Vektorrechnung. Grundlegende Operationen. VL Mathematische Software WS 2006/07 Rudolf Schürer. Letzte Änderung: 28. Jänner vl06-evaluated.

Größe: px
Ab Seite anzeigen:

Download "Vektorrechnung. Grundlegende Operationen. VL Mathematische Software WS 2006/07 Rudolf Schürer. Letzte Änderung: 28. Jänner vl06-evaluated."

Transkript

1 vl6-evaluated.nb Vektorrechnung VL Mathematische Software WS 26/7 Rudolf Schürer Lette Änderung: 28. Jänner 27 Grundlegende Operationen Vektoren werden in Mathematica durch Listen dargestellt, deren Elemente selbst keine Listen sind. Matrien werden in Mathematica durch Listen von Vektoren gleicher Länge (Zeilenvektoren) dargestellt. v = 8α, α 2, α 3 <; m = Table@β i,, 8i, 3<, 8, 3<D; v êê MatrixForm m êê MatrixForm i k α α 2 α 3 y { i β, β,2 β,3 y β 2, β 2,2 β 2,3 k β 3, β 3,2 β 3,3 { Dimensions@vD Dimensions@mD 83< 83, 3< VectorQ und MatrixQ überprüfen, ob es sich bei einem Obekt wirklich um einen Vektor bw. eine Matrix (gemäß obiger Definition) handelt. VectorQ ê@ 84, v, m, 88<, 83, 4<<< 8False, True, False, False< MatrixQ ê@ 84, v, m, 88<, 83, 4<<< 8False, False, True, False< Einige Operationen aus der Vektorrechnung funktionieren automatisch dadurch, dass die entsprechenden Mathematica-Funktionen das Attribut Listable haben.

2 vl6-evaluated.nb 2 ü Addition von Vektoren v + 8a, b, c< 8a + α, b + α 2, c + α 3 < ü Multiplikation mit einem Skalar 4 v 84 α, 4 α 2, 4 α 3 < λ m êê MatrixForm i λ β, λ β,2 λ β,3 y λ β 2, λ β 2,2 λ β 2,3 k λ β 3, λ β 3,2 λ β 3,3 { ü Innere Produkte Für das innere Produkt (wischen Vektor Vektor, Vektor Matrix und Matrix Matrix) verwendet Mathematica den Operator. (Punkt) oder Dot[]. v.8, 2, 3< α + 2 α α 3 Dot@v, 8, 2, 3<D α + 2 α α 3 Achtung: Die normale Multiplikation (Times, â, *, ) führt (via Listable-Attribut) eine koordinatenweise Multiplikation durch. Dau gibt es kein Analogon in der aus der Mathematik bekannten Vektorrechnung. v v 8α 2, α 2 2, α 3 2 < Für Vektoren ist Dot ist das gleiche wie: Hv 8, 2, 3<L α + 2 α α 3 v.m êê MatrixForm i α β, + α 2 β 2, + α 3 β 3, y α β,2 + α 2 β 2,2 + α 3 β 3,2 k α β,3 + α 2 β 2,3 + α 3 β 3,3 {

3 vl6-evaluated.nb 3 m.m êê MatrixForm i k 2 β, + β,2 β 2, + β,3 β 3, β, β,2 + β,2 β 2,2 + β,3 β 3,2 β, β,3 + β,2 β 2,3 + β,3 β 3,3 2 β, β 2, + β 2, β 2,2 + β 2,3 β 3, β,2 β 2, + β 2,2 + β 2,3 β 3,2 β,3 β 2, + β 2,2 β 2,3 + β 2,3 β 3,3 β, β 3, + β 2, β 3,2 + β 3, β 3,3 β,2 β 3, + β 2,2 β 3,2 + β 3,2 β 3,3 β,3 β 3, + β 2,3 β 3,2 + β2 3,3 Soll ein Spaltenvektor mit einem Zeilenvektor multipliiert werden, um als Ergebnis eine Matrix u erhalten, so müssen die Vektoren expliit in Matrien konvertiert werden. v.v α 2 + α α 3 2 Das geschieht am einfachsten mit den folgenden Operationen: eile = 8v< spalte = 8#< & ê@ v spalte = Transpose@8v<D spalte = Partition@v, D 88α, α 2, α 3 << 88α <, 8α 2 <, 8α 3 << 88α <, 8α 2 <, 8α 3 << 88α <, 8α 2 <, 8α 3 << Dimensions@vD 83< Dimensions@eileD 8, 3< Dimensions@spalteD 83, < Jett kann (mit Matrien) multipliiert werden: eile.spalte 88α 2 + α α 3 2 << spalte.eile êê MatrixForm i α2 α α 2 α α 3 y α α 2 α2 2 α 2 α 3 k α α 3 α 2 α 3 α2 3 { y { ü Länge eines Vektors Ab Mathematica 5 erhält man die Länge eines Vektors mit Norm[].

4 vl6-evaluated.nb 4 Norm@vD "######################################################################## Abs@α D 2 + Abs@α 2 D 2 + Abs@α 3 D 2 In älteren Versionen von Mathematica verwendet man: è!!!!!!!!!! v.v "######################### α 2 + α α 3 ü Kreuprodukt Das Kreuprodukt von wei Vektoren erhält man mit ä (eingegeben: ÂcrossÂ) oder Cross[]. Achtung: ä ist verschieden von (Â*Â)! v v 8,, < v 8, 2, 3< 83 α 2 2 α 3, 3 α + α 3, 2 α α 2 < Ein kleiner Beweis Wollen eigen: Das Kreuprodukt ist antisymmetrisch, d.h. a äb = -b äa. a b b a a b b a Simplify@%D a b + b a Problem: Mathematica weiß nicht, dass a und b Vektoren mit drei Komponenten sind! a = Table@α k, 8k, 3<D b = Table@β k, 8k, 3<D 8α, α 2, α 3 < 8β, β 2, β 3 < a b 8 α 3 β 2 + α 2 β 3, α 3 β α β 3, α 2 β + α β 2 < b a 8α 3 β 2 α 2 β 3, α 3 β + α β 3, α 2 β α β 2 <

