Pavlo Baron. Big Data. für IT-Entscheider. Riesige Datenmengen. und moderne Technologien. gewinnbringend nutzen HANSER

Größe: px
Ab Seite anzeigen:

Download "Pavlo Baron. Big Data. für IT-Entscheider. Riesige Datenmengen. und moderne Technologien. gewinnbringend nutzen HANSER"

Transkript

1 Pavlo Baron Big Data für IT-Entscheider Riesige Datenmengen und moderne Technologien gewinnbringend nutzen HANSER

2 Inhalt Vorwort XI 1 Management Summary 1 2 Was? Mein klassisches Business ist konkurrenzlos, nicht wahr? Der heimliche Markteroberer: Amazon Der klare Fall: Google Der zunehmende Lebensinhalt: Facebook Nachrichtenquelle Nr. 1: Twitter Die wilden Kleinen Das unscheinbare Orakel: Prismatic Der stille Mitlauscher: Boundary Big Data ist das neue Öl, nicht wahr? Technologie steht im Vordergrund, nicht wahr? Die Essenz von Daten ist angewendete Information Die Big Data"-Schmerzen und -Symptome Die 3 V's - ganz einfach, oder? 23 Velocity 23 Volume 24 Variety Das lokale Denken: Business-Verbesserung 25 Bessere Angebote durch mehr Wissen 26 Menschen zusammenbringen 27

3 2.6.3 Das kostenbewusste Denken: Kostenreduktion 28 Geld mit günstiger Maschinerie und geeigneten Technologien sparen 28 Kosten durch Analyse drücken Die Wachsamkeit: Die Gefahren aus dem bösen Internet 30 Enterprise-Level Stalking 30 Fraud Detection Das globale Denken: Weltverbesserung 32 Öffentlichen Verkehr endlich funktionsfähig machen 32 Precogs implementieren 33 3 Wie? Typische falsche Hoffnungen Große Daten sind wie alle anderen Daten, nicht wahr? Tools machen es für mich, nicht wahr? Meine Prozesse müssen sich nicht ändern, nicht wahr? Angewandte Wissenschaft ist der entscheidende Marktvorteil Mathe pauken Ihr Staff- die einzig sinnvolle Investition Ich kann Big Data mit normalen Entwicklern, nicht wahr? Also, alle Entwickler zurück in die Schule schicken? Die neuen Berufsgruppen Polyglott, auf jeder Ebene Big Data"-Schmerzen lassen sich erzeugen Alles protokollieren, was Nutzer tun Nutzer solange wie möglich beim Online-Angebot halten Nutzer anregen, mehr zu tun und Daten zu hinterlassen Soziale Netzwerke anzapfen Crowdsourcing Wissen, wer wo ist IT-Strategie im Big Data"-Licht Daten bzw. Informationen sind gemeinsame Sprache von Business und IT Daten sind Ihr Gold 63

4 Wie werden Daten klassischerweise behandelt? 64 Wie werden große, chaotische Daten behandelt? 66 Wie leitet man Informationen aus vielen und chaotischen Daten ab? 69 Wie hält man Unmengen chaotischer Daten sauber? 71 Wie kombiniert man mehrere Datenquellen? Was bedeutet es, datenzentriert zu arbeiten? Statistiken lügen nicht Der entscheidende Unterschied zwischen schnell und gleich Die Macht der Suche Die Macht der Empfehlung Die Macht des Bildes IT-Instrumente richtig nutzen oder richtige Instrumente nutzen Commodity Hardware nutzen Alles aus der Technik herauspressen Dort in den Wolken Die Open Source Welt hat klar die Nase vorn Big Data"-Perspektiven Wie speichert man große Datenmengen? 89 Der schwierige Weg der RDBMS 89 Tipps und Tricks 91 Der Preis der Verteilung 93 Und noch ein paar Randthemen Wie bereitet man große Datenmengen auf? Wie stellt man große Datenmengen bereit? Wie analysiert man große Daten in Echtzeit? Wie visualisiert man große Datenmengen? Von der Hand in den Mund Segen für Europa, Fluch für Big Data: Datenschutz Womit? Willkommen im Zoo der Big Data" -Technologien Einige theoretische Grundlagen Verteilte Systeme bzw. verteilte Data Stores 117

