Logistik: Transport. Grundlagen, lineare Transport- und Umladeprobleme. von Prof. Dr. Wolfgang Domschke. TU Darmstadt. 5.,.überarbeitete Auflage

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Logistik: Transport. Grundlagen, lineare Transport- und Umladeprobleme. von Prof. Dr. Wolfgang Domschke. TU Darmstadt. 5.,.überarbeitete Auflage"

Transkript

1 Logistik: Transport Grundlagen, lineare Transport- und Umladeprobleme von Prof. Dr. Wolfgang Domschke TU Darmstadt 5.,.überarbeitete Auflage R. Oldenböurg Verlag München Wien

2 Inhaltsverzeichnis Vorwort V Symbolverzeichnis.:> XIII Kapitel 1: Grundlagen Graphentheoretische Definitionen Hilfsmittel aus der Informatik Beschreibung von Verfahrerisabläufen (Pseudo-Code) Darstellung und Speicherung von Daten Grundlegende Datenstrukturen und -typen... : Sequentielle und gekettete Speicherung Speicherung von Stapeln und Schlangen Speicherung von Graphen Matrixdarstellungen Listendarstellungen Probleme, Modelle, Verfahren und deren Komplexität Sortierverfahren Sortieren durch Zerlegen: Quicksort Sortieren mit Bäumen: Heapsort Sortieren von Kanten eines Graphen Literatur zu Kapitel Aufgaben zu Kapitel 1 : Kapitel 2: Modellierungen und Lösungsprinzipien Problembeschreibungen Ein allgemeines Netzwerkkonstruktionsproblem Bestimmung minimaler spannender Bäume Bestimmung kürzester Wege von einem zu allen Knoten Umladeprobleme und mathematische Formulierungen Unkapazitierte und kapazitierte Umladeprobleme.' Weitere Modellierungen des kapazitierten Umladeproblems 38

3 VIII Inhaltsverzeichnis Einstufige Transportprobleme und mathematische Formulierungen Einstufige Transportprobleme Weitere Modellierungen des klassischen Transportproblems Maximalflussprobleme Facility Location - Probleme Transport- und Umladeprobleme als'flussprobleme Flüsse in Graphen und q-s-flussprobleme.. r Zirkulationsflussprobleme r Sätze und Lösungsprinzipien der linearen Optimierung Wichtige Sätze der linearen Optimierung Lösungsprinzipien Literatur zu Kapitel Aufgaben zu Kapitel 2.,...' 55 Kapitel 3: Minimale spannende Bäume und Wälder Bestimmung eines minimalen spannenden Baumes oder Waldes Der Algorithmus von Kruskal Der Algorithmus von Prim bzw. Dijkstra Ergänzende Hinweise Bestimmung eines minimalen spannenden Wurzelbaumes Allgemeinere Probleme der Bestimmung von Bäumen Minimale kapazitierte spannende Bäume Steiner-Baum-Probleme in Graphen Literatur zu Kapitel 3, Aufgaben zu Kapitel 3 72 Kapitel 4: Kürzeste Wege in Graphen / Problemstellungen und handwerkliche Lösungsansätze Übersicht über Problemstellungen Kürzeste-Wege-Probleme - handwerklich gelöst Definitionen Kürzeste Entfernungen und Wege von einem zu allen Knoten Grundprinzip der Baumalgorithmen Label-Correcting-Verfahren FIFO - Kürzeste Wege.. : 79

4 Inhaltsverzeichnis IX Modifikationen des FIFO-Algorithmus J Label-Setting-Verfahren Der Dijkstra-Algorithmus Zur Implementierung des Dijkstra-Algorithmus Weitere Algorithmen und Verfahrensvergleiche Kürzeste Entfernungen und Wege zwischen allen Knoten Negative Zyklen und Reoptimierung kürzester Wege Negative Zyklen in bewerteten Digraphen ;> Reoptimierung kürzester Entfernungen und Wege Literaturhinweise zu Kapitel Aufgaben zu Kapitel 4 98 Kapitel 5: Algorithmen für Transportprobleme Lösung des klassischen TPPs mit dem Simplex-Algorithmus Algorithmen zur Lösung des klassischen TPPs Vorbemerkungen und Musterbeispiel Eröffnungsverfahren Einführung :... :."....* Die Nordwesteckenregel -.* Die Spaltenminimum-Methode Die Vogel'sche Approximationsmethode Optimierungsverfahren Vorüberlegungen Die MODI-Methode Ein primal-duales Verfahren Das kapazitierte klassische TPP Modell und prinzipielle Vorgehensweise <.' Die Spaltenminimum-Methode für das kapazitierte TPP Die MODI-Methode für das kapazitierte TPP Ungleichungen in den Nebenbedingungen des TPPs Einführung Probleme mit einem Restriktionstyp für Anbieter bzw. Nachfrager Probleme mit gemischten Restriktionen Literatur zu Kapitel Aufgaben zu Kapitel 5 ' 7 135

5 X Inhaltsverzeichnis Kapitel 6: Primale Algorithmen für Umladeprobleme Lösung eines zweistufigen TPPs als klassisches TPP Lösung unkapazitierter Umladeprobleme als klassische TPPe Ein primaler Algorithmus für Umladeprobleme Bestimmung einer zulässigen Basislösung für unkapazitierte Probleme Verbesserung der zulässigen Anfangslösung bei unkapazitierten Problemen Literatur zu Kapitel :5 Aufgaben zu Kapitel Kapitel 7: Implementierung primaler Algorithmen für Transportund Umladeprobleme Speichermöglichkeiten für unbewertete Bäume Speichermöglichkeiten für unbewertete Wurzelbäume _ Der Vorgänger-Index Der Tripel-Index Der Gefädelte Index (Threaded Index) :. ; Zusätzliche Felder 154 7J^2 ÜbertrafüngHer Speichermöglichkeiten auf sonstige unbewertete Bäume Umspeicherungen zur Darstellung einer verbesserten Basislösung -. * Ein Programm-Code für klassische TPPe Einführung Zur Speicherung der Informationen Zur Bestimmung einer zulässigen Anfangslösung Test einer zulässigen Basislösung auf Optimalität. : Bestimmung und Speicherung einer verbesserten Basislösung Zur Korrektur der Dualvariablenwerte Speicherplatz- und Rechenzeitbedarf für Transportprobleme Alternativen zu den in 7.2 geschilderten Vorgehensweisen Verwendung des Gefädelten Index Verwendung des Vorgänger-Index und zusätzlicher Listen Hinweise auf Codes für kapazitierte Umladeprobleme Literatürhinweise zu Kapitel Aufgaben zu Kapitel 7 169

