsrechnung uner Berücksichigung von Seuern 5.1 Grundmodell 5.1.1 Problemsellung In unseren bisherigen Überlegungen haben wir die von der

Mehr

Kapitel IX. Öffentliche Verschuldung. Einige Kenngrößen

Kapitel IX. Öffentliche Verschuldung. Einige Kenngrößen Kapiel IX Öffenliche Verschuldung a) Besandsgröße Einige Kenngrößen Öffenliche Verschuldung, ausgedrück durch den Schuldensand (Schuldner: Bund, Länder, Gemeinden, evenuell auch Unernehmen dieser Gebieskörperschafen,

Mehr

Die Regelungen zu den Einsendeaufgaben (Einsendeschluss, Klausurzulassung) finden Sie in den Studien- und Prüfungsinformationen Heft Nr. 1.

Die Regelungen zu den Einsendeaufgaben (Einsendeschluss, Klausurzulassung) finden Sie in den Studien- und Prüfungsinformationen Heft Nr. 1. Modul : Grundlgen der Wirtschftsmthemtik und Sttistik Kurs 46, Einheit, Einsendeufge Die Regelungen zu den Einsendeufgen (Einsendeschluss, Klusurzulssung) finden Sie in den Studien- und Prüfungsinformtionen

Mehr

Ausbildung zum Passagement-Consultant

Ausbildung zum Passagement-Consultant M & MAICONSULTING Mngementbertung Akdemie M MAICONSULTING Mngementbertung & Akdemie MAICONSULTING GmbH & Co. KG Hndschuhsheimer Lndstrße 60 D-69121 Heidelberg Telefon +49 (0) 6221 65024-70 Telefx +49 (0)

Mehr

Masse, Kraft und Beschleunigung Masse:

Masse, Kraft und Beschleunigung Masse: Masse, Kraf und Beschleunigung Masse: Sei 1889 is die Einhei der Masse wie folg fesgeleg: Das Kilogramm is die Einhei der Masse; es is gleich der Masse des Inernaionalen Kilogrammprooyps. Einzige Einhei

Mehr

Unterschied 2: kurzfristige vs langfristige Zinssätze. Arbitrage impliziert: r = i e i = r + e (1) (2)

Unterschied 2: kurzfristige vs langfristige Zinssätze. Arbitrage impliziert: r = i e i = r + e (1) (2) Unerschied : kurzfrisige vs langfrisige Zinssäze Inermediae Macro - Uni Basel 10 Arbirage implizier: (1) () Es gib eine klare Beziehung zwischen langfrisigen Zinsen und erwareen künfigen Kurzfriszinsen

Mehr

JUSTUS-LIEBIG-UNIVERSITÄT GIESSEN

JUSTUS-LIEBIG-UNIVERSITÄT GIESSEN JUSTUS-LIEBIG-UNIVERSITÄT GIESSEN Professur für VWL II Wolfgng Scherf Die Exmensklusur us der Volkswirtschftslehre Erschienen in: WISU 8-9/2000, S. 1163 1166. Fchbereich Wirtschftswissenschften Prof. Dr.

Mehr

Unterrichts- und Prüfungsplanung M306 Modulverantwortlicher: Beat Kündig Modulpartner: R. Rubin

Unterrichts- und Prüfungsplanung M306 Modulverantwortlicher: Beat Kündig Modulpartner: R. Rubin Dokument Dtum (Version) Gültig für 200 / 0 Seite von 7 Unterrichts- und Prüfungsplnung M306 Modulverntwortlicher: Bet Kündig Modulprtner: R. Rubin Lernschritt-Nr. Hndlungsziele Zielsetzung unter Berücksichtigung

Mehr

Berücksichtigung naturwissenschaftlicher und technischer Gesetzmäßigkeiten. Industriemeister Metall / Neu

Berücksichtigung naturwissenschaftlicher und technischer Gesetzmäßigkeiten. Industriemeister Metall / Neu Fragen / Themen zur Vorbereiung auf die mündliche Prüfung in dem Fach Berücksichigung naurwissenschaflicher und echnischer Gesezmäßigkeien Indusriemeiser Meall / Neu Die hier zusammengesellen Fragen sollen

Mehr

Für die sekundäre Scheinleistung S und die primäre Netzleistung S Netz gelten bei reiner Widerstandslast:

Für die sekundäre Scheinleistung S und die primäre Netzleistung S Netz gelten bei reiner Widerstandslast: 4. Fremdgeführe Sromricher Fremdgeführe Sromricher benöigen eine fremde, nich zum Sromricher gehörende Wechselspannungsquelle, die ihnen während der Dauer der Kommuierung die Kommuierungsspannung zur Verfügung