5 Hashing und Delta-Tracking 119 Replikation und Redundanz 121 Objekte versionieren 126 Sharding 130 Herr der Ringe 134 Anti-Entropy und Garbage Collection 136 Infrastrukturinformationen aktuell halten 138 CAP - nicht die Kappe 138 Eventual Consistency Caching bzw. In-Memory-Datenhaltung Graphen - ein Sonderfall Analytics sind das A und O. Aber womit machen? Was ist NoSQL? Key/Value Stores Document Stores In-Memory Stores Graphen, mal wieder ein Sonderfall und noch weitere Hundert Stores Und was ist mit der Cloud? Was ist NewSQL? Wo kommen klassische RDBMS ins Spiel Was ist MapReduce? Und welche Programmiersprache ist nun die beste für Big Data"? Kann/muss ich alles mit Java machen? Ist JavaScript nicht etwa nur für Script-Kiddies? Analyse von Logs Time-Series-Daten Umgang mit Commodity Hardware Wie kann ich es richtig flott machen? Was ist (Fast-)Echtzeit? Die superschnelle Technik Suche, Index und Secondary Index Die Antwort der Dinosaurier, die Appliances Kann ich das alles mit einem einzigen Tool machen? 177

6 4.16 Visualisierung Wohin mit meinen aktuellen Errungenschaften? Wohin mit meiner Enterprise-Architektur? Wohin mit meinem Enterprise-Datenmodell? Wohin mit meinem MDM? Wohin mit meinem Enterprise-Technologie-Stack? Wohin mit meiner SOA? Wohin mit meiner BI-Lösung? Wohin mit der Cloud? Ist Big Data" also Hadoop mit einem Schuss MongoDB? Way Forward Aktuelle Trends NoSQL und der Rest der Welt Hadoop und der Rest der Welt Hauptspeicher und Plattenspeicher werden immer billiger Die Monster wachen auf Wie starte ich mit Big Data? Ich habe schon Big Data. Wie mache ich weiter? ROI, TCO und dergleichen und worauf es ankommt Wo und wie kann ich mich weiter informieren? Persönlicher Blick in die ferne Zukunft 208 Stichwortverzeichnis 211

Inhaltsverzeichnis. Pavlo Baron. Big Data für IT-Entscheider. Riesige Datenmengen und moderne Technologien gewinnbringend nutzen

Inhaltsverzeichnis. Pavlo Baron. Big Data für IT-Entscheider. Riesige Datenmengen und moderne Technologien gewinnbringend nutzen Inhaltsverzeichnis Pavlo Baron Big Data für IT-Entscheider Riesige Datenmengen und moderne Technologien gewinnbringend nutzen ISBN (Buch): 978-3-446-43339-7 ISBN (E-Book): 978-3-446-43392-2 Weitere Informationen

Mehr

BIG DATA FÜR IT-ENTSCHEIDER RIESIGE DATENMENGEN UND MODERNE TECHNOLOGIEN GEWINNBRINGEND NUTZEN. EXTRA: Mit kostenlosem E-Book

BIG DATA FÜR IT-ENTSCHEIDER RIESIGE DATENMENGEN UND MODERNE TECHNOLOGIEN GEWINNBRINGEND NUTZEN. EXTRA: Mit kostenlosem E-Book BIG DATA FÜR IT-ENTSCHEIDER pavlo BARON RIESIGE DATENMENGEN UND MODERNE TECHNOLOGIEN GEWINNBRINGEND NUTZEN EXTRA: Mit kostenlosem E-Book Baron Big Data für IT-Entscheider CHV Newsletterhinweis Computer

Mehr

Big Data Mythen und Fakten

Big Data Mythen und Fakten Big Data Mythen und Fakten Mario Meir-Huber Research Analyst, IDC Copyright IDC. Reproduction is forbidden unless authorized. All rights reserved. About me Research Analyst @ IDC Author verschiedener IT-Fachbücher

Mehr

Stichwortverzeichnis. Pavlo Baron. Big Data für IT-Entscheider. Riesige Datenmengen und moderne Technologien gewinnbringend nutzen

Stichwortverzeichnis. Pavlo Baron. Big Data für IT-Entscheider. Riesige Datenmengen und moderne Technologien gewinnbringend nutzen Stichwortverzeichnis Pavlo Baron Big Data für IT-Entscheider Riesige Datenmengen und moderne Technologien gewinnbringend nutzen ISBN (Buch): 978-3-446-43339-7 ISBN (E-Book): 978-3-446-43392-2 Weitere Informationen

Mehr

ANALYTICS, RISK MANAGEMENT & FINANCE ARCHITECTURE. NoSQL Datenbanksysteme Übersicht, Abgrenzung & Charakteristik

ANALYTICS, RISK MANAGEMENT & FINANCE ARCHITECTURE. NoSQL Datenbanksysteme Übersicht, Abgrenzung & Charakteristik ARFA ANALYTICS, RISK MANAGEMENT & FINANCE ARCHITECTURE NoSQL Datenbanksysteme Übersicht, Abgrenzung & Charakteristik Ralf Leipner Domain Architect Analytics, Risk Management & Finance 33. Berner Architekten