6 Inhaltsverzeichnis XI Kapitel 8: Inkrementgraphen-Algorithmen für q-s-flussprobleme., Definitionen Verfahren zur Bestimmung kostenminimaler Flüsse 174> Verfahren bei gegebenem zulässigem Fluss Der/Algorithmus von Busacker und Gowen Der Algorithmus von Klein : Verfahren zur Bestimmung eines zulässigen Flusses Verfahren zur Bestimmung maximaler Flüsse...". ; Literatur zu Kapitel Aufgaben zu Kapitel Kapitel 9: (Primal-duale) Verfahren für lineare Zuordnungs- und Umladeprobleme 188 9J_ Verfahren für lineare Zuordnungsprobleme Das lineare Zuordnungsproblem Überblick über Lösungsmöglichkeiten Die Ungarische Methode Shörtest Äugmenting Path - Verfahren Primal-duale Verfahren für Umladeprobleme ".* Der Out-of-Kilter-Algorithmus für Zirkulationsflussprobleme Problemstellung, Optimalitätsbedingungen, Vorüberlegungen Der Out-of-Kilter-Algorithmus Der Relaxation-Algorithmus von Bertsekas Eine Grundversion des Verfahrens Modifikationen der Grundversion Literatur zu Kapitel 9._, Aufgaben zu Kapitel 9 ' 219 Anhang: Lösungen zu den Aufgaben 221 Sachverzeichnis 231

Logistik: Transport. Grundlagen, lineare Transportund Umladeprobleme. Von Dr. Wolfgang Domschke. o. Professor für Betriebswirtschaftslehre

Logistik: Transport. Grundlagen, lineare Transportund Umladeprobleme. Von Dr. Wolfgang Domschke. o. Professor für Betriebswirtschaftslehre Logistik: Transport Grundlagen, lineare Transportund Umladeprobleme Von Dr. Wolfgang Domschke o. Professor für Betriebswirtschaftslehre Zweite, ergänzte Auflage TECHNISCH!: MOC cchule DARiviSTAOT j P e

Mehr

Einführung in Operations Research

Einführung in Operations Research Wolfgang Domschke Andreas Drexl Einführung in Operations Research Achte Auflage fyj Springer Inhaltsverzeichnis Vorwort Symbolverzeichnis V XIII Kapitel 1: Einführung 1 1.1 Begriff des Operations Research

Mehr

Logistik: Rundreisen und Touren

Logistik: Rundreisen und Touren Logistik: Rundreisen und Touren 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Von Universitätsprofessor Dr. Wolfgang

Mehr

Vorwort... V. Abbildungsverzeichnis... XV. Tabellenverzeichnis... XVII. Symbolverzeichnis... XIX. Abkürzungsverzeichnis... XXIII. 1 Grundlagen...

Vorwort... V. Abbildungsverzeichnis... XV. Tabellenverzeichnis... XVII. Symbolverzeichnis... XIX. Abkürzungsverzeichnis... XXIII. 1 Grundlagen... Vorwort... V Abbildungsverzeichnis... XV Tabellenverzeichnis... XVII Symbolverzeichnis... XIX Abkürzungsverzeichnis... XXIII 1 Grundlagen... 1 1.1 Definition der Logistik... 1 1.2 Phasenspezifische Subsysteme

Mehr

Operations Research. Klaus Neumann Martin Morlock HANSER. 2. Auflage. Mit 288 Abbildungen und 111 Tafeln

Operations Research. Klaus Neumann Martin Morlock HANSER. 2. Auflage. Mit 288 Abbildungen und 111 Tafeln Klaus Neumann Martin Morlock Operations Research 2. Auflage Mit 288 Abbildungen und 111 Tafeln Technische Universität Darmstadt Fach bar«! ah 1 e Bibliothek Abttall-Nr. HANSER HIIIIIIIIIIIHH Inhaltsverzeichnis

Mehr

1. Transport- und Zuordnungsprobleme Optimierungsalgorithmus für Transportprobleme. Duales Problem. a i u i + i=1. j=1

1. Transport- und Zuordnungsprobleme Optimierungsalgorithmus für Transportprobleme. Duales Problem. a i u i + i=1. j=1 1. Transport- und Zuordnungsprobleme Optimierungsalgorithmus für Transportprobleme Duales Problem Lemma 1.4. Das zum Transportproblem duale Problem lautet: max unter den Nebenbedingungen m a i u i + i=1

Mehr

Basiswissen Mathematik, Statistik. und Operations Research für. Wirtschaftswissenschaftler. von. Prof. Dr. Gert Heinrich DHBW Villingen-Schwenningen

Basiswissen Mathematik, Statistik. und Operations Research für. Wirtschaftswissenschaftler. von. Prof. Dr. Gert Heinrich DHBW Villingen-Schwenningen Basiswissen Mathematik, Statistik und Operations Research für Wirtschaftswissenschaftler von Prof. Dr. Gert Heinrich DHBW Villingen-Schwenningen 5., korrigierte Auflage Oldenbourg Verlag München Inhaltsverzeichnis

Mehr

OPERATIONS RESEARCH I LINEARE PLANUNGS RECHNUNO UND NETZPLANTECHNIK

OPERATIONS RESEARCH I LINEARE PLANUNGS RECHNUNO UND NETZPLANTECHNIK BODO RUNZHEIMER OPERATIONS RESEARCH I LINEARE PLANUNGS RECHNUNO UND NETZPLANTECHNIK SIMPLEX-METHODE -TRANSPORT-METHODE STRUKTURANALYSE ZEITPLANUNG ZEIT-KOSTEN PLANUNG- ANWENDUNGSMÖGLICHKEITEN 5., VERBESSERTE

Mehr

Inhaltsverzeichnis. Vorwort... V. Symbolverzeichnis... XIII

Inhaltsverzeichnis. Vorwort... V. Symbolverzeichnis... XIII Inhaltsverzeichnis Vorwort................................................................. V Symbolverzeichnis...................................................... XIII Kapitel 1: Einführung......................................................

Mehr

Vorwort Abbildungsverzeichnis Teil I Mathematik 1

Vorwort Abbildungsverzeichnis Teil I Mathematik 1 Inhaltsverzeichnis Vorwort Abbildungsverzeichnis V XIII Teil I Mathematik 1 1 Elementare Grundlagen 3 1.1 Grundzüge der Mengenlehre... 3 1.1.1 Darstellungsmöglichkeiten von Mengen... 4 1.1.2 Mengenverknüpfungen...

