Prüfungsfragen und Prüfungsaufgaben

Größe: px
Ab Seite anzeigen:

Download "Prüfungsfragen und Prüfungsaufgaben"

Transkript

1 Mathematische Modelle in der Technik WS 3/4 Prüfungsfragen und Prüfungsaufgaben Fragen - 9:. Modellieren Sie ein örtlich eindimensionales, stationäres Wärmeleitproblem (Integralbilanzformulierung, differentielle Form, Randbedingungen, Interfacebedingungen)!. Modellieren Sie ein örtlich dreidimensionales, stationäres Wärmeleitproblem (Integralbilanzformulierung, differentielle Form, Randbedingungen, Interfacebedingungen)! 3. Modellieren Sie ein örtlich eindimensionales, instationäres Wärmeleitproblem (Integralbilanzformulierung, differentielle Form, Anfangs- und Randbedingungen, Interfacebedingungen)! 4. Modellieren Sie ein örtlich dreidimensionales, instationäres Wärmeleitproblem (Integralbilanzformulierung, differentielle Form, Anfangs- und Randbedingungen, Interfacebedingungen)! 5. Modellieren Sie ein örtlich dreidimensionales, instationäres Wärmeleit-Wärmetransport- Problem (Integralbilanzformulierung, differentielle Form, Anfangs- und Randbedingungen, Interfacebedingungen)! 6. Modellieren Sie den Zugstab im statischen und im dynamischen Fall! 7. Beschreiben Sie den Spannungszustand in einem belasteten Körper im Gleichgewicht (totale Spannung, Spannungstensor, Kugeltensor, Deviator, Transformationsformel, Normalund Tangentialspannung, Hauptspannungen, Invarianten des Spannungstensors)! 8. Leiten Sie die beschreibenden Gleichungen des statischen und dynamischen Kräfte- und Momentengleichgewichts her! 9. Beschreiben Sie den Verzerrungszustand (Greenscher Verzerrungstensor, Cauchyscher Verzerrungstensor)! Welche geometrische Interpretation kann man den Komponenten des Verzerrungstensors geben?. Leiten Sie die LAMÉschen Gleichungen aus dem Kräfte- und Momentengleichgewicht (Kinetik), den geometrischen Verzerrungs-Verschiebungsbeziehungen (Kinematik) und dem HOOKEschen Gesetz (σ ij = λε kk δ ij + µε ij ) für isotrope, homogene Materialien im statischen Fall her! Welche Randbedingungen sind möglich und was bedeuten sie mechanisch?. Leiten Sie die NAVIER-LAMÉschen Gleichungen aus dem dynamischen Kräfte- und Momentengleichgewicht (Kinetik), den geometrischen Verzerrungs-Verschiebungsbeziehungen (Kinematik) und dem HOOKEschen Gesetz (σ ij = λε kk δ ij + µε ij ) für isotrope, homogene Materialien im dynamischen Fall her! Welche Rand- und Anfangsbedingungen sind möglich und was bedeuten sie mechanisch?

2 . Was verstehen Sie unter einem ebenen Verzerrungszustand und unter einem ebenen Spannungszustand? Leiten Sie die beschreibenden Gleichungen für isotrope, homogene Materialien im statischen Fall her! 3. Was verstehen Sie unter der Lagrangeschen und Eulerschen Beschreibungsweise? 4. Geben Sie das Transport-Theorem an und beweisen Sie es im örtlich eindimensionalen (d = ) Fall! Welche Anwendungen des Transport-Theorems haben Sie in der Vorlesung kennengelernt? 5. Leiten Sie die Kontinuitätsgleichung und Bewegungsgleichungen aus dem Massenerhaltungssatz und dem Impulserhaltungssatz her! 6. Leiten Sie die Navier-Stokes-Gleichungen zur Beschreibung von inkompressiblen Newtonschen Fluiden her! Welche Rand- und Anfangsbedingungen können Sie vorschreiben? 7. Was versteht man unter der Dimensionsanalyse und wie hängt diese mit der Ähnlichkeitstheorie zusammen? Erläutern Sie die Ähnlichkeitstheorie an einem Beispiel! 8. Elektromagnetische Felder werden durch die Maxwellschen Gleichungen und die konstitutiven Beziehungen curlh = J + D () divb = () curle = B (3) divd = ϱ (4) B = µh + µ M (5) D = εe + P (6) J = σe + J i (7) beschrieben. Geben Sie die integralen Formulierungen der Maxwellschen Gleichungen an! Leiten Sie die Vektorpotentialformulierung und die E-Feld-basierte Formulierung her! 9. Welche speziellen elektromagnetischen Regime kennen Sie? Leiten Sie die beschreibenden Gleichungen für diese speziellen elektromagnetischen Regime aus den vollen Maxwell-Gleichungen her!

3 Aufgaben - :. Man zeige, dass a) lim x, x, x 3 x x x 3 x + x x x x + x x x gilt, falls f C(Ω), x = (x, x, x 3 ) Ω, b) lim x, x, x 3 x x x 3 gilt, falls σ C (Ω). x + x x x x 3 + x 3 x 3 x 3 x 3 + x 3 x 3 x 3 f(ξ, ξ, ξ 3 ) dξ 3 dξ dξ = f(x, x, x 3 ) [ σ(ξ, x + x, ξ 3) σ(ξ, x x ], ξ 3) dξ 3 dξ = σ(x) x. Berechnen Sie analytisch das Temperaturfeld u( ) gemäss der Wärmeleitgleichung (.5) V aus der Vorlesung für die Daten: a =, b =, η (, ) fix, q =, f =, g a =, g b = und { } λ = const > für x < η λ(x) := λ = const > für x > η mit < λ < λ! Führen Sie Parameterstudien mit dem Wärmeleitkoeffizienten durch: a) λ b) λ c) λ = λ d) η =, η = 3. Bestimmen Sie die von einem (fixierten) Parameter y (, ) abhängige Lösung u y ( ) der Randwertaufgabe (Wärmeleitproblem mit Punktquelle) und zeigen Sie, dass u (x) = δ(x y), x (, ) (f y = ), u() = u() =, u(x) = mit G(x, y) := u y (x) die Randwertaufgabe G(x, y)f(y)dy, x [, ] u (x) = f(x), x (, ), u() = u() =.