Mehr

BIG DATA HYPE ODER CHANCE

BIG DATA HYPE ODER CHANCE BIG DATA HYPE ODER CHANCE 1 Fuchs Dominik 16.05.2014 Fahrplan 2 Begriff Big Data Die 3 V s Fallbeispiel Google Was? Wie? Womit? Fazit & Ausblick in die Zukunft Der Begriff Big Data 3 Datenmengen, die zu

Mehr

In-Memory & Real-Time Hype vs. Realität: Maßgeschneiderte IBM Business Analytics Lösungen für SAP-Kunden

In-Memory & Real-Time Hype vs. Realität: Maßgeschneiderte IBM Business Analytics Lösungen für SAP-Kunden In-Memory & Real-Time Hype vs. Realität: Maßgeschneiderte IBM Business Analytics Lösungen für SAP-Kunden Jens Kaminski ERP Strategy Executive IBM Deutschland Ungebremstes Datenwachstum > 4,6 Millarden

Mehr

BIG DATA FÜR IT-ENTSCHEIDER RIESIGE DATENMENGEN UND MODERNE TECHNOLOGIEN GEWINNBRINGEND NUTZEN. EXTRA: Mit kostenlosem E-Book

BIG DATA FÜR IT-ENTSCHEIDER RIESIGE DATENMENGEN UND MODERNE TECHNOLOGIEN GEWINNBRINGEND NUTZEN. EXTRA: Mit kostenlosem E-Book BIG DATA FÜR IT-ENTSCHEIDER pavlo BARON RIESIGE DATENMENGEN UND MODERNE TECHNOLOGIEN GEWINNBRINGEND NUTZEN EXTRA: Mit kostenlosem E-Book Inhalt Vorwort... XI 1 Management Summary... 1 2 Was?... 7 2.1 Meinklassisches

Mehr

Big Data Informationen neu gelebt

Big Data Informationen neu gelebt Seminarunterlage Version: 1.01 Copyright Version 1.01 vom 21. Mai 2015 Dieses Dokument wird durch die veröffentlicht. Copyright. Alle Rechte vorbehalten. Alle Produkt- und Dienstleistungs-Bezeichnungen

Mehr

Big-Data-Technologien - Überblick - Prof. Dr. Jens Albrecht

Big-Data-Technologien - Überblick - Prof. Dr. Jens Albrecht Big-Data-Technologien - Überblick - Quelle: http://www.ingenieur.de/panorama/fussball-wm-in-brasilien/elektronischer-fussball-smartphone-app-helfen-training Big-Data-Anwendungen im Unternehmen Logistik

Mehr

Storage-Trends am LRZ. Dr. Christoph Biardzki

Storage-Trends am LRZ. Dr. Christoph Biardzki Storage-Trends am LRZ Dr. Christoph Biardzki 1 Über das Leibniz-Rechenzentrum (LRZ) Seit 50 Jahren Rechenzentrum der Bayerischen Akademie der Wissenschaften IT-Dienstleister für Münchner Universitäten

Mehr

Algorithmen. Consistent Hashing Bloom Filter MapReduce. Distributed Hash Tables. Einführung 1

Algorithmen. Consistent Hashing Bloom Filter MapReduce. Distributed Hash Tables. Einführung 1 Algorithmen Consistent Hashing Bloom Filter MapReduce Distributed Hash Tables Einführung 1 Consistent Hashing Problem: Wie finde ich den Speicherort für ein Objekt in einem verteilten System mit n Knoten?

Mehr

Stefan Edlich Achim Friedland Jens Rampe Benjamin Brauer. NoSQL. Einstieg in die Welt nichtrelationaler Web 2.0 Datenbanken HANSER

Stefan Edlich Achim Friedland Jens Rampe Benjamin Brauer. NoSQL. Einstieg in die Welt nichtrelationaler Web 2.0 Datenbanken HANSER Stefan Edlich Achim Friedland Jens Rampe Benjamin Brauer NoSQL Einstieg in die Welt nichtrelationaler Web 2.0 Datenbanken HANSER Geleitwort 1 Vorwort 1 1 Einführung 1 1.1 Historie 1 1.2 Definition und

Mehr

NoSQL & Big Data. NoSQL Databases and Big Data. NoSQL vs SQL DBs. NoSQL DBs - Überblick. Datenorientierte Systemanalyse. Gerhard Wohlgenannt

NoSQL & Big Data. NoSQL Databases and Big Data. NoSQL vs SQL DBs. NoSQL DBs - Überblick. Datenorientierte Systemanalyse. Gerhard Wohlgenannt NoSQL & Big Data Datenorientierte Systemanalyse NoSQL Databases and Big Data Gerhard Wohlgenannt Die besprochenen Systeme haben nicht den Anspruch und das Ziel DBS zu ersetzen, sondern für gewisse Anwendungsfälle

