5.3.3 Relaxationsverfahren: das SOR-Verfahren

Größe: px
Ab Seite anzeigen:

Download "5.3.3 Relaxationsverfahren: das SOR-Verfahren"

Transkript

1 53 Iteratve Lösungsverfahren für lneare Glechungssysteme 533 Relaxatonsverfahren: das SOR-Verfahren Das vorangehende Bespel zegt, dass Jacob- sowe Gauß-Sedel-Verfahren sehr langsam konvergeren Für de Modellmatrx A R n n stegt de Anzahl der notwendgen Iteratonsschrtte (zum Errechen ener vorgegebenen Genaugket) quadratsch O(n ) Obwohl jeder enzelne Schrtt sehr enfach st und äußerst effzent n O(n) Operatonen durchgeführt werden kann, snd dese Verfahren den drekten ncht überlegen Oft, etwa be Trdagonalsystemen snd drekte Löser mt enem Aufwand von O(n) sogar unschlagbar schneller Das SOR-Verfahren st ene Weterentwcklung der Gauß-Sedel-Iteraton durch de Enführung enes Relaxatonsparameters ω > 0 Das -te Element berechnet sch laut Satz 54 als: x k,gs = b a j x k,gs j a j x k j, =,, n a j< j> Zur Bestmmung der SOR-Lösung verwenden wr ncht unmttelbar dese Approxmaton, sondern führen enen Relaxatonsparameter ω > 0 en und defneren x k,gs x k,sor = ωx k,gs + ( ω)x k, =,, n als enen gewchteten Mttelwert zwschen Gauß-Sedel Iteraton und alter Approxmaton Deser Relaxatonsparameter ω kann nun verwendet werden, um de Konvergenzegenschaften der Iteraton wesentlch zu beenflussen Im Fall ω = ergbt sch gerade das Gauß-Sedel-Verfahren Im Fall ω < sprcht man von Unterrelaxaton, m Fall ω > von Überrelaxaton Das SOR-Verfahren steht für Successve Over Relaxaton, verwendet also Relaxatonsparameter ω > Successve (also schrttwese) bedeutet, dass de Relaxaton für jeden enzelnen Index angewendet wrd De Vorstellung zunächst de komplette Gauß-Sedel Approxmaton x k,gs zu berechnen und x k,sor = ωx k,gs + ( ω)x k zu bestmmen st falsch! Stattdessen defneren wr n Indexschrebwese: x k,sor = ω a In Vektorschrebwese glt: b j< a j x k,sor j a j x k j + ( ω)x k, =,, n j> x k,sor = ωd (b Lx k,sor Rx k ) + ( ω)x k Trennen der Terme nach x k,sor sowe x k ergbt also de Iteraton (D + ωl)x k,sor = ωb + [( ω)d ωr]x k, x k,sor = H ω x k + ω[d + ωl] b, H ω := [D + ωl] [( ω)d ωr] Deses Verfahren, mt der Iteratonsmatrx H ω passt weder n das Schema der allgemenen Fxpunktteratonen und gemäß Satz 5 hängt de Konvergenz des Verfahrens an ρ ω := spr(h ω ) <

2 5 Numersche Iteratonsverfahren De Schwergket be der Realserung des SOR-Verfahrens st de Bestmmung von guten Relaxatonsparametern, so dass de Matrx H ω enen möglchst klenen Spektralradus bestzt Es glt de erste Abschätzung: Satz 53 (Relaxatonsparameter des SOR-Verfahrens) Es se A R n n mt regulärem Dagonaltel D R n n Dann glt: Für spr(h ω ) < muss gelten ω (0, ) spr(h ω ) ω, ω R Bewes: Wr nutzen de Matrx-Darstellung der Iteraton: H ω = [D + ωl] [( ω)d ωr] = (I + w } D {{ L} ) D} {{ D} [( ω)i ω D} {{ R} ] =: L =I =: R De Matrzen L sowe R snd echte Dreecksmatrzen mt Nullen auf der Dagonale Dh, es glt det(i+ω L) = sowe det(( ω)i ω R) = ( ω) n, also Nun glt für de Determnante von H ω det(h ω ) = ( ω) n Für de Egenwerte λ von H ω glt folglch n = λ = det(h ω ) = ( ω) n spr(h ω ) = max n λ ( n λ = ) n = ω De letzte Abschätzung nutzt, dass das geometrsche Mttel von n Zahlen klener st, als das Maxmum Deser Satz lefert ene erste Abschätzung für de Wahl des Relaxatonsparameters, hlft jedoch noch ncht bem Bestmmen enes Optmums Für de wchtge Klasse von postv defnten Matrzen erhalten wr en sehr starkes Konvergenzresultat: Satz 53 (SOR-Verfahren für postv defnte Matrzen) Es se A R n n ene symmetrsch postv defnte Matrx Dann glt: spr(h ω ) < für 0 < ω < SOR-Verfahren und auch Gauß-Sedel-Verfahren snd konvergent Bewes: Sehe [9] Für de oben angegebene Modellmatrx st de Konvergenz von Jacob- sowe Gauß-Sedel- Iteraton auch theoretsch abgeschert Für dese Matrzen (und allgemen für de Klasse der konsstent geordneten Matrzen, sehe [9]) kann für de Jacob- J und Gauß-Sedel- Iteraton H der folgende Zusammenhang gezegt werden: spr(j) = spr(h ) (55)

3 53 Iteratve Lösungsverfahren für lneare Glechungssysteme spr omega Abbldung 5: Bestmmung des optmalen Relaxatonsparameters ω opt En Schrtt der Gauß-Sedel-Iteraton führt zu der glechen Fehlerredukton we zwe Schrtte der Jacob-Iteraton Deses Resultat fndet sch n Bespel 530 exakt weder Weter kann für dese Matrzen en Zusammenhang zwschen Egenwerten der Matrx H ω sowe den Egenwerten der Jacob-Matrx J hergeletet werden Angenommen, es glt ρ J := spr(j) < Dann glt für den Spektralradus der SOR-Matrx: ω ω ω opt, spr(h ω ) = 4 (ρ Jω + ρ J ω 4(ω )) ω ω opt Ist der Spektralradus der Matrx J bekannt, so kann der optmale Parameter ω opt kann als Schnttpunkt deser beden Funktonen gefunden werden, sehe Abbldung 5 Es glt: ω opt = ( ρ J ) (56) Bespel 533 (Modellmatrx mt SOR-Verfahren) Wr betrachten weder de verenfachte Modellmatrx aus Bespel 530 Für de Jacob-Matrx J = D (L + R) glt: J = ρ J Zunächst bestmmen wr de Egenwerte λ und Egenvektoren w für =,, n deser Matrx Herzu machen machen wr den Ansatz: ( ) πk w = (wk) k=,,n, wk = sn n + Dann glt mt dem Addtonstheoremen sn(x ± y) = sn(x) cos(y) ± cos(x) sn(y): (Jw ) k = w k + w k+ = ( ( ) ( )) π(k ) π(k + ) sn + sn n + n + = ( ) ( ( ) ( )) ( ) πk π π π sn cos + cos = wk cos n + n + n + n + 3