4 4. Die Bestimmung der Temperaturverteilung u(y) in einem homogenen (c, ρ, λ = const.), mantelisolierten, wärmequellenfreien, dünnen Draht der Länge l, der mit der Geschwindigkeit v bewegt wird, am linken Rand auf o C und rechten Rand auf o C gehalten wird, führt nach Skalierung x = y/l auf das Randwertproblem (siehe Vorlesung) u (x) + pu (x) =, x (, ), u() =, u() =. (8) Bestimmen Sie p = p(c, ρ, λ, v, l) =?, lösen Sie dann das Randwertproblem (8) analytisch und diskutieren Sie das Verhalten der Lösung für v! 5. Sei u C (Q T ), f C(Q T ), E C (, l) und ϱ C(, l) mit Q T = (, l) (, T ). Man zeige, dass dann x, x, x (x, x ) und t, t, t (t, t ) existieren, sodass die integrale Form (.8) aus der Vorlesung zur Gleichung u (x, t )ϱ(x ) t x = x (E(x ) u x (x, t )) t x + f(x, t ) t x (9) äquivalent ist. 6. Ein homogener Zugstab (ρ, E = const. >, u(, t) =, E u x (l, t) = g l(t)) werde zeitharmonisch erregt, d.h. f(t) = f exp(iωt) und g l (t) = g l exp(iωt) mit gegebenen Amplituden f und g l aus R und gegebener Erregerfrequenz ω. Man suche die periodischen Lösungen und bestimme die kritischen Frequenzen (siehe auch Folie, Ü. )! 7. Schneiden Sie virtuell einen Würfel x := [x x, x + x ] [x x, x + x ] [x 3 x 3, x 3 + x 3 ] aus einem im Gleichgewicht befindlichen Körper heraus und schreiben Sie das Kräftegleichgewicht (z.b. in x Richtung) auf (siehe auch Folie, Ü.4 )! 8. Man zeige, dass aus dem dynamischen Momentengleichgewicht x f(x, t) dx + Ω x t (n) (x, t) ds x = Ω x a(x, t) ρ dx Ω Ω t und aus dem dynamischen Kräftegleichgewicht ρa div σ = f in Q T = Ω (, T ) in differentieller Form die Symmetrie des Spannungstensors, d.h. σ ij (x, t) = σ ji (x, t) i, j =,, 3 (x, t) Q T folgt, wobei a(x, t) = u (x, t) die Beschleunigung bezeichnet! 9. Man zeige, dass die linearisierten Verzerrungen ε(v) = (ε ij (v)), i, j =,, 3, einer Verschiebungsfunktion v = (v, v, v 3 ) T [C (Ω)] 3 genau dann verschwinden (also ε(v) = ), wenn v R eine (linearisierte) Starrkörperverschiebung ist, wobei der Unterraum R := {v(x) = a x + b : a, b R 3 } durch die Vektoren x x x 3 x x 3 x

5 aufgespannt wird. Hinweis: Zeigen, und verwenden Sie v i x j x k (x) = ε(v) ij x k (x) + ε(v) ki x j (x) ε(v) jk x i (x).. Beweisen Sie das Transport-Theorem (Satz 3.) für den Fall d =, d.h. die Formel df dt (t) = ω(t) [ F ] (F v) (x, t) + (x, t) dx! x

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Aufgabe 35: Thema: Singulärwertzerlegung und assoziierte Unterräume Sei A eine m n Matrix mit Rang r und A = UDV T ihre Singulärwertzerlegung.

Mehr

Achim Rosch, Institut für Theoretische Physik, Köln. Belegt das Gutachten wesentliche fachliche Fehler im KPK?

Achim Rosch, Institut für Theoretische Physik, Köln. Belegt das Gutachten wesentliche fachliche Fehler im KPK? Impulsstrom Achim Rosch, Institut für Theoretische Physik, Köln zwei Fragen: Belegt das Gutachten wesentliche fachliche Fehler im KPK? Gibt es im Gutachten selbst wesentliche fachliche Fehler? andere wichtige

Mehr

Analytische Lösungen spezieller Probleme der Strömungsmechanik

Analytische Lösungen spezieller Probleme der Strömungsmechanik J O H A N N E S K E P L E R U N I V E R S I T Ä T L I N Z N e t z w e r k f ü r F o r s c h u n g, L e h r e u n d P r a x i s Analytische Lösungen spezieller Probleme der Strömungsmechanik Bachelorarbeit

Mehr

Seite 1 von 2. Teil Theorie Praxis S Punkte 80+25 120+73 200+98 erreicht

Seite 1 von 2. Teil Theorie Praxis S Punkte 80+25 120+73 200+98 erreicht Seite 1 von 2 Ostfalia Hochschule Fakultät Elektrotechnik Wolfenbüttel Prof. Dr.-Ing. T. Harriehausen Bearbeitungszeit: Theoretischer Teil: 60 Minuten Praktischer Teil: 60 Minuten Klausur FEM für elektromagnetische

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Sei K ein Körper, a ij K für 1 i m, 1 j n. Weiters seien b 1,..., b m K. Dann heißt a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... + a 2n x n = b 2... a m1

Mehr

Schleswig-Holsteinische Ergänzung der Musteraufgaben für den hilfsmittelfreien Teil der schriftlichen Abiturprüfung im Fach Mathematik ab 2015

Schleswig-Holsteinische Ergänzung der Musteraufgaben für den hilfsmittelfreien Teil der schriftlichen Abiturprüfung im Fach Mathematik ab 2015 ische Ergänzung der für den hilfsmittelfreien Teil der schriftlichen Abiturprüfung im Fach Mathematik ab 2015 Ministerium für ildung und Wissenschaft des Landes Juni 2013 1 für Aufgabenpool 1 Analysis

Mehr

Kevin Caldwell. 18.April 2012

Kevin Caldwell. 18.April 2012 im Rahmen des Proseminars Numerische Lineare Algebra von Prof.Dr.Sven Beuchler 18.April 2012 Gliederung 1 2 3 Mathematische Beschreibung von naturwissenschaftlich-technischen Problemstellungen führt häufig

Mehr

Gewöhnliche Differentialgleichungen

Gewöhnliche Differentialgleichungen XIV Gewöhnliche Differentialgleichungen Definition 4. : Sei n IN, F : D(F IR n+2 IR. Gewöhnliche DGL n ter Ordnung a F (x, y, y,..., y (n = heißt gewöhnliche Differentialgleichung (DGL n ter Ordnung. Läßt

Mehr

3.3 Eigenwerte und Eigenräume, Diagonalisierung

3.3 Eigenwerte und Eigenräume, Diagonalisierung 3.3 Eigenwerte und Eigenräume, Diagonalisierung Definition und Lemma 3.3.1. Sei V ein K-Vektorraum, φ End K (V ), λ K. Wir defnieren den zu λ gehörigen Eigenraum von φ als Dies ist ein Unterraum von V.