Mehr

NoSQL Databases and Big Data

NoSQL Databases and Big Data Datenorientierte Systemanalyse NoSQL Databases and Big Data Gerhard Wohlgenannt NoSQL & Big Data Die besprochenen Systeme haben nicht den Anspruch und das Ziel DBS zu ersetzen, sondern für gewisse Anwendungsfälle

Mehr

Analyse von unstrukturierten Daten. Peter Jeitschko, Nikolaus Schemel Oracle Austria

Analyse von unstrukturierten Daten. Peter Jeitschko, Nikolaus Schemel Oracle Austria Analyse von unstrukturierten Daten Peter Jeitschko, Nikolaus Schemel Oracle Austria Evolution von Business Intelligence Manuelle Analyse Berichte Datenbanken (strukturiert) Manuelle Analyse Dashboards

Mehr

NoSQL-Datenbanken und Hadoop im Zusammenspiel mit dem Data Warehouse

NoSQL-Datenbanken und Hadoop im Zusammenspiel mit dem Data Warehouse NoSQL-Datenbanken und Hadoop im Zusammenspiel mit dem Data Warehouse Carsten Czarski Oracle Deutschland B.V. & Co KG Big Data Betrachten von Daten die bislang nicht betrachtet wurden

Mehr

Big Data. Mit DVD. Was ist wichtig im Hadoop-Ökosystem? Hadoop 2 als universelle Data Processing Platform

Big Data. Mit DVD. Was ist wichtig im Hadoop-Ökosystem? Hadoop 2 als universelle Data Processing Platform Mit DVD Jobs im Wandel: Was für Informatiker bedeutet 2/2015 Auf der Heft-DVD Über 8 GByte Software für Entwickler Multimedia: 5 Videos zur Hoch leistungsdatenbank EXASolution Hadoop: Cloudera s Distribution

Mehr

Big Data Plattformen für polystrukturierte Daten neue Chancen und Herausforderungen

Big Data Plattformen für polystrukturierte Daten neue Chancen und Herausforderungen Big Data Plattformen für polystrukturierte Daten neue Chancen und Herausforderungen Oracle DWH-Konferenz 21. März 2012 Dr. Carsten Bange Gründer & Geschäftsführer BARC Big Data bietet Methoden und Technologien

Mehr

Seminar WS 2012/13. S. Chaudhuri et al, CACM, Aug. 2011. Parallel DBS vs. Open Platforms for Big Data, e.g. HaDoop Near-Realtime OLAP

Seminar WS 2012/13. S. Chaudhuri et al, CACM, Aug. 2011. Parallel DBS vs. Open Platforms for Big Data, e.g. HaDoop Near-Realtime OLAP Seminar WS 2012/13 S. Chaudhuri et al, CACM, Aug. 2011 Parallel DBS vs. Open Platforms for Big Data, e.g. HaDoop Near-Realtime OLAP 2 Vorkonfigurierte, komplette Data Warehouse-Installation Mehrere Server,

Mehr

Oracle Big Data Technologien Ein Überblick

Oracle Big Data Technologien Ein Überblick Oracle Big Data Technologien Ein Überblick Ralf Lange Global ISV & OEM Sales NoSQL: Eine kurze Geschichte Internet-Boom: Erste Ansätze selbstgebauter "Datenbanken" Google stellt "MapReduce"

Mehr

Dateisysteme und Datenverwaltung in der Cloud

Dateisysteme und Datenverwaltung in der Cloud Dateisysteme und Datenverwaltung in der Cloud Sebastian Fischer Master-Seminar Cloud Computing - WS 2013/14 Institut für Telematik, Universität zu Lübeck Dateisysteme und Datenverwaltung in der Cloud 1

Mehr

Big & Smart Data. bernard.bekavac@htwchur.ch

Big & Smart Data. bernard.bekavac@htwchur.ch Big & Smart Data Prof. Dr. Bernard Bekavac Schweizerisches Institut für Informationswissenschaft SII Studienleiter Bachelor of Science in Information Science bernard.bekavac@htwchur.ch Quiz An welchem

Mehr

NoSQL HANSER. Einstieg in die Web 2.0 Datenbanken. Stefan Edlich Achim Friedland Jens Hampe Benjamin Brauer Markus Brückner

NoSQL HANSER. Einstieg in die Web 2.0 Datenbanken. Stefan Edlich Achim Friedland Jens Hampe Benjamin Brauer Markus Brückner Stefan Edlich Achim Friedland Jens Hampe Benjamin Brauer Markus Brückner NoSQL Einstieg in die Web 2.0 Datenbanken 2., akutalisierte und erweiterte Auflage HANSER Geleitwort Vorwort Vorwort zur 2. Auflage