4 5 Numersche Iteratonsverfahren Man beachte, dass dese Glechung wegen w0 = w n+ = 0 auch für de erste und letzte Zele, dh für = sowe = n gültg st Es glt λ = cos(π/(n+)) und der betragsmäßg größte Egenwert von J wrd für = sowe = n angenommen Her glt mt der Rehenentwcklung des Kosnus: ( ) π π ( λ max = λ = cos = n + (n + ) + O (n + ) 4 Der größte Egenwert geht mt n quadratsch gegen Heraus bestmmen wr mt (56) für enge Schrttweten aus Bespel 530 de optmalen Relaxatonsparameter: ) n λ max (J) ω opt Schleßlch führen wr für dese Parameter das SOR-Verfahren mt optmalem Relaxatonsparameter durch und fassen de Ergebnsse n folgender Tabelle zusammen: Matrxgröße Jacob Gauß-Sedel SOR Schrtte Zet (sec) Schrtte Zet (sec) Schrtte Zet (sec) zu aufwendg De Anzahl der notwendgen Schrtte stegt bem SOR-Verfahren nur lnear n der Problemgröße Des st m Gegensatz zum quadratschen Ansteg bem Jacob- sowe bem Gauß- Sedel-Verfahren en wesentlcher Fortschrtt Da der Aufwand enes Schrttes des SOR- Verfahrens mt dem von Jacob- und Gauß-Sedel verglechbar st für das SOR-Verfahren zu enem Gesamtaufwand von nur O(n ) Operatonen Deses postve Resultat glt jedoch nur dann, wenn der optmale SOR-Parameter bekannt st 534 Praktsche Aspekte Wr fassen zunächst de bsher vorgestellten Verfahren zusammen: Bespel 534 (Enfache Iteratonsverfahren) Es glt n allgemener Darstellung x k+ = x k + C (b Ax k ) = (I C A) x k + C b }{{} =B 4

5 53 Iteratve Lösungsverfahren für lneare Glechungssysteme Ausgehend von der natürlchen Aufspaltung A = L + D + R sowe mt enem Relaxatonsparameter ω snd Rchardson-, Jacob-, Gauß-Sedel- sowe SOR-Verfahren gegeben als als: Gedämpftes Rchardson Verfahren: C = ωi, B = I ωa, Jacob-Verfahren: x k = ωb + x k ω C = D, x k = b a Gauß-Sedel-Verfahren n j=,j n j= a j x k j, =,, n B = D (L + R), a j x k, =,, n j C = [D + L], B = (D + L) R x k = b a j x k j a j x k j, =,, n a j< j> SOR-Verfahren (englsch Successve Over-Relaxaton): C = [D + ωl], B = [D + ωl] [( ω)d ωr], ω = ω opt (0, ), x k = ω b a j x k j a j x k j + ( ω)x k, =,, n a j< j> Zur enfachen Durchführung der Verfahren egnet sch stets de Index-Schrebwese De Matrx-Form dent nsbesondere der enfachen Charakterserung sowe zum Herleten von Konvergenzaussagen Als teratve Verfahren werden de Glechungssysteme nur m (praktsch rrelevanten) Fall n ) wrklch gelöst Üblcherwese muss de Iteraton nach ener bestmmten Anzahl von Schrtten abgebrochen werden Als Krterum für en Abbrechnen kann zunächst de 5

6 5 Numersche Iteratonsverfahren asymptotsche Konvergenzaussage aus Satz 5 herangezogen werden Mt ρ := spr(b) glt m Grenzfall: x k x ρ k x 0 x Und be vorgegebener Toleranz T OL kann de notwendge Zahl an Iteratonsschrtten abgeschätzt werden: ( ) x k x < TOL k = log T OL x 0 x log(ρ) De Toleranz TOL gbt her an, um welchen Faktor der Anfänglche Fehler x 0 x reduzert wrd Deses Vorgehen st n der praktschen Anwendung weng hlfrech, da der Spektralradus ρ der Iteratonsmatrx B m Allgemenen ncht bekannt st En alternatves allgemenes Krterum lefert de Abschätzung aus Satz 444 für den Defekt d k := b Ax k : x k x x cond(a) b Axk b Her entsteht jedoch en ähnlches Problem: de Kondtonszahl der Matrx A st m Allgemenen ncht bekannt, so kann auch kene quanttatv korrekte Abschätzung hergeletet werden Deser enfache Zusammenhang zwschen Defekt und Fehler kann jedoch genutzt werden um ene relatve Toleranz zu errechen: Bemerkung 535 (Relatve Toleranz) Be der Durchführung von teratven Lösungsverfahren werden als Abbruchskrterum oft relatve Toleranzen engesetzt De Iteraton wrd gestoppt, falls glt: x k x TOL x 0 x Als praktsch durchführbares Krterum werden de unbekannten Fehler durch de Defekte ersetzt: b Ax k TOL b Ax 0 6

4. Musterlösung. Problem 1: Kreuzende Schnitte **

4. Musterlösung. Problem 1: Kreuzende Schnitte ** Unverstät Karlsruhe Algorthmentechnk Fakultät für Informatk WS 05/06 ITI Wagner 4. Musterlösung Problem 1: Kreuzende Schntte ** Zwe Schntte (S, V \ S) und (T, V \ T ) n enem Graph G = (V, E) kreuzen sch,

Mehr

50 Matrixnormen und Eigenwertabschätzungen

50 Matrixnormen und Eigenwertabschätzungen 50 Matrxnormen und Egenwertabschätzungen 501 Motvaton De Berechnung der Egenwerte ener Matrx st aufwändg (vgl Kaptel 45, Kaptel 51) Kann man de Egenwerte ener Matrx mt gerngem Aufwand abschätzen? Des spelt

Mehr

2. Nullstellensuche. Eines der ältesten numerischen Probleme stellt die Bestimmung der Nullstellen einer Funktion f(x) = 0 dar.

2. Nullstellensuche. Eines der ältesten numerischen Probleme stellt die Bestimmung der Nullstellen einer Funktion f(x) = 0 dar. . Nullstellensuche Enes der ältesten numerschen Probleme stellt de Bestmmung der Nullstellen ener Funkton = dar. =c +c =c +c +c =Σc =c - sn 3 Für ene Gerade st das Problem trval, de Wurzel ener quadratschen

Mehr

1 Definition und Grundbegriffe

1 Definition und Grundbegriffe 1 Defnton und Grundbegrffe Defnton: Ene Glechung n der ene unbekannte Funkton y y und deren Abletungen bs zur n-ten Ordnung auftreten heßt gewöhnlche Dfferentalglechung n-ter Ordnung Möglche Formen snd:

Mehr

6. Modelle mit binären abhängigen Variablen

6. Modelle mit binären abhängigen Variablen 6. Modelle mt bnären abhänggen Varablen 6.1 Lneare Wahrschenlchketsmodelle Qualtatve Varablen: Bnäre Varablen: Dese Varablen haben genau zwe möglche Kategoren und nehmen deshalb genau zwe Werte an, nämlch

Mehr

Konkave und Konvexe Funktionen

Konkave und Konvexe Funktionen Konkave und Konvexe Funktonen Auch wenn es n der Wrtschaftstheore mest ncht möglch st, de Form enes funktonalen Zusammenhangs explzt anzugeben, so kann man doch n velen Stuatonen de Klasse der n Frage

Mehr

2 Lineare Iterationsverfahren

2 Lineare Iterationsverfahren 2 Lneare Iteratonsverfahren 2.1 Herletung und Konvergenz lnearer Iteratonsverfahren Um das Glechungssystem Ax = b teratv zu lösen, kann man en lneares Iteratonsverfahren (2.1) x k+1 = Mx k +c k 0, x 0