Mehr

a n := ( 1) n 3n2 + 5 2n 2. a n := 5n4 + 2n 2 2n 3 + 3 10n + 1. a n := 1 3 + 1 2n 5n 2 n 2 + 7n + 8 b n := ( 1) n

a n := ( 1) n 3n2 + 5 2n 2. a n := 5n4 + 2n 2 2n 3 + 3 10n + 1. a n := 1 3 + 1 2n 5n 2 n 2 + 7n + 8 b n := ( 1) n Folgen und Reihen. Beweisen Sie die Beschränktheit der Folge (a n ) n N mit 2. Berechnen Sie den Grenzwert der Folge (a n ) n N mit a n := ( ) n 3n2 + 5 2n 2. a n := 5n4 + 2n 2 2n 3 + 3 n +. 4 3. Untersuchen

Mehr

Induktive Limiten. Arpad Pinter, Tobias Wöhrer. 30. Jänner 2010

Induktive Limiten. Arpad Pinter, Tobias Wöhrer. 30. Jänner 2010 Induktive Limiten Arpad Pinter, Tobias Wöhrer 30. Jänner 2010 1 Inhaltsverzeichnis 1 Induktiver Limes von Mengen 2 2 Induktiver Limes von Vektorräumen 4 3 Lokalkonvexe topologische Vektorräumen 7 4 Induktiver

Mehr

Schleswig-Holsteinische Ergänzung der Musteraufgaben für den hilfsmittelfreien Teil der schriftlichen Abiturprüfung im Fach Mathematik ab 2015

Schleswig-Holsteinische Ergänzung der Musteraufgaben für den hilfsmittelfreien Teil der schriftlichen Abiturprüfung im Fach Mathematik ab 2015 ische Ergänzung der für den hilfsmittelfreien Teil der schriftlichen Abiturprüfung im Fach Mathematik ab 2015 Ministerium für ildung und Wissenschaft des Landes Juni 2013 1 Inhaltsverzeichnis Vorbemerkungen

Mehr

3. Grundlagen der Linearen Programmierung

3. Grundlagen der Linearen Programmierung 3. Grundlagen der linearen Programmierung Inhalt 3. Grundlagen der Linearen Programmierung Lineares Programm Grafische Lösung linearer Programme Normalform Geometrie linearer Programme Basislösungen Operations

Mehr

Quantitative Risk Management

Quantitative Risk Management Quantitative Risk Management Copulas und Abhängigkeit Johannes Paschetag Mathematisches Institut der Universität zu Köln Wintersemester 2009/10 Betreuung: Prof. Schmidli, J. Eisenberg i Inhaltsverzeichnis

Mehr

Klassische Theoretische Physik II. V: Prof. Dr. M. Mühlleitner, Ü: Dr. M. Rauch. Klausur 1 Lösung. 01. August 2012, 17-19 Uhr

Klassische Theoretische Physik II. V: Prof. Dr. M. Mühlleitner, Ü: Dr. M. Rauch. Klausur 1 Lösung. 01. August 2012, 17-19 Uhr KIT SS 0 Klassische Theoretische Physik II V: Prof. Dr. M. Mühlleitner, Ü: Dr. M. Rauch Klausur Lösung 0. August 0, 7-9 Uhr Aufgabe : Kurzfragen (+++4=0 Punkte (a Zwangsbedingungen beschreiben Einschränkungen

Mehr

2.1.8 Praktische Berechnung von statisch unbestimmten, homogenen

2.1.8 Praktische Berechnung von statisch unbestimmten, homogenen Inhaltsverzeichnis 1 Einleitung... 1 1.1 Aufgaben der Elastostatik.... 1 1.2 Einige Meilensteine in der Geschichte der Elastostatik... 4 1.3 Methodisches Vorgehen zur Erarbeitung der vier Grundlastfälle...

Mehr

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s Nachtrag zur allgemeinen Vektorraum-Theorie. 1.5.15. Direkte Summen. Sei V ein Vektorraum, seien U 1,..., U t Unterräume, wir schreiben V = U 1 U 2 U t = t i=1 U i falls die folgenden beiden Bedingungen

Mehr

Extremwertverteilungen

Extremwertverteilungen Seminar Statistik Institut für Stochastik 12. Februar 2009 Gliederung 1 Grenzwertwahrscheinlichkeiten 2 3 MDA Fréchet MDA Weibull MDA Gumbel 4 5 6 Darstellung von multivariaten, max-stabilen Verteilungsfunktionen

Mehr

Grundlagen der Elektrotechnik 1

Grundlagen der Elektrotechnik 1 Grundlagen der Elektrotechnik 1 Kapitel 5: Elektrisches Strömungsfeld 5 Elektrisches Strömungsfeld 5.1 Definition des Feldbegriffs 5. Das elektrische Strömungsfeld 3 5..1 Strömungsfeld in einer zylindrischen

Mehr

13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen.

13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen. 13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen. Sie heißt linear, wenn sie die Form y (n) + a n 1 y (n 1)

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN. Abzählbarkeit, Injektivität, Sürjektivität und Bijektivität

TECHNISCHE UNIVERSITÄT MÜNCHEN. Abzählbarkeit, Injektivität, Sürjektivität und Bijektivität TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Prof. Dr. Friedrich Roesler Ralf Franken, PhD Max Lein Lineare Algebra 1 WS 26/7 en Blatt 4 13.11.26 Abzählbarkeit, Injektivität, Sürjektivität und Bijektivität

Mehr

1.3 Ein paar Standardaufgaben

1.3 Ein paar Standardaufgaben 1.3 Ein paar Standardaufgaben 15 1.3 Ein paar Standardaufgaben Einerseits betrachten wir eine formale und weitgehend abgeschlossene mathematische Theorie. Sie bildet einen Rahmen, in dem man angewandte

Mehr

Optimalitätskriterien

Optimalitätskriterien Kapitel 4 Optimalitätskriterien Als Optimalitätskriterien bezeichnet man notwendige oder hinreichende Bedingungen dafür, dass ein x 0 Ω R n Lösung eines Optimierungsproblems ist. Diese Kriterien besitzen

Mehr

Grundlagen der Numerischen Thermouiddynamik CFD 1

Grundlagen der Numerischen Thermouiddynamik CFD 1 Grundlagen der Numerischen Thermouiddynamik CFD 1 Skriptum zur Vorlesung Dr. J. Sesterhenn Fachgebiet Numerische Fluiddynamik Technische Universität Berlin Wintersemester 2009/2010 ii Inhaltsverzeichnis