Mehr

Aufgabe 1: Berechnen Sie für den in Abbildung 1 gegebenen Graphen den. Abbildung 1: Graph für Flussproblem in Übungsaufgabe 1

Aufgabe 1: Berechnen Sie für den in Abbildung 1 gegebenen Graphen den. Abbildung 1: Graph für Flussproblem in Übungsaufgabe 1 Lösungen zu den Übungsaufgaben im Kapitel 4 des Lehrbuches Operations Research Deterministische Modelle und Methoden von Stephan Dempe und Heiner Schreier Aufgabe 1: Berechnen Sie für den in Abbildung

Mehr

Rainer Lasch. Strategisches und operatives Logistikmanagement: Distribution. Springer Gabler

Rainer Lasch. Strategisches und operatives Logistikmanagement: Distribution. Springer Gabler Rainer Lasch Strategisches und operatives Logistikmanagement: Distribution Springer Gabler Vorwort V Abbildungsverzeichnis XIII Tabellenverzeichnis XV Symbolverzeichnis XVII Abkürzungsverzeichnis XXI 1

Mehr

Gliederung. Kurseinheit 1»Grundlagen der Graphentheorie« Inhaltsübersicht Grundbegriffe

Gliederung. Kurseinheit 1»Grundlagen der Graphentheorie« Inhaltsübersicht Grundbegriffe Inhaltsübersicht 1 Gliederung Kurseinheit 1»Grundlagen der Graphentheorie«1. Grundbegriffe 1.1. Praktische Probleme, die auf Graphen und Netzwerke führen 1.. Grundlegende Definitionen 1.. Kantenfolgen

Mehr

Algorithmen & Komplexität

Algorithmen & Komplexität Algorithmen & Komplexität Angelika Steger Institut für Theoretische Informatik steger@inf.ethz.ch Kürzeste Pfade Problem Gegeben Netzwerk: Graph G = (V, E), Gewichtsfunktion w: E N Zwei Knoten: s, t Kantenzug/Weg

Mehr

Quantitative Methoden in der Betriebswirtschaftslehre

Quantitative Methoden in der Betriebswirtschaftslehre Quantitative Methoden in der Betriebswirtschaftslehre von Dr. Dietrich Ohse Professor für Betriebswirtschaftslehre, insbesondere Quantitative Methoden an der Johann Wolfgang Goethe-Universität Frankfurt

Mehr

Übung QM 1 EINFÜHRUNG 1. 1 Einführung. ohne Übungsaufgaben

Übung QM 1 EINFÜHRUNG 1. 1 Einführung. ohne Übungsaufgaben Übung QM 1 EINFÜHRUNG 1 1 Einführung ohne Übungsaufgaben Übung QM 2 LINEARE OPTIMIERUNG 2 2 Lineare Optimierung Aufgabe 2.1 LP-Modellierung und Begriffe Wild West GmbH produziert Cowboyhüte. Momentan werden

Mehr

Operations Research BODO RUNZHEIMER. Lineare Planungsrechnung, Netzplantechnik, Simulation und Warteschlangentheorie

Operations Research BODO RUNZHEIMER. Lineare Planungsrechnung, Netzplantechnik, Simulation und Warteschlangentheorie BODO RUNZHEIMER Operations Research Lineare Planungsrechnung, Netzplantechnik, Simulation und Warteschlangentheorie 7., aktualisierte und erweiterte Auflage LEHRBUCH GABLER 7 Inhalt Erstes Kapitel: Einleitung

Mehr

Inhaltsverzeichnis. Teil 1 Grundlagen 23

Inhaltsverzeichnis. Teil 1 Grundlagen 23 Inhaltsverzeichnis Vorwort 11 Umfang 12 Einsatz als Unterrichtsmittel 12 Algorithmen mit Praxisbezug 13 Programmiersprache 14 Danksagung 15 Vorwort des C++-Beraters 16 Hinweise zu den Übungen 21 Teil 1

Mehr

Robert Sedgewick. Algorithmen in Java. Teil 1-4 Grundlagen Datenstrukturen Sortieren Suchen. Java-Beratung durch Michael Schidlowsky

Robert Sedgewick. Algorithmen in Java. Teil 1-4 Grundlagen Datenstrukturen Sortieren Suchen. Java-Beratung durch Michael Schidlowsky Robert Sedgewick Algorithmen in Java Teil 1-4 Grundlagen Datenstrukturen Sortieren Suchen Java-Beratung durch Michael Schidlowsky 3., überarbeitete Auflage \ PEARSON ein Imprint von Pearson Education München

Mehr

Inhaltsverzeichnis. Teil 1 Grundlagen 21. Teil 2 Datenstrukturen 85

Inhaltsverzeichnis. Teil 1 Grundlagen 21. Teil 2 Datenstrukturen 85 Inhaltsverzeichnis Vorwort 13 Umfang 14 Einsatz als Unterrichtsmittel 14 Algorithmen mit Praxisbezug 15 Programmiersprache 16 Danksagung 17 Vorwort des Java-Beraters 18 Hinweise zu den Übungen 19 Teil

Mehr

Robert Sedgewick. Algorithmen in Java. »il 1-4 Grundlagen Datenstrykturen Sortleren Suchen. java-beratung durch Michael Schidlowsky

Robert Sedgewick. Algorithmen in Java. »il 1-4 Grundlagen Datenstrykturen Sortleren Suchen. java-beratung durch Michael Schidlowsky Robert Sedgewick Algorithmen in Java»il 1-4 Grundlagen Datenstrykturen Sortleren Suchen java-beratung durch Michael Schidlowsky 3., überarbeitete Auflage PEARSON ein Imprint von Pearson Education München

Mehr

Aufgabe 5.3 Duale Simplexverfahren

Aufgabe 5.3 Duale Simplexverfahren Aufgabe 5.3 Knut Krause Thomas Siwczyk Stefan Tittel Technische Universität Dortmund Fakultät für Informatik Algorithmen und Datenstrukturen 15. Januar 2009 Gliederung 1 Aufgabenstellung und Motivation

Mehr

Integrierte Kampagnenplanung. Netzwerken der chemischen Industrie

Integrierte Kampagnenplanung. Netzwerken der chemischen Industrie Markus Meiler Integrierte Kampagnenplanung in logistischen Netzwerken der chemischen Industrie Mit einem Geleitwort von Prof. Dr. Hans-Otto Günther VA Springer Gabler RESEARCH Inhaltsverzeichnis IX Inhaltsverzeichnis

Mehr

Produktionsplanung. Wolfgang Domschke Armin Scholl Stefan Voß. Ablauforganisatorische Aspekte. Springer. Zweite, überarbeitete und erweiterte Auflage

Produktionsplanung. Wolfgang Domschke Armin Scholl Stefan Voß. Ablauforganisatorische Aspekte. Springer. Zweite, überarbeitete und erweiterte Auflage Wolfgang Domschke Armin Scholl Stefan Voß Produktionsplanung Ablauforganisatorische Aspekte Zweite, überarbeitete und erweiterte Auflage Mit 134 Abbildungen und 48 Tabellen Springer Inhaltsverzeichnis

Mehr

Inhaltsverzeichnis VII

Inhaltsverzeichnis VII Inhaltsverzeichnis 1 Anwendungen... 1 1.1 OperationsResearch... 1 1.2 MedizinischeInformatik... 5 1.3 Automatisierungstechnik... 9 Literaturhinweise... 13 2 Objektorientierte Entwurfsmuster... 15 2.1 EinführendesBeispiel...