5 vl6-evaluated.nb 5 % %% True Wenn symbolisch mit Vektoren gerechnet werden soll, empfiehlt es sich, für die einelnen Koordinaten (und nicht für den ganen Vektor) Variablen u benuten. Matrix Operationen Transponieren einer Matrix (Zeilen und Spaltenindex vertauschen): m êê MatrixForm i β, β,2 β,3 y β 2, β 2,2 β 2,3 k β 3, β 3,2 β 3,3 { Transpose@mD êê MatrixForm i β, β 2, β 3, y β,2 β 2,2 β 3,2 k β,3 β 2,3 β 3,3 { Determinante einer Matrix: Det@mD Inverse Matrix: β,3 β 2,2 β 3, + β,2 β 2,3 β 3, + β,3 β 2, β 3,2 β, β 2,3 β 3,2 β,2 β 2, β 3,3 + β, β 2,2 β 3,3 Hinv = Inverse@mDL êê MatrixForm i k β 2,3 β 3,2 +β 2,2 β 3,3 β,3 β 2,2 β 3,+β,2 β 2,3 β 3,+β,3 β 2, β 3,2 β, β 2,3 β 3,2 β,2 β 2, β 3,3+β, β 2,2 β β,3 β 3 3,3 β,3 β 2,2 β 3,+β,2 β 2,3 β 3,+β,3 β 2, β β 2,3 β 3, β 2, β 3,3 β,3 β 2,2 β 3, +β,2 β 2,3 β 3, +β,3 β 2, β 3,2 β, β 2,3 β 3,2 β,2 β 2, β 3,3 +β, β 2,2 β 3,3 β,3 β β,3 β 2,2 β 3, +β,2 β 2,3 β 3, +β,3 β 2, β β 2,2 β 3, +β 2, β 3,2 β,3 β 2,2 β 3,+β,2 β 2,3 β 3,+β,3 β 2, β 3,2 β, β 2,3 β 3,2 β,2 β 2, β 3,3+β, β 2,2 β β,2 β 3 3,3 β,3 β 2,2 β 3,+β,2 β 2,3 β 3,+β,3 β 2, β Beachte, dass hier uerst die inverse Matrix in der Variablen inv gespeichert wird und erst dann das Ergebnis mit MatrixForm formatiert wird. Das ist wichtig, weil man sonst mit inv nicht vernünftig weiterrechnen könnte. Simplify@m.invD êê MatrixForm Simplify@inv.mD êê MatrixForm i y k { i y k { Einheitsmatrix und Nullmatrix:

6 vl6-evaluated.nb 6 Diagonalmatrix: IdentityMatrix@4D êê MatrixForm Table@, 84<, 84<D êê MatrixForm i y k { i y k { DiagonalMatrix@8, 2, 4, 8<D êê MatrixForm i y 2 4 k 8 { Lineare Gleichungssysteme i y a = ; 4 3 k { b = 8, 2, 3, 34<; LinearSolve[ A,b] findet einen Vektor x, der das Gleichungssystem A x = b löst (partikuläre Lösung des inhomogenen Systems). Wenn das Gleichungssystem keine Lösung besitt, bricht LinearSolve mit einer Fehlermeldung ab. Probe: x = LinearSolve@a, bd 86, 2,, < a.x 8, 2, 3, 34< Wenn A singulär ist, ist die Lösung nicht eindeutig. Alle Lösungen erhält man durch Addieren der partikulären Lösung und des Lösungsraumes des homogenen Systems A x =, d.h. des Kerns von A. NullSpace ermittelt eine Basis des Kerns von A. basis = NullSpace@aD 88 2,,, <, 8, 2,, << Alle Lösungen haben also die Form x + λ basispt + λ 2 basisp2t 86 2 λ λ 2, 2 λ 2 λ 2, λ 2, λ <

7 vl6-evaluated.nb 7 Oder, allgemein: Oder auch: Probe: Passt! x + Sum@λ i basispit, 8i, Length@basisD<D 86 2 λ λ 2, 2 λ 2 λ 2, λ 2, λ < x + Table@λ i, 8i, Length@basisD<D.basis 86 2 λ λ 2, 2 λ 2 λ 2, λ 2, λ < a.% λ + 2 H2 λ 2 λ 2 L + 4 λ 2, 8 λ + 4 H2 λ 2 λ 2 L + 2 H6 2 λ λ 2 L + λ 2, λ + 3 H2 λ 2 λ 2 L + 4 H6 2 λ λ 2 L + λ 2, 2 λ + 2 H2 λ 2 λ 2 L + 5 H6 2 λ λ 2 L + 9 λ 2 < Simplify@%D 8, 2, 3, 34< ü Beispiel Im 3 seien wei Ebenen e : 4 x + y - 3 = 7 und gegeben. Gesucht ist die Schnittgerade. i x y i 3 y i y i 3 y e 2 : y = 4 + l 2 + l 2 k { k 7 { k 3 { k { Dau müssen wir uerst die Matrix A und den Vector b für das lineare Gleichungssystem finden. Für e braucht man dau nur die Koeffiienten aus der Gleichung abschreiben. Für e 2 berechen wir uerst den Normalvektor auf e 2 und stellen damit die Ebenengleichung auf: normalvector = Cross@8, 2, 3<, 83,, <D 82, 8, 6< punkt = 83, 4, 7<; Damit ergibt sich folgende Ebenengleichung für e 2 : normalvector.8x, y, < normalvector.punkt Dot::rect : Non rectangular tensor encountered. Mehr 82, 8, 6<.886, 2,, <, y, < 4

8 vl6-evaluated.nb 8 Jett lässt sich die Matrix A und der Vector b leicht angeben. a = 8 84,, 3<, normalvector <; b = 87, normalvector.punkt<; Mit LinearSolve und NullSpace wird das System gelöst: LinearSolve@a, bd 82,, < NullSpace@aD 883, 3, 5<< i x y i 2 y i 3 y Daher ist die Schnittgerade gegeben durch y = - + l 3. k { k { k 5 { Plotten von Funktionen in den 2 oder 3 Bei Funktionen in den 2 oder 3 ist der Graph nur schwer oder gar nicht visualisierbar. Es ist bei solchen Funktionen oft besser, ihr Bild als Teilmenge des 2 oder 3 darustellen. ü Funktionen in den 2 Betrachten wir die beiden folgenden Funktionen 2 pd Õ nach : Plot@8Cos@φD, Sin@φD<, 8φ,, 2 π<d; Wir können dieses beiden Funktionen auch als eine Funktion 2 pd Ø 2 ansehen (also eine Kurve im 2 ), die für eden Winkel f wischen und 2 p einen Punkt HxHfL, yhfll = Hcos f, sin fl œ 2 definiert. Diese Punkte liegen auf einem Kreis, d.h. das Bild dieser Funktion ist ein Kreis. Dieses Bild lässt sich mit ParametricPlot darstellen. ParametricPlot wird genauso wie Plot aufgerufen. Die Liste von Funktionen muss genau wei Funktionen enthalten (eine für x-, eine für y-koordinate).

9 vl6-evaluated.nb 9 ParametricPlot@8Cos@φD, Sin@φD<, 8φ,, 2 π<, AspectRatio D; Ein interessanteres Beispiel: Needs@"Graphics`Colors`"D kreis@φ_d := 8Cos@φD, Sin@φD< spirale@φ_d := φ kreis@φd ParametricPlot@ spirale@φd, 8φ,, π<, AspectRatio, PlotStyle 8Red, Thickness@ ê D<D; Wie bei Plot kann auch bei ParametricPlot eine Liste von Funktionen angegeben werden, deren Bilder dann in ein gemeinsames Koordinatensystem geeichnet werden.

10 vl6-evaluated.nb ParametricPlotA i + k Sin@ φdy spirale@φd=, { 8φ,, π<, AspectRatio, PlotPoints, PlotStyle 88Red, Thickness@ ê D<, 8Blue<<E; ü Funktionen in den 3 Wir haben gesehen, dass sich Funktionen in den 2 mit ParametricPlot darstellen lassen. Wie schaut es mit Funktionen in den 3 aus? Die folgende Funktion liefert für gegebenen Längengrad (wischen -p und p, oder wischen und 2 p) und Breitengrad (wischen -p ê 2 (Südpol) und p ê 2 (Nordpol)) die kartesischen Koordinaten des daugehörigen Punktes auf der Oberfläche einer Kugel mit Mittelpunkt im Ursprung und Radius. kugelpunkt@länge_, breite_d := 8Cos@breiteD Cos@längeD, Cos@breiteD Sin@längeD, Sin@breiteD< Das folgende Bild eigt eine Kurve, die eine Kugel schneckenförmig 5-mal umrundet und sich dabei vom Südpol um Nordpol bewegt.