Mehr

BONUS MALUS SYSTEME UND MARKOV KETTEN

BONUS MALUS SYSTEME UND MARKOV KETTEN Fakultät Mathematik und Naturwissenschaften, Fachrichtung Mathematik, Institut für Mathematische Stochastik BONUS MALUS SYSTEME UND MARKOV KETTEN Klaus D. Schmidt Ringvorlesung TU Dresden Fakultät MN,

Mehr

300 Arbeit, Energie und Potential 310 Arbeit und Leistung 320 Felder und Potentiale

300 Arbeit, Energie und Potential 310 Arbeit und Leistung 320 Felder und Potentiale 300 Arbeit, Energie und Potential 30 Arbeit und Leistung 30 Felder und Potentiale um was geht es? Arten on (mechanischer) Energie Potentialbegriff Beschreibung on Systemen mittels Energie 3 potentielle

Mehr

Transportvorgänge. 1. Einleitung. 2. Wärmetransport (makroskopische Betrachtung) KAPITEL D

Transportvorgänge. 1. Einleitung. 2. Wärmetransport (makroskopische Betrachtung) KAPITEL D 3 KAPITEL D Transportvorgänge. Einleitung Bisher wurde das Hauptaugenmerk auf Gleichgewichtszustände gerichtet. Hat man in einem System an unterschiedlichen Orten unterschiedliche Temperaturen, so liegt

Mehr

( ) als den Punkt mit der gleichen x-koordinate wie A und der

( ) als den Punkt mit der gleichen x-koordinate wie A und der ETH-Aufnahmeprüfung Herbst 05 Mathematik I (Analysis) Aufgabe [6 Punkte] Bestimmen Sie den Schnittwinkel α zwischen den Graphen der Funktionen f(x) x 4x + x + 5 und g(x) x x + 5 im Schnittpunkt mit der

Mehr

Computer Vision I. Nikos Canterakis. Lehrstuhl für Mustererkennung, Universität Freiburg

Computer Vision I. Nikos Canterakis. Lehrstuhl für Mustererkennung, Universität Freiburg Nikos Canterakis Lehrstuhl für Mustererkennung, Universität Freiburg Gliederung 8 Projektive Invarianz und das kanonische Kamerapaar Kanonisches Kamerapaar aus gegebener Fundamentalmatrix Freiheitsgrade

Mehr

Übungen zur Analysis 1 für Informatiker und Statistiker. Lösung zu Blatt 12

Übungen zur Analysis 1 für Informatiker und Statistiker. Lösung zu Blatt 12 Mthemtisches Istitut der Uiversität Müche Prof. Dr. Peter Otte WiSe 203/4 Lösug 2 2.0.204 Aufgbe 2. [8 Pute] Übuge zur Alysis für Iformtier ud Sttistier Lösug zu Bltt 2 Für eie Teilmege Ω R, sei {, flls

Mehr

Physik 1 für Ingenieure

Physik 1 für Ingenieure Physik 1 für Ingenieure Othmar Marti Experimentelle Physik Universität Ulm Othmar.Marti@Physik.Uni-Ulm.de Skript: http://wwwex.physik.uni-ulm.de/lehre/physing1 Übungsblätter und Lösungen: http://wwwex.physik.uni-ulm.de/lehre/physing1/ueb/ue#

Mehr

Fundamentale lineare partielle Differentialgleichungen

Fundamentale lineare partielle Differentialgleichungen KAPITEL 2 Fundamentale lineare partielle Differentialgleichungen In diesem Kapitel werden wir uns mit vier fundamentalen partiellen Differentialgleichungen beschäftigen: die Transportgleichung u t + b

Mehr

Aufgabensammlung Werkstoffmechanik

Aufgabensammlung Werkstoffmechanik Institut für Mechanik und Fluiddynamik (IMFD) Lehrstuhl für Technische Mechanik Festkörpermechanik Prof. Dr. rer. nat. habil. Meinhard Kuna Aufgabensammlung Werkstoffmechanik Wintersemester 2013 Freiberg,

Mehr

1 Anregung von Oberflächenwellen (30 Punkte)

1 Anregung von Oberflächenwellen (30 Punkte) 1 Anregung von Oberflächenwellen (30 Punkte) Eine ebene p-polarisierte Welle mit Frequenz ω und Amplitude E 0 trifft aus einem dielektrischen Medium 1 mit Permittivität ε 1 auf eine Grenzfläche, die mit

Mehr

Mathematische Methoden in den Ingenieurwissenschaften 2. Übungsblatt

Mathematische Methoden in den Ingenieurwissenschaften 2. Übungsblatt Prof. Dr. T. Apel J. Mihael Mathematishe Methoden in den Ingenieurwissenshaften. Übungsblatt Wintertrimester 5 Aufgabe 4 : (Variationsrehnung Extremalen Bestimmen Sie die Extremalen der folgenden Variationsprobleme

Mehr

u + v = v + u. u + (v + w) = (u + v) + w. 0 V + v = v + 0 V = v v + u = u + v = 0 V. t (u + v) = t u + t v, (t + s) u = t u + s u.

u + v = v + u. u + (v + w) = (u + v) + w. 0 V + v = v + 0 V = v v + u = u + v = 0 V. t (u + v) = t u + t v, (t + s) u = t u + s u. Universität Stuttgart Fachbereich Mathematik Prof. Dr. C. Hesse PD Dr. P. H. Lesky Dipl. Math. D. Zimmermann Msc. J. Köllner FAQ 3 Höhere Mathematik I 4..03 el, kyb, mecha, phys Vektorräume Vektorräume

Mehr

3. Stochastische Prozesse (Version 1.6.06)

3. Stochastische Prozesse (Version 1.6.06) Statistische Physik, G Schön, Universität Karlsruhe 33 3 Stochastische Prozesse (Version 606) 3 Begriffe, elementare Eigenschaften Definition: Wir betrachten eine kontinuierliche [oder diskrete] stochastische

Mehr

Leistungselektronik Grundlagen und Standardanwendungen. Übung 6: Verlustleistung und Kühlung

Leistungselektronik Grundlagen und Standardanwendungen. Übung 6: Verlustleistung und Kühlung Lehrstuhl für Elektrische Antriebssysteme und Leistungselektronik Technische Universität München Arcisstraße 21 D 8333 München Email: eal@ei.tum.de Internet: http://www.eal.ei.tum.de Prof. Dr.-Ing. Ralph

Mehr

Serie 13: Online Test

Serie 13: Online Test D-ERDW, D-HEST, D-USYS Mathematik I HS 3 Dr. Ana Cannas Serie 3: Online Test Einsendeschluss: 3. Januar 4 Bei allen Aufgaben ist genau eine Antwort richtig. Lösens des Tests eine Formelsammlung verwenden.