Mehr

Wie wird ein Graph dargestellt?

Wie wird ein Graph dargestellt? Wie wird ein Graph dargestellt? Für einen Graphen G = (V, E), ob gerichtet oder ungerichtet, verwende eine Adjazenzliste A G : A G [i] zeigt auf eine Liste aller Nachbarn von Knoten i, wenn G ungerichtet

Mehr

Algorithmen und Datenstrukturen Kapitel 10

Algorithmen und Datenstrukturen Kapitel 10 Algorithmen und Datenstrukturen Kapitel 10 Flüsse Frank Heitmann heitmann@informatik.uni-hamburg.de 6. Januar 2016 Frank Heitmann heitmann@informatik.uni-hamburg.de 1/8 Flüsse Graphen Grundlagen Definition

Mehr

Aufgabensammlung uncf Klausurentrainer zur Optimierung

Aufgabensammlung uncf Klausurentrainer zur Optimierung Karl Heinz Borgwardt unter Mitarbeit von Matthias Tinkl und Thomas Wörle Aufgabensammlung uncf Klausurentrainer zur Optimierung Für die Bachelorausbildung in mathematischen Studiengängen STUDIUM 11 VIEWEG+

Mehr

entheoretische Konzepte und Algorithmen

entheoretische Konzepte und Algorithmen Sven Oliver Krumke, Hartmut Noitemeier entheoretische Konzepte und Algorithmen Teubner Inhaltsverzeichnis 1 Einleitung 1 1.1 Routenplanung 1 1.2 Frequenzplanung im Mobilfunk I 1.3 Museumswärter 3 1.4 Das

Mehr

Algorithmen und Datenstrukturen (AuD) Prof. Dr. Claudia Eckert und Dr. Thomas Stibor

Algorithmen und Datenstrukturen (AuD) Prof. Dr. Claudia Eckert und Dr. Thomas Stibor Algorithmen und Datenstrukturen (AuD) Prof. Dr. Claudia Eckert und Dr. Thomas Stibor Organisatorisches: Vorlesung 4 SWS, Zentralübung 2 SWS: 6 Credit Points Mi 9:45 11:15 Raum 1200 (Vorlesung) Do 8:00

Mehr

Modellbasiertes Logistikmanagement mit Excel

Modellbasiertes Logistikmanagement mit Excel A 3^6 093 Heinz-Michael Winkels Modellbasiertes Logistikmanagement mit Excel Lösungen von Problemen in der Logistik unter Verwendung der Tabellenkalkulation @ Mit direkt anwendbaren Online-Arbeitshilfen:

Mehr

Operations Research kompakt

Operations Research kompakt Operations Research kompakt von Michael Sauer Oldenbourg Verlag München Inhalt s Verzeichnis 1 Einführung 1 1.1 Vorwort 1 1.2 Anwendungsbeispiel 2 1.3 Inhaltsüberblick 3 1.4 Einige Grundlagen 4 1.4.1 Grundbegriffe

Mehr

Grundlagen der Informatik

Grundlagen der Informatik Jörn Fischer j.fischer@hs-mannheim.de Willkommen zur Vorlesung Grundlagen der Informatik ADS-Teil Page 2 Überblick Inhalt 1 Eigenschaften von Algorithmen Algorithmenbegriff O-Notation Entwurfstechniken

Mehr

Minimal spannende Bäume

Minimal spannende Bäume http://www.uni-magdeburg.de/harbich/ Minimal spannende Fakultät für Informatik Otto-von-Guericke-Universität 2 Inhalt Definition Wege Untergraphen Kantengewichtete Graphen Minimal spannende Algorithmen

Mehr

Das Steinerbaumproblem

Das Steinerbaumproblem Das Steinerbaumproblem Natalie Richert Fakultät für Elektrotechnik, Informatik und Mathematik, Universität Paderborn 4. Februar 008 / 3 Überblick Problembeschreibung Vorstellung von zwei Approimationsalgorithmen

Mehr

Ulf Schneider. PG 431: Metaheuristiken. Das Routing Problem

Ulf Schneider. PG 431: Metaheuristiken. Das Routing Problem Ulf Schneider PG 431: Metaheuristiken Das Routing Problem Dortmund, im März 2003 1 Einleitung...3 2 Grundlagen...4 2.1 Graphentheorie...4 2.2 Darstellung von Graphen in Rechnern...6 2.2.1 Matrixdarstellung...6

Mehr

Kürzeste Wege in einem gewichteten Graphen. Anwendungen

Kürzeste Wege in einem gewichteten Graphen. Anwendungen Kürzeste Wege in einem gewichteten Graphen Dazu werden die Gewichte als Weglängen interpretiert. Der kürzeste Weg zwischen zwei Knoten in einem zusammenhängenden Graphen ist derjenige, bei dem die Summe

Mehr

1.Aufgabe: Minimal aufspannender Baum

1.Aufgabe: Minimal aufspannender Baum 1.Aufgabe: Minimal aufspannender Baum 11+4+8 Punkte v 1 v 2 1 3 4 9 v 3 v 4 v 5 v 7 7 4 3 5 8 1 4 v 7 v 8 v 9 3 2 7 v 10 Abbildung 1: Der Graph G mit Kantengewichten (a) Bestimme mit Hilfe des Algorithmus

Mehr

Mit 119 Bildern, 368 Beispielen und 225 Aufgaben mit Lösungen

Mit 119 Bildern, 368 Beispielen und 225 Aufgaben mit Lösungen Mathematik für Wirtschaftswissenschaftler Ein Lehr- und Übungsbuch für Bachelors 2., aktualisierte Auflage Mit 119 Bildern, 368 Beispielen und 225 Aufgaben mit Lösungen Fachbuchverlag Leipzig im Carl Hanser

Mehr

Inhalt. 42 ein Geleitwort von Peter Gritzmann xi. Vorwort zur ergänzten Neuauflage

