Jordan-Form. Eine komplexe quadratische Matrix A lässt sich durch eine Ähnlichkeitstranformation auf die Blockdiagonalform. = Q 1 AQ 0 J k J =

Größe: px
Ab Seite anzeigen:

Download "Jordan-Form. Eine komplexe quadratische Matrix A lässt sich durch eine Ähnlichkeitstranformation auf die Blockdiagonalform. = Q 1 AQ 0 J k J ="

Transkript

1 Jordan-Form Eine komplexe quadratische Matrix A lässt sich durch eine Ähnlichkeitstranformation auf die Blockdiagonalform J 1 0 J =... = Q 1 AQ 0 J k transformieren. Jordan-Form 1-1

2 Jordan-Form Eine komplexe quadratische Matrix A lässt sich durch eine Ähnlichkeitstranformation auf die Blockdiagonalform J 1 0 J =... = Q 1 AQ 0 J k transformieren. Dabei haben die Jordanblöcke die Form λ i λ i 1 J i =......, λ i 1 0 λ i mit einem Eigenwert λ i von A. Jordan-Form 1-2

3 Jordan-Form Eine komplexe quadratische Matrix A lässt sich durch eine Ähnlichkeitstranformation auf die Blockdiagonalform J 1 0 J =... = Q 1 AQ 0 J k transformieren. Dabei haben die Jordanblöcke die Form λ i λ i 1 J i =......, λ i 1 0 λ i mit einem Eigenwert λ i von A. Bis auf Permutation der Blöcke ist die Jordan-Form eindeutig. Jordan-Form 1-3

4 Beispiel: A = Jordan-Form 2-1

5 Beispiel: A = charakteristisches Polynom: Jordan-Form 2-2

6 Beispiel: A = charakteristisches Polynom: p A (λ) = ( 1 λ) 3 + 4(4 3( 1 λ)) = λ 3 3λ 2 + 9λ + 27 Jordan-Form 2-3

7 Beispiel: A = charakteristisches Polynom: p A (λ) = ( 1 λ) 3 + 4(4 3( 1 λ)) = λ 3 3λ 2 + 9λ + 27 Nullstellen: doppelt λ = 3, einfach λ = 3 Jordan-Form 2-4

8 Beispiel: A = charakteristisches Polynom: p A (λ) = ( 1 λ) 3 + 4(4 3( 1 λ)) = λ 3 3λ 2 + 9λ + 27 Nullstellen: doppelt λ = 3, einfach λ = Rang(A λe) = Rang = Jordan-Form 2-5

9 Beispiel: A = charakteristisches Polynom: p A (λ) = ( 1 λ) 3 + 4(4 3( 1 λ)) = λ 3 3λ 2 + 9λ + 27 Nullstellen: doppelt λ = 3, einfach λ = Rang(A λe) = Rang = = bis auf Vielfache nur ein Eigenvektor u zu λ = 3 Jordan-Form 2-6

10 Jordan-Form J = Jordan-Form 2-7

11 Jordan-Form J = Bestimmung der Transformationsmatrix Q = (u, v, w) aus der Identität QJ = AQ Jordan-Form 2-8

12 Jordan-Form J = Bestimmung der Transformationsmatrix Q = (u, v, w) aus der Identität QJ = AQ 3u = Au (Spalte 1) u 3v = Aṽ (Spalte 2) 3w = Aw (Spalte 3) Jordan-Form 2-9

13 lineare Gleichungssysteme für die Eigenvektoren u 1 (A λe)u = u 2 = u und (A λe)w = Eigenvektoren u = , w = w 1 w 2 w = Jordan-Form 2-10

14 lineares Gleichungssystem für den Hauptvektor v ṽ 1 u = 2 = ṽ 2 = (A λe)ṽ ṽ 3 = ṽ = ( 3, 4, 1) t Jordan-Form 2-11

15 lineares Gleichungssystem für den Hauptvektor v ṽ 1 u = 2 = ṽ 2 = (A λe)ṽ ṽ 3 = ṽ = ( 3, 4, 1) t Transformationsmatrix Q = (u, v, w) = Jordan-Form 2-12

16 Beispiel: qualitativ verschiedene Jordan-Normalformen J für eine 2 2-Matrix A Jordan-Form 3-1

17 Beispiel: qualitativ verschiedene Jordan-Normalformen J für eine 2 2-Matrix A (i) Zwei einfache Eigenwerte λ und ϱ: Jordan-Form 3-2

18 Beispiel: qualitativ verschiedene Jordan-Normalformen J für eine 2 2-Matrix A (i) Zwei einfache Eigenwerte λ und ϱ: zugehörige Eigenvektoren v und w ( ) λ 0 J = = Q 1 AQ, Q = (v, w) 0 ϱ Jordan-Form 3-3

19 Beispiel: qualitativ verschiedene Jordan-Normalformen J für eine 2 2-Matrix A (i) Zwei einfache Eigenwerte λ und ϱ: zugehörige Eigenvektoren v und w ( ) λ 0 J = = Q 1 AQ, Q = (v, w) 0 ϱ (ii) Doppelter Eigenwert λ mit zwei linear unabhängigen Eigenvektoren v und w: Jordan-Form 3-4

20 Beispiel: qualitativ verschiedene Jordan-Normalformen J für eine 2 2-Matrix A (i) Zwei einfache Eigenwerte λ und ϱ: zugehörige Eigenvektoren v und w ( ) λ 0 J = = Q 1 AQ, Q = (v, w) 0 ϱ (ii) Doppelter Eigenwert λ mit zwei linear unabhängigen Eigenvektoren v und w: ( ) λ 0 J = = A, 0 λ denn mit Q = (v, w) ist A = QJQ 1 = Q(λE)Q 1 = λe Jordan-Form 3-5

21 (ii) Doppelter Eigenwert λ mit nur einem, bis auf Vielfache eindeutig bestimmten Eigenvektor v: Jordan-Form 3-6

22 (ii) Doppelter Eigenwert λ mit nur einem, bis auf Vielfache eindeutig bestimmten Eigenvektor v: J = Q 1 AQ = mit einem Hauptvektor w ( λ 1 0 λ ), Q = (v, w), Jordan-Form 3-7

23 (ii) Doppelter Eigenwert λ mit nur einem, bis auf Vielfache eindeutig bestimmten Eigenvektor v: J = Q 1 AQ = ( λ 1 0 λ ), Q = (v, w), mit einem Hauptvektor w Rang(A λe) = 1 v mit einer nicht-trivialen Gleichung des homogenen Systems (A λe)v = 0 bestimmbar; andere Gleichung redundant Jordan-Form 3-8

24 (ii) Doppelter Eigenwert λ mit nur einem, bis auf Vielfache eindeutig bestimmten Eigenvektor v: J = Q 1 AQ = ( λ 1 0 λ ), Q = (v, w), mit einem Hauptvektor w Rang(A λe) = 1 v mit einer nicht-trivialen Gleichung des homogenen Systems (A λe)v = 0 bestimmbar; andere Gleichung redundant Bestimmung von w aus der zweiten Spalte der Identität d.h. v = (A λe)w QJ = AQ (λv, v + λw) = (Av, Aw), Jordan-Form 3-9