Mehr

Elektrodynamik. Dr. E. Fromm - SS 2007

Elektrodynamik. Dr. E. Fromm - SS 2007 Elektrodynamik Dr. E. Fromm - SS 27 Copyright c 27 Tobias Doerffel Diese privaten Mitschriften der o.g. Vorlesung erheben weder den Anspruch auf Vollständigkeit noch auf Fehlerfreiheit. Die Verwendung

Mehr

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009 UNIVERSIÄ KARLSRUHE Institut für Anlysis HDoz. Dr. P. C. Kunstmnn Dipl.-Mth. M. Uhl Sommersemester 9 Höhere Mthemti II für die Fchrichtungen Eletroingenieurwesen, Physi und Geodäsie inlusive Komplexe Anlysis

Mehr

Physik 4, Übung 8, Prof. Förster

Physik 4, Übung 8, Prof. Förster Physik 4, Übung 8, Prof. Förster Christoph Hansen Emailkontakt Dieser Text ist unter dieser Creative Commons Lizenz veröffentlicht. Ich erhebe keinen Anspruch auf Vollständigkeit oder Richtigkeit. Falls

Mehr

Stabilität mittels Ljapunov Funktion

Stabilität mittels Ljapunov Funktion Stabilität mittels Ljapunov Funktion Definition Eine C 1 Funktion V : D R, D R, heißt eine Ljapunov Funktion auf K r (0) D für f(y), falls gilt: 1) V(0) = 0, V(y) > 0 für y 0 2) V,f(y) 0 ( y, y r) Gilt

Mehr

Hydrodynamik Kontinuitätsgleichung. Massenerhaltung: ρ. Massenfluss. inkompressibles Fluid: (ρ 1 = ρ 2 = konst) Erhaltung des Volumenstroms : v

Hydrodynamik Kontinuitätsgleichung. Massenerhaltung: ρ. Massenfluss. inkompressibles Fluid: (ρ 1 = ρ 2 = konst) Erhaltung des Volumenstroms : v Hydrodynamik Kontinuitätsgleichung A2, rho2, v2 A1, rho1, v1 Stromröhre Massenerhaltung: ρ } 1 v {{ 1 A } 1 = ρ } 2 v {{ 2 A } 2 m 1 inkompressibles Fluid: (ρ 1 = ρ 2 = konst) Erhaltung des Volumenstroms

Mehr

7.3 Anwendungsbeispiele aus Physik und Technik

7.3 Anwendungsbeispiele aus Physik und Technik 262 7. Differenzialrechnung 7.3 7.3 Anwendungsbeispiele aus Physik und Technik 7.3.1 Kinematik Bewegungsabläufe lassen sich durch das Weg-Zeit-Gesetz s = s (t) beschreiben. Die Momentangeschwindigkeit

Mehr

Übungen zur Numerischen Mathematik 2 Sommersemester 2014. Übungsblatt 13

Übungen zur Numerischen Mathematik 2 Sommersemester 2014. Übungsblatt 13 Universität Heidelberg Interdisziplinäres Zentrum für Wissenschaftliches Rechnen Prof. Dr. Dres. h.c. Hans Georg Bock Dr. Christian Kirches Dipl.-Phys. Simon Lenz Übungen zur Numerischen Mathematik 2 Sommersemester

Mehr

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Wintersemester 3/4 (.3.4). (a) Für z = + i und z = 3 4i berechne man z z und z z. Die Ergebnisse sind in kartesischer Form anzugeben.

Mehr

Mathematischer Vorkurs für Physiker WS 2009/10

Mathematischer Vorkurs für Physiker WS 2009/10 TU München Prof. Dr. P. Vogl, Dr. S. Schlicht Mathematischer Vorkurs für Physiker WS 2009/10 Vorlesung 1, Montag vormittag Vektoralgebra Ein Vektor lässt sich geometrisch als eine gerichtete Strecke darstellen,

Mehr

Klausur Mathematik 2

Klausur Mathematik 2 Mathematik für Ökonomen WS 2014/15 Campus Duisburg PD Dr. V. Krätschmer, Fakultät für Mathematik Klausur Mathematik 2 17.02.2015, 12:30-14:30 Uhr (120 Minuten) Erlaubte Hilfsmittel: Nur reine Schreib-

Mehr

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 9.. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 Die Grundfrage bei der Anwendung des Satzes über implizite Funktionen betrifft immer die folgende Situation: Wir haben eine Funktion f : V W und eine Stelle x

Mehr

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt - 17 - Die Frage ist hier also: Für welche x R gilt x = x + 1? Das ist eine quadratische Gleichung für x. Es gilt x = x + 1 x x 3 = 0, und man kann quadratische Ergänzung machen:... ( ) ( ) x x + = 3 +

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Brückenkurs Mathematik TU Dresden 2015 Lineare Gleichungssysteme Schwerpunkte: Modellbildung geometrische Interpretation Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik auf der

Mehr

Tensorrechnung. Prof. Thomas Apel Institut für Mathematik und Bauinformatik Fakultät für Bauingenieurwesen und Umweltwissenschaften

Tensorrechnung. Prof. Thomas Apel Institut für Mathematik und Bauinformatik Fakultät für Bauingenieurwesen und Umweltwissenschaften Tensorrechnung Prof. Thomas Apel Institut für Mathematik und Bauinformatik Fakultät für Bauingenieurwesen und Umweltwissenschaften Wintertrimester 2015 Inhaltsverzeichnis Literatur 2 1 Tensoren 3 1.1 Tensoren

Mehr

W10. Wärmeleitung. Es werden die Wärme- und die elektrische Leitfähigkeit zweier Metalle bestimmt und die Proportionalität

W10. Wärmeleitung. Es werden die Wärme- und die elektrische Leitfähigkeit zweier Metalle bestimmt und die Proportionalität W10 Wärmeleitung Es werden die Wärme- und die elektrische Leitfähigkeit zweier Metalle bestimmt und die Proportionalität dieser Größen nachgewiesen. 1. Theoretische Grundlagen 1.1 Wärmeleitung Mikroskopisch

Mehr

Definition 3.1: Ein Differentialgleichungssystem 1. Ordnung

Definition 3.1: Ein Differentialgleichungssystem 1. Ordnung Kapitel 3 Dynamische Systeme Definition 31: Ein Differentialgleichungssystem 1 Ordnung = f(t, y) ; y R N ; f : R R N R N heißt namisches System auf dem Phasenraum R N Der Parameter t wird die Zeit genannt

Mehr

Bitte unbedingt beachten: a) Gewertet werden alle acht gestellten Aufgaben.