Inhalt. 42 ein Geleitwort von Peter Gritzmann xi. Vorwort zur ergänzten Neuauflage Inhalt 42 ein Geleitwort von Peter Gritzmann xi Vorwort Vorwort zur ergänzten Neuauflage xiii xvii 1 Brigitte Lutz-Westphal Optimal zum Ziel: Das Kürzeste-Wege-Problem 1 1 U-Bahn-Fahrten, Schulwege und

Mehr

Zugeordneter bipartiter Graph

Zugeordneter bipartiter Graph Zugeordneter bipartiter Graph Für ein Transportproblem sei A = {A 1,...,A m } die Menge der Fabriken und B = {B 1,...,B n } sei die Menge der Warenhäuser. Wir ordnen nun einem Transportproblem einen bipartiten

Mehr

Transportoptimierung

Transportoptimierung Technische Universität Bergakademie Freiberg Fakultät für Mathematik und Informatik Institut für Numerische Mathematik und Optimierung Dr.rer.nat. H. Schreier Transportoptimierung Unter Logistik subsummiert

Mehr

Kombinatorische Optimierung

Kombinatorische Optimierung Kombinatorische Optimierung Juniorprof. Dr. Henning Meyerhenke PARALLELES RECHNEN INSTITUT FÜR THEORETISCHE INFORMATIK, FAKULTÄT FÜR INFORMATIK KIT Universität des Landes Baden-Württemberg und nationales

Mehr

Diskrete Strukturen Kapitel 4: Graphentheorie (Bäume)

Diskrete Strukturen Kapitel 4: Graphentheorie (Bäume) WS 2016/17 Diskrete Strukturen Kapitel 4: Graphentheorie (Bäume) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_16

Mehr

NAME, VORNAME: Studiennummer: Matrikel:

NAME, VORNAME: Studiennummer: Matrikel: TU Ilmenau, Fakultat IA Institut für Theoretische Informatik FG Komplexitätstheorie und Effiziente Algorithmen Prof. Dr. (USA) M. Dietzfelbinger Klausur Algorithmen und Datenstrukturen SS08, Ing.-Inf.

Mehr

Operations Research I

Operations Research I Operations Research I Lineare Programmierung Prof. Dr. Peter Becker Fachbereich Informatik Hochschule Bonn-Rhein-Sieg Sommersemester 2015 Peter Becker (H-BRS) Operations Research I Sommersemester 2015

Mehr

Unimodularität. Kapitel 1. Peter Becker (H-BRS) Operations Research II Wintersemester 2015/16 11 / 206

Unimodularität. Kapitel 1. Peter Becker (H-BRS) Operations Research II Wintersemester 2015/16 11 / 206 Kapitel 1 Unimodularität Peter Becker (H-BRS) Operations Research II Wintersemester 2015/16 11 / 206 Inhalt 1 Unimodularität Total unimodulare Matrizen Inzidenzmatrix Optimierungsprobleme auf Graphen Peter

Mehr

VORLESUNG 14 Lineare Optimierung, Dualität (Viele Folien nach Ulf Lorenz, jetzt TU Darmstadt)

VORLESUNG 14 Lineare Optimierung, Dualität (Viele Folien nach Ulf Lorenz, jetzt TU Darmstadt) VORLESUNG 14 Lineare Optimierung, Dualität (Viele Folien nach Ulf Lorenz, jetzt TU Darmstadt) 96 H. Meyerhenke: Kombinatorische Optimierung Dualität bei linearen Programmen Def.: Es sei (L): c T x max

Mehr

4.4.2 Virtuelles Hashing Erweiterbares Hashing Das Gridfile Implementation von Hashverfahren in Java

4.4.2 Virtuelles Hashing Erweiterbares Hashing Das Gridfile Implementation von Hashverfahren in Java Inhaltsverzeichnis 1 Grundlagen 1 1.1 Algorithmen und ihre formalen Eigenschaften 1 1.2 Beispiele arithmetischer Algorithmen 5 1.2.1 Ein Multiplikationsverfahren 5 1.2.2 Polynomprodukt 8 1.2.3 Schnelle

Mehr

Netzwerk-Simplex. MinCostFlow als Lineares Programm. 1 of 12 Netzwerksimplex

Netzwerk-Simplex. MinCostFlow als Lineares Programm. 1 of 12 Netzwerksimplex Netzwerk-Simplex MinCostFlow als Lineares Programm of 2 Netzwerksimplex MinCostFlow geg: gerichteter Graph G, Kapazitäten u R R 0 { }, Bedarfe b V R, Pfeilkosten c R R ges: zulässiger b-fluss f mit minimalen

Mehr

Grundlegende Algorithmen mit Java

Grundlegende Algorithmen mit Java Doina Logofätu Grundlegende Algorithmen mit Java Vom Algorithmus zum fertigen Programm Lern- und Arbeitsbuch für Informatiker und Mathematiker Mit 115 Abbildungen '-^~, v :^i yr:,',v.t&i- I " vieweg Inhaltsverzeichnis

Mehr

TRIZ/TIPS. Methodik des erfinderischen Problemlösens. von Bernd Klein 2., verbesserte und erweiterte Auflage. Oldenbourg Verlag München Wien

TRIZ/TIPS. Methodik des erfinderischen Problemlösens. von Bernd Klein 2., verbesserte und erweiterte Auflage. Oldenbourg Verlag München Wien TRIZ/TIPS Methodik des erfinderischen Problemlösens von Bernd Klein 2., verbesserte und erweiterte Auflage Oldenbourg Verlag München Wien Inhaltsverzeichnis Vorwort XI 1 Einleitung 1 2 Historische Entwicklung

Mehr

Einführung in Operations Research

Einführung in Operations Research Einführung in Operations Research Wolfgang Domschke Andreas Drexl Robert Klein Armin Scholl Einführung in Operations Research 9., überarbeitete und verbesserte Auflage Wolfgang Domschke Technische Universität

Mehr

Teil 2: Graphenalgorithmen

Teil 2: Graphenalgorithmen Teil : Graphenalgorithmen Anwendungen Definitionen Datenstrukturen für Graphen Elementare Algorithmen Topologisches Sortieren Kürzeste Wege Problemstellung Ungewichtete Graphen Distanzgraphen Gewichtete

Mehr

8.4 Digraphen mit negativen Kantengewichten Grundsätzliches Betrachte Startknoten s und einen Kreis C mit Gesamtlänge < 0.