11 vl6-evaluated.nb φ, φd, 8φ, π ê 2, π ê 2<, PlotPoints 2D; ParametricPlot3D stellt Kurven und Flächen im 3 dar. bd Ø 3 werden als Kurve, bd dd Ø 3 als Fläche dargestellt, wie das folgende Beispiel eigt. Mathematica unterscheidet die beiden Fälle e nachdem ob ein Wertebereich für eine weite Variable angegeben ist. ParametricPlot3D@kugelpunkt@länge, breited, 8länge,. 2 π,.7 2 π<, 8breite, π ê 2, π ê 2<, PlotPoints 85, 4<D;

Matrizen, Determinanten, lineare Gleichungssysteme

Matrizen, Determinanten, lineare Gleichungssysteme Matrizen, Determinanten, lineare Gleichungssysteme 1 Matrizen Definition 1. Eine Matrix A vom Typ m n (oder eine m n Matrix, A R m n oder A C m n ) ist ein rechteckiges Zahlenschema mit m Zeilen und n

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Brückenkurs Mathematik 6.10. - 17.10. Vorlesung 3 Geometrie Doris Bohnet Universität Hamburg - Department Mathematik Mi 8.10.2008 1 Geometrie des Dreiecks 2 Vektoren Länge eines Vektors Skalarprodukt Kreuzprodukt

Mehr

Grundsätzliches Rechnen mit Matrizen Anwendungen. Matrizenrechnung. Fakultät Grundlagen. Juli 2015

Grundsätzliches Rechnen mit Matrizen Anwendungen. Matrizenrechnung. Fakultät Grundlagen. Juli 2015 Matrizenrechnung Fakultät Grundlagen Juli 2015 Fakultät Grundlagen Matrizenrechnung Übersicht Grundsätzliches 1 Grundsätzliches Matrixbegriff Rechenregeln Spezielle Matrizen 2 Matrizenrechnung Determinanten

Mehr

Mathematischer Vorkurs Lösungen zum Übungsblatt 5

Mathematischer Vorkurs Lösungen zum Übungsblatt 5 Mathematischer Vorkurs Lösungen zum Übungsblatt 5 Prof. Dr. Norbert Pietralla/Sommersemester 2012 c.v.meister@skmail.ikp.physik.tu-darmstadt.de Aufgabe 1: Berechnen Sie den Abstand d der Punkte P 1 und

Mehr

Besteht eine Matrix nur aus einer Spalte (Zeile), so spricht man auch von einem Spaltenvektor (Zeilenvektor)

Besteht eine Matrix nur aus einer Spalte (Zeile), so spricht man auch von einem Spaltenvektor (Zeilenvektor) Matrizenrechnung. Matrizen Matrizen sind bereits im Kapitel Lineare Gleichungssysteme aufgetreten. Unter einer (m n) -Matrix A verstehen wir ein rechteckiges Zahlenschema mit m Zeilen und n Spalten. Der.

Mehr

Vorbereitungskurs Mathematik zum Sommersemester 2011 Tag 7

Vorbereitungskurs Mathematik zum Sommersemester 2011 Tag 7 Vorbereitungskurs Mathematik zum Sommersemester 2011 Tag 7 Timo Stöcker Erstsemestereinführung Informatik TU Dortmund 22. März 2011 Heute Themen Lineare Gleichungssysteme Matrizen Timo Stöcker https://fsinfo.cs.tu-dortmund.de/studis/ese/vorkurse/mathe

Mehr

Mögliche Prüfungsfragen zu VO Mathematische Software

Mögliche Prüfungsfragen zu VO Mathematische Software Mögliche Prüfungsfragen zu VO Mathematische Software SS 2009 Der Prüfungsstoff umfasst alles, was in der Vorlesung vorgetragen wurde. Die folgende Liste soll Ihnen bei der Vorbereitung helfen. Bei der

Mehr

37 Gauß-Algorithmus und lineare Gleichungssysteme

37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Motivation Lineare Gleichungssysteme treten in einer Vielzahl von Anwendungen auf und müssen gelöst werden In Abschnitt 355 haben wir gesehen, dass

Mehr

Prof. Dr. G. Wagner Ingenieurmathematik Begleittext Seite 1

Prof. Dr. G. Wagner Ingenieurmathematik Begleittext Seite 1 Prof. Dr. G. Wagner Ingenieurmathematik Begleittext Seite 1 Kapitel 3 Lineare Gleichungssysteme 3.1. Einleitung Beispiel 1 3 Kinder haben eingekauft. Franz hat 4 Lakritzen, 2 Schokoriegel und 5 Kaugummis

Mehr

Vorkurs Mathematik B

Vorkurs Mathematik B Vorkurs Mathematik B Dr. Thorsten Camps Fakultät für Mathematik TU Dortmund 20. September 2011 Definition (R n ) Wir definieren: 1 Der R 2 sei die Menge aller Punkte in der Ebene. Jeder Punkt wird in ein

Mehr

Mathematik für Wirtschaftswissenschaftler, WS 10/11 Musterlösungen zu Aufgabenblatt 11

Mathematik für Wirtschaftswissenschaftler, WS 10/11 Musterlösungen zu Aufgabenblatt 11 Mathematik für Wirtschaftswissenschaftler, WS / Musterlösungen zu Aufgabenblatt Aufgabe 76: Bestimmen Sie mittels Gauß-Elimination die allgemeine Lösung der folgenden linearen Gleichungssysteme Ax b: a)

Mehr

13. Klasse TOP 10 Grundwissen 13 Geradengleichungen 01

13. Klasse TOP 10 Grundwissen 13 Geradengleichungen 01 . Klasse TOP 0 Grundwissen Geradengleichungen 0 Punkt-Richtungs-Form Geraden sind gegeben durch einen Aufpunkt A (mit Ortsvektor a) auf der Geraden und einen Richtungsvektor u: x = a + λ u, λ IR. (Interpretation:

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 7

Technische Universität München Zentrum Mathematik. Übungsblatt 7 Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 7 Hausaufgaben Aufgabe 7. Für n N ist die Matrix-Exponentialfunktion

Mehr

Analytische Geometrie, Vektorund Matrixrechnung

Analytische Geometrie, Vektorund Matrixrechnung Kapitel 1 Analytische Geometrie, Vektorund Matrixrechnung 11 Koordinatensysteme Eine Gerade, eine Ebene oder den Anschauungsraum beschreibt man durch Koordinatensysteme 111 Was sind Koordinatensysteme?