Bitte unbedingt beachten: a) Gewertet werden alle acht gestellten Aufgaben. Mathematik I für Wirtschaftswissenschaftler Klausur für alle gemeldeten Fachrichtungen außer Immobilientechnik und Immobilienwirtschaft am 9..9, 9... Bitte unbedingt beachten: a) Gewertet werden alle acht

Mehr

Modulabschlussklausur Analysis II

Modulabschlussklausur Analysis II Modulabschlussklausur Analysis II. Juli 015 Bearbeitungszeit: 150 min Aufgabe 1 [5/10 Punkte] Es sei a R und f a : R 3 R mit f a (x, y, z) = x cos(y) + z 3 sin(y) + a 3 + (z + ay a y) cos(x) a) Bestimmen

Mehr

Motivation 1. 3 Ein paralleles Programmiermodell 63 3.1 Parallele Finite Elemente... 64 3.2 Ein paralleles Mehrgitterverfahren...

Motivation 1. 3 Ein paralleles Programmiermodell 63 3.1 Parallele Finite Elemente... 64 3.2 Ein paralleles Mehrgitterverfahren... Inhaltsverzeichnis Motivation 1 1 Nichtlineare Cosserat-Modelle 5 1.1 Das Modellproblem der perfekten Plastizität................ 6 1.2 Einführung in die infinitesimale Cosserat-Elastizität............

Mehr

Beispiel 48. 4.3.2 Zusammengesetzte Zufallsvariablen

Beispiel 48. 4.3.2 Zusammengesetzte Zufallsvariablen 4.3.2 Zusammengesetzte Zufallsvariablen Beispiel 48 Ein Würfel werde zweimal geworfen. X bzw. Y bezeichne die Augenzahl im ersten bzw. zweiten Wurf. Sei Z := X + Y die Summe der gewürfelten Augenzahlen.

Mehr

Semidiskretisierung der PDA-Systeme

Semidiskretisierung der PDA-Systeme Kapitel 4 Semidisretisierung der PDA-Systeme Eine Möglicheit zur numerischen Behandlung von Anfangsrandwertproblemen partieller Differentialgleichungen ist die Linienmethode method of lines, MOL, vgl.

Mehr

Analytische Methoden und die Black-Scholes Modelle

Analytische Methoden und die Black-Scholes Modelle Analytische Methoden und die Black-Scholes Modelle Diplomverteidigung Universität Rostock Institut für Mathematik 20.01.2011 Agenda 1 Das Ornstein-Uhlenbeck Volatilitätsmodell 2 in L 2 (R 2 ) 3 4 Problem

Mehr

Erinnerung/Zusammenfassung zu Abbildungsmatrizen

Erinnerung/Zusammenfassung zu Abbildungsmatrizen Erinnerung/Zusammenfassung zu Abbildungsmatrizen Thomas Coutandin (cthomas@student.ethz.ch) 7. November 2 Abbildungsmatrizen Im Folgenden betrachten wir stets endlich dimensionale K-Vektorräume (K irgend

Mehr

Institut für Leistungselektronik und Elektrische Antriebe. Übungen Regelungstechnik 2

Institut für Leistungselektronik und Elektrische Antriebe. Übungen Regelungstechnik 2 Institut für Leistungselektronik und Elektrische Antriebe Prof. Dr.-Ing. J. Roth-Stielow Übungen Regelungstechnik 2 Inhalt der Übungen: 1. Grundlagen (Wiederholung RT1) 2. Störgrößenaufschaltung 3. Störgrößennachbildung

Mehr

Lösung eines inversen Problems aus der Biomechanik via Finite Elemente

Lösung eines inversen Problems aus der Biomechanik via Finite Elemente Lösung eines inversen Problems aus der Biomechanik via Finite Elemente - Diplomarbeit - am Mathematischen Institut der Ludwig-Maximilians-Universität München vorgelegt von Christian Clason 1 18. Juli 2001

Mehr

Elektromagnetische Felder

Elektromagnetische Felder Heino Henke Elektromagnetische Felder Theorie und Anwendung 3., erweiterte Auflage Mit 212 Abbildungen und 7 Tabellen * J Springer Inhaltsverzeichnis Zur Bedeutung der elektromagnetischen Theorie 1 1.

Mehr

2 Das zeitunabhängige elektromagnetische Feld

2 Das zeitunabhängige elektromagnetische Feld 2 Das zeitunabhängige elektromagnetische Feld Bedingungen, unter welchen E und B-Felder zeitunabhängig folgen aus Maxwellgleichungen ε dive = ε dive = divb = divb = rote = Ḃ rote = µ rotb = j + εė µ rotb

Mehr

Gewöhnliche Differentialgleichungen

Gewöhnliche Differentialgleichungen Notizen zur Vorlesung Gewöhnliche Differentialgleichungen G Sweers Wintersemester 08/09 ii Inhaltsverzeichnis Einführung Modelle 2 Explizite Lösungen 4 2 Trennbar 5 22 Linear erster Ordnung 6 23 Homogen

Mehr

FUNKTIONENTHEORIE - ZUSÄTZLICHE LERNMATERIALIEN

FUNKTIONENTHEORIE - ZUSÄTZLICHE LERNMATERIALIEN FUNKTIONENTHEORIE - ZUSÄTZLICHE LERNMATERIALIEN JOSEF TEICHMANN 1. Ein motivierendes Beispiel aus der Anwendung Das SABR-Modell spielt in der Modellierung von stochastischer Volatilität eine herausragende

Mehr

ÖSTERREICHISCHES INGENIEUR-ARCHIV

ÖSTERREICHISCHES INGENIEUR-ARCHIV ÖSTERREICHISCHES INGENIEUR-ARCHIV HEßAUSGEGEBEN VON P. FUNK-WIEN W. GAUSTER-RALEIGH, USA. G. HEINRICH-WIEN A. KROMM-GRAZ E. MELAN-WIEN K. OSWATITSCH-WIEN H. PARKUS-WIEN SCHRIFTLEITUNG H. PARKUS-WIEN BAND