8.4 Digraphen mit negativen Kantengewichten Grundsätzliches Betrachte Startknoten s und einen Kreis C mit Gesamtlänge < 0. 8.4 Digraphen mit negativen Kantengewichten 8.4.1 Grundsätzliches Betrachte Startknoten s und einen Kreis C mit Gesamtlänge < 0. k 4 5 1 s 1 3 2 C k 0 k 3 1 1 1 k 1 k 2 v Sollte ein Pfad von s nach C und

Mehr

Algorithmen und Datenstrukturen (AuD) Prof. Dr. Claudia Eckert

Algorithmen und Datenstrukturen (AuD) Prof. Dr. Claudia Eckert Algorithmen und Datenstrukturen (AuD) Prof. Dr. Claudia Eckert Organisatorisches: Vorlesung 4 SWS, Zentralübung 2 SWS: 6 Credit Points Mi 10:30-12:00 Raum 1200 (Vorlesung) Do 8:15-9:45 Raum 1200 (Vorlesung)

Mehr

Programmierkurs Python II

Programmierkurs Python II Programmierkurs Python II Stefan Thater & Michaela Regneri Universität des Saarlandes FR 4.7 Allgemeine Linguistik (Computerlinguistik) Übersicht Topologische Sortierung (einfach) Kürzeste Wege finden

Mehr

Grundlagen 1. Sortieren 79. Suchen 167. Hashverfahren 191. Bäume 259. Manipulation von Mengen 403. Weitere Algorithmenentwurfstechniken 445

Grundlagen 1. Sortieren 79. Suchen 167. Hashverfahren 191. Bäume 259. Manipulation von Mengen 403. Weitere Algorithmenentwurfstechniken 445 Inhaltsübersicht Grundlagen 1 Sortieren 79 Suchen 167 Hashverfahren 191 Bäume 259 Manipulation von Mengen 403 Weitere Algorithmenentwurfstechniken 445 Geometrische Algorithmen 471 Graphenalgorithmen 589

Mehr

EIDI 1 Einführung in die Informatik 1. PGdP Praktikum Grundlagen der Programmierung. Harald Räcke 2/217

EIDI 1 Einführung in die Informatik 1. PGdP Praktikum Grundlagen der Programmierung. Harald Räcke 2/217 EIDI 1 Einführung in die Informatik 1 PGdP Praktikum Grundlagen der Programmierung Harald Räcke 2/217 Wie löst man Probleme mithilfe von Computern? 0 Harald Räcke 3/217 Inhalte: EIDI 1 1. Was ist das Problem?

Mehr

Kapitel 4: Minimal spannende Bäume Gliederung der Vorlesung

Kapitel 4: Minimal spannende Bäume Gliederung der Vorlesung Kapitel : Minimal spannende Bäume Gliederung der Vorlesung. Fallstudie Bipartite Graphen 2. Grundbegriffe. Elementare Graphalgorithmen und Anwendungen. Minimal spannende Bäume. Kürzeste Wege. Traveling

Mehr

Zuordnungsproblem. Beispiele. Mathematisches Modell. Lösungsmethoden. auch Ernennungs-, Zuweisungs-, Assignmentproblem

Zuordnungsproblem. Beispiele. Mathematisches Modell. Lösungsmethoden. auch Ernennungs-, Zuweisungs-, Assignmentproblem Zuordnungsproblem auch Ernennungs-, Zuweisungs-, Assignmentproblem Beispiele Mathematisches Modell Lösungsmethoden HTW-Berlin FB3 Prof. Dr. F. Hartl 1 2 Anwendungen Zuordnung von - 1 ME von A i nach B

Mehr

Pro Informatik 2009: Objektorientierte Programmierung Tag 18. Marco Block-Berlitz, Miao Wang Freie Universität Berlin, Institut für Informatik

Pro Informatik 2009: Objektorientierte Programmierung Tag 18. Marco Block-Berlitz, Miao Wang Freie Universität Berlin, Institut für Informatik Tag 18 Marco Block-Berlitz, Miao Wang Freie Universität Berlin, Institut für Informatik 09.09.2009 Agenda Tag 16 Datenstrukturen Abstrakte Datentypen, ADT Folge: Stack, Queue, Liste, ADT Menge: Bäume:

Mehr

Kapitel 4: Minimale spannende Bäume Gliederung der Vorlesung

Kapitel 4: Minimale spannende Bäume Gliederung der Vorlesung Kapitel : Minimale spannende Bäume Gliederung der Vorlesung. Grundbegriffe 2. Elementare Graphalgorithmen und Anwendungen. Kürzeste Wege. Minimale spannende Bäume. Färbungen und Cliquen. Traveling Salesman

Mehr

Algorithmische Graphentheorie

Algorithmische Graphentheorie Algorithmische Graphentheorie Vorlesung 4: Suchstrategien Babeş-Bolyai Universität, Department für Informatik, Cluj-Napoca csacarea@cs.ubbcluj.ro 14. April 2017 HALBORDNUNG TOPOLOGISCHE ORDNUNG TOPOLOGISCHES

Mehr

Optimierung. Optimierung. Vorlesung 8 Lineare Programmierung III: Simplex Algorithmus Fabian Kuhn

Optimierung. Optimierung. Vorlesung 8 Lineare Programmierung III: Simplex Algorithmus Fabian Kuhn Optimierung Vorlesung 8 Lineare Programmierung III: Simplex Algorithmus 1 Resource Allocation Beispiel aus Vorlesung 6 Primales LP: Duales LP: max 3 4 2 2 4 2 8 3 6 0, 0, 0 min 4 8 6 2 3 3 4 2 2 0, 0,

Mehr

Inhaltsverzeichnis. Grundlagen

Inhaltsverzeichnis. Grundlagen Grundlagen 1 Logik und Mengen... 1 1.1 Elementare Logik... 1 1.2 Elementare Mengenlehre... 10 1.3 Schaltalgebra... 15 1.3.1 Anwendung: Entwurf von Schaltkreisen... 21 1.4 Mit dem digitalen Rechenmeister...

Mehr

Kapitel 7: Flüsse in Netzwerken und Anwendungen Gliederung der Vorlesung

Kapitel 7: Flüsse in Netzwerken und Anwendungen Gliederung der Vorlesung Gliederung der Vorlesung. Fallstudie Bipartite Graphen. Grundbegriffe. Elementare Graphalgorithmen und Anwendungen. Minimal spannende Bäume. Kürzeste Pfade. Traveling Salesman Problem. Flüsse in Netzwerken

Mehr

Mathematische Optimierung mit Computeralgebrasystemen

Mathematische Optimierung mit Computeralgebrasystemen Mathematische Optimierung mit Computeralgebrasystemen Einführung für Ingenieure, Naturwissenschaflter und Wirtschaftswissenschaftler unter Anwendung von MATHEMATICA, MAPLE, MATHCAD, MATLAB und EXCEL Bearbeitet

Mehr

Algorithmentheorie 1. Vorlesung

Algorithmentheorie 1. Vorlesung Algorithmentheorie 1. Vorlesung Martin Dietzfelbinger 6. April 2006 FG KTuEA, TU Ilmenau AT 06.04.2006 Methode, Material Vorlesung Vorlesungsskript (Netz, Copyshop) Folien (im Netz) Vorlesung nachbereiten!