25 Beispiel: A = ( ) = charakteristisches Polynom λ 2 4λ + 4 = 0 Jordan-Form 4-1

26 Beispiel: A = ( ) doppelte Nullstelle λ = 2 = charakteristisches Polynom λ 2 4λ + 4 = 0 Jordan-Form 4-2

27 Beispiel: A = ( ) = charakteristisches Polynom λ 2 4λ + 4 = 0 doppelte Nullstelle λ = 2 lineares Gleichungssystem für den Eigenvektor ( ) ( ) 6 4 v1 (A λe)v = = 9 6 = v = (2, 3) t v 2 ( 0 0 ) Jordan-Form 4-3

28 Beispiel: A = ( ) = charakteristisches Polynom λ 2 4λ + 4 = 0 doppelte Nullstelle λ = 2 lineares Gleichungssystem für den Eigenvektor ( ) ( ) 6 4 v1 (A λe)v = = 9 6 v 2 ( 0 0 = v = (2, 3) t lineares Gleichungssystem für den Hauptvektor ( ) ( ) ( ) w1 v = = = (A λe)w = w = (1, 2) t w 2 ) Jordan-Form 4-4

29 Beispiel: A = ( ) = charakteristisches Polynom λ 2 4λ + 4 = 0 doppelte Nullstelle λ = 2 lineares Gleichungssystem für den Eigenvektor ( ) ( ) 6 4 v1 (A λe)v = = 9 6 v 2 ( 0 0 = v = (2, 3) t lineares Gleichungssystem für den Hauptvektor ( ) ( ) ( ) w1 v = = = (A λe)w = w = (1, 2) t Probe: ( ) ( ) ( ) A = QJQ = w 2 ) Jordan-Form 4-5

30 Beispiel: verschiedene Jordan-Normalformen J = QAQ 1 A = Q 1 JQ für eine 3 3-Matrix A Jordan-Form 5-1

31 Beispiel: verschiedene Jordan-Normalformen J = QAQ 1 A = Q 1 JQ für eine 3 3-Matrix A (i) Paarweise verschiedene Eigenwerte λ, ϱ, σ: J = λ ϱ σ Jordan-Form 5-2

32 Beispiel: verschiedene Jordan-Normalformen J = QAQ 1 A = Q 1 JQ für eine 3 3-Matrix A (i) Paarweise verschiedene Eigenwerte λ, ϱ, σ: J = λ ϱ σ (ii) Doppelter Eigenwert λ: λ λ ϱ, λ λ ϱ Jordan-Form 5-3

33 zweiter Fall: Jordan-Form 5-4

34 zweiter Fall: Rang(A λe) = 2 Jordan-Form 5-5

35 zweiter Fall: Rang(A λe) = 2 Q = (u, v, w) mit Eigenvektoren u und w und einem Hauptvektor v Jordan-Form 5-6

36 zweiter Fall: Rang(A λe) = 2 Q = (u, v, w) mit Eigenvektoren u und w und einem Hauptvektor v Bestimmung durch Lösen der Gleichungssysteme (A λe)u = 0, u = (A λe)v, (A ϱe)w = 0 Jordan-Form 5-7

37 zweiter Fall: Rang(A λe) = 2 Q = (u, v, w) mit Eigenvektoren u und w und einem Hauptvektor v Bestimmung durch Lösen der Gleichungssysteme (A λe)u = 0, u = (A λe)v, (A ϱe)w = 0 (iii) Dreifacher Eigenwert λ: λ λ λ, λ λ λ, λ λ λ Jordan-Form 5-8

38 zweiter Fall: Rang(A λe) = 1 Jordan-Form 5-9

39 zweiter Fall: Rang(A λe) = 1 erhalte einen Hauptvektor v durch Lösen von (A λe) 2 v = 0, (A λe)v 0 Jordan-Form 5-10

40 zweiter Fall: Rang(A λe) = 1 erhalte einen Hauptvektor v durch Lösen von (A λe) 2 v = 0, (A λe)v 0 zugehöriger Eigenvektor: u = (A λe)v Jordan-Form 5-11

41 zweiter Fall: Rang(A λe) = 1 erhalte einen Hauptvektor v durch Lösen von (A λe) 2 v = 0, (A λe)v 0 zugehöriger Eigenvektor: u = (A λe)v weiterer linear unabhängiger Eigenvektor w erfüllt Jordan-Form 5-12

42 zweiter Fall: Rang(A λe) = 1 erhalte einen Hauptvektor v durch Lösen von (A λe) 2 v = 0, (A λe)v 0 zugehöriger Eigenvektor: u = (A λe)v weiterer linear unabhängiger Eigenvektor w erfüllt (A λe)w = 0, w u Jordan-Form 5-13

43 zweiter Fall: Rang(A λe) = 1 erhalte einen Hauptvektor v durch Lösen von (A λe) 2 v = 0, (A λe)v 0 zugehöriger Eigenvektor: u = (A λe)v weiterer linear unabhängiger Eigenvektor w erfüllt Q = (u, v, w) (A λe)w = 0, w u Jordan-Form 5-14

44 zweiter Fall: Rang(A λe) = 1 erhalte einen Hauptvektor v durch Lösen von (A λe) 2 v = 0, (A λe)v 0 zugehöriger Eigenvektor: u = (A λe)v weiterer linear unabhängiger Eigenvektor w erfüllt (A λe)w = 0, w u Q = (u, v, w) dritter Fall: Rang(A λe) = 2 Jordan-Form 5-15

45 zweiter Fall: Rang(A λe) = 1 erhalte einen Hauptvektor v durch Lösen von (A λe) 2 v = 0, (A λe)v 0 zugehöriger Eigenvektor: u = (A λe)v weiterer linear unabhängiger Eigenvektor w erfüllt (A λe)w = 0, w u Q = (u, v, w) dritter Fall: Q = (u, v, w) mit Rang(A λe) = 2 (A λe)u = 0, u = (A λe)v, v = (A λe)w Jordan-Form 5-16

46 Beispiel: 14 mögliche Belegunsstrukturen für Jordan-Normalformen von 4 4-Matrizen Jordan-Form 6-1

47 Beispiel: 14 mögliche Belegunsstrukturen für Jordan-Normalformen von 4 4-Matrizen (i) vier verschiedene Eigenwerte λ 1, λ 2, λ 3, λ 4 λ λ λ λ 4 Jordan-Form 6-2

48 Beispiel: 14 mögliche Belegunsstrukturen für Jordan-Normalformen von 4 4-Matrizen (i) vier verschiedene Eigenwerte λ 1, λ 2, λ 3, λ 4 λ λ λ λ 4 (ii) ein zweifacher Eigenwert λ 1 und zwei einfache Eigenwerte λ 2, λ 3 λ λ λ λ 2 0, 0 λ λ λ λ 3 Jordan-Form 6-3

49 (iii) zwei zweifache Eigenwerte λ 1, λ 2 λ λ λ 2 0, λ 2 λ λ λ λ 2, λ λ λ λ 2 Jordan-Form 6-4