Mehr

1 Definition. 2 Besondere Typen. 2.1 Vektoren und transponieren A = 2.2 Quadratische Matrix. 2.3 Diagonalmatrix. 2.

1 Definition. 2 Besondere Typen. 2.1 Vektoren und transponieren A = 2.2 Quadratische Matrix. 2.3 Diagonalmatrix. 2. Definition Die rechteckige Anordnung von m n Elementen a ij in m Zeilen und n Spalten heißt m n- Matrix. Gewöhnlich handelt es sich bei den Elementen a ij der Matrix um reelle Zahlen. Man nennt das Paar

Mehr

9.2 Invertierbare Matrizen

9.2 Invertierbare Matrizen 34 9.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

Mathematische Erfrischungen III - Vektoren und Matrizen

Mathematische Erfrischungen III - Vektoren und Matrizen Signalverarbeitung und Musikalische Akustik - MuWi UHH WS 06/07 Mathematische Erfrischungen III - Vektoren und Matrizen Universität Hamburg Vektoren entstanden aus dem Wunsch, u.a. Bewegungen, Verschiebungen

Mehr

(Allgemeine) Vektorräume (Teschl/Teschl 9)

(Allgemeine) Vektorräume (Teschl/Teschl 9) (Allgemeine) Vektorräume (Teschl/Teschl 9) Sei K ein beliebiger Körper. Ein Vektorraum über K ist eine (nichtleere) Menge V, auf der zwei Operationen deniert sind, die bestimmten Rechenregeln genügen:

Mehr

Kapitel VI. Euklidische Geometrie

Kapitel VI. Euklidische Geometrie Kapitel VI. Euklidische Geometrie 1 Abstände und Lote Wiederholung aus Kapitel IV. Wir versehen R n mit dem Standard Skalarprodukt x 1 y 1.,. := x 1 y 1 +... + x n y n x n y n Es gilt für u, v, w R n und

Mehr

Länge eines Vektors und Abstand von zwei Punkten 2. 4 = 6. Skalarprodukt und Winkel zwischen Vektoren

Länge eines Vektors und Abstand von zwei Punkten 2. 4 = 6. Skalarprodukt und Winkel zwischen Vektoren Länge eines Vektors und Abstand von zwei Punkten Aufgabe Bestimme die Länge des Vektors x. Die Länge beträgt: x ( ) =. Skalarprodukt und Winkel zwischen Vektoren Aufgabe Es sind die Eckpunkte A(; ), B(

Mehr

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2015/2016

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2015/2016 Aussagenlogik 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl B: a + b < a + b, a, b R C: 2 ist eine Primzahl D: 7 7 E: a + 1 b, a, b R F: 3 ist Teiler von 9 Bestimmen Sie den Wahrheitswert

Mehr

Zusammenfassung Mathe III. Themenschwerpunkt 3: Analytische Geometrie / lineare Algebra (ean) 1. Rechenregeln mit Vektoren

Zusammenfassung Mathe III. Themenschwerpunkt 3: Analytische Geometrie / lineare Algebra (ean) 1. Rechenregeln mit Vektoren Zusammenfassung Mathe III Themenschwerpunkt 3: Analytische Geometrie / lineare Algebra (ean) 1. Rechenregeln mit Vektoren Definition: (1) anschaulich: Ein Vektor ist eine direkt gerichtete Verbindung zweier

Mehr

Matrizen und Determinanten, Lineare Gleichungssysteme, Vektorrechnung, Analytische Geometrie

Matrizen und Determinanten, Lineare Gleichungssysteme, Vektorrechnung, Analytische Geometrie Regina Gellrich Carsten Gellrich Matrizen und Determinanten, Lineare Gleichungssysteme, Vektorrechnung, Analytische Geometrie Mit zahlreichen Abbildungen, Aufgaben mit Lösungen und durchgerechneten Beispielen

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Mathematik I für Biologen, Geowissenschaftler und Geoökologen 28. November 2011 Definition Beispiel: Wassermengen und Konzentrationen in einem Fluss Beispiel Zeilenstufenform Beispiel (Fortsetzung) Anhang

Mehr

Mathematik Analytische Geometrie

Mathematik Analytische Geometrie Mathematik Analytische Geometrie Grundlagen:. Das -Dimensionale kartesische Koordinatensystem: x x x. Vektoren und Ortsvektoren: a x = x x ist ein Vektor, der eine Verschiebung um x -Einheiten in x-richtung,

Mehr

Definitionen. Merkblatt lineare Algebra. affiner Teilraum Menge, die durch Addition eines Vektors v 0 zu allen Vektoren eines Vektorraumes V entsteht

Definitionen. Merkblatt lineare Algebra. affiner Teilraum Menge, die durch Addition eines Vektors v 0 zu allen Vektoren eines Vektorraumes V entsteht Seite 1 Definitionen affiner Teilraum Menge, die durch Addition eines Vektors v 0 zu allen Vektoren eines Vektorraumes V entsteht ähnliche Matrizen Matrizen, die das gleiche charakteristische Polynom haben

Mehr

(x 1. Vektoren. g: x = p + r u. p r (u1. x 2. u 2. p 2

(x 1. Vektoren. g: x = p + r u. p r (u1. x 2. u 2. p 2 Vektoren Mit der Vektorrechnung werden oft geometrische Probleme gelöst. Wenn irgendwelche Aufgabenstellungen geometrisch darstellbar sind, z.b. Flugbahnen oder Abstandsberechnungen, dann können sie mit

Mehr

Analytische Geometrie mit dem Voyage 1

Analytische Geometrie mit dem Voyage 1 Analytische Geometrie mit dem Voyage. Vektoren Vektoren lassen sich definieren in eckigen Klammern. Setzt man ein Semikolon zwischen die einzelnen Komponenten, so ergibt sich ein Spaltenvektor. Ein Spaltenvektor

Mehr

7.3 Lorentz Transformation

7.3 Lorentz Transformation 26 KAPITEL 7. SPEZIELLE RELATIVITÄTSTHEORIE 7.3 Lorent Transformation In diesem Abschnitt sollen die Transformationen im 4-dimensionalen Minkowski Raum betrachtet werden. Dabei wollen wir uns auf solche

Mehr

Vektorräume und Rang einer Matrix

Vektorräume und Rang einer Matrix Universität Basel Wirtschaftswissenschaftliches Zentrum Vektorräume und Rang einer Matrix Dr. Thomas Zehrt Inhalt:. Lineare Unabhängigkeit 2. Vektorräume und Basen 3. Basen von R n 4. Der Rang und Rangbestimmung

Mehr

( ) Lineare Gleichungssysteme

( ) Lineare Gleichungssysteme 102 III. LINEARE ALGEBRA Aufgabe 13.37 Berechne die Eigenwerte der folgenden Matrizen: ( ) 1 1 0 1 1 2 0 3 0 0, 2 1 1 1 2 1. 1 1 0 3 Aufgabe 13.38 Überprüfe, ob die folgenden symmetrischen Matrizen positiv

Mehr

3. Übungsblatt Aufgaben mit Lösungen

3. Übungsblatt Aufgaben mit Lösungen . Übungsblatt Aufgaben mit Lösungen Aufgabe : Gegeben sind zwei Teilmengen von R : E := {x R : x x = }, und F ist eine Ebene durch die Punkte A = ( ), B = ( ) und C = ( ). (a) Stellen Sie diese Mengen