Mehr

Theoretische Informatik 1 WS 2007/2008. Prof. Dr. Rainer Lütticke

Theoretische Informatik 1 WS 2007/2008. Prof. Dr. Rainer Lütticke Theoretische Informatik 1 WS 2007/2008 Prof. Dr. Rainer Lütticke Inhalt der Vorlesung Grundlagen - Mengen, Relationen, Abbildungen/Funktionen - Datenstrukturen - Aussagenlogik Automatentheorie Formale

Mehr

Teil III. Komplexitätstheorie

Teil III. Komplexitätstheorie Teil III Komplexitätstheorie 125 / 160 Übersicht Die Klassen P und NP Die Klasse P Die Klassen NP NP-Vollständigkeit NP-Vollständige Probleme Weitere NP-vollständige Probleme 127 / 160 Die Klasse P Ein

Mehr

Berechnung minimaler Spannbäume. Beispiel

Berechnung minimaler Spannbäume. Beispiel Minimale Spannbäume Definition Sei G pv, Eq ein ungerichteter Graph und sei w : E Ñ R eine Funktion, die jeder Kante ein Gewicht zuordnet. Ein Teilgraph T pv 1, E 1 q von G heißt Spannbaum von G genau

Mehr

Konvexe Hülle. Abbildung: [Wikipedia]: Nicht-konvexe Menge (links), konvexe Menge (rechts) KIT Institut für Theoretische Informatik 510

Konvexe Hülle. Abbildung: [Wikipedia]: Nicht-konvexe Menge (links), konvexe Menge (rechts) KIT Institut für Theoretische Informatik 510 Konvexe Hülle Definition konvexe Menge: Für je zwei beliebige Punkte, die zur Menge gehören, liegt auch stets deren Verbindungsstrecke ganz in der Menge. Abbildung: [Wikipedia]: Nicht-konvexe Menge (links),

Mehr

2. Repräsentationen von Graphen in Computern

2. Repräsentationen von Graphen in Computern 2. Repräsentationen von Graphen in Computern Kapitelinhalt 2. Repräsentationen von Graphen in Computern Matrizen- und Listendarstellung von Graphen Berechnung der Anzahl der verschiedenen Kantenzüge zwischen

Mehr

INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS

INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS Julian Arz, Timo Bingmann, Sebastian Schlag INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS 1 KIT Julian Universität Arz, des Timo LandesBingmann, Baden-Württemberg Sebastian und Schlag nationales

Mehr

Vorwort zur 3. Auflage... V Vorwort zur 2. Auflage... vn Vorwort zur 1. Auflage... IX Inhaltsübersicht... XI Symbolverzeichnis...

Vorwort zur 3. Auflage... V Vorwort zur 2. Auflage... vn Vorwort zur 1. Auflage... IX Inhaltsübersicht... XI Symbolverzeichnis... Vorwort zur 3. Auflage... V Vorwort zur 2. Auflage... vn Vorwort zur 1. Auflage... IX Inhaltsübersicht... XI Symbolverzeichnis... XX1 1 Einführung... 1 2 Beschaffungslogistik... 3 2.1 Strategische Beschaffungsaufgaben...

Mehr

Optimierung für Wirtschaftsinformatiker: Dualität, Ganzzahlige lineare Optimierung

Optimierung für Wirtschaftsinformatiker: Dualität, Ganzzahlige lineare Optimierung Optimierung für Wirtschaftsinformatiker: Dualität, Ganzzahlige lineare Optimierung Dr. Nico Düvelmeyer Freitag, 24. Juni 2011 1: 1 [1,1] Inhaltsübersicht für heute 1 Dualität Motivation Duales LP Dualitätssätze

Mehr

Modelle und Verfahren zur innerbetrieblichen Standortplanung

Modelle und Verfahren zur innerbetrieblichen Standortplanung Andreas Bölte Modelle und Verfahren zur innerbetrieblichen Standortplanung Mit 73 Abbildungen Physica-Verlag Ein Unternehmen des Springer-Verlags Inhaltsverzeichnis 1. Einleitung 1 2. Layoutplanung für

Mehr

Kap. 6.6: Kürzeste Wege

Kap. 6.6: Kürzeste Wege Kap. 6.6: Kürzeste Wege Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 1./. VO DAP SS 009./9. Juli 009 1 Nachtest für Ausnahmefälle Di 1. Juli 009, 16:00 Uhr,

Mehr

Bilanzielle Zuordnung von Passivpositionen zu einzelnen Aktivpositionen

Bilanzielle Zuordnung von Passivpositionen zu einzelnen Aktivpositionen Thomas Grauer Bilanzielle Zuordnung von Passivpositionen zu einzelnen Aktivpositionen PETER LANG Europäischer Verlag der Wissenschaften IX Inhaltsverzeichnis Abbildungsverzeichnis Symbolverzeichnis Abkürzungsverzeichnis

Mehr

Mikroökonomische Theorie

Mikroökonomische Theorie David M. Kreps Mikroökonomische Theorie aus dem Englischen von Prof. Dr. Ulrich K. Schittko vertag moderne Industrie HARVESTER WHEATSHEAF Inhaltsverzeichnis 1 Ein Überblick 1 1.1 Die grundlegenden Bausteine:

Mehr

Algorithmen und Datenstrukturen 1

Algorithmen und Datenstrukturen 1 Algorithmen und Datenstrukturen 1 6. Vorlesung Martin Middendorf / Universität Leipzig Institut für Informatik middendorf@informatik.uni-leipzig.de studla@bioinf.uni-leipzig.de Merge-Sort Anwendbar für

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Grundlagen Datenstrukturen Transitive Hülle Traversierung Kürzeste Wege Spannender Baum Max. Fluss Zuordnungen. 6. Graphen

Grundlagen Datenstrukturen Transitive Hülle Traversierung Kürzeste Wege Spannender Baum Max. Fluss Zuordnungen. 6. Graphen . Graphen viele praktische (Optimierungs-)Probleme sind als graphentheoretische Probleme formulierbar z.b. in Produktionsplanung, Personaleinsatzplanung,.... Grundlagen gerichteter, ungerichteter und gewichteter

Mehr

Operations Research. Flüsse in Netzwerken. Flüsse in Netzwerken. Unimodularität. Rainer Schrader. 2. Juli Gliederung.