Mehr

Business Analytics in der Big Data-Welt

Business Analytics in der Big Data-Welt Business Analytics in der Big Data-Welt Frankfurt, Juni 2014 Dr. Wolfgang Martin Analyst und Mitglied im Boulder BI Brain Trust Big Data-Analytik "The way I look at big data analytics is it's not a technology,

Mehr

NoSQL. Was Architekten beachten sollten. Dr. Halil-Cem Gürsoy adesso AG. Architekturtag @ SEACON 2012 Hamburg

NoSQL. Was Architekten beachten sollten. Dr. Halil-Cem Gürsoy adesso AG. Architekturtag @ SEACON 2012 Hamburg NoSQL Was Architekten beachten sollten Dr. Halil-Cem Gürsoy adesso AG Architekturtag @ SEACON 2012 Hamburg 06.06.2012 Agenda Ein Blick in die Welt der RDBMS Klassifizierung von NoSQL-Datenbanken Gemeinsamkeiten

Mehr

Data. Guido Oswald Solution Architect @SAS Switzerland. make connections share ideas be inspired

Data. Guido Oswald Solution Architect @SAS Switzerland. make connections share ideas be inspired make connections share ideas be inspired Data Guido Oswald Solution Architect @SAS Switzerland BIG Data.. Wer? BIG Data.. Wer? Wikipedia sagt: Als Big Data werden besonders große Datenmengen bezeichnet,

Mehr

Leipzig, 5./6. Dezember 2013

Leipzig, 5./6. Dezember 2013 WORKSHOP»NoSQL, NewSQL, In-Memory - Datenbanktrends und ihre Auswirkungen im Überblick«Leipzig, 5./6. Dezember 2013 Mit Beiträgen von Organisatorisches TERMIN BEGINN ENDE ANSPRECHPARTNER 5./6. Dezember

Mehr

Prof. Dr.-Ing. Rainer Schmidt 1

Prof. Dr.-Ing. Rainer Schmidt 1 Prof. Dr.-Ing. Rainer Schmidt 1 Business Analytics und Big Data sind Thema vieler Veröffentlichungen. Big Data wird immer häufiger bei Google als Suchbegriff verwendet. Prof. Dr.-Ing. Rainer Schmidt 2

Mehr

Big Data - Fluch oder Segen?

Big Data - Fluch oder Segen? mitp Professional Big Data - Fluch oder Segen? Unternehmen im Spiegel gesellschaftlichen Wandels von Ronald Bachmann, Guido Kemper, Thomas Gerzer 1. Auflage Big Data - Fluch oder Segen? Bachmann / Kemper

Mehr

Überblick und Vergleich von NoSQL. Datenbanksystemen

Überblick und Vergleich von NoSQL. Datenbanksystemen Fakultät Informatik Hauptseminar Technische Informationssysteme Überblick und Vergleich von NoSQL Christian Oelsner Dresden, 20. Mai 2011 1 1. Einführung 2. Historisches & Definition 3. Kategorien von

Mehr

Datenanalyse im Web. Einführung in das Thema. Prof. Dr. Ingo Claÿen. Beispiele für Daten im Web. Extraktion und Aggregation von Informationen

Datenanalyse im Web. Einführung in das Thema. Prof. Dr. Ingo Claÿen. Beispiele für Daten im Web. Extraktion und Aggregation von Informationen Datenanalyse im Web Einführung in das Thema Prof. Dr. Ingo Claÿen Hochschule für Technik und Wirtschaft Berlin Beispiele für Daten im Web Extraktion und Aggregation von Informationen Datenanalyse im Web

Mehr

NoSQL. Einblick in die Welt nicht-relationaler Datenbanken. Christoph Föhrdes. UnFUG, SS10 17.06.2010

NoSQL. Einblick in die Welt nicht-relationaler Datenbanken. Christoph Föhrdes. UnFUG, SS10 17.06.2010 NoSQL Einblick in die Welt nicht-relationaler Datenbanken Christoph Föhrdes UnFUG, SS10 17.06.2010 About me Christoph Föhrdes AIB Semester 7 IRC: cfo #unfug@irc.ghb.fh-furtwangen.de netblox GbR (http://netblox.de)

Mehr

Buildfrei skalieren für Big Data mit Z2

Buildfrei skalieren für Big Data mit Z2 Buildfrei skalieren für Big Data mit Z2 Henning Blohm ZFabrik Software KG 5.6.2013 1 Teil 1: Buildfrei entwickeln und skalieren Teil 2: Big Data, Cloud, und wie es zusammenpasst 2 1. Teil BUILDFREI ENTWICKELN

Mehr

NoSQL-Databases. Präsentation für Advanced Seminar "Computer Engineering", Matthias Hauck, matthias.hauck@stud.uni-heidelberg.de