50 (iii) zwei zweifache Eigenwerte λ 1, λ 2 λ λ λ 2 0, λ 2 λ λ λ λ 2, λ λ λ λ 2 (iv) ein dreifacher Eigenwert λ 1 und ein einfacher Eigenwert λ 2 λ λ λ λ 1 0, 0 λ λ 1 0, λ λ 2 λ λ λ λ 2 Jordan-Form 6-5

51 (v) ein vierfacher Eigenwert λ 1 λ λ λ 1 0, λ 1 λ λ λ λ 1, λ λ λ λ 1 Jordan-Form 6-6

52 (v) ein vierfacher Eigenwert λ 1 λ λ λ 1 0, λ 1 λ λ λ λ 1 λ λ λ λ 1,, λ λ λ λ 1 λ λ λ λ 1 Jordan-Form 6-7

Eigenwerte und Eigenvektoren von Matrizen

Eigenwerte und Eigenvektoren von Matrizen Eigenwerte und Eigenvektoren von Matrizen Das Eigenwertproblem Sei A eine quadratische Matrix vom Typ m,m. Die Aufgabe, eine Zahl λ und einen dazugehörigen Vektor x zu finden, damit Ax = λx ist, nennt

Mehr

Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme

Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme Übung Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme Diese Übung beschäftigt sich mit Grundbegriffen der linearen Algebra. Im Speziellen werden lineare Abbildungen, sowie

Mehr

Musterlösungen zur Linearen Algebra II Blatt 5

Musterlösungen zur Linearen Algebra II Blatt 5 Musterlösungen zur Linearen Algebra II Blatt 5 Aufgabe. Man betrachte die Matrix A := über dem Körper R und über dem Körper F und bestimme jeweils die Jordan- Normalform. Beweis. Das charakteristische

Mehr

LINEARE ALGEBRA Ferienkurs. Hanna Schäfer Philipp Gadow

LINEARE ALGEBRA Ferienkurs. Hanna Schäfer Philipp Gadow LINEARE ALGERA Ferienkurs Hanna Schäfer Philipp Gadow INHALT Eigenwerte und Eigenvektoren. asiswechsel.2 Eigenwertgleichung 2.3 Diagonalisierbarkeit 5.4 Trigonalisierung 8.5 Zusatzmaterial 8 Aufgaben 9

Mehr

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s Nachtrag zur allgemeinen Vektorraum-Theorie. 1.5.15. Direkte Summen. Sei V ein Vektorraum, seien U 1,..., U t Unterräume, wir schreiben V = U 1 U 2 U t = t i=1 U i falls die folgenden beiden Bedingungen

Mehr

3.3 Eigenwerte und Eigenräume, Diagonalisierung

3.3 Eigenwerte und Eigenräume, Diagonalisierung 3.3 Eigenwerte und Eigenräume, Diagonalisierung Definition und Lemma 3.3.1. Sei V ein K-Vektorraum, φ End K (V ), λ K. Wir defnieren den zu λ gehörigen Eigenraum von φ als Dies ist ein Unterraum von V.

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Sei K ein Körper, a ij K für 1 i m, 1 j n. Weiters seien b 1,..., b m K. Dann heißt a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... + a 2n x n = b 2... a m1

Mehr

11 Normalformen von Matrizen

11 Normalformen von Matrizen 11 Normalformen von Matrizen Wir wenden uns in diesem Kapitel noch einmal der Untersuchung linearer Abbildungen auf endlichdimensionalen Vektorräumen und deren Darstellung mittels Matrizen zu Speziell

Mehr

Mathematik für Informatiker II. Beispiellösungen zur Probeklausur. Aufgabe 1. Aufgabe 2 (5+5 Punkte) Christoph Eisinger Sommersemester 2011

Mathematik für Informatiker II. Beispiellösungen zur Probeklausur. Aufgabe 1. Aufgabe 2 (5+5 Punkte) Christoph Eisinger Sommersemester 2011 Mathematik für Informatiker II Christoph Eisinger Sommersemester 211 Beispiellösungen zur Probeklausur Aufgabe 1 Gegeben sind die Polynome f, g, h K[x]. Zu zeigen: Es gibt genau dann Polynome h 1 und h

Mehr

Kochen mit Jordan. Vorbereitungen. Schnellzubereitung. JNF für Genießer wenn s noch etwas mehr sein darf

Kochen mit Jordan. Vorbereitungen. Schnellzubereitung. JNF für Genießer wenn s noch etwas mehr sein darf Kochen mit Jordan Vorbereitungen Man nehme eine Matrix A R n n und bestimme ihr charakteristisches Polynom p(λ) = (λ c ) r (λ c j ) rj C[X] Dabei gilt: algebraische Vielfachheit r j ˆ= Länge des Jordanblocks

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Eines der am häufigsten auftretenden Standardprobleme der angewandten Mathematik ist das Lösen linearer Gleichungssysteme, etwa zur Netzwerkberechnung in der Elektrotechnik oder

Mehr

Wolfgang Kohn Riza Öztürk. Mathematik für Ökonomen. Ökonomische Anwendungen der linearen. Algebra und Analysis mit Scilab

Wolfgang Kohn Riza Öztürk. Mathematik für Ökonomen. Ökonomische Anwendungen der linearen. Algebra und Analysis mit Scilab Wolfgang Kohn Riza Öztürk Mathematik für Ökonomen Ökonomische Anwendungen der linearen Algebra und Analysis mit Scilab 3., erweiterte und überarbeitete Auflage ^ Springer Gabler Inhaltsverzeichnis Teil

Mehr

Numerische Behandlung des Eigenwertproblems

Numerische Behandlung des Eigenwertproblems Numerische Behandlung des Eigenwertproblems Zusammenfassung Das Ziel dieses Vortrages ist, zwei gute Methoden für die numerische Bestimmung der Eigenwerte zu zeigen und wie man diese mit Matlab anwenden

Mehr

Mathematik für Ökonomen

Mathematik für Ökonomen Springer-Lehrbuch Mathematik für Ökonomen Ökonomische Anwendungen der linearen Algebra und Analysis mit Scilab Bearbeitet von Wolfgang Kohn, Riza Öztürk 1. Auflage 2012. Taschenbuch. xv, 377 S. Paperback

Mehr

Musterlösungen zu Prüfungsaufgaben über gewöhnliche Differentialgleichungen Prüfungsaufgabe a) Gegeben sei die lineare Differentialgleichung

Musterlösungen zu Prüfungsaufgaben über gewöhnliche Differentialgleichungen Prüfungsaufgabe a) Gegeben sei die lineare Differentialgleichung Musterlösungen zu n über gewöhnliche Differentialgleichungen a) Gegeben sei die lineare Differentialgleichung y + - y = e - ln, > 0 Man gebe die allgemeine Lösung der homogenen Gleichung an Wie lautet

Mehr

Aufgabe 1. Sei A Mat(n n, R) mit Eigenwert 3. Dann gilt: Eig(A, 3) = Kern(A + 3E n ).