Mehr

1 0 1, V 3 = M, und λ A = λa

1 0 1, V 3 = M, und λ A = λa Aufgabe 57. Magische Quadrate Eine reelle 3 3-Matrix A = a 11 a 12 a 13 a 21 a 22 a 23 heißt magisches Quadrat, falls alle Zeilensummen, alle Spaltensummen und die beiden Diagonalsummen a 11 + a 22 + a

Mehr

3D-Transformationen. Kapitel Translation Skalierung

3D-Transformationen. Kapitel Translation Skalierung Kapitel 13 3D-Transformationen Wie im weidimensionalen Fall, werden die Definitionspunkte der Objekte als Spaltenvektoren mit homogener Koordinate geschrieben. Die notwendigen Transformationen werden wieder

Mehr

Kurs über Lineare Gleichungssysteme. PD Dr. Karin Halupczok

Kurs über Lineare Gleichungssysteme. PD Dr. Karin Halupczok Kurs über Lineare Gleichungssysteme PD Dr. Karin Halupczok Mathematisches Institut Albert-Ludwigs-Universität Freiburg http://home.mathematik.unifreiburg.de/halupczok/diverses.html karin.halupczok@math.uni-freiburg.de

Mehr

Mathematik 1. Inhaltsverzeichnis. Prof. Dr. K. Melzer. karin.melzer@hs-esslingen.de http://www.hs-esslingen.de/de/mitarbeiter/karin-melzer.

Mathematik 1. Inhaltsverzeichnis. Prof. Dr. K. Melzer. karin.melzer@hs-esslingen.de http://www.hs-esslingen.de/de/mitarbeiter/karin-melzer. Mathematik 1 Prof Dr K Melzer karinmelzer@hs-esslingende http://wwwhs-esslingende/de/mitarbeiter/karin-melzerhtml Inhaltsverzeichnis 1 Matrizenrechnung 2 11 Matrixbegri 2 12 Spezielle Matrizen 3 13 Rechnen

Mehr

Inverse Matrix. 1-E Ma 1 Lubov Vassilevskaya

Inverse Matrix. 1-E Ma 1 Lubov Vassilevskaya Inverse Matrix -E Ma Lubov Vassilevskaya Inverse Matrix Eine n-reihige, quadratische Matrix heißt regulär, wenn ihre Determinante einen von Null verschiedenen Wert besitzt. Anderenfalls heißt sie singulär.

Mehr

Beispiele 1. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix (A

Beispiele 1. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix (A 133 e 1. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix 1 3 2 1 1 2 3 0. 1 3 2 1 2. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix 1 3 2 1 1 2 3 0. 1 3 2 1 Schritte des

Mehr

Geometrie. Bei der Addition von Vektoren erhält man einen Repräsentanten des Summenvektors +, indem man die Repräsentanten von aneinanderfügt:

Geometrie. Bei der Addition von Vektoren erhält man einen Repräsentanten des Summenvektors +, indem man die Repräsentanten von aneinanderfügt: Geometrie 1. Vektoren Die Menge aller zueinander parallelen, gleich langen und gleich gerichteten Pfeile werden als Vektor bezeichnet. Jeder einzelne Pfeil heißt Repräsentant des Vektors. Bei Ortsvektoren:

Mehr

7 Lineare Gleichungssysteme

7 Lineare Gleichungssysteme 118 7 Lineare Gleichungssysteme Lineare Gleichungssysteme treten in vielen mathematischen, aber auch naturwissenschaftlichen Problemen auf; zum Beispiel beim Lösen von Differentialgleichungen, bei Optimierungsaufgaben,

Mehr

Es wurde in der Vorlesung gezeigt, daß man die Matrixgleichung Ax=b auch in der Form

Es wurde in der Vorlesung gezeigt, daß man die Matrixgleichung Ax=b auch in der Form Gaußscher Algorithmus zur Lösung linearer Gleichungssysteme Wir gehen aus vom Gleichungssystem A=b. Dabei ist A M m n K, b K m. Gesucht werden ein oder alle Elemente K n, so daß obige Gleichung erfüllt

Mehr

5 Determinante, Spatprodukt, Vektorprodukt, inverse Matrix

5 Determinante, Spatprodukt, Vektorprodukt, inverse Matrix 5 Determinante, Spatprodukt, Vektorprodukt, inverse Matrix Jörn Loviscach Versionsstand: 20. März 2012, 16:02 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen in der Vorlesung. Videos dazu:

Mehr

Vorkurs Mathematik VEKTOREN

Vorkurs Mathematik VEKTOREN Vorkurs Mathematik 26 4 VEKTOREN Wie wahrscheinlich die verschiedenen Fälle genau sind, und was es für Unterscheidungskriterien gibt, sind Sachen die man in einem fortgeschrittenen Kurs untersuchen könnte,

Mehr

6. Übungsblatt zur Mathematik I für Maschinenbau

6. Übungsblatt zur Mathematik I für Maschinenbau Fachbereich Mathematik Prof. Dr. M. Joswig Dr. habil. Sören Kraußhar Dipl.-Math. Katja Kulas 6. Übungsblatt zur Mathematik I für Maschinenbau Gruppenübung WS 2/ 25..-.2. Aufgabe G (Lineare Gleichungssysteme)

Mehr

DEUTSCHE SCHULE MONTEVIDEO BIKULTURELLES DEUTSCH-URUGUAYISCHES ABITUR ( AUF SPANISCH )

DEUTSCHE SCHULE MONTEVIDEO BIKULTURELLES DEUTSCH-URUGUAYISCHES ABITUR ( AUF SPANISCH ) Grundlegende Bemerkungen : Der Begriff des Vektors wurde in den vergangenen Jahren im Geometrieunterricht eingeführt und das mathematische Modell des Vektors wurde vor allem auch im Physikunterricht schon

Mehr

Tutorium Mathematik II, M Lösungen

Tutorium Mathematik II, M Lösungen Tutorium Mathematik II, M Lösungen März 03 *Aufgabe Bestimmen Sie durch Hauptachsentransformation Lage und Typ der Kegelschnitte (a) 3x + 4x x + 3x 4x = 0, (b) 3x + 4x x + 3x 4x 6 = 0, (c) 3x + 4x x +

Mehr

Skript zur Vorlesung. Lineare Algebra. Prof. Dr.-Ing. Katina Warendorf. 2. Oktober 2014

Skript zur Vorlesung. Lineare Algebra. Prof. Dr.-Ing. Katina Warendorf. 2. Oktober 2014 Skript zur Vorlesung Prof. Dr.-Ing. Katina Warendorf 2. Oktober 2014 erstellt von Sindy Engel erweitert von Prof. Dr.-Ing. Katina Warendorf Inhaltsverzeichnis 1 Vektoren 4 1.1 Grundbegriffe.................................