NoSQL-Databases. Präsentation für Advanced Seminar Computer Engineering, Matthias Hauck, matthias.hauck@stud.uni-heidelberg.de NoSQL-Databases Präsentation für Advanced Seminar "Computer Engineering", Matthias Hauck, matthias.hauck@stud.uni-heidelberg.de Klassische SQL-Datenbanken Anwendungsgebiet: Geschäftsanwendungen Behördenanwendungen

Mehr

BIG DATA Die Bewältigung riesiger Datenmengen

BIG DATA Die Bewältigung riesiger Datenmengen BIG DATA Die Bewältigung riesiger Datenmengen Peter Mandl Institut für Geographie und Regionalforschung der AAU GIS Day 2012, 13.11.2012, Klagenfurt Was sind BIG DATA? Enorm große Datenmengen, Datenflut

Mehr

Vorwort. Pavlo Baron. Big Data für IT-Entscheider. Riesige Datenmengen und moderne Technologien gewinnbringend nutzen. ISBN (Buch): 978-3-446-43339-7

Vorwort. Pavlo Baron. Big Data für IT-Entscheider. Riesige Datenmengen und moderne Technologien gewinnbringend nutzen. ISBN (Buch): 978-3-446-43339-7 Vorwort Pavlo Baron Big Data für IT-Entscheider Riesige Datenmengen und moderne Technologien gewinnbringend nutzen ISBN (Buch): 978-3-446-43339-7 ISBN (E-Book): 978-3-446-43392-2 Weitere Informationen

Mehr

Seminar Cloud Data Management WS09/10. Tabelle1 Tabelle2

Seminar Cloud Data Management WS09/10. Tabelle1 Tabelle2 Seminar Cloud Data Management WS09/10 Tabelle1 Tabelle2 1 Einführung DBMS in der Cloud Vergleich verschiedener DBMS Beispiele Microsoft Azure Amazon RDS Amazon EC2 Relational Databases AMIs Was gibt es

Mehr

Neue Ansätze der Softwarequalitätssicherung

Neue Ansätze der Softwarequalitätssicherung Neue Ansätze der Softwarequalitätssicherung Googles MapReduce-Framework für verteilte Berechnungen am Beispiel von Apache Hadoop Universität Paderborn Fakultät für Elektrotechnik, Informatik und Mathematik

Mehr

Oracle BI&W Referenz Architektur Big Data und High Performance Analytics

Oracle BI&W Referenz Architektur Big Data und High Performance Analytics DATA WAREHOUSE Oracle BI&W Referenz Architektur Big Data und High Performance Analytics Alfred Schlaucher, Oracle Scale up Unternehmensdaten zusammenfassen Noch mehr Informationen

Mehr

Peter Dikant mgm technology partners GmbH. Echtzeitsuche mit Hadoop und Solr

Peter Dikant mgm technology partners GmbH. Echtzeitsuche mit Hadoop und Solr Peter Dikant mgm technology partners GmbH Echtzeitsuche mit Hadoop und Solr ECHTZEITSUCHE MIT HADOOP UND SOLR PETER DIKANT MGM TECHNOLOGY PARTNERS GMBH WHOAMI peter.dikant@mgm-tp.com Java Entwickler seit

Mehr

Big Data Herausforderungen und Chancen für Controller. ICV Jahrestagung, 19.05.2014 Dr. Carsten Bange, Gründer und Geschäftsführer BARC

Big Data Herausforderungen und Chancen für Controller. ICV Jahrestagung, 19.05.2014 Dr. Carsten Bange, Gründer und Geschäftsführer BARC Big Data Herausforderungen und Chancen für Controller ICV Jahrestagung, 19.05.2014 Dr. Carsten Bange, Gründer und Geschäftsführer BARC BARC: Expertise für datengetriebene Organisationen Beratung Strategie

Mehr

The R(E)volution of Data Stores

The R(E)volution of Data Stores The R(E)volution of Data Stores Willkommen Schön, dass sie in diese Session kommen, ich bin Dominik Wagenknecht NoSQL Initiative Lead Technology Architect Accenture Wien Mobil: +43 676 8720 33921 dominik.wagenknecht@accenture.com

Mehr

Caching. Hintergründe, Patterns &" Best Practices" für Business Anwendungen

Caching. Hintergründe, Patterns & Best Practices für Business Anwendungen Caching Hintergründe, Patterns &" Best Practices" für Business Anwendungen Michael Plöd" Senacor Technologies AG @bitboss Business-Anwendung!= Twitter / Facebook & co. " / kæʃ /" bezeichnet in der EDV

Mehr

Lehrgebiet Informationssysteme

Lehrgebiet Informationssysteme Lehrgebiet AG Datenbanken und (Prof. Michel, Prof. Härder) AG Heterogene (Prof. Deßloch) http://wwwlgis.informatik.uni-kl.de/ Was sind? Computergestützte Programmsysteme, die Informationen erfassen, dauerhaft