Aufgabe 1. Sei A Mat(n n, R) mit Eigenwert 3. Dann gilt: Eig(A, 3) = Kern(A + 3E n ). Aufgabe Sei A Mat(n n, R) Eigenwert 3. Dann gilt: Eig(A, 3) = Kern(3A E n ). Sei A Mat(n n, R) Eigenwert 3. Dann gilt: Eig(A, 3) = Kern(A 3E n ). Sei A Mat(n n, R) Eigenwert 3. Dann gilt: Eig(A, 3) = Bild(A

Mehr

Vorwort. Günter M. Gramlich. Lineare Algebra. Eine Einführung ISBN: 978-3-446-43035-8. Weitere Informationen oder Bestellungen unter

Vorwort. Günter M. Gramlich. Lineare Algebra. Eine Einführung ISBN: 978-3-446-43035-8. Weitere Informationen oder Bestellungen unter Vorwort Günter M. Gramlich Lineare Algebra Eine Einführung ISBN: 978-3-446-43035-8 Weitere Informationen oder Bestellungen unter http://www.hanser.de/978-3-446-43035-8 sowie im Buchhandel. Carl Hanser

Mehr

Erinnerung/Zusammenfassung zu Abbildungsmatrizen

Erinnerung/Zusammenfassung zu Abbildungsmatrizen Erinnerung/Zusammenfassung zu Abbildungsmatrizen Thomas Coutandin (cthomas@student.ethz.ch) 7. November 2 Abbildungsmatrizen Im Folgenden betrachten wir stets endlich dimensionale K-Vektorräume (K irgend

Mehr

Berechnung von Eigenwerten und Eigenvektoren

Berechnung von Eigenwerten und Eigenvektoren Kapitel 5 Berechnung von Eigenwerten und Eigenvektoren 5.1 Einführung Bemerkung 5.1 Aufgabenstellung. Diese Kapitel behandelt numerische Verfahren zur Lösung des Eigenwertproblems. Gegeben sei A R n n.

Mehr

Ergänzungsseminar zu "Rechenmethoden für Studierende der Chemie"

Ergänzungsseminar zu Rechenmethoden für Studierende der Chemie Ergänzungsseminar zu "Rechenmethoden für Studierende der Chemie" VAK 02-03-2-RM-3 Johannes Ranke Ergänzungsseminar zu "Rechenmethoden für Studierende der Chemie" p.1/13 Programm 18.4. Überblick über Software

Mehr

Lineare Gleichungssysteme und Gauß'scher Algorithmus

Lineare Gleichungssysteme und Gauß'scher Algorithmus Zurück Letzter Update 7... Lineare Gleichungssysteme und Gauß'scher Algorithmus In der Mathematik bezeichnet man mit Matrix ein rechteckiges Schema, in dem Zahlen oder Funktionen angeordnet werden. Hier

Mehr

Kapitel 15. Lösung linearer Gleichungssysteme

Kapitel 15. Lösung linearer Gleichungssysteme Kapitel 15. Lösung linearer Gleichungssysteme Lineare Gleichungssysteme Wir befassen uns nun mit der Lösung im allgemeinen nichthomogener linearer Gleichungssysteme in zweifacher Hinsicht. Wir studieren

Mehr

Übungen zum Ferienkurs Lineare Algebra WS 14/15

Übungen zum Ferienkurs Lineare Algebra WS 14/15 Übungen zum Ferienkurs Lineare Algebra WS 14/15 Linearkombinationen, Basen, Lineare Abbildungen 2.1 Lineare Unabhängigkeit Sind die folgenden Vektoren linear unabhängig? (a) 1, 2, 3 im Q Vektorraum R (b)

Mehr

Mathematik III für Ingenieure

Mathematik III für Ingenieure Mathematik III für Ingenieure im Bachelor-Studiengang Maschinenbau Vorlesung Wintersemester 21/211 B. Schuster aktualisert am 27. Januar 211 Inhalt I. Eigenwerte und Eigenvektoren 1 1. Komplexe Matrizen

Mehr

Satz 25 A sei eine (n n)-matrix über K

Satz 25 A sei eine (n n)-matrix über K Satz 25 Satz 25 A sei eine (n n)-matrix über K Satz 25 A sei eine (n n)-matrix über K mit paarweise verschiedenen Eigenwerten λ 1,...,λ m. Satz 25 A sei eine (n n)-matrix über K mit paarweise verschiedenen

Mehr

Rekursionen. Georg Anegg 25. November 2009. Methoden und Techniken an Beispielen erklärt

Rekursionen. Georg Anegg 25. November 2009. Methoden und Techniken an Beispielen erklärt Methoden und Techniken an Beispielen erklärt Georg Anegg 5. November 009 Beispiel. Die Folge {a n } sei wie folgt definiert (a, d, q R, q ): a 0 a, a n+ a n q + d (n 0) Man bestimme eine explizite Darstellung

Mehr

Seminararbeit für das SE Reine Mathematik- Graphentheorie

Seminararbeit für das SE Reine Mathematik- Graphentheorie Seminararbeit für das SE Reine Mathematik- Graphentheorie Der binäre Rang, der symplektische Graph, die Spektralzerlegung und rationale Funktionen Vortrag am 24.01.2012 Heike Farkas 0410052 Inhaltsverzeichnis

Mehr

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Aufgabe 35: Thema: Singulärwertzerlegung und assoziierte Unterräume Sei A eine m n Matrix mit Rang r und A = UDV T ihre Singulärwertzerlegung.

Mehr

Dirk Hachenberger Mathematik für Informatiker

Dirk Hachenberger Mathematik für Informatiker Dirk Hachenberger Mathematik für Informatiker ein Imprint von Pearson Education München Boston San Francisco Harlow, England Don Mills, Ontario Sydney Mexico City Madrid Amsterdam Inhaltsverzeichnis Vorwort

Mehr

Vorkurs Mathematik Übungen zu Polynomgleichungen

Vorkurs Mathematik Übungen zu Polynomgleichungen Vorkurs Mathematik Übungen zu en 1 Aufgaben Lineare Gleichungen Aufgabe 1.1 Ein Freund von Ihnen möchte einen neuen Mobilfunkvertrag abschließen. Es gibt zwei verschiedene Angebote: Anbieter 1: monatl.

Mehr

KAPITEL 4. Lineare Ausgleichsrechnung Beispiel 4.1. Das Ohmsche Gesetz: U = RI. Eine Meßreihe von Daten:

KAPITEL 4. Lineare Ausgleichsrechnung Beispiel 4.1. Das Ohmsche Gesetz: U = RI. Eine Meßreihe von Daten: KAPITEL 4 Lineare Ausgleichsrechnung Beispiel 41 Das Ohmsche Gesetz: Eine Meßreihe von Daten: U = RI (U i, I i ) (Spannung, Stromstärke), i = 1,, m Aufgabe: man bestimme aus diesen Meßdaten den Widerstand

Mehr

Lineare Algebra (Mathe I) für Wirtschaftsinformatiker; Zusammenfassung

Lineare Algebra (Mathe I) für Wirtschaftsinformatiker; Zusammenfassung Lineare Algebra (Mathe I) für Wirtschaftsinformatiker; Zusammenfassung Artur Trzewik sw562@uni-essen.de v1., 26.3.1998 korrigiert 16. Februar 2 Zusammenfassung Warnung: für die Richtigkeit der Definitionnen

Mehr

Numerisches Programmieren

Numerisches Programmieren Technische Universität München SoSe 213 Institut für Informatik Prof. Dr. Thomas Huckle Dipl.-Inf. Christoph Riesinger Dipl.-Math. Jürgen Bräckle Numerisches Programmieren 2. Programmieraufgabe: Lineare