Mehr

Satz 2.8.3: Sei Q eine Intensitätsmatrix. Dann hat die

Satz 2.8.3: Sei Q eine Intensitätsmatrix. Dann hat die Satz 2.8.3: Sei Q eine Intensitätsmatrix. Dann hat die Rückwärtsgleichung P (t) = QP (t), P (0) = E eine minimale nicht negative Lösung (P (t) : t 0). Die Lösung bildet eine Matrix Halbgruppe, d.h. P (s)p

Mehr

Übungen zum Ferienkurs Lineare Algebra WS 14/15

Übungen zum Ferienkurs Lineare Algebra WS 14/15 Übungen zum Ferienkurs Lineare Algebra WS 14/15 Linearkombinationen, Basen, Lineare Abbildungen 2.1 Lineare Unabhängigkeit Sind die folgenden Vektoren linear unabhängig? (a) 1, 2, 3 im Q Vektorraum R (b)

Mehr

Computer Vision: Optische Flüsse

Computer Vision: Optische Flüsse Computer Vision: Optische Flüsse D. Schlesinger TUD/INF/KI/IS Bewegungsanalyse Optischer Fluss Lokale Verfahren (Lukas-Kanade) Globale Verfahren (Horn-Schunck) (+ kontinuierliche Ansätze: mathematische

Mehr

Mathematik für Ingenieure 2

Mathematik für Ingenieure 2 Armin Hoffmann Bernd Marx Werner Vogt Mathematik für Ingenieure 2 Vektoranalysis, Integraltransformationen, Differenzialgleichungen, Stochastik Theorie und Numerik ein Imprint von Pearson Education München

Mehr

Computer Vision I. Nikos Canterakis. Lehrstuhl für Mustererkennung, Universität Freiburg,

Computer Vision I. Nikos Canterakis. Lehrstuhl für Mustererkennung, Universität Freiburg, Nikos Canterakis Lehrstuhl für Mustererkennung, Universität Freiburg, Literatur Richard Hartle and Andrew Zisserman. Multiple View Geometr in computer vision, Cambridge Universit Press, 2 nd Ed., 23. O.D.

Mehr

Diplomprüfung Theoretische Elektrotechnik Erster Teil (Wissensteil)

Diplomprüfung Theoretische Elektrotechnik Erster Teil (Wissensteil) TU Hamburg-Harburg Theoretische Elektrotechnik Prof. Dr. Christian Schuster F R A G E N K A T A L O G Diplomprüfung Theoretische Elektrotechnik Erster Teil (Wissensteil) Die folgenden Fragen sind Beispiele

Mehr

Übung zur Vorlesung Physikalische Chemie im Studiengang 3. FS KB Ch und 3. FS BB Phy

Übung zur Vorlesung Physikalische Chemie im Studiengang 3. FS KB Ch und 3. FS BB Phy Übung zur Vorlesung Physikalische Chemie im Studiengang 3. FS KB Ch und 3. FS BB Phy Dr. Raimund Horn a Dipl. Chem. Barbara Bliss b Dipl. Phys. Lars Lasogga c a Fritz Haber Institut der Max Planck Gesellschaft

Mehr

Partielle Differentialgleichungen

Partielle Differentialgleichungen Springer-Lehrbuch Masterclass Partielle Differentialgleichungen Eine anwendungsorientierte Einführung Bearbeitet von Ben Schweizer 1. Auflage 213. Taschenbuch. xvi, 583 S. Paperback ISBN 978 3 642 4637

Mehr

Klassische Feldtheorie 2 Mitschrift von Martin Bendschneider

Klassische Feldtheorie 2 Mitschrift von Martin Bendschneider Klassische Feldtheorie 2 Mitschrift von Martin Bendschneider 1 Inhaltsverzeichnis 1 Hamilton Mechanik 3 1.1 Newton Mechanik.......................... 3 1.2 Lagrange............................... 3 1.3

Mehr

Ferienkurs - Experimentalphysik 2

Ferienkurs - Experimentalphysik 2 Technische Universität München Department of Physics Ferienkurs - Experimentalphysik 2 Dienstag Daniel Jost Datum 21/08/2012 Inhaltsverzeichnis 1 Magnetostatik 1 1.1 Feldgleichungen der Magnetostatik.....................

Mehr

2 3 x3 17. x k dx = x k x k+1 k +1. Mit jeder weiteren partiellen Integration reduziert sich der Grad des Faktors x n, induktiv erhalten wir also

2 3 x3 17. x k dx = x k x k+1 k +1. Mit jeder weiteren partiellen Integration reduziert sich der Grad des Faktors x n, induktiv erhalten wir also Universität Konstanz Fachbereich Mathematik und Statistik Repetitorium Analysis 0 Dr DK Huynh Blatt 8 Aufgabe 6 Bestimmen Sie (a) (x + x 7x+)dx (c) (f) x n exp(x)dx (n N fest) sin (x)dx (g) (b) (d) ln(x)dx

Mehr

(λ Ri I A+BR)v Ri = 0. Lässt sich umstellen zu

(λ Ri I A+BR)v Ri = 0. Lässt sich umstellen zu Herleitung der oppenecker-formel (Wiederholung) Für ein System ẋ Ax + Bu (B habe Höchstrang) wird eine Zustandsregelung u x angesetzt. Der geschlossene egelkreis gehorcht der Zustands-Dgl. ẋ (A B)x. Die

Mehr

THEORETISCHE PHYSIK I

THEORETISCHE PHYSIK I THEORETISCHE PHYSIK I Sommersemester 2005 Matthias R. Gaberdiel Institut für Theoretische Physik ETH-Hönggerberg CH-8093 Zürich Email: gaberdiel@itp.phys.ethz.ch Contents 1 Einleitung 4 2 Elektrostatik

Mehr

Periodische Fahrpläne und Kreise in Graphen

Periodische Fahrpläne und Kreise in Graphen Periodische Fahrpläne und Kreise in Graphen Vorlesung Algorithmentechnik WS 2009/10 Dorothea Wagner Karlsruher Institut für Technologie Eisenbahnoptimierungsprozess 1 Anforderungserhebung Netzwerkentwurf

Mehr

Computer Vision SS 2011. Skript

Computer Vision SS 2011. Skript Computer Vision SS 211 Skript (Work in Progress) Simon Hawe & Martin Kleinsteuber Skript: Manuel Wolf Inhaltsverzeichnis 1 Einführung 1 1.1 Was ist ein Bild?................................. 1 1.2 Wie