Mehr

Fachrichtung Mess- und Regelungstechniker

Fachrichtung Mess- und Regelungstechniker Fachrichung Mess- und egelungsechniker 4.3.2.7-2 chüler Daum:. Tiel der L.E. : Digiale euerungsechnik 3 2. Fach / Klasse : Arbeiskunde, 3. Ausbildungsjahr 3. Themen der Unerrichsabschnie :. -Kippglied

Mehr

3. Ganzrationale Funktionen

3. Ganzrationale Funktionen 3. Gnzrtionle Funktionen ) Definitionen und Beispiele Definition: Eine gnzrtionle Funktion n-ten Grdes ht ls Definitionsterm ein Polynom n-ten Grdes, d.h. y = f() = n n n-1 n-1 1 0. n 0, i ( i = 1, n)

Mehr

Abiturprüfung Mathematik 2011 (Baden-Württemberg) Berufliche Gymnasien Analysis, Lösung Aufgabe 1

Abiturprüfung Mathematik 2011 (Baden-Württemberg) Berufliche Gymnasien Analysis, Lösung Aufgabe 1 Abiurprüfung Mahemaik 0 (Baden-Würemberg) Berufliche Gymnasien Analysis, Lösung Aufgabe.. Skizzier man sich mi Hilfe des GTR drei Schaubilder der Schar (z.b. für =, = und = 4) ergeben sich folgende Skizzen:

Mehr

HAW Hamburg Fakultät Life Sciences - Physiklabor Physikalisches Praktikum

HAW Hamburg Fakultät Life Sciences - Physiklabor Physikalisches Praktikum HAW Hamburg Fakulä Life Sciences - Physiklabor Physikalisches Prakikum Auf- und Enladungen von Kondensaoren in -Gliedern Messung von Kapaziäen Elekrische Schalungen mi -Gliedern finde man z. B. in Funkionsgeneraoren

Mehr

= T. 1.1. Jährliche Ratentilgung. 1.1. Jährliche Ratentilgung. Ausgangspunkt: Beispiel:

= T. 1.1. Jährliche Ratentilgung. 1.1. Jährliche Ratentilgung. Ausgangspunkt: Beispiel: E Tilgugsrechug.. Jährliche Raeilgug Ausgagspuk: Bei Raeilgug wird die chuldsumme (Newer des Kredis [Aleihe, Hypohek, Darleh]) i gleiche Teilberäge T geilg. Die Tilgugsrae läss sich ermiel als: T =.. Jährliche

Mehr

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 7. Übung/Lösung Mathematik für Studierende der Biologie 25.11.2015

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 7. Übung/Lösung Mathematik für Studierende der Biologie 25.11.2015 LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR BIOLOGIE Prof. Anres Herz, Dr. Stefn Häusler emil: heusler@biologie.uni-muenchen.e Deprtment Biologie II Telefon: 089-280-74800 Großhernerstr. 2 Fx:

Mehr

Analysis: Exp. und beschränktes Wachstum Analysis Übungsaufgaben zum exponentiellen und beschränkten Wachstum

Analysis: Exp. und beschränktes Wachstum Analysis Übungsaufgaben zum exponentiellen und beschränkten Wachstum www.mahe-aufgaben.com Analysis: Exp. und beschränkes Wachsum Analysis Übungsaufgaben zum exponeniellen und beschränken Wachsum Gymnasium Klasse 10 Alexander Schwarz www.mahe-aufgaben.com Februar 2014 1

Mehr

Grundgebiete der Elektrotechnik II Feedbackaufgabe: Transiente Vorgänge

Grundgebiete der Elektrotechnik II Feedbackaufgabe: Transiente Vorgänge heinisch-wesfälische Technische Hochschule Aachen Insiu für Sromricherechni und Elerische Anriebe Universiäsprofessor Dr. ir. i W. De Doncer Grundgebiee der Eleroechni II Feedbacaufgabe: Transiene Vorgänge

Mehr

Regelungstechnik für den Praktiker. Manfred Schleicher

Regelungstechnik für den Praktiker. Manfred Schleicher Regelungsechnik für den Prakiker Manfred Schleicher Vorwor und Hinweise zum Inhal dieser Broschüre Bezüglich der Regelungsechnik is eine Vielzahl von Büchern und Abhandlungen erhällich, welche häufig

Mehr

Übungsblatt 4 Lösungsvorschläge

Übungsblatt 4 Lösungsvorschläge Insiu für Theoreische Informaik Lehrsuhl Prof. Dr. D. Wagner Übungsbla 4 Lösungsvorschläge Vorlesung Algorihmenechnik im WS 09/10 Problem 1: Flüsse [vgl. Kapiel 4.1 im Skrip] ** Gegeben sei ein Nezwerk

Mehr