Mehr

Lineare Algebra. I. Vektorräume. U. Stammbach. Professor an der ETH-Zürich

Lineare Algebra. I. Vektorräume. U. Stammbach. Professor an der ETH-Zürich Lineare Algebra U Stammbach Professor an der ETH-Zürich I Vektorräume Kapitel I Vektorräume 1 I1 Lineare Gleichungssysteme 1 I2 Beispiele von Vektorräumen 7 I3 Definition eines Vektorraumes 8 I4 Linearkombinationen,

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 25. April 2016 Die Dimensionsformel Definition 3.9 Sei f : V W eine lineare Abbildung zwischen zwei K-Vektorräumen. Der Kern

Mehr

Vektoren, Vektorräume

Vektoren, Vektorräume Vektoren, Vektorräume Roman Wienands Sommersemester 2010 Mathematisches Institut der Universität zu Köln Roman Wienands (Universität zu Köln) Mathematik II für Studierende der Chemie Sommersemester 2010

Mehr

Lösungen der Übungsaufgaben III

Lösungen der Übungsaufgaben III Mathematik für die ersten Semester (. Auflage): Lösungen der Übungsaufgaben III C. Zerbe, E. Ossner, W. Mückenheim 6. Man konstruiere die Winkelhalbierende eines beliebigen Winkels analog zur Konstruktion

Mehr

Definition, Rechenoperationen, Lineares Gleichungssystem

Definition, Rechenoperationen, Lineares Gleichungssystem Bau und Gestaltung, Mathematik, T. Borer Aufgaben / Aufgaben Matrizen Definition, Rechenoperationen, Lineares Gleichungssystem Lernziele - die Bezeichnung der Matrixelemente kennen und verstehen. - den

Mehr

6. Rechnen mit Matrizen.

6. Rechnen mit Matrizen. 6. Rechnen mit Matrizen. In dieser Vorlesung betrachten wir lineare Gleichungs System. Wir betrachten lineare Gleichungs Systeme wieder von zwei Gesichtspunkten her: dem angewandten Gesichtspunkt und dem

Mehr

1 Lineare Algebra. 1.1 Matrizen und Vektoren. Slide 3. Matrizen. Eine Matrix ist ein rechteckiges Zahlenschema

1 Lineare Algebra. 1.1 Matrizen und Vektoren. Slide 3. Matrizen. Eine Matrix ist ein rechteckiges Zahlenschema 1 Lineare Algebra 1.1 Matrizen und Vektoren Slide 3 Matrizen Eine Matrix ist ein rechteckiges Zahlenschema eine n m-matrix A besteht aus n Zeilen und m Spalten mit den Matrixelementen a ij, i=1...n und

Mehr

Vektorgeometrie. 1. Vektoren eingeben, Norm, Skalarprodukt. 2 In einem kartesischen Koordinatensystem sind die Vektoren. , v. und. gegeben.

Vektorgeometrie. 1. Vektoren eingeben, Norm, Skalarprodukt. 2 In einem kartesischen Koordinatensystem sind die Vektoren. , v. und. gegeben. Vektorgeometrie 1. Vektoren eingeben, Norm, Skalarprodukt 2 In einem kartesischen Koordinatensystem sind die Vektoren u 14, 5 11 10 v 2 und w 5 gegeben. 10 10 a) Zeigen Sie, dass die Vektoren einen Würfel

Mehr

Kapitel 15. Lösung linearer Gleichungssysteme

Kapitel 15. Lösung linearer Gleichungssysteme Kapitel 15. Lösung linearer Gleichungssysteme Lineare Gleichungssysteme Wir befassen uns nun mit der Lösung im allgemeinen nichthomogener linearer Gleichungssysteme in zweifacher Hinsicht. Wir studieren

Mehr

1 Vorlesungen: und Vektor Rechnung: 1.Teil

1 Vorlesungen: und Vektor Rechnung: 1.Teil 1 Vorlesungen: 4.10.005 und 31.10.005 Vektor Rechnung: 1.Teil Einige in der Physik auftretende Messgrößen sind durch eine einzige Zahl bestimmt: Temperatur T K Dichte kg/m 3 Leistung P Watt = J/s = kg

Mehr

Einführung in die Vektor- und Matrizenrechnung. Matrizen

Einführung in die Vektor- und Matrizenrechnung. Matrizen Einführung in die Vektor- und Matrizenrechnung Matrizen Definition einer Matrix Unter einer (reellen) m x n Matrix A versteht man ein rechteckiges Schema aus reellen Zahlen, die wie folgt angeordnet sind:

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG P. Grohs T. Welti F. Weber Herbstsemester 5 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie Aufgabe. Skalarprodukt und Orthogonalität.a) Bezüglich des euklidischen

Mehr

Aufgaben zum 2. Kapitel (Lineare Gleichungssysteme, Gauß-Verfahren)

Aufgaben zum 2. Kapitel (Lineare Gleichungssysteme, Gauß-Verfahren) also ist der Induktionsanfang geeigt Induktionsvoraussetung: Es gelte die Behauptung für ein beliebiges aber festes n N Induktionsschritt n n+: n+ n IV n +( ( + +( ( + n ( ( ++( ( +( ( + +( ( + n n (n+

Mehr

Übungsaufgaben Vektoren

Übungsaufgaben Vektoren Kallenrode, www.sotere.uos.de Übungsaufgaben Vektoren 1. Gegeben sind die Einheitsvektoren in Zylinderkoordinaten e ϱ = cos ϕ sin ϕ, e ϕ = sin ϕ cos ϕ und e z = 0 0 0 0 1 und Kugelkoordinaten: sin ϑ cos

Mehr

Serie 10: Inverse Matrix und Determinante

Serie 10: Inverse Matrix und Determinante D-ERDW, D-HEST, D-USYS Mathematik I HS 5 Dr Ana Cannas Serie 0: Inverse Matrix und Determinante Bemerkung: Die Aufgaben dieser Serie bilden den Fokus der Übungsgruppen vom und 5 November Gegeben sind die

Mehr

1 Vektoren, Vektorräume, Abstände: 2D

1 Vektoren, Vektorräume, Abstände: 2D Vektoren, Vektorräume, Astände: D Definition: Die Menge aller (geordneten Paare reeller Zahlen (oder allgemeiner: Elemente eines elieigen Körpers, als Spalten geschrieen, ezeichnen wir als Vektoren: R

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Eine Familie von Gleichungen der Form a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... + a 2n x n = b 2............ a m1 x 1 + a m2 x 2 +... + a mn x n = b m

Mehr

Lineare Gleichungssysteme - Grundlagen

Lineare Gleichungssysteme - Grundlagen Lineare Gleichungssysteme - Grundlagen Betrachtet wird ein System linearer Gleichungen (im deutschen Sprachraum: lineares Gleichungssystem mit m Gleichungen für n Unbekannte, m, n N. Gegeben sind m n Elemente

Mehr

KORREKTURANLEITUNGEN zum Testheft A1

KORREKTURANLEITUNGEN zum Testheft A1 Projekt Standardisierte schriftliche Reifeprüfung in Mathematik KORREKTURANLEITUNGEN zum Testheft A1 A1 Zahlen N Z Q R 0,03-6 π 3 10-3 1 Bemerkung: Die Aufgabe gilt nur dann als richtig gelöst, wenn alle

Mehr

10. Teil: Elemente der Linearen Algebra

10. Teil: Elemente der Linearen Algebra 0 Teil: Elemente der Linearen Algebra Skalare und Vektoren Manche physikalische Grössen, wie Temperatur T oder Masse m, erfordern zu ihrer Festlegung (oder Messung) nur die Angabe eines Zahlenwertes einer