Operations Research. Flüsse in Netzwerken. Flüsse in Netzwerken. Unimodularität. Rainer Schrader. 2. Juli Gliederung. Operations Research Rainer Schrader Flüsse in Netzwerken Zentrum für Angewandte Informatik Köln 2. Juli 2007 1 / 53 2 / 53 Flüsse in Netzwerken Unimodularität Gliederung Netzwerke und Flüsse bipartite

Mehr

Einführung in die Spieltheorie

Einführung in die Spieltheorie Seminar über Algorithmen - Einführung in die Spieltheorie Nadja Scharf Institut für Informatik Einführung in die Spieltheorie nach Nisan, Roughgarden, Tardos, Vazirani: Algorithmic Game Theory, Kapitel

Mehr

Inhaltsverzeichnis. Einführende Bemerkungen 11. Das Fach Informatik 11 Zielsetzung der Vorlesung Grundbegriffe

Inhaltsverzeichnis. Einführende Bemerkungen 11. Das Fach Informatik 11 Zielsetzung der Vorlesung Grundbegriffe Inhaltsverzeichnis Einführende Bemerkungen 11 Das Fach Informatik 11 Zielsetzung der Vorlesung 12 1. Grundbegriffe 1 3 1.1 1.2 1.3 1.4 1.5 1.6 1.7 Information und Nachricht 1.1.1 Information 1.1.2 Nachricht

Mehr

Planungsrechnung und Entscheidungstechnik

Planungsrechnung und Entscheidungstechnik Werner Zimmermann Planungsrechnung und Entscheidungstechnik Operatlons Research Verfahren Mit 134 Bildern und Tabellen, 87 Beispielen mit vollständigen Lösungen und 108 Aufgaben zum selbständigen Lösen.

Mehr

Optimierung I. Dr. Ulf Lorenz F2.413

Optimierung I. Dr. Ulf Lorenz F2.413 Optimierung I Dr. Ulf Lorenz F2.413 flulo@upb.de Organisation Dozent: Dr. Ulf Lorenz F2.413 Fürstenallee 11 email: flulo@upb.de WWW: http://www.upb.de/cs/flulo (hier auch aktuelle Infos + Ü-Zettel) Vorlesungen:

Mehr

ma orrsc e, I rerun er e en

ma orrsc e, I rerun er e en Stephan Hußmann (Hrsg.) o ma orrsc e, I rerun er e en In Studium und Unterricht vieweg 42 - ein Geleitwort von Peter Gritzmann Xl Vorwort Xll1 1 Optimal zum Ziel: Das Kürzeste-Wege-Problem 1 1 U-Bahn-Fahrten,

Mehr

Name:... Vorname:... Matr.-Nr.:... Studiengang:...

Name:... Vorname:... Matr.-Nr.:... Studiengang:... Technische Universität Braunschweig Sommersemester 2013 IBR - Abteilung Algorithmik Prof. Dr. Sándor P. Fekete Dr. Christiane Schmidt Stephan Friedrichs Klausur Netzwerkalgorithmen 16.07.2013 Name:.....................................

Mehr

Formale Grundlagen der Informatik

Formale Grundlagen der Informatik Formale Grundlagen der Informatik / 2015 1 Die Elemente einer (endlichen) Menge sollen den Elementen einer zweiten, gleichmächtigen Menge zugeordnet werden Problemstellung Bipartite Graphen Zuordnungsprobleme

Mehr

Ausarbeitung zum Modulabschluss. Graphentheorie. spannende Bäume, bewertete Graphen, optimale Bäume, Verbindungsprobleme

Ausarbeitung zum Modulabschluss. Graphentheorie. spannende Bäume, bewertete Graphen, optimale Bäume, Verbindungsprobleme Universität Hamburg Fachbereich Mathematik Seminar: Proseminar Graphentheorie Dozentin: Haibo Ruan Sommersemester 2011 Ausarbeitung zum Modulabschluss Graphentheorie spannende Bäume, bewertete Graphen,

Mehr

Isomorphie von Bäumen

Isomorphie von Bäumen Isomorphie von Bäumen Alexandra Weinberger 23. Dezember 2011 Inhaltsverzeichnis 1 Einige Grundlagen und Definitionen 2 1.1 Bäume................................. 3 1.2 Isomorphie..............................

Mehr

Algorithmen und Datenstrukturen II: Graphenalgorithmen

Algorithmen und Datenstrukturen II: Graphenalgorithmen Algorithmen und Datenstrukturen II: Graphenalgorithmen Prof. Dr. Oliver Braun Letzte Änderung: 23.05.2017 13:41 Algorithmen und Datenstrukturen II: Graphenalgorithmen 1/76 Wofür wie komme ich am schnellsten

Mehr

Optimierung. Optimierung. Vorlesung 9 Lineare Programmierung & Kombinatorische Optimierung Fabian Kuhn

Optimierung. Optimierung. Vorlesung 9 Lineare Programmierung & Kombinatorische Optimierung Fabian Kuhn Optimierung Vorlesung 9 Lineare Programmierung & Kombinatorische Optimierung 1 Assignment Problem (Zuordnungsproblem) Gewichtetes Perfektes Bipartites Matching agents Costs tasks Weise jedem Agenten genau

Mehr

In the areas linear and network optimization

In the areas linear and network optimization References In den Bereichen Lineare und Netzwerkoptimierung gibt es eine große Vielzahl von Lehrbüchern und Veröffentlichungen in wissenschaftlichen Zeitschriften. Wir verzichten darauf einen Versuch zu

Mehr

Logische Datenstrukturen

Logische Datenstrukturen Lineare Listen Stapel, Warteschlangen Binärbäume Seite 1 Lineare Liste Begriffe first Funktion: sequentielle Verkettung von Datensätzen Ordnungsprinzip: Schlüssel Begriffe: first - Anker, Wurzel; Adresse

Mehr

Lernmodul 2 Graphen. Lernmodul 2: Geoobjekte und ihre Modellierung - Graphen

Lernmodul 2 Graphen. Lernmodul 2: Geoobjekte und ihre Modellierung - Graphen Folie 1 von 20 Lernmodul 2 Graphen Folie 2 von 20 Graphen Übersicht Motivation Ungerichteter Graph Gerichteter Graph Inzidenz, Adjazenz, Grad Pfad, Zyklus Zusammenhang, Trennende Kante, Trennender Knoten

Mehr

6. Übung zur Linearen Optimierung SS08

6. Übung zur Linearen Optimierung SS08 6 Übung zur Linearen Optimierung SS08 1 Sei G = (V, E) ein schlichter ungerichteter Graph mit n Ecken und m Kanten Für eine Ecke v V heißt die Zahl der Kanten (u, v) E Grad der Ecke (a) Ist die Anzahl

Mehr