Mehr

3. Lineare Algebra (Teil 2)

3. Lineare Algebra (Teil 2) Mathematk I und II für Ingeneure (FB 8) Verson /704004 Lneare Algebra (Tel ) Parameterdarstellung ener Geraden Im folgenden betrachten wr Geraden m eukldschen Raum n, wobe uns hauptsächlch de Fälle n bzw

Mehr

18. Dynamisches Programmieren

18. Dynamisches Programmieren 8. Dynamsches Programmeren Dynamsche Programmerung we gerge Algorthmen ene Algorthmenmethode, um Optmerungsprobleme zu lösen. We Dvde&Conquer berechnet Dynamsche Programmerung Lösung enes Problems aus

Mehr

Ionenselektive Elektroden (Potentiometrie)

Ionenselektive Elektroden (Potentiometrie) III.4.1 Ionenselektve Elektroden (otentometre) Zelstellung des Versuches Ionenselektve Elektroden gestatten ene verhältnsmäßg enfache und schnelle Bestmmung von Ionenkonzentratonen n verschedenen Meden,

Mehr

Beschreibende Statistik Mittelwert

Beschreibende Statistik Mittelwert Beschrebende Statstk Mttelwert Unter dem arthmetschen Mttel (Mttelwert) x von n Zahlen verstehen wr: x = n = x = n (x +x +...+x n ) Desen Mttelwert untersuchen wr etwas genauer.. Zege für n = 3: (x x )

Mehr

Boost-Schaltwandler für Blitzgeräte

Boost-Schaltwandler für Blitzgeräte jean-claude.feltes@educaton.lu 1 Boost-Schaltwandler für Bltzgeräte In Bltzgeräten wrd en Schaltwandler benutzt um den Bltzkondensator auf ene Spannung von engen 100V zu laden. Oft werden dazu Sperrwandler

Mehr

Daten sind in Tabellenform gegeben durch die Eingabe von FORMELN können mit diesen Daten automatisierte Berechnungen durchgeführt werden.

Daten sind in Tabellenform gegeben durch die Eingabe von FORMELN können mit diesen Daten automatisierte Berechnungen durchgeführt werden. Ene kurze Enführung n EXCEL Daten snd n Tabellenform gegeben durch de Engabe von FORMELN können mt desen Daten automatserte Berechnungen durchgeführt werden. Menüleste Symbolleste Bearbetungszele aktve

Mehr

Funktionsgleichungen folgende Funktionsgleichungen aus der Vorlesung erhält. = e

Funktionsgleichungen folgende Funktionsgleichungen aus der Vorlesung erhält. = e Andere Darstellungsformen für de Ausfall- bzw. Überlebens-Wahrschenlchket der Webull-Vertelung snd we folgt: Ausfallwahrschenlchket: F ( t ) Überlebenswahrschenlchket: ( t ) = R = e e t t Dabe haben de

Mehr

Lineare Regression (1) - Einführung I -

Lineare Regression (1) - Einführung I - Lneare Regresson (1) - Enführung I - Mttels Regressonsanalysen und kompleeren, auf Regressonsanalysen aserenden Verfahren können schenar verschedene, jedoch nenander üerführare Fragen untersucht werden:

Mehr

FORMELSAMMLUNG STATISTIK (I)

FORMELSAMMLUNG STATISTIK (I) Statst I / B. Zegler Formelsammlng FORMELSAMMLUG STATISTIK (I) Statstsche Formeln, Defntonen nd Erläterngen A a X n qaltatves Mermal Mermalsasprägng qanttatves Mermal Mermalswert Anzahl der statstschen

Mehr

Seminar Analysis und Geometrie Professor Dr. Martin Schmidt - Markus Knopf - Jörg Zentgraf. - Fixpunktsatz von Schauder -

Seminar Analysis und Geometrie Professor Dr. Martin Schmidt - Markus Knopf - Jörg Zentgraf. - Fixpunktsatz von Schauder - Unverstät Mannhem Fakultät für Mathematk und Informatk Lehrstuhl für Mathematk III Semnar Analyss und Geometre Professor Dr. Martn Schmdt - Markus Knopf - Jörg Zentgraf - Fxpunktsatz von Schauder - Ncole

Mehr

wird auch Spannweite bzw. Variationsbreite genannt ist definiert als die Differenz zwischen dem größten und kleinsten Messwert einer Verteilung:

wird auch Spannweite bzw. Variationsbreite genannt ist definiert als die Differenz zwischen dem größten und kleinsten Messwert einer Verteilung: Streuungswerte: 1) Range (R) ab metrschem Messnveau ) Quartlabstand (QA) und mttlere Quartlabstand (MQA) ab metrschem Messnveau 3) Durchschnttlche Abwechung (AD) ab metrschem Messnveau 4) Varanz (s ) ab

Mehr

12 LK Ph / Gr Elektrische Leistung im Wechselstromkreis 1/5 31.01.2007. ω Additionstheorem: 2 sin 2 2

12 LK Ph / Gr Elektrische Leistung im Wechselstromkreis 1/5 31.01.2007. ω Additionstheorem: 2 sin 2 2 1 K Ph / Gr Elektrsche estng m Wechselstromkres 1/5 3101007 estng m Wechselstromkres a) Ohmscher Wderstand = ˆ ( ω ) ( t) = sn ( ω t) t sn t ˆ ˆ P t = t t = sn ω t Momentane estng 1 cos ( t) ˆ ω = Addtonstheorem:

Mehr

Nullstellen Suchen und Optimierung

Nullstellen Suchen und Optimierung Nullstellen Suchen und Optmerung Typsche Probleme: De optmale Bahnkurve De Mnmerung des Erwartungswertes ür den Hamltonan Wr möchten ene Funkton mnmeren oder mameren solch en Problem wrd Optmerung genannt!

Mehr

Polygonalisierung einer Kugel. Verfahren für die Polygonalisierung einer Kugel. Eldar Sultanow, Universität Potsdam, sultanow@gmail.com.

Polygonalisierung einer Kugel. Verfahren für die Polygonalisierung einer Kugel. Eldar Sultanow, Universität Potsdam, sultanow@gmail.com. Verfahren für de Polygonalserung ener Kugel Eldar Sultanow, Unverstät Potsdam, sultanow@gmal.com Abstract Ene Kugel kann durch mathematsche Funktonen beschreben werden. Man sprcht n desem Falle von ener

Mehr

Auswertung von Umfragen und Experimenten. Umgang mit Statistiken in Maturaarbeiten Realisierung der Auswertung mit Excel 07

Auswertung von Umfragen und Experimenten. Umgang mit Statistiken in Maturaarbeiten Realisierung der Auswertung mit Excel 07 Auswertung von Umfragen und Expermenten Umgang mt Statstken n Maturaarbeten Realserung der Auswertung mt Excel 07 3.Auflage Dese Broschüre hlft bem Verfassen und Betreuen von Maturaarbeten. De 3.Auflage

Mehr

Diskrete Mathematik 1 WS 2008/09

Diskrete Mathematik 1 WS 2008/09 Ruhr-Unverstät Bochum Lehrstuhl für Kryptologe und IT-Scherhet Prof. Dr. Alexander May M. Rtzenhofen, M. Mansour Al Sawad, A. Meurer Lösungsblatt zur Vorlesung Dskrete Mathematk 1 WS 2008/09 Blatt 7 /