Mehr

Lineare Algebra Übungen mit Lösungen

Lineare Algebra Übungen mit Lösungen Dr Andreas Maurischat Aachen 6 September 6 Lineare Algebra Übungen mit Lösungen Vorkurs Mathematik 6 RWTH Aachen Aufgaben um Kapitel (Lineare Gleichungssysteme Gauß-Verfahren Übung Aufgabe Überseten Sie

Mehr

Übungen zu Einführung in die Lineare Algebra und Geometrie

Übungen zu Einführung in die Lineare Algebra und Geometrie Übungen zu Einführung in die Lineare Algebra und Geometrie Andreas Cap Sommersemester 2010 Kapitel 1: Einleitung (1) Für a, b Z diskutiere analog zur Vorlesung das Lösungsverhalten der Gleichung ax = b

Mehr

Grundsätzliches Produkte Anwendungen in der Geometrie. Vektorrechnung. Fakultät Grundlagen. Juli 2015

Grundsätzliches Produkte Anwendungen in der Geometrie. Vektorrechnung. Fakultät Grundlagen. Juli 2015 Vektorrechnung Fakultät Grundlagen Juli 205 Fakultät Grundlagen Vektorrechnung Übersicht Grundsätzliches Grundsätzliches Vektorbegriff Algebraisierung der Vektorrechnung Betrag 2 Skalarprodukt Vektorprodukt

Mehr

d 2 b 2 c 2 d 3 b 3 c 3 , D a 1 d 1 c 1 v 3 Definiton (Verbindungsvektor): Zwei Punkte A(a 1 a 2 a 3 ) und B(b 1 b 2 b 3 ) legen den Vektor b 1 a 1

d 2 b 2 c 2 d 3 b 3 c 3 , D a 1 d 1 c 1 v 3 Definiton (Verbindungsvektor): Zwei Punkte A(a 1 a 2 a 3 ) und B(b 1 b 2 b 3 ) legen den Vektor b 1 a 1 2008/2009 Das Wichtigste in Kürze Klasse 3 Lineare Gleichungssysteme und Determinanten Definiton (Lineare Gleichungssysteme: Lineare Gleichungssysteme löst man entweder mit dem Gauß-Algorithmus oder nach

Mehr

2 Funktionen mehrerer Veränderlicher

2 Funktionen mehrerer Veränderlicher 2 Funktionen mehrerer Veränderlicher 4 2 Funktionen mehrerer Veränderlicher Wir betrachten nun Funktionen, die auf einer Teilmenge des R n definiert sind. Wir betrachten eine Funktion f, deren Definitionsbereich

Mehr

II. Lineare Gleichungssysteme. 10 Matrizen und Vektoren. 52 II. Lineare Gleichungssysteme

II. Lineare Gleichungssysteme. 10 Matrizen und Vektoren. 52 II. Lineare Gleichungssysteme 52 II Lineare Gleichungssysteme II Lineare Gleichungssysteme 10 Matrizen und Vektoren 52 11 Der Gaußsche Algorithmus 58 12 Basen, Dimension und Rang 62 13 Reguläre Matrizen 66 14 Determinanten 69 15 Skalarprodukte

Mehr

Aufgabensammlung aus Mathematik 2 UMIT, SS 2010, Version vom 7. Mai 2010

Aufgabensammlung aus Mathematik 2 UMIT, SS 2010, Version vom 7. Mai 2010 Aufgabensammlung aus Mathematik 2 UMIT, SS 2, Version vom 7. Mai 2 I Aufgabe I Teschl / K 3 Zerlegen Sie die Zahl 8 N in ihre Primfaktoren. Aufgabe II Teschl / K 3 Gegeben sind die natürliche Zahl 7 und

Mehr

Formelsammlung Mathematik Grundkurs Inhalt

Formelsammlung Mathematik Grundkurs Inhalt Formelsammlung Mathematik Grundkurs Inhalt Inhalt...1 Trigonometrie Grundlagen... Vektoren...3 Skalarprodukt...4 Geraden...5 Abstandsberechnungen...6 Ebenen...7 Lineare Gleichungssysteme (LGS)...8 Gauß'sches

Mehr

10:Exkurs MATLAB / Octave

10:Exkurs MATLAB / Octave 10:Exkurs MATLAB / Octave MATLAB (bzw. Octave als freie Version) ist eine numerische Berechnungsumgebung wurde vorrangig zum Rechnen mit Vektoren und Matrizen entworfen ist interaktiv benutzbar, vergleichbar

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Sei K ein Körper, a ij K für 1 i m, 1 j n. Weiters seien b 1,..., b m K. Dann heißt a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... + a 2n x n = b 2... a m1

Mehr

Fachhochschule Südwestfalen Wir geben Impulse. Vektorrechnung in Octave

Fachhochschule Südwestfalen Wir geben Impulse. Vektorrechnung in Octave Fachhochschule Südwestfalen Wir geben Impulse Vektorrechnung in Octave Inhalt Erzeugung von Vektoren Zugriff auf Vektorelemente Addition und Subtraktion von Vektoren Betrag eines Vektors Berechnung des

Mehr

00. Einiges zum Vektorraum R n

00. Einiges zum Vektorraum R n 00. Einiges zum Vektorraum R n In diesem einleitenden Kapitel werden die in der LV Einführung in die mathematischen Methoden erwähnten Konzepte über Vektoren (im R 2 und R 3 ) im Rahmen des n-dimensionalen

Mehr

Geometrie. 1 Vektorielle analytische Geometrie der Ebene, Kegelschnitte

Geometrie. 1 Vektorielle analytische Geometrie der Ebene, Kegelschnitte Geometrie Geometrie W. Kuhlisch Brückenkurs 206. Vektorrechnung und analytische Geometrie der Ebene, Kegelschnitte 2. Vektorrechnung und analytische Geometrie des Raumes, Anwendungen in der Geometrie,

Mehr

Anleitung zu Blatt 4 Differentialgleichungen I für Studierende der Ingenieurwissenschaften

Anleitung zu Blatt 4 Differentialgleichungen I für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe / Dr Hanna Peywand Kiani 722 Anleitung zu Blatt 4 Differentialgleichungen I für Studierende der Ingenieurwissenschaften Lineare Differentialgleichungssysteme,

Mehr

Inhaltsverzeichnis Bausteine Analytische Geometrie

Inhaltsverzeichnis Bausteine Analytische Geometrie Graf-Zeppelin-Gmnasium Bausteine Analtische Geometrie Inhaltsvereichnis Bausteine Analtische Geometrie Umgang mit Vektoren1 Länge von Vektoren1 Winkel φ wischen wei Vektoren1 Normale u wei (linear unabhängigen)

Mehr

3 Elementare Umformung von linearen Gleichungssystemen und Matrizen

3 Elementare Umformung von linearen Gleichungssystemen und Matrizen 3 Elementare Umformung von linearen Gleichungssystemen und Matrizen Beispiel 1: Betrachte das Gleichungssystem x 1 + x 2 + x 3 = 2 2x 1 + 4x 2 + 3x 3 = 1 3x 1 x 2 + 4x 3 = 7 Wir formen das GLS so lange

Mehr

4.13. Permutationen. Definition. Eine Permutation der Elementen {1,..., n} ist eine bijektive Abbildung

4.13. Permutationen. Definition. Eine Permutation der Elementen {1,..., n} ist eine bijektive Abbildung 43 Permutationen Definition Eine Permutation der Elementen {,, n} ist eine bijektive Abbildung σ : {,,n} {,,n} Es ist leicht zu sehen, dass die Hintereinanderführung zweier Permutationen ergibt wieder