Mehr

7 Lineare Abbildungen und Lineare Gleichungssysteme

7 Lineare Abbildungen und Lineare Gleichungssysteme 7 LINEARE ABBILDUNGEN UND LINEARE GLEICHUNGSSYSTEME 5 7 Lineare Abbildungen und Lineare Gleichungssysteme 7 Lineare Abbildungen 7 Abbildungen: Eine Verallgemeinerungen des Funktionsbegriffs Bemerkung:

Mehr

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren Lineargleichungssysteme: Additions-/ Subtraktionsverfahren W. Kippels 22. Februar 2014 Inhaltsverzeichnis 1 Einleitung 2 2 Lineargleichungssysteme zweiten Grades 2 3 Lineargleichungssysteme höheren als

Mehr

A Matrix-Algebra. A.1 Definition und elementare Operationen

A Matrix-Algebra. A.1 Definition und elementare Operationen A Matrix-Algebra In diesem Anhang geben wir eine kompakte Einführung in die Matrizenrechnung bzw Matrix-Algebra Eine leicht lesbare Einführung mit sehr vielen Beispielen bietet die Einführung in die Moderne

Mehr

Klassenarbeit zu linearen Gleichungssystemen

Klassenarbeit zu linearen Gleichungssystemen Klassenarbeit zu linearen Gleichungssystemen Aufgabe : Bestimme die Lösungsmenge der Gleichungssysteme mit Hilfe des Additionsverfahrens: x + 4y = 8 5x y = x y = x y = Aufgabe : Bestimme die Lösungsmenge

Mehr

Klausur zur Vorlesung Multivariate Verfahren, SS 2006 6 Kreditpunkte, 90 min

Klausur zur Vorlesung Multivariate Verfahren, SS 2006 6 Kreditpunkte, 90 min Klausur, Multivariate Verfahren, SS 2006, 6 Kreditpunkte, 90 min 1 Prof. Dr. Fred Böker 08.08.2006 Klausur zur Vorlesung Multivariate Verfahren, SS 2006 6 Kreditpunkte, 90 min Gesamtpunkte: 39 Aufgabe

Mehr

Austausch- bzw. Übergangsprozesse und Gleichgewichtsverteilungen

Austausch- bzw. Übergangsprozesse und Gleichgewichtsverteilungen Austausch- bzw. Übergangsrozesse und Gleichgewichtsverteilungen Wir betrachten ein System mit verschiedenen Zuständen, zwischen denen ein Austausch stattfinden kann. Etwa soziale Schichten in einer Gesellschaft:

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Brückenkurs Mathematik TU Dresden 2015 Lineare Gleichungssysteme Schwerpunkte: Modellbildung geometrische Interpretation Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik auf der

Mehr

Computer Vision: 3D-Geometrie. D. Schlesinger () Computer Vision: 3D-Geometrie 1 / 17

Computer Vision: 3D-Geometrie. D. Schlesinger () Computer Vision: 3D-Geometrie 1 / 17 Computer Vision: 3D-Geometrie D. Schlesinger () Computer Vision: 3D-Geometrie 1 / 17 Lochkamera Modell C Projektionszentrum, Optische Achse, Bildebene, P Hauptpunkt (optische Achse kreuzt die Bildebene),

Mehr

Elemente der Analysis II

Elemente der Analysis II Elemente der Analysis II Kapitel 3: Lineare Abbildungen und Gleichungssysteme Informationen zur Vorlesung: http://www.mathematik.uni-trier.de/ wengenroth/ J. Wengenroth () 15. Mai 2009 1 / 35 3.1 Beispiel

Mehr

7 Die Determinante einer Matrix

7 Die Determinante einer Matrix 7 Die Determinante einer Matrix ( ) a11 a Die Determinante einer 2 2 Matrix A = 12 ist erklärt als a 21 a 22 det A := a 11 a 22 a 12 a 21 Es ist S 2 = { id, τ}, τ = (1, 2) und sign (id) = 1, sign (τ) =

Mehr

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema 2x 4 + x 3 + x + 3 div x 2 + x 1 = 2x 2 x + 3 (2x 4 + 2x 3 2x 2 ) x 3 + 2x 2 + x + 3 ( x

Mehr

Lineare Ausgleichsprobleme. Lineare Ausgleichsprobleme. Normalgleichungen. Normalgleichungen

Lineare Ausgleichsprobleme. Lineare Ausgleichsprobleme. Normalgleichungen. Normalgleichungen Wir betrachten in diesem Abschnitt das lineare Ausgleichsproblem Ax b 2 = min! (1) Heinrich Voss voss@tu-harburgde Hamburg University of Technology Institute for Numerical Simulation mit gegebenem A R

Mehr

Linearen Gleichungssysteme Anwendungsaufgaben

Linearen Gleichungssysteme Anwendungsaufgaben Linearen Gleichungssysteme Anwendungsaufgaben Lb S. 166 Nr.9 Im Jugendherbergsverzeichnis ist angegeben, dass in der Jugendherberge in Eulenburg 145 Jugendliche in 35 Zimmern übernachten können. Es gibt

Mehr

Inhaltsverzeichnis 1 Lineare Gleichungssysteme I

Inhaltsverzeichnis 1 Lineare Gleichungssysteme I Inhaltsverzeichnis 1 Lineare Gleichungssysteme I 3 1.1 Mengen und Abbildungen....................................... 3 1.1.1 Mengen und ihre Operationen.............................. 3 1.1.2 Summen- und

Mehr

Computer Vision SS 2011. Skript

Computer Vision SS 2011. Skript Computer Vision SS 211 Skript (Work in Progress) Simon Hawe & Martin Kleinsteuber Skript: Manuel Wolf Inhaltsverzeichnis 1 Einführung 1 1.1 Was ist ein Bild?................................. 1 1.2 Wie

Mehr

Hans Walser, [20090509a] Wurzeln aus Matrizen

Hans Walser, [20090509a] Wurzeln aus Matrizen Hans Walser, [0090509a] Wurzeln aus Matrizen 1 Worum es geht Zu einer gegebenen,-matri A suchen wir,-matrizen B mit der Eigenschaft: BB = B = A. Wir suchen also Quadratwurzeln der Matri A. Quadrieren Wenn

Mehr

Kapitel IR:III (Fortsetzung)

Kapitel IR:III (Fortsetzung) Kapitel IR:III (Fortsetzung) III. Retrieval-Modelle Modelle und Prozesse im IR Klassische Retrieval-Modelle Bool sches Modell Vektorraummodell Retrieval-Modelle mit verborgenen Variablen Algebraisches

Mehr

> Seminar, Erlangen > Achim Basermann 20120605-1 DSC Erlangen Basermann.pptx > 05.06.2012

> Seminar, Erlangen > Achim Basermann 20120605-1 DSC Erlangen Basermann.pptx > 05.06.2012 www.dlr.de Folie 1 Parallele, iterative Löser mit Schur-Komplement- Vorkonditionierung für dünnbesetzte lineare Gleichungssysteme aus der Strömungstechnik Dr.-Ing. Achim Basermann, Melven Zöllner* * www.dlr.de

Mehr

Lösungen zum 3. Aufgabenblatt

Lösungen zum 3. Aufgabenblatt SS, Lineare Algebra Die Lösungen wurden erstellt von: Isabel Voigt, Vanessa Lamm und Matthias Rehder Hinweis: Eine Liste der zur Bearbeitung verwendeten Literatur ist unter www.mathematiwelt.com aufrufbar.