Mehr

Übungen zur Vorlesung Physikalische Chemie 2 (B. Sc.) Lösungsvorschlag zu Blatt 6

Übungen zur Vorlesung Physikalische Chemie 2 (B. Sc.) Lösungsvorschlag zu Blatt 6 Übungen zur Vorlesung Physkalsche Chee B. Sc. ösungsvorschlag zu Blatt 6 Prof. Dr. Norbert Happ Jens Träger Wnterseester 7/8.. 7 Aufgabe De Wellenfunkton des haronschen Oszllators hat de For Ψ v N v H

Mehr

6.5. Rückgewinnung des Zeitvorgangs: Rolle der Pole und Nullstellen

6.5. Rückgewinnung des Zeitvorgangs: Rolle der Pole und Nullstellen 196 6.5. Rückgewnnung des Zetvorgangs: Rolle der Pole und Nullstellen We n 6.2. und 6.. gezegt wurde, st de Übertragungsfunkton G( enes lnearen zetnvaranten Systems mt n unabhänggen Spechern ene gebrochen

Mehr

Methoden der innerbetrieblichen Leistungsverrechnung

Methoden der innerbetrieblichen Leistungsverrechnung Methoden der nnerbetreblchen Lestungsverrechnung In der nnerbetreblchen Lestungsverrechnung werden de Gemenosten der Hlfsostenstellen auf de Hauptostenstellen übertragen. Grundlage dafür snd de von den

Mehr

Beschreibung des Zusammenhangs zweier metrischer Merkmale. Streudiagramme Korrelationskoeffizienten Regression

Beschreibung des Zusammenhangs zweier metrischer Merkmale. Streudiagramme Korrelationskoeffizienten Regression Beschrebung des Zusammenhangs zweer metrscher Merkmale Streudagramme Korrelatonskoeffzenten Regresson Alter und Gewcht be Kndern bs 36 Monaten Knd Monate Gewcht 9 9 5 8 3 4 7.5 4 3 6 5 3 6 4 3.5 7 35 5

Mehr

Physikalisches Anfängerpraktikum Teil 2 Versuch PII 33: Spezifische Wärmekapazität fester Körper Auswertung

Physikalisches Anfängerpraktikum Teil 2 Versuch PII 33: Spezifische Wärmekapazität fester Körper Auswertung Physkalsches Anfängerpraktkum Tel 2 Versuch PII 33: Spezfsche Wärmekapaztät fester Körper Auswertung Gruppe M-4: Marc A. Donges , 060028 Tanja Pfster, 204846 2005 07 spezfsche Wärmekapaztäten.

Mehr

Flußnetzwerke - Strukturbildung in der natürlichen Umwelt -

Flußnetzwerke - Strukturbildung in der natürlichen Umwelt - Flußnetzwerke - Strukturbldung n der natürlchen Umwelt - Volkhard Nordmeer, Claus Zeger und Hans Joachm Schlchtng Unverstät - Gesamthochschule Essen Das wohl bekannteste und größte exsterende natürlche

Mehr

Statistik und Wahrscheinlichkeit

Statistik und Wahrscheinlichkeit Regeln der Wahrschenlchketsrechnung tatstk und Wahrschenlchket Regeln der Wahrschenlchketsrechnung Relatve Häufgket n nt := Eregnsalgebra Eregnsraum oder scheres Eregns und n := 00 Wahrschenlchket Eregnsse

Mehr

Neuronale Netze. M. Gruber (1) ausgeloste Reiz ist x (1) = (1) (s (1) ) mit (1) (s) = 1 sgn(s 1 ) sgn(s 2 ) T. .

Neuronale Netze. M. Gruber (1) ausgeloste Reiz ist x (1) = (1) (s (1) ) mit (1) (s) = 1 sgn(s 1 ) sgn(s 2 ) T. . Neuronale Netze M. Gruber 7.11.015 Begnnen wr mt enem Bespel. Bespel 1 Wr konstrueren enen Klasskator auf der Menge X = [ 1; 1], dessen Wrkung man n Abb.1 rechts sehen kann. Auf der blauen Telmenge soll

Mehr

Standardnormalverteilung / z-transformation

Standardnormalverteilung / z-transformation Standardnormalvertelung / -Transformaton Unter den unendlch velen Normalvertelungen gbt es ene Normalvertelung, de sch dadurch ausgeechnet st, dass se enen Erwartungswert von µ 0 und ene Streuung von σ

Mehr

NSt. Der Wert für: x= +1 liegt, erkennbar an dem zugehörigen Funktionswert, der gesuchten Nullstelle näher.

NSt. Der Wert für: x= +1 liegt, erkennbar an dem zugehörigen Funktionswert, der gesuchten Nullstelle näher. PV - Hausaugabe Nr. 7.. Berechnen Se eakt und verglechen Se de Werte ür de Nullstelle, de mttels dem Verahren von Newton, der Regula als und ener Mttelung zu erhalten snd von der! Funkton: ( ) Lösungs

Mehr

Grundlagen der makroökonomischen Analyse kleiner offener Volkswirtschaften

Grundlagen der makroökonomischen Analyse kleiner offener Volkswirtschaften Bassmodul Makroökonomk /W 2010 Grundlagen der makroökonomschen Analyse klener offener Volkswrtschaften Terms of Trade und Wechselkurs Es se en sogenannter Fall des klenen Landes zu betrachten; d.h., de

Mehr

6 Wandtafeln. 6.3 Berechnung der Kräfte und des Schubflusses auf Wandtafeln. 6.3.1 Allgemeines

6 Wandtafeln. 6.3 Berechnung der Kräfte und des Schubflusses auf Wandtafeln. 6.3.1 Allgemeines 6 Wandtafeln 6.3 Berechnung der Kräfte und des Schubflusses auf Wandtafeln 6.3.1 Allgemenes Be der Berechnung der auf de enzelnen Wandtafeln entfallenden Horzontalkräfte wrd ene starre Deckenschebe angenommen.

Mehr

Wir betrachten in diesem Abschnitt Matrixspiele in der Maximierungsform, also endliche 2 Personen Nullsummenspiele der Gestalt

Wir betrachten in diesem Abschnitt Matrixspiele in der Maximierungsform, also endliche 2 Personen Nullsummenspiele der Gestalt Kaptel 3 Zwe Personen Spele 3.1 Matrxspele 3.2 Matrxspele n gemschten Strategen 3.3 B Matrxspele und quadratsche Programme 3.4 B Matrxspele und lneare Komplementartätsprobleme 3.1 Matrxspele Wr betrachten

Mehr

Wechselstrom. Dr. F. Raemy Wechselspannung und Wechselstrom können stets wie folgt dargestellt werden : U t. cos (! t + " I ) = 0 $ " I

Wechselstrom. Dr. F. Raemy Wechselspannung und Wechselstrom können stets wie folgt dargestellt werden : U t. cos (! t +  I ) = 0 $  I Wechselstrom Dr. F. Raemy Wechselspannung und Wechselstrom können stets we folgt dargestellt werden : U t = U 0 cos (! t + " U ) ; I ( t) = I 0 cos (! t + " I ) Wderstand m Wechselstromkres Phasenverschebung:!"