Mehr

Hadoop Projekte Besonderheiten & Vorgehensweise. Oracle/metafinanz Roadshow Februar 2014

Hadoop Projekte Besonderheiten & Vorgehensweise. Oracle/metafinanz Roadshow Februar 2014 Hadoop Projekte Besonderheiten & Vorgehensweise Oracle/metafinanz Roadshow Februar 2014 Head of Data Warehousing DWH Principal Consultant DWH Senior Consultant Wir fokussieren mit unseren Services die

Mehr

Von Big Data zu Executive Decision BI für den Fachanwender bis hin zu Advanced Analytics 10.45 11.15

Von Big Data zu Executive Decision BI für den Fachanwender bis hin zu Advanced Analytics 10.45 11.15 9.30 10.15 Kaffee & Registrierung 10.15 10.45 Begrüßung & aktuelle Entwicklungen bei QUNIS 10.45 11.15 11.15 11.45 Von Big Data zu Executive Decision BI für den Fachanwender bis hin zu Advanced Analytics

Mehr

ETL in den Zeiten von Big Data

ETL in den Zeiten von Big Data ETL in den Zeiten von Big Data Dr Oliver Adamczak, IBM Analytics 1 1 Review ETL im Datawarehouse 2 Aktuelle Herausforderungen 3 Future of ETL 4 Zusammenfassung 2 2015 IBM Corporation ETL im Datawarehouse

Mehr

Big Data Vom Hype zum Geschäftsnutzen

Big Data Vom Hype zum Geschäftsnutzen Big Data Vom Hype zum Geschäftsnutzen IBM IM Forum, Berlin, 16.04.2013 Dr. Carsten Bange, Gründer und Geschäftsführer BARC Hype 15.04.2013 BARC 2013 2 1 Interesse an Big Data Nature 09-2008 Economist 03-2010

Mehr

Big Data Hype oder Chance

Big Data Hype oder Chance 0 Big Data Hype oder Chance Hochschule München Big Data Hype oder Chance Autor: Fuchs Dominik Dozent: Michael Theis 2014 1 Big Data Hype oder Chance Inhaltsverzeichnis 1. Aufgabenstellung... 2 2. Der Begriff

Mehr

Trends im Markt für Business Intelligence. Patrick Keller, Senior Analyst & Prokurist CeBIT 2016

Trends im Markt für Business Intelligence. Patrick Keller, Senior Analyst & Prokurist CeBIT 2016 Trends im Markt für Business Intelligence Patrick Keller, Senior Analyst & Prokurist CeBIT 2016 18.03.2016 BARC 2016 2 IT Meta-Trends 2016 Digitalisierung Consumerization Agilität Sicherheit und Datenschutz

Mehr

SAS VISUAL ANALYTICS DER EINSTIEG IN (BIG) DATA ANALYTICS JOO-HYUNG MAING, SAS DEUTSCHLAND, 16. APRIL 2013

SAS VISUAL ANALYTICS DER EINSTIEG IN (BIG) DATA ANALYTICS JOO-HYUNG MAING, SAS DEUTSCHLAND, 16. APRIL 2013 SAS VISUAL ANALYTICS DER EINSTIEG IN (BIG) DATA ANALYTICS JOO-HYUNG MAING, SAS DEUTSCHLAND, 16. APRIL 2013 SAS INSTITUTE EIN UNTERNEHMEN IN ZAHLEN SAS is the first company to call when you need to solve

Mehr

Eine Einführung in das verteilte Quelltextverwaltungssystem Git

Eine Einführung in das verteilte Quelltextverwaltungssystem Git Eine Einführung in das verteilte Quelltextverwaltungssystem Git B.Sc. Daniel Baulig Fachhochschule Frankfurt am Main University of Applied Sciences 2. November 2012 Übersicht 1 Einführung Über mich Versions-was?

Mehr

Big Data als Ökosystem datengetriebener Unternehmen

Big Data als Ökosystem datengetriebener Unternehmen Big Data als Ökosystem datengetriebener Unternehmen Präsentation im CINIQ Center for Data and Information Intelligence, Fraunhofer Heinrich-Hertz-Institut in Berlin 10.09.2013 von Dr. Peter Lauf Zur Person

Mehr

HS München Fakultät 07. Studienarbeit. Big Data. Hype oder Chance?