Mehr

Übungsaufgaben LAAG I. für Lehramtsstudenten GS, MS, BS

Übungsaufgaben LAAG I. für Lehramtsstudenten GS, MS, BS Doz.Dr. Norbert Koksch TU DRESDEN Fachrichtung Mathematik, Institut für Analysis Übungsaufgaben LAAG I für Lehramtsstudenten GS, MS, BS Logik: Übungsaufgabe 1. Begründen Sie, ob es sich um eine Aussage

Mehr

Lineare Gleichungen und Textaufgaben Erweiterte Version 4.0 Herbert Paukert

Lineare Gleichungen und Textaufgaben Erweiterte Version 4.0 Herbert Paukert Lineare Gleichungen und Textaufgaben Herbert Paukert 1 Lineare Gleichungen und Textaufgaben Erweiterte Version 4.0 Herbert Paukert (1) Lineare Gleichungen mit einer Unbekannten [02] (2) Lineare Gleichungen

Mehr

Klausuraufgabensammlung Mathematik. Klausuraufgaben zur Mathematik 1-3 von Wolfgang Langguth

Klausuraufgabensammlung Mathematik. Klausuraufgaben zur Mathematik 1-3 von Wolfgang Langguth Fakultät für Ingenieurswissenschaften Bachelorstudiengang Biomedizinische Technik Prof. Dr. W. Langguth Klausuraufgabensammlung Mathematik Klausuraufgaben zur Mathematik - von Wolfgang Langguth Aufgabenstellungen

Mehr

Vorlesung 12 22. bzw. 23. Januar 2014. Determinanten 1. Cramersche Regel

Vorlesung 12 22. bzw. 23. Januar 2014. Determinanten 1. Cramersche Regel Vorlesung 2 22 bzw 23 Januar 204 Lineares Gleichungssystem a a 2 b b 2 = F a a 2 a 3 b b 2 b 3 c c 2 c 3 = V V =< a, b c > c b a b a F V Seite 70 a x + a 2 x 2 + a 3 x 3 b = 0 < a x + a 2 x 2 + a 3 x 3

Mehr

4. Übungsblatt Matrikelnr.: 6423043

4. Übungsblatt Matrikelnr.: 6423043 Lineare Algebra I 1. Name: Bleeck, Christian 4. Übungsblatt Matrikelnr.: 6423043 Abgabe: 15.11.06 12 Uhr (Kasten D1 320) Übungsgruppe: 03 Patrick Schützdeller 2. Name: Niemann, Philipp Matrikelnr.: 6388613

Mehr

Mathematik 1. Inhaltsverzeichnis. Prof. Dr. K. Melzer. karin.melzer@hs-esslingen.de http://www.hs-esslingen.de/de/mitarbeiter/karin-melzer.

Mathematik 1. Inhaltsverzeichnis. Prof. Dr. K. Melzer. karin.melzer@hs-esslingen.de http://www.hs-esslingen.de/de/mitarbeiter/karin-melzer. Mathematik 1 Prof Dr K Melzer karinmelzer@hs-esslingende http://wwwhs-esslingende/de/mitarbeiter/karin-melzerhtml Inhaltsverzeichnis 1 Matrizenrechnung 2 11 Matrixbegri 2 12 Spezielle Matrizen 3 13 Rechnen

Mehr

Klausuraufgabensammlung Mathematik. Klausuraufgaben zur Mathematik 1-3 von Wolfgang Langguth

Klausuraufgabensammlung Mathematik. Klausuraufgaben zur Mathematik 1-3 von Wolfgang Langguth Hochschule für Technik und Wirtschaft des Saarlandes University of Applied Sciences Fakultät für Ingenieurswissenschaften Bachelorstudiengang Biomedizinische Technik Prof. Dr. W. Langguth Klausuraufgabensammlung

Mehr

Vorkurs Mathematik Übungen zu Differentialgleichungen

Vorkurs Mathematik Übungen zu Differentialgleichungen Vorkurs Mathematik Übungen zu Differentialgleichungen Als bekannt setzen wir die folgenden Umformungen voraus: e ln(f(x)) = f(x) e f(x)+c = e f(x) e c e ln(f(x)) +c = f(x) e c = f(x) c f ( g(x) ) g (x)

Mehr

Fakultät für Mathematik und Informatik. Seminar über angewandte Analysis. Sommersemester 2007. Der Kreissatz von Gerschgorin

Fakultät für Mathematik und Informatik. Seminar über angewandte Analysis. Sommersemester 2007. Der Kreissatz von Gerschgorin Fakultät für Mathematik und Informatik Lehrgebiet angewandte Mathematik Prof. Dr. H. Linden Dipl.-Math. H.-J. Schäfer Seminar über angewandte Analysis Sommersemester 2007 Der Kreissatz von Gerschgorin

Mehr

Mögliche Prüfungsfragen zu VO Mathematische Software

Mögliche Prüfungsfragen zu VO Mathematische Software Mögliche Prüfungsfragen zu VO Mathematische Software SS 2009 Der Prüfungsstoff umfasst alles, was in der Vorlesung vorgetragen wurde. Die folgende Liste soll Ihnen bei der Vorbereitung helfen. Bei der

Mehr

Dr. Jürgen Roth. Fachbereich 6: Abteilung Didaktik der Mathematik. Elemente der Algebra. Dr. Jürgen Roth 3.1

Dr. Jürgen Roth. Fachbereich 6: Abteilung Didaktik der Mathematik. Elemente der Algebra. Dr. Jürgen Roth 3.1 .1 Dr. Jürgen Roth Fachbereich 6: Abteilung Didaktik der Mathematik Elemente der Algebra . Inhaltsverzeichnis Elemente der Algebra & Argumentationsgrundlagen, Gleichungen und Gleichungssysteme Quadratische

Mehr

LU-Zerlegung. Zusätze zum Gelben Rechenbuch. Peter Furlan. Verlag Martina Furlan. Inhaltsverzeichnis. 1 Definitionen.