Mehr

Lösungen zum 3. Aufgabenblock

Lösungen zum 3. Aufgabenblock Lösungen zum 3. Aufgabenblock 3. Aufgabenblock ewerber haben n enem Test zur sozalen Kompetenz folgende ntervallskalerte Werte erhalten: 96 131 11 1 85 113 91 73 7 a) Zegen Se für desen Datensatz, dass

Mehr

Beim Wiegen von 50 Reispaketen ergaben sich folgende Gewichte X(in Gramm):

Beim Wiegen von 50 Reispaketen ergaben sich folgende Gewichte X(in Gramm): Aufgabe 1 (4 + 2 + 3 Punkte) Bem Wegen von 0 Respaketen ergaben sch folgende Gewchte X(n Gramm): 1 2 3 4 K = (x u, x o ] (98,99] (99, 1000] (1000,100] (100,1020] n 1 20 10 a) Erstellen Se das Hstogramm.

Mehr

Für jeden reinen, ideal kristallisierten Stoff ist die Entropie am absoluten Nullpunkt gleich

Für jeden reinen, ideal kristallisierten Stoff ist die Entropie am absoluten Nullpunkt gleich Drtter Hauptsatz der Thermodynamk Rückblck auf vorherge Vorlesung Methoden zur Erzeugung tefer Temperaturen: - umgekehrt laufende WKM (Wärmepumpe) - Joule-Thomson Effekt bs 4 K - Verdampfen von flüssgem

Mehr

binäre Suchbäume Informatik I 6. Kapitel binäre Suchbäume binäre Suchbäume Rainer Schrader 4. Juni 2008 O(n) im worst-case Wir haben bisher behandelt:

binäre Suchbäume Informatik I 6. Kapitel binäre Suchbäume binäre Suchbäume Rainer Schrader 4. Juni 2008 O(n) im worst-case Wir haben bisher behandelt: Informatk I 6. Kaptel Raner Schrader Zentrum für Angewandte Informatk Köln 4. Jun 008 Wr haben bsher behandelt: Suchen n Lsten (lnear und verkettet) Suchen mttels Hashfunktonen jewels unter der Annahme,

Mehr

8. MARKOVKETTEN 127. Abbildung 8.1: Reduzible und periodische Markovkette. p ji IIP[X n 1 = j] = [(IIP[X n 1 = j]) j E P ] i. j=0

8. MARKOVKETTEN 127. Abbildung 8.1: Reduzible und periodische Markovkette. p ji IIP[X n 1 = j] = [(IIP[X n 1 = j]) j E P ] i. j=0 8. MARKOVKETTEN 17 8. Marovetten Abbldung 8.1: Reduzble und perodsche Marovette 8.1. Homogene Marovetten n dsreter Zet En Prozess {X n : n IIN} hesst homogene Marovette (n dsreter Zet) mt (abzählbarem)

Mehr

Finanzwirtschaft. Kapitel 3: Simultane Investitions- und Finanzplanung. Lehrstuhl für Finanzwirtschaft - Universität Bremen 1

Finanzwirtschaft. Kapitel 3: Simultane Investitions- und Finanzplanung. Lehrstuhl für Finanzwirtschaft - Universität Bremen 1 Fnanzwrtschaft Kaptel 3: Smultane Investtons- und Fnanzplanung Prof. Dr. Thorsten Poddg Lehrstuhl für Allgemene Betrebswrtschaftslehre, nsbes. Fnanzwrtschaft Unverstät Bremen Hochschulrng 4 / WW-Gebäude

Mehr

Versicherungstechnischer Umgang mit Risiko

Versicherungstechnischer Umgang mit Risiko Verscherungstechnscher Umgang mt Rsko. Denstlestung Verscherung: Schadensdeckung von für de enzelne Person ncht tragbaren Schäden durch den fnanzellen Ausglech n der Zet und m Kollektv. Des st möglch über

Mehr

Aufgabe 8 (Gewinnmaximierung bei vollständiger Konkurrenz):

Aufgabe 8 (Gewinnmaximierung bei vollständiger Konkurrenz): LÖSUNG AUFGABE 8 ZUR INDUSTRIEÖKONOMIK SEITE 1 VON 6 Aufgabe 8 (Gewnnmaxmerung be vollständger Konkurrenz): Betrachtet wrd en Unternehmen, das ausschleßlch das Gut x produzert. De m Unternehmen verwendete

Mehr

Prof. Dr.-Ing. P. Eberhard, Prof. Dr.-Ing. M. Hanss SS 2016 A 1.1

Prof. Dr.-Ing. P. Eberhard, Prof. Dr.-Ing. M. Hanss SS 2016 A 1.1 Insttut für Technsche und Num. Mechan Technsche Mechan IV Prof. Dr.-Ing. P. Eberhard, Prof. Dr.-Ing. M. Hanss SS 16 A 1.1 Aufgabe 1: En mechansches Sstem wrd durch folgende lnearserte Bewegungsglechungen

Mehr

Itemanalyse und Itemkennwerte. Itemanalyse und Itemkennwerte. Itemanalyse und Itemkennwerte: Itemschwierigkeit P i

Itemanalyse und Itemkennwerte. Itemanalyse und Itemkennwerte. Itemanalyse und Itemkennwerte: Itemschwierigkeit P i Itemanalyse und Itemkennwerte De Methoden der Analyse der Itemegenschaften st ncht m engeren Snne Bestandtel der Klassschen Testtheore Im Rahmen ener auf der KTT baserenden Testkonstrukton und -revson

Mehr

Spiele und Codes. Rafael Mechtel

Spiele und Codes. Rafael Mechtel Spele und Codes Rafael Mechtel Koderungstheore Worum es geht Über enen Kanal werden Informatonen Übertragen. De Informatonen werden dabe n Worte über enem Alphabet Q übertragen, d.h. als Tupel w = (w,,

Mehr

Kapitel 1. Grundlagen der Fehleranalyse

Kapitel 1. Grundlagen der Fehleranalyse Kaptel Grundlagen der Fehleranalyse B... (Fehlerarten): Von den Fehlerquellen ausgehend unterscheden wr dre unterschedlche Fehlerarten: () Engangsehler Dese entstehen durch a) Modellerungsehler (Z.B. wenn

Mehr

6. Elektrische Wechselgrössen

6. Elektrische Wechselgrössen Grundlagen der Elektrotechnk GE 2 [Buch GE 2: Seten 72-14] Grundbegrffe Wechselgrössen Perodsche Wechselgrössen Lnearer und quadratscher Mttelwert Der Effektvwert Bezugspfele Verallgemenerte Zetfunktonen

Mehr

9 Diskriminanzanalyse

9 Diskriminanzanalyse 9 Dskrmnanzanalyse Zel ener Dskrmnanzanalyse: Berets bekannte Objektgruppen (Klassen/Cluster) anhand hrer Merkmale charakterseren und unterscheden sowe neue Objekte n de Klassen enordnen. Nötg: Lernstchprobe

Mehr

Franzis Verlag, 85586 Poing ISBN 978-3-7723-4046-8 Autor des Buches: Leonhard Stiny

Franzis Verlag, 85586 Poing ISBN 978-3-7723-4046-8 Autor des Buches: Leonhard Stiny eseproben aus dem Buch "n mt en zur Elektrotechnk" Franzs Verlag, 85586 Pong ISBN 978--77-4046-8 Autor des Buches: eonhard Stny Autor deser eseprobe: eonhard Stny 005/08, alle echte vorbehalten. De Formaterung