Mehr

11.1 Kinetische Energie

11.1 Kinetische Energie 75 Energiemethoden Energiemethoden beinhalten keine neuen Prinzipe, sondern sind ereinfachende Gesamtbetrachtungen an abgeschlossenen Systemen, die aus den bereits bekannten Axiomen folgen. Durch Projektion

Mehr

Formelsammlung Elektromagnetische Feldtheorie 1

Formelsammlung Elektromagnetische Feldtheorie 1 Formelsammlung Elektromagnetische Feldtheorie 1 1 Maxwellsche Gleichungen Name des Gesetzes differentielle Form integrale Form Gaußsches Gesetz divd = ϱ Q( ) = δ Dd a Faradaysches Induktionsgesetz rote

Mehr

0, v 6 = 2 2. 1, v 4 = 1. 2. span(v 1, v 5, v 6 ) = span(v 1, v 2, v 3, v 4, v 5, v 6 ) 4. span(v 1, v 2, v 4 ) = span(v 2, v 3, v 5, v 6 )

0, v 6 = 2 2. 1, v 4 = 1. 2. span(v 1, v 5, v 6 ) = span(v 1, v 2, v 3, v 4, v 5, v 6 ) 4. span(v 1, v 2, v 4 ) = span(v 2, v 3, v 5, v 6 ) Aufgabe 65. Ganz schön span(n)end. Gegeben sei folgende Menge M von 6 Vektoren v, v,..., v 6 R 4 aus Aufgabe P 6: M = v =, v =, v =, v 4 =, v 5 =, v 6 = Welche der folgenden Aussagen sind wahr? span(v,

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Eines der am häufigsten auftretenden Standardprobleme der angewandten Mathematik ist das Lösen linearer Gleichungssysteme, etwa zur Netzwerkberechnung in der Elektrotechnik oder

Mehr

2.3 Arbeit und Energie

2.3 Arbeit und Energie - 43-2.3 Arbeit und Energie 2.3.1 Motivation und Definition Prinzipiell kann man mit den Newton'schen Axiomen die Bewegung von Massenpunkten wie auch Systemen von Massenpunkten beschreiben. In vielen Fällen

Mehr

Markov-Prozesse mit stetigem Zustands- und Parameterraum

Markov-Prozesse mit stetigem Zustands- und Parameterraum Kapitel 8 Markov-Prozesse mit stetigem Zustands- und Parameterraum Markov-Prozesse mit stetigem Zustandsraum S R (bzw. mehrdimensional S R p und in stetiger Zeit, insbesondere sogenannte Diffusionsprozesse

Mehr

Klausuraufgabensammlung Mathematik. Klausuraufgaben zur Mathematik 1-3 von Wolfgang Langguth

Klausuraufgabensammlung Mathematik. Klausuraufgaben zur Mathematik 1-3 von Wolfgang Langguth Fakultät für Ingenieurswissenschaften Bachelorstudiengang Biomedizinische Technik Prof. Dr. W. Langguth Klausuraufgabensammlung Mathematik Klausuraufgaben zur Mathematik - von Wolfgang Langguth Aufgabenstellungen

Mehr

Effiziente numerische Methoden in der Elasto-Plastizität

Effiziente numerische Methoden in der Elasto-Plastizität Karlsruhe Institute of Technology Effiziente numerische Methoden in der Elasto-Plastizität Christian Wieners Institut für Angewandte und Numerische Mathematik, Karlsruhe KIT University of the State of

Mehr

Bestimmung einer ersten

Bestimmung einer ersten Kapitel 6 Bestimmung einer ersten zulässigen Basislösung Ein Problem, was man für die Durchführung der Simplexmethode lösen muss, ist die Bestimmung einer ersten zulässigen Basislösung. Wie gut das geht,

Mehr

Extrema von Funktionen in zwei Variablen

Extrema von Funktionen in zwei Variablen Wirtschaftswissenschaftliches Zentrum Universität Basel Mathematik für Ökonomen 1 Dr. Thomas Zehrt Extrema von Funktionen in zwei Variablen Literatur: Gauglhofer, M. und Müller, H.: Mathematik für Ökonomen,

Mehr

2 Die Darstellung linearer Abbildungen durch Matrizen

2 Die Darstellung linearer Abbildungen durch Matrizen 2 Die Darstellung linearer Abbildungen durch Matrizen V und V seien Vektorräume über einem Körper K. Hom K (V, V ) bezeichnet die Menge der K linearen Abbildungen von V nach V. Wir machen Hom K (V, V )

Mehr

Mathematischer Vorbereitungskurs für Ökonomen

Mathematischer Vorbereitungskurs für Ökonomen Mathematischer Vorbereitungskurs für Ökonomen Dr. Thomas Zehrt Wirtschaftswissenschaftliches Zentrum Universität Basel Gleichungen Inhalt: 1. Grundlegendes 2. Lineare Gleichungen 3. Gleichungen mit Brüchen

Mehr

3-D Finite Elemente zur Diskretisierung der Maxwell-Gleichungen

3-D Finite Elemente zur Diskretisierung der Maxwell-Gleichungen 3-D Finite Elemente zur Diskretisierung der Maxwell-Gleichungen Christoph Schwarzbach (TU Bergakademie Freiberg) schwarzb@geophysik.tu-freiberg.de Abstract Elektromagnetische Phänomene können mathematisch-physikalisch

Mehr

Statistische Thermodynamik I Lösungen zur Serie 1

Statistische Thermodynamik I Lösungen zur Serie 1 Statistische Thermodynamik I Lösungen zur Serie Zufallsvariablen, Wahrscheinlichkeitsverteilungen 4. März 2. Zwei Lektoren lesen ein Buch. Lektor A findet 2 Druckfehler, Lektor B nur 5. Von den gefundenen

Mehr

Charakteristikenmethode im Beispiel

Charakteristikenmethode im Beispiel Charakteristikenmethode im Wir betrachten die PDE in drei Variablen xu x + yu y + (x + y )u z = 0. Das charakteristische System lautet dann ẋ = x ẏ = y ż = x + y und besitzt die allgemeine Lösung x(t)

Mehr

Nichtlineare hyperbolische Gleichungen.

Nichtlineare hyperbolische Gleichungen. Nichtlineare hyperbolische Gleichungen. 1 Hyperbolische Gleichungen 1.1 Einleitung In dieser Vorlesung geht es um hyperbolische Gleichungen. Es sind Evolutionsgleichungen. Das heißt, wir haben ein System

Mehr