LU-Zerlegung. Zusätze zum Gelben Rechenbuch. Peter Furlan. Verlag Martina Furlan. Inhaltsverzeichnis. 1 Definitionen. Zusätze zum Gelben Rechenbuch LU-Zerlegung Peter Furlan Verlag Martina Furlan Inhaltsverzeichnis Definitionen 2 (Allgemeine) LU-Zerlegung 2 3 Vereinfachte LU-Zerlegung 3 4 Lösung eines linearen Gleichungssystems

Mehr

11. Primfaktorzerlegungen

11. Primfaktorzerlegungen 78 Andreas Gathmann 11 Primfaktorzerlegungen Euch ist sicher aus der Schule bekannt, dass sich jede positive ganze Zahl a als Produkt a = p 1 p n von Primzahlen schreiben lässt, und dass diese Darstellung

Mehr

Einführung in die Vektor- und Matrizenrechnung. Matrizen

Einführung in die Vektor- und Matrizenrechnung. Matrizen Einführung in die Vektor- und Matrizenrechnung Matrizen Definition einer Matrix Unter einer (reellen) m x n Matrix A versteht man ein rechteckiges Schema aus reellen Zahlen, die wie folgt angeordnet sind:

Mehr

Maple-Skripte. A.1 Einleitung. A.2 Explizite Zweischritt-Runge-Kutta-Verfahren. Bei der Ausführung

Maple-Skripte. A.1 Einleitung. A.2 Explizite Zweischritt-Runge-Kutta-Verfahren. Bei der Ausführung A Maple-Skripte A.1 Einleitung Bei der Ausführung mechanischer Rechnungen können Computeralgebra-Programme sehr nützlich werden. Wenn man genau weiß, was eingesetzt, umgeformt, zusammengefaßt oder entwickelt

Mehr

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Wintersemester 3/4 (.3.4). (a) Für z = + i und z = 3 4i berechne man z z und z z. Die Ergebnisse sind in kartesischer Form anzugeben.

Mehr

Institut für Informatik. Rheinische Friedrich-Wilhelms-Universität Bonn

Institut für Informatik. Rheinische Friedrich-Wilhelms-Universität Bonn Institut für Informatik Rheinische Friedrich-Wilhelms-Universität Bonn Hauptseminar: Schnelle Parallele Algorithmen Leitung: Prof. Dr. M. Karpinksi, P. Wegner, M. Hauptmann Sommersemester 2000 Ausarbeitung

Mehr

Johann Wolfgang Goethe - Universität Frankfurt am Main

Johann Wolfgang Goethe - Universität Frankfurt am Main Fachbereich Wirtschaftswissenschaften Institut für Statistik und Mathematik Johann Wolfgang Goethe - Universität Frankfurt am Main ENTSCHEIDUNGSTHEORIE Klausur vom 0.0.004 Prof. Dr. H. Rommelfanger Als

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN. Abzählbarkeit, Injektivität, Sürjektivität und Bijektivität

TECHNISCHE UNIVERSITÄT MÜNCHEN. Abzählbarkeit, Injektivität, Sürjektivität und Bijektivität TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Prof. Dr. Friedrich Roesler Ralf Franken, PhD Max Lein Lineare Algebra 1 WS 26/7 en Blatt 4 13.11.26 Abzählbarkeit, Injektivität, Sürjektivität und Bijektivität

Mehr

Mathematische Grundlagen

Mathematische Grundlagen Kapitel 2 Mathematische Grundlagen In diesem Kapitel werden für die nachfolgenden Untersuchungen wesentliche Grundlagen bereitgestellt. 2.1 Differentiell-algebraische Gleichungssysteme 2.1.1 Einführung

Mehr

1 Lineare Gleichungssysteme

1 Lineare Gleichungssysteme MLAN1 1 LINEARE GLEICHUNGSSYSTEME 1 Literatur: K Nipp/D Stoffer, Lineare Algebra, Eine Einführung für Ingenieure, VDF der ETHZ, 4 Auflage, 1998, oder neuer 1 Lineare Gleichungssysteme Zu den grundlegenden

Mehr

ARBEITSUNTERLAGEN ZUR VORLESUNG UND ÜBUNG AN DER UNIVERSITÄT DES SAARLANDES LINEARE OPTIMIERUNG

ARBEITSUNTERLAGEN ZUR VORLESUNG UND ÜBUNG AN DER UNIVERSITÄT DES SAARLANDES LINEARE OPTIMIERUNG ¾ REITSUNTERLGEN ZUR VORLESUNG UND ÜUNG N DER UNIVERSITÄT DES SRLNDES LINERE OPTIMIERUNG IM SS Lineare Optimierung (SS ). ufgabe (Graphische Lineare Optimierung) Nach einem anstrengenden Semester steht

Mehr

Beispiel zur Lösung eines Gleichungssystems : 6 y + z = 15 0 6 1. 15 12 x + 3 y 3 z = 15 12 3 3. 15 2 x 3 y = 4 2 3 0.

Beispiel zur Lösung eines Gleichungssystems : 6 y + z = 15 0 6 1. 15 12 x + 3 y 3 z = 15 12 3 3. 15 2 x 3 y = 4 2 3 0. Beispiel zur Lösung eines Gleichungssystems : 6 y + z = 5 0 6 5 2 x + 3 y 3 z = 5 2 3 3 5 2 x 3 y = 4 2 3 0 4 z2 /3 z : 3 2 x 3 y = 4 2 3 0 4 4 x + y z = 5 4 5 6 y + z = 5 0 6 5 z2 + 2 z 2 x 3 y = 4 2

Mehr

Direkte Bestimmung von Zylindern aus 3D-Punkten ohne Nutzung von Oberflächennormalen

Direkte Bestimmung von Zylindern aus 3D-Punkten ohne Nutzung von Oberflächennormalen Direkte Bestimmung von Zylindern aus 3D-Punkten ohne Nutzung von Oberflächennormalen Christian BEDER und Wolfgang FÖRSTNER Zusammenfassung Die automatische Extraktion von Zylindern aus 3D-Punktwolken ist

Mehr

KAPITEL 3. Lineare Gleichungssysteme, direkte Lösungsverfahren

KAPITEL 3. Lineare Gleichungssysteme, direkte Lösungsverfahren KAPITEL 3. Lineare Gleichungssysteme, direkte Lösungsverfahren Beispiel 3.2. Gesucht u(x), das eine Differentialgleichung vom Typ u (x) + λ(x)u(x) = f(x), x [0,], mit den Randbedingungen u(0) = u() = 0

Mehr

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung.

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung. Lineare Gleichungen mit einer Unbekannten Die Grundform der linearen Gleichung mit einer Unbekannten x lautet A x = a Dabei sind A, a reelle Zahlen. Die Gleichung lösen heißt, alle reellen Zahlen anzugeben,

Mehr

6 Lösung linearer Gleichungssysteme I: LR-Zerlegung und Verwandte

6 Lösung linearer Gleichungssysteme I: LR-Zerlegung und Verwandte Numerik I Version: 240608 40 6 Lösung linearer Gleichungssysteme I: LR-Zerlegung und Verwandte Die zwei wichtigsten Aufgaben der linearen Algebra: Lösung linearer Gleichungssysteme: Ax = b, wobei die n

Mehr

Kevin Caldwell. 18.April 2012

Kevin Caldwell. 18.April 2012 im Rahmen des Proseminars Numerische Lineare Algebra von Prof.Dr.Sven Beuchler 18.April 2012 Gliederung 1 2 3 Mathematische Beschreibung von naturwissenschaftlich-technischen Problemstellungen führt häufig

Mehr

(λ Ri I A+BR)v Ri = 0. Lässt sich umstellen zu

(λ Ri I A+BR)v Ri = 0. Lässt sich umstellen zu Herleitung der oppenecker-formel (Wiederholung) Für ein System ẋ Ax + Bu (B habe Höchstrang) wird eine Zustandsregelung u x angesetzt. Der geschlossene egelkreis gehorcht der Zustands-Dgl. ẋ (A B)x. Die

Mehr

Serie 13: Online Test

Serie 13: Online Test D-ERDW, D-HEST, D-USYS Mathematik I HS 3 Dr. Ana Cannas Serie 3: Online Test Einsendeschluss: 3. Januar 4 Bei allen Aufgaben ist genau eine Antwort richtig. Lösens des Tests eine Formelsammlung verwenden.