Mehr

Auswertung univariater Datenmengen - deskriptiv

Auswertung univariater Datenmengen - deskriptiv Auswertung unvarater Datenmengen - desrptv Bblografe Prof. Dr. Küc; Statst, Vorlesungssrpt Abschntt 6.. Bleymüller/Gehlert/Gülcher; Statst für Wrtschaftswssenschaftler Verlag Vahlen Bleymüller/Gehlert;

Mehr

3.2 Die Kennzeichnung von Partikeln 3.2.1 Partikelmerkmale

3.2 Die Kennzeichnung von Partikeln 3.2.1 Partikelmerkmale 3. De Kennzechnung von Patkeln 3..1 Patkelmekmale De Kennzechnung von Patkeln efolgt duch bestmmte, an dem Patkel mess bae und deses endeutg beschebende physka lsche Gößen (z.b. Masse, Volumen, chaaktestsche

Mehr

VERGLEICH VON TESTVERFAHREN FÜR DIE DEFORMATIONSANALYSE

VERGLEICH VON TESTVERFAHREN FÜR DIE DEFORMATIONSANALYSE VERGLEICH VON TESTVERFAHREN FÜR DIE DEFORMATIONSANALYSE Karl Rudolf KOCH Knut RIESMEIER In: WELSCH, Walter (Hrsg.) [1983]: Deformatonsanalysen 83 Geometrsche Analyse und Interpretaton von Deformatonen

Mehr

Die Kugel Lösungen. 1. Von einer Kugel ist der Radius bekannt. Berechne Volumen und Oberfläche der

Die Kugel Lösungen. 1. Von einer Kugel ist der Radius bekannt. Berechne Volumen und Oberfläche der De Kugel Lösungen 1. Von ener Kugel st der Radus bekannt. Berechne Volumen und Oberfläche der Kugel. r,8 cm 5, cm 18,6 cm 4, cm 5,6 cm 4,8 cm V 0 cm³ 64 cm³ 6 954 cm³ cm³ 76 cm³ 46 cm³ O 181 cm² 5 cm²

Mehr

Einführung in die Finanzmathematik

Einführung in die Finanzmathematik 1 Themen Enführung n de Fnanzmathematk 1. Znsen- und Znsesznsrechnung 2. Rentenrechnung 3. Schuldentlgung 2 Defntonen Kaptal Betrag n ener bestmmten Währungsenhet, der zu enem gegebenen Zetpunkt fällg

Mehr

Praktikum Physikalische Chemie I (C-2) Versuch Nr. 6

Praktikum Physikalische Chemie I (C-2) Versuch Nr. 6 Praktkum Physkalsche Cheme I (C-2) Versuch Nr. 6 Konduktometrsche Ttratonen von Säuren und Basen sowe Fällungsttratonen Praktkumsaufgaben 1. Ttreren Se konduktometrsch Schwefelsäure mt Natronlauge und

Mehr

Dynamik starrer Körper

Dynamik starrer Körper Dynamk starrer Körper Bewegungen starrer Körper können n Translaton und Rotaton zerlegt werden. De Rotaton stellt enen nneren Frehetsgrad des Körpers dar, der be Punktmassen ncht exstert. Der Schwerpunkt

Mehr

Auswertung univariater Datenmengen - deskriptiv

Auswertung univariater Datenmengen - deskriptiv Auswertung unvarater Datenmengen - desrptv Bblografe Prof. Dr. Küc; Statst, Vorlesungssrpt Abschntt 6.. Bleymüller/Gehlert/Gülcher; Statst für Wrtschaftswssenschaftler Verlag Vahlen Bleymüller/Gehlert;

Mehr

Unter der Drehgruppe verstehen wir diegruppe der homogenen linearen Transformationen

Unter der Drehgruppe verstehen wir diegruppe der homogenen linearen Transformationen Darstellunstheore der SO() und SU() Powtschnk Alexander. Defnton Darstellun Ene Darstellun ener Gruppe G st homomorphe Abbldun von deser Gruppe auf ene Gruppe nchtsnulärer lnearer Operatoren auf enem Vektorraum

Mehr

1 BWL 4 Tutorium V vom 15.05.02

1 BWL 4 Tutorium V vom 15.05.02 1 BWL 4 Tutorum V vom 15.05.02 1.1 Der Tlgungsfaktor Der Tlgungsfaktor st der Kehrwert des Endwertfaktors (EWF). EW F (n; ) = (1 + )n 1 T F (n; ) = 1 BWL 4 TUTORIUM V VOM 15.05.02 (1 ) n 1 Mt dem Tlgungsfaktor(TF)

Mehr

nonparametrische Tests werden auch verteilungsfreie Tests genannt, da sie keine spezielle Verteilung der Daten in der Population voraussetzen

nonparametrische Tests werden auch verteilungsfreie Tests genannt, da sie keine spezielle Verteilung der Daten in der Population voraussetzen arametrsche vs. nonparametrsche Testverfahren Verfahren zur Analyse nomnalskalerten Daten Thomas Schäfer SS 009 1 arametrsche vs. nonparametrsche Testverfahren nonparametrsche Tests werden auch vertelungsfree

Mehr

Anwendungsmöglichkeiten von Lernverfahren

Anwendungsmöglichkeiten von Lernverfahren Künstlche Neuronale Netze Lernen n neuronalen Netzen 2 / 30 Anwendungsmöglcheten von Lernverfahren Prnzpelle Möglcheten Verbndungsorentert 1 Hnzufügen neuer Verbndungen 2 Löschen bestehender Verbndungen

Mehr

Stochastische Prozesse

Stochastische Prozesse INSTITUT FÜR STOCHASTIK SS 2009 UNIVERSITÄT KARLSRUHE Blatt 2 Prv.-Doz. Dr. D. Kadelka Dpl.-Math. W. Lao Übungen zur Vorlesung Stochastsche Prozesse Musterlösungen Aufgabe 7: (B. Fredmans Urnenmodell)

Mehr

Vermessungskunde für Bauingenieure und Geodäten

Vermessungskunde für Bauingenieure und Geodäten Vermessungskunde für Baungeneure und Geodäten Übung 4: Free Statonerung (Koordnatentransformaton) und Flächenberechnung nach Gauß Mlo Hrsch Hendrk Hellmers Floran Schll Insttut für Geodäse Fachberech 13

Mehr

Transistor als Schalter

Transistor als Schalter Elektrotechnsches Grundlagen-Labor II Transstor als Schalter Versuch Nr. 5 Erforderlche Geräte Anzahl Bezechnung, Daten GL-Nr. 1 Doppelnetzgerät 198 1 Oszllograph 178 1 Impulsgenerator 153 1 NF-Transstor

Mehr

Übung zur Vorlesung. Informationstheorie und Codierung

Übung zur Vorlesung. Informationstheorie und Codierung Übung zur Vorlesung Informatonstheore und Coderung Prof. Dr. Lla Lajm März 25 Ostfala Hochschule für angewandte Wssenschaften Hochschule Braunschweg/Wolfenbüttel Postanschrft: Salzdahlumer Str. 46/48 3832