HS München Fakultät 07. Studienarbeit. Big Data. Hype oder Chance? HS München Fakultät 07 Studienarbeit Big Data Hype oder Chance? Verfasser: Sebastian Kraubs Matrikelnummer: 03315808 Erstprüfer/-in / Betreuer/-in: Michael Theis Ich, Sebastian Kraubs, versichere, dass

Mehr

vfabric-daten Big Data Schnell und flexibel

vfabric-daten Big Data Schnell und flexibel vfabric-daten Big Data Schnell und flexibel September 2012 2012 VMware Inc. All rights reserved Im Mittelpunkt: Daten Jeden Morgen wache ich auf und frage mich: Wie kann ich den Datenfluss optimieren,

Mehr

Spark, Impala und Hadoop in der Kreditrisikoberechnung

Spark, Impala und Hadoop in der Kreditrisikoberechnung Spark, Impala und Hadoop in der Kreditrisikoberechnung Big Data In-Memory-Technologien für mittelgroße Datenmengen TDWI München, 22. Juni 2015 Joschka Kupilas, Data Scientist, Adastra GmbH 2 Inhalt Vorwort

Mehr

Datenbanktechnologien für Big Data

Datenbanktechnologien für Big Data Datenbanktechnologien für Big Data Oktober 2013 Prof. Dr. Uta Störl Hochschule Darmstadt Big Data Technologien Motivation Big Data Technologien NoSQL-Datenbanksysteme Spaltenorientierte Datenbanksysteme

Mehr

Clouds. Erwartungen der Nutzer. Wolkig bis Heiter. (c) 2013, Peter Sturm, Universität Trier. Er ist verwöhnt! Er ist nicht dankbar!

Clouds. Erwartungen der Nutzer. Wolkig bis Heiter. (c) 2013, Peter Sturm, Universität Trier. Er ist verwöhnt! Er ist nicht dankbar! Clouds Wolkig bis Heiter Erwartungen der Nutzer Er ist verwöhnt! Verfügbarkeit Viele Anwendungen Intuitive Interfaces Hohe Leistung Er ist nicht dankbar! Mehr! Mehr! Mehr! Moore 1 Erwartungen der Entwickler

Mehr

Wide Column Stores. Felix Bruckner Mannheim, 15.06.2012

Wide Column Stores. Felix Bruckner Mannheim, 15.06.2012 Wide Column Stores Felix Bruckner Mannheim, 15.06.2012 Agenda Einführung Motivation Grundlagen NoSQL Grundlagen Wide Column Stores Anwendungsfälle Datenmodell Technik Wide Column Stores & Cloud Computing

Mehr

25.09.2014. Zeit bedeutet eine Abwägung von Skalierbarkeit und Konsistenz

25.09.2014. Zeit bedeutet eine Abwägung von Skalierbarkeit und Konsistenz 1 2 Dies ist ein Vortrag über Zeit in verteilten Anwendungen Wir betrachten die diskrete "Anwendungszeit" in der nebenläufige Aktivitäten auftreten Aktivitäten in einer hochgradig skalierbaren (verteilten)

Mehr

Skalierbares Big Data Management

Skalierbares Big Data Management Skalierbares Big Data Management Wissenschaftliche Betrachtung und Anwendungsperspektive Norbert Ritter, Felix Gessert ritter/gessert@informatik.uni-hamburg.de Datenbanken und Informationssysteme Prof.

Mehr

Risiken bei der Analyse sehr großer Datenmengen. Dr. Thomas Hoppe

Risiken bei der Analyse sehr großer Datenmengen. Dr. Thomas Hoppe Risiken bei der Analyse sehr großer Datenmengen Dr. Thomas Hoppe Datenaufbereitung Datenanalyse Data Mining Data Science Big Data Risiken der Analyse Sammlung Integration Transformation Fehlerbereinigung

Mehr

Einführung in CouchDB

Einführung in CouchDB Einführung in CouchDB Zurücklehnen und entspannen! http://slog.io Thomas Schrader (@slogmen) 12/2010 Übersicht Bestandsaufnahme Ansatz Geschichte Technologien Features Skalierbarkeit Kurz & Gut Fazit Relationale

Mehr

mitp Professional Rethink Big Data Volume, Velocity, Variety von Cornel Brücher 1. Auflage

mitp Professional Rethink Big Data Volume, Velocity, Variety von Cornel Brücher 1. Auflage mitp Professional Rethink Big Data Volume, Velocity, Variety von Cornel Brücher 1. Auflage Rethink Big Data Brücher schnell und portofrei erhältlich bei beck-shop.de DIE FACHBUCHHANDLUNG Thematische Gliederung:

Mehr

Inhaltsverzeichnis. Teil 1 Node.js... 1

Inhaltsverzeichnis. Teil 1 Node.js... 1 xiii Teil 1 Node.js... 1 1 Was ist Node.js? 3 1.1 Die Zeitalter des Webs................................... 3 1.1.1 1990 bis 2000: Das Web 1.0....................... 3 1.1.2 2000 bis 2010: Das Web 2.0.......................

Mehr

Java Forum Stuttgart 2013 