Mehr

Ohne Mathematik undenkbar!

Ohne Mathematik undenkbar! Die tägliche - Suche: Ohne Mathematik undenkbar! Dipl.-Wirt.Math. Jan Maruhn FB IV - Mathematik Universität Trier 29. März 2006 29. März 2006 Seite 1 Gliederung Einleitung und Motivation Das Internet als

Mehr

2 Die Darstellung linearer Abbildungen durch Matrizen

2 Die Darstellung linearer Abbildungen durch Matrizen 2 Die Darstellung linearer Abbildungen durch Matrizen V und V seien Vektorräume über einem Körper K. Hom K (V, V ) bezeichnet die Menge der K linearen Abbildungen von V nach V. Wir machen Hom K (V, V )

Mehr

DIFFERENTIALGLEICHUNGEN

DIFFERENTIALGLEICHUNGEN DIFFERENTIALGLEICHUNGEN GRUNDBEGRIFFE Differentialgleichung Eine Gleichung, in der Ableitungen einer unbekannten Funktion y = y(x) bis zur n-ten Ordnung auftreten, heisst gewöhnliche Differentialgleichung

Mehr

13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen.

13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen. 13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen. Sie heißt linear, wenn sie die Form y (n) + a n 1 y (n 1)

Mehr

Hauptkomponentenanalyse PCA

Hauptkomponentenanalyse PCA Hauptkoponentenanalyse PCA Die Hauptkoponentenanalyse (Principal Coponent Analysis, PCA) ist eine Methode zur linearen Transforation der Variablen, so dass: öglichst wenige neue Variablen die relevante

Mehr

Computer Vision I. Nikos Canterakis. Lehrstuhl für Mustererkennung, Universität Freiburg

Computer Vision I. Nikos Canterakis. Lehrstuhl für Mustererkennung, Universität Freiburg Nikos Canterakis Lehrstuhl für Mustererkennung, Universität Freiburg Gliederung 8 Projektive Invarianz und das kanonische Kamerapaar Kanonisches Kamerapaar aus gegebener Fundamentalmatrix Freiheitsgrade

Mehr

Urbild Angriff auf Inkrementelle Hashfunktionen

Urbild Angriff auf Inkrementelle Hashfunktionen Urbild Angriff auf Inkrementelle Hashfunktionen AdHash Konstruktion: (Bellare, Micciancio 1997) Hashe Nachricht x = (x 1,..., x k ) als H(x) = k i=1 h(i, x i) mod M. Inkrementell: Block x i kann leicht

Mehr

Springer Studium Mathematik Bachelor

Springer Studium Mathematik Bachelor Springer Studium Mathematik Bachelor Herausgegeben von M. Aigner, Freie Universität Berlin, Berlin, Germany H. Faßbender, Technische Universität Braunschweig, Braunschweig, Germany B. Gentz, Universität

Mehr

Höhere Mathematik I. 1. Gruppenübung zur Vorlesung Prof. Dr. M. Stroppel. Winter 2007/08

Höhere Mathematik I. 1. Gruppenübung zur Vorlesung Prof. Dr. M. Stroppel. Winter 2007/08 Dr. A. App Dr. M. Pfeil. Gruppenübung zur Vorlesung Prof. Dr. M. Stroppel Höhere Mathematik I Winter 7/8 Aufgabe P. Binomialkoeffizienten Berechnen Sie ohne Taschenrechner: ( ) (a) x = 5 ( ) ( ) ( ) (b)

Mehr

Einführung in die Tensorrechnung

Einführung in die Tensorrechnung 1. Definition eines Tensors Tensoren sind Grössen, mit deren Hilfe man Skalare, Vektoren und weitere Grössen analoger Struktur in ein einheitliches Schema zur Beschreibung mathematischer und physikalischer

Mehr

Einführung. Vita Rutka. Universität Konstanz Fachbereich Mathematik & Statistik AG Numerik SS 2009

Einführung. Vita Rutka. Universität Konstanz Fachbereich Mathematik & Statistik AG Numerik SS 2009 Einführung Vita Rutka Universität Konstanz Fachbereich Mathematik & Statistik AG Numerik SS 2009 Was ist FEM? Die Finite-Elemente-Methode (FEM) ist ein numerisches Verfahren zur näherungsweisen Lösung,

Mehr

Lineare Gleichungssysteme I (Matrixgleichungen)

Lineare Gleichungssysteme I (Matrixgleichungen) Lineare Gleichungssysteme I (Matrigleichungen) Eine lineare Gleichung mit einer Variable hat bei Zahlen a, b, die Form a b. Falls hierbei der Kehrwert von a gebildet werden darf (a 0), kann eindeutig aufgelöst

Mehr

Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. z(t) = at + b

Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. z(t) = at + b Aufgabe 1: Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. (a) Nehmen Sie lineares Wachstum gemäß z(t) = at + b an, wobei z die Einwohnerzahl ist und

Mehr

Ausgewählte Aufgaben zum Grundbereich des Staatsexamens in Mathematik. Lineare Algebra. zusammengestellt von

Ausgewählte Aufgaben zum Grundbereich des Staatsexamens in Mathematik. Lineare Algebra. zusammengestellt von Ausgewählte Aufgaben zum Grundbereich des Staatsexamens in Mathematik Lineare Algebra zusammengestellt von Sabine Giese, Josef Heringlehner, Birgit Mielke, Hans Mielke und Ralph-Hardo Schulz 98 Aufgaben,

Mehr

Zur Numerik großdimensionaler Eigenwertprobleme. Werner Vogt Technische Universität Ilmenau Institut für Mathematik Postfach 100565 98684 Ilmenau

Zur Numerik großdimensionaler Eigenwertprobleme. Werner Vogt Technische Universität Ilmenau Institut für Mathematik Postfach 100565 98684 Ilmenau Zur Numerik großdimensionaler Eigenwertprobleme Werner Vogt Technische Universität Ilmenau Institut für Mathematik Postfach 100565 98684 Ilmenau Ilmenau, den 8.11.2004 1 Einführung 1 Zusammenfassung Der

Mehr

2.1 Codes: einige Grundbegriffe

2.1 Codes: einige Grundbegriffe Gitter und Codes c Rudolf Scharlau 2. Mai 2009 51 2.1 Codes: einige Grundbegriffe Wir stellen die wichtigsten Grundbegriffe für Codes über dem Alphabet F q, also über einem endlichen Körper mit q Elementen

Mehr

http://www.mathematik.uni-kl.de/ gramlich

http://www.mathematik.uni-kl.de/ gramlich Vorwort MATLAB ist inzwischen in vielen Hochschulen, Universitäten und Fachhochschulen gleichermaßen ein etabliertes Programmsystem, das sowohl im Fach Mathematik selbst als auch in noch stärkerem Maße

Mehr