Mehr

Einführung in Origin 8 Pro

Einführung in Origin 8 Pro Orgn 8 Pro - Enführung 1 Enführung n Orgn 8 Pro Andreas Zwerger Orgn 8 Pro - Enführung 2 Überscht 1) Kurvenft, was st das nochmal? 2) Daten n Orgn mporteren 3) Daten darstellen / plotten 4) Kurven an Daten

Mehr

Werkstoffmechanik SS11 Baither/Schmitz. 5. Vorlesung

Werkstoffmechanik SS11 Baither/Schmitz. 5. Vorlesung Werkstoffmechank SS11 Bather/Schmtz 5. Vorlesung 0.05.011 4. Mkroskopsche Ursachen der Elastztät 4.1 Energeelastztät wrd bestmmt durch de Wechselwrkungspotentale zwschen den Atomen, oft schon auf der Bass

Mehr

mit der Anfangsbedingung y(a) = y0

mit der Anfangsbedingung y(a) = y0 Numersce Lösung von Dfferentalglecungen De n den naturwssenscaftlc-tecnscen Anwendungen auftretenden Dfferentalglecungen snd n den wengsten Fällen eplzt lösbar. Man st desalb auf Näerungsverfaren angewesen.

Mehr

2πσ. e ax2 dx = x exp. 2πσ. 2σ 2. Die Varianz ergibt sich mit Hilfe eines weiteren bestimmten Integrals: x 2 e ax2 dx = 1 π.

2πσ. e ax2 dx = x exp. 2πσ. 2σ 2. Die Varianz ergibt sich mit Hilfe eines weiteren bestimmten Integrals: x 2 e ax2 dx = 1 π. 2.5. NORMALVERTEILUNG 27 2.5 Normalvertelung De n der Statstk am häufgsten benutzte Vertelung st de Gauss- oder Normalvertelung. Wr haben berets gesehen, dass dese Vertelung aus den Bnomal- und Posson-Vertelungen

Mehr

Akademischer Lehrgang Video-Journalismus

Akademischer Lehrgang Video-Journalismus Akademscher Lehrgang Vdeo-Journalsmus www.wfwen.at WIFI Wen 200910 b www.wf.atwen l. e h r g a n g z u r w e t e r Fotograf: http:foto.frtz.st t g s f h 4 a 1. e m g l d u n g Das Fernsehen erlebt ene

Mehr

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007 Lehrstuhl für Emprsche Wrtschaftsforschung und Ökonometre Dr Roland Füss Statstk II: Schleßende Statstk SS 007 5 Mehrdmensonale Zufallsvarablen Be velen Problemstellungen st ene solerte Betrachtung enzelnen

Mehr

Netzwerkstrukturen. Entfernung in Kilometer:

Netzwerkstrukturen. Entfernung in Kilometer: Netzwerkstrukturen 1) Nehmen wr an, n enem Neubaugebet soll für 10.000 Haushalte en Telefonnetz nstallert werden. Herzu muss von jedem Haushalt en Kabel zur nächstgelegenen Vermttlungsstelle gezogen werden.

Mehr

Kleiner Fermatscher Satz, Chinesischer Restsatz, Eulersche ϕ-funktion, RSA

Kleiner Fermatscher Satz, Chinesischer Restsatz, Eulersche ϕ-funktion, RSA Klener Fermatscher Satz, Chnesscher Restsatz, Eulersche ϕ-funkton, RSA Manfred Gruber http://www.cs.hm.edu/~gruber SS 2008, KW 15 Klener Fermatscher Satz Satz 1. Se p prm und a Z p. Dann st a p 1 mod p

Mehr

SIMULATION VON HYBRIDFAHRZEUGANTRIEBEN MIT

SIMULATION VON HYBRIDFAHRZEUGANTRIEBEN MIT Smulaton von Hybrdfahrzeugantreben mt optmerter Synchronmaschne 1 SIMULATION VON HYBRIDFAHRZEUGANTRIEBEN MIT OPTIMIERTER SYNCHRONMASCHINE H. Wöhl-Bruhn 1 EINLEITUNG Ene Velzahl von Untersuchungen hat sch

Mehr

Die Zahl i phantastisch, praktisch, anschaulich

Die Zahl i phantastisch, praktisch, anschaulich Unverstät Würzburg 977 Würzburg Telefon: (91 888 5598 De Zahl phantastsch, praktsch, anschaulch De Geschchte der Zahl war dre Jahrhunderte lang dadurch geprägt, dass se und damt de kompleen Zahlen n Mathematkerkresen

Mehr

Portfoliothorie (Markowitz) Separationstheorem (Tobin) Kapitamarkttheorie (Sharpe

Portfoliothorie (Markowitz) Separationstheorem (Tobin) Kapitamarkttheorie (Sharpe Portfolothore (Markowtz) Separatonstheore (Tobn) Kaptaarkttheore (Sharpe Ene Enführung n das Werk von dre Nobelpresträgern zu ene Thea U3L-Vorlesung R.H. Schdt, 3.12.2015 Wozu braucht an Theoren oder Modelle?

Mehr

Klasse : Name1 : Name 2 : Datum : Nachweis des Hookeschen Gesetzes und Bestimmung der Federkonstanten

Klasse : Name1 : Name 2 : Datum : Nachweis des Hookeschen Gesetzes und Bestimmung der Federkonstanten Versuch r. 1: achwes des Hook schen Gesetzes und Bestmmung der Federkonstanten achwes des Hookeschen Gesetzes und Bestmmung der Federkonstanten Klasse : ame1 : ame 2 : Versuchszel: In der Technk erfüllen

Mehr

1 = Gl.(12.7) Der Vergleich mit Gl. (12.3) zeigt, dass für die laminare Rohrströmung die Rohrreibungszahl

1 = Gl.(12.7) Der Vergleich mit Gl. (12.3) zeigt, dass für die laminare Rohrströmung die Rohrreibungszahl 0. STRÖMUNG INKOMPRESSIBLER FLUIDE IN ROHRLEITUNGEN Enführung Vorlesung Strömungslehre Prof. Dr.-Ing. Chrstan Olver Pascheret C. O. Pascheret Insttute of Flud Mechancs and Acoustcs olver.pascheret@tu-berln.de

Mehr

8 Logistische Regressionsanalyse

8 Logistische Regressionsanalyse wwwstatstkpaketde 8 Logstsche Regressonsanalyse De logstsche Regressonsanalyse dent der Untersuchung des Enflusses ener quanttatven Varable auf ene qualtatve (n unserem Fall dchotomen Varable Wr gehen

Mehr

Gruppe. Lineare Block-Codes

Gruppe. Lineare Block-Codes Thema: Lneare Block-Codes Lneare Block-Codes Zele Mt desen rechnerschen und expermentellen Übungen wrd de prnzpelle Vorgehenswese zur Kanalcoderung mt lnearen Block-Codes erarbetet. De konkrete Anwendung

Mehr

Netzwerkanalyse. Stephan Senn -1-22.12.02. geschlossene Oberfläche

Netzwerkanalyse. Stephan Senn -1-22.12.02. geschlossene Oberfläche Netzwerkanalyse Entelung der Netzwerke lneare resstve Netzwerke (lnear tme-nvarant crcuts): Das Netzwerk hängt ncht von der betrachteten Zet ab. Se st zetunabhängg. Das Strom-Spannungsverhältns st lnear:

Mehr

Vorlesung 1. Prof. Dr. Klaus Röder Lehrstuhl für BWL, insb. Finanzdienstleistungen Universität Regensburg. Prof. Dr. Klaus Röder Folie 1

Vorlesung 1. Prof. Dr. Klaus Röder Lehrstuhl für BWL, insb. Finanzdienstleistungen Universität Regensburg. Prof. Dr. Klaus Röder Folie 1 Vorlesung Entschedungslehre h SS 205 Prof. Dr. Klaus Röder Lehrstuhl für BWL, nsb. Fnanzdenstlestungen Unverstät Regensburg Prof. Dr. Klaus Röder Fole Organsatorsches Relevante Informatonen önnen Se stets

Mehr

Potenzen einer komplexen Zahl

Potenzen einer komplexen Zahl Potenzen ener komplexen Zahl 1-E1 1-E Abraham cc de Movre Abraham de Movre (17 175) französscher Mathematker Abraham de Movre der als Emgrant n London lebte glt als ener der Ponere der Wahrschenlchketsrechnung.