Mehr

4.4. Rang und Inversion einer Matrix

4.4. Rang und Inversion einer Matrix 44 Rang und Inversion einer Matrix Der Rang einer Matrix ist die Dimension ihres Zeilenraumes also die Maximalzahl linear unabhängiger Zeilen Daß der Rang sich bei elementaren Zeilenumformungen nicht ändert

Mehr

O A B. Ableitung der Winkelfunktionen

O A B. Ableitung der Winkelfunktionen Ableitung der Winkelfunktionen Das Verständnis der Herleitung der Ableitung der Winkelfunktionen sett einiges an Mittelstufenkenntnissen voraus; das meiste davon wird häufig im Unterricht geschlabbert

Mehr

Vorkurs Mathematik Übungen zu Komplexen Zahlen

Vorkurs Mathematik Übungen zu Komplexen Zahlen Vorkurs Mathematik Übungen zu Komplexen Zahlen Komplexe Zahlen Koordinatenwechsel Aufgabe. Zeichnen Sie die folgende Zahlen zunächst in ein (kartesisches) Koordinatensystem. Bestimmen Sie dann die Polarkoordinaten

Mehr

Definition 7.1. Der Coxeter Graph zu W ist der ungerichtete gewichtete Graph Γ W = (V, E), mit Eckenmenge V und Kantenmenge E, gegeben durch V = und

Definition 7.1. Der Coxeter Graph zu W ist der ungerichtete gewichtete Graph Γ W = (V, E), mit Eckenmenge V und Kantenmenge E, gegeben durch V = und 7. Coxeter Graphen Um die endlichen Spiegelungsgruppen zu klassifizieren, wollen wir ihnen nun Graphen zuordnen, die die Gruppen bis auf Isomorphie eindeutig bestimmen. Im Folgenden sei wie vorher Π Φ

Mehr

Kapitel 2: Mathematische Grundlagen

Kapitel 2: Mathematische Grundlagen [ Computeranimation ] Kapitel 2: Mathematische Grundlagen Prof. Dr. Stefan M. Grünvogel stefan.gruenvogel@fh-koeln.de Institut für Medien- und Phototechnik Fachhochschule Köln 2. Mathematische Grundlagen

Mehr

Vektorrechnung im Raum - 3 Übungsbeispiele

Vektorrechnung im Raum - 3 Übungsbeispiele HTL Saalfelden Vektrorechnung im Raum Seite von 9 Wilfried Rohm Vektorrechnung im Raum - Übungsbeispiele Mathematische / Fachliche Inhalte in Stichworten: Skalares Produkt, Vektorielles Produkt, Geradengleichungen,

Mehr

Grundlagen der Vektorrechnung

Grundlagen der Vektorrechnung Grundlagen der Vektorrechnung Ein Vektor a ist eine geordnete Liste von n Zahlen Die Anzahl n dieser Zahlen wird als Dimension des Vektors bezeichnet Schreibweise: a a a R n Normale Reelle Zahlen nennt

Mehr

Lösungen zum 5. Aufgabenblatt

Lösungen zum 5. Aufgabenblatt SS 2012, Lineare Algebra 1 Die Lösungen wurden erstellt von: Isabel Voigt, Vanessa Lamm und Matthias Rehder Hinweis: Eine Liste der zur Bearbeitung verwendeten Literatur ist unter www.mathematiwelt.com

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme 1 Wiederholung Eine Menge von Vektoren a 1, a 2,, a k heisst linear unabhängig, wenn eine Linearkombination c 1 a 1 + c 2 a 2 + + c k a k = k c i a i (1) i=1 nur dann Null sein

Mehr

Menge der natürlichen Zahlen = {1, 2, 3,...} Aber: a + x = b ist nur lösbar, falls b > a

Menge der natürlichen Zahlen = {1, 2, 3,...} Aber: a + x = b ist nur lösbar, falls b > a Komplexe Zahlen. Bedarfsfrage Menge der natürlichen Zahlen = {,, 3,...} Aber: a + x = b ist nur lösbar, falls b > a (Peano-Axiome). Erweiterung: Menge der ganen Zahlen = {..., -3, -, -, 0,,, 3,...} a +

Mehr

Allgemeines Gleichungssystem mit zwei Gleichungen und zwei Variablen. Der erste Index bezeichnet die Nummer der Zeile, der zweite die der Spalte.

Allgemeines Gleichungssystem mit zwei Gleichungen und zwei Variablen. Der erste Index bezeichnet die Nummer der Zeile, der zweite die der Spalte. Lineare Gleichungssysteme. Einleitung Lineare Gleichungssysteme sind in der Theorie und in den Anwendungen ein wichtiges Thema. Theoretisch werden sie in der Linearen Algebra untersucht. Die Numerische

Mehr

Per Jensen VORLESUNGSSKRIPT MATHEMATIK B FÜR CHEMIKER

Per Jensen VORLESUNGSSKRIPT MATHEMATIK B FÜR CHEMIKER Per Jensen VORLESUNGSSKRIPT MATHEMATIK B FÜR CHEMIKER BERGISCHE UNIVERSITÄT WUPPERTAL THEORETISCHE CHEMIE Juli 2008 Inhaltsverzeichnis 1 Komplexe Zahlen............................. 5 1.1 Einführung............................

Mehr

Vektoren. 2.1 Darstellung. Kapitel Subtraktion und Addition

Vektoren. 2.1 Darstellung. Kapitel Subtraktion und Addition Kapitel 2 Vektoren In diesem Kapitel werden wir im wesentlichen die verschiedenen Formen der Darstellung von Vektoren in MatLab sowie Verknüpfungen zwischen Vektoren betrachten. In letzterem Punkt ist

Mehr

Installation. Arbeiten mit der MATLAB-Entwicklungsumgebung. MATLAB als Taschenrechner mit Matrix- und Vektorrechnung.

Installation. Arbeiten mit der MATLAB-Entwicklungsumgebung. MATLAB als Taschenrechner mit Matrix- und Vektorrechnung. Installation. Arbeiten mit der MATLAB-Entwicklungsumgebung. MATLAB als Taschenrechner mit Matrix- und Vektorrechnung. Die heutige Sitzung dient dem ersten Kennenlernen von MATLAB. Wir wollen MATLAB zuerst

Mehr

C orthogonal und haben die Länge 1). Dann ist die Länge von w = x u + y v gegeben durch w 2 Def. = w,w =

C orthogonal und haben die Länge 1). Dann ist die Länge von w = x u + y v gegeben durch w 2 Def. = w,w = 1 v Die Länge Def. Sei (V,, ) ein Euklidscher Vektorraum. Für jeden Vektor v V heißt die Zahl v,v die Länge von v und wird v bezeichnet. Bemerkung. Die Länge des Vektors ist wohldefiniert, da nach Definition

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2015

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2015 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2015 4. April 2016 Zu der Vorlesung wird ein Skript erstellt, welches auf meiner Homepage veröffentlicht wird: http://www.math.uni-hamburg.de/home/geschke/lehre.html

Mehr