Mehr

4 Digitale Filter und Bildoperationen

4 Digitale Filter und Bildoperationen Dgtale Flter und Bldoperatonen 51 4 Dgtale Flter und Bldoperatonen Blder welche durch ene Kamera augenommen wurden snd otmals ncht drekt ür ene nacholgende Bldanalyse geegnet. Gründe daür snd bespelswese

Mehr

Quantitatives Prognosemodell für die Anwendung des Black-Litterman-Verfahrens

Quantitatives Prognosemodell für die Anwendung des Black-Litterman-Verfahrens Quanttatves Prognosemodell für de Anwendung des Black-Ltterman-Verfahrens Franzska Felke* und Marc Gürtler** Abstract: De chätzung erwarteter Wertpaperrendten stellt ene der zentralen Aufgaben n der praktschen

Mehr

d da B A Die gesamte Erscheinung der magnetischen Feldlinien bezeichnet man als magnetischen Fluss. = 1 V s = 1 Wb

d da B A Die gesamte Erscheinung der magnetischen Feldlinien bezeichnet man als magnetischen Fluss. = 1 V s = 1 Wb S N De amte Erschenng der magnetschen Feldlnen bezechnet man als magnetschen Flss. = V s = Wb Kraftflssdchte oder magnetsche ndkton B. B d da B = Wb/m = T Für homogene Magnetfelder, we se m nneren von

Mehr

Der Satz von COOK (1971)

Der Satz von COOK (1971) Der Satz von COOK (1971) Voraussetzung: Das Konzept der -Band-Turng-Maschne (TM) 1.) Notatonen: Ene momentane Beschrebung (mb) ener Konfguraton ener TM st en -Tupel ( α1, α2,..., α ) mt α = xqy, falls

Mehr

Kreditrisikomodellierung und Risikogewichte im Neuen Baseler Accord

Kreditrisikomodellierung und Risikogewichte im Neuen Baseler Accord 1 Kredtrskomodellerung und Rskogewchte m Neuen Baseler Accord erschenen n: Zetschrft für das gesamte Kredtwesen (ZfgK), 54. Jahrgang, 2001, S. 1004-1005. Prvatdozent Dr. Hans Rau-Bredow, Lehrstuhl für

Mehr

Einführung in die Wahrscheinlichkeitsrechnung. Wahrscheinlichkeitsrechnung. Übersicht. Wahrscheinlichkeitsrechnung. bedinge Wahrscheinlichkeit

Einführung in die Wahrscheinlichkeitsrechnung. Wahrscheinlichkeitsrechnung. Übersicht. Wahrscheinlichkeitsrechnung. bedinge Wahrscheinlichkeit Enführung n de bednge Wahrschenlchket Laplace-Wahrschenlchket p 0.56??? Zufallsexperment Randwahrschenlchket Überscht Was st Wahrschenlchket? Rechenregeln Der Multplkatonssatz Axomatsche Herletung Unabhänggket

Mehr

Online Algorithmen. k-server randomisiert Teil II

Online Algorithmen. k-server randomisiert Teil II Onlne Algorthmen k-server randomsert Tel II Ausarbetung für das Semnar Onlne Algorthmen Prof. Dr. Ro. Klen Anette Ebbers-Baumann Ansgar Grüne Insttut für Informatk Theorethsche Informatk und formale Methoden

Mehr

Netzsicherheit I, WS 2008/2009 Übung 3. Prof. Dr. Jörg Schwenk 27.10.2008

Netzsicherheit I, WS 2008/2009 Übung 3. Prof. Dr. Jörg Schwenk 27.10.2008 Netzscherhet I, WS 2008/2009 Übung Prof. Dr. Jörg Schwenk 27.10.2008 1 Das GSM Protokoll ufgabe 1 In der Vorlesung haben Se gelernt, we sch de Moble Staton (MS) gegenüber dem Home Envroment (HE) mt Hlfe

Mehr

1. Schaltungsbeschreibung - Netzwerktopologie. Regeln der Schaltwerktheorie:

1. Schaltungsbeschreibung - Netzwerktopologie. Regeln der Schaltwerktheorie: 1. Schaltungsbeschrebung - Netzwerktopologe Regeln der Schaltwerktheore: Krchhoffsche Spannungsregel Krchhoffsche Stromregel + Zweg- (bzw. Element-) Funktonen De Netzwerktopologe beschrebt de Verknüpfung

Mehr

Free Riding in Joint Audits A Game-Theoretic Analysis

Free Riding in Joint Audits A Game-Theoretic Analysis . wp Wssenschatsorum, Wen,8. Aprl 04 Free Rdng n Jont Audts A Game-Theoretc Analyss Erch Pummerer (erch.pummerer@ubk.ac.at) Marcel Steller (marcel.steller@ubk.ac.at) Insttut ür Rechnungswesen, Steuerlehre

Mehr

Grundlagen der Elektrotechnik II (GET II)

Grundlagen der Elektrotechnik II (GET II) Grundlgen der Elektrotechnk (GET ) Vorlesung m 8.07.005 Do. :5-3.45 Uhr;. 603 (Hörsl) Dr.-ng. ené Mrklen E-Ml: mrklen@un-kssel.de Tel.: 056 804 646; Fx: 056 804 6489 UL: http://www.tet.e-technk.un-kssel.de

Mehr

FORSCHUNGSZENTRUM JÜLICH GmbH Zentralinstitut für Angewandte Mathematik D-52425 Jülich, Tel. (02461) 61-6402

FORSCHUNGSZENTRUM JÜLICH GmbH Zentralinstitut für Angewandte Mathematik D-52425 Jülich, Tel. (02461) 61-6402 FORSCHUNGSZENTRUM JÜLICH GmbH Zentralnsttut für Angewandte Mathematk D-52425 Jülch, Tel. 0246 6-6402 Interner Bercht Vorkondtonerung des parallelen Schwarz Verfahrens zur Lösung parabolscher Dfferentalglechungen

Mehr

MOD-01 LAGRANGE FORMALISMUS -- TEIL 1

MOD-01 LAGRANGE FORMALISMUS -- TEIL 1 MOD- LAGRAGE FORMALISMUS -- EIL. Zustandsfunktonen Defnton -: Zustandsfunkton Ene Zustandsfunkton W( () t, t) = W(, t) bzw. W ( ) st jede belebge skalare Funkton der Zustandsgrößen () t und der Zet t,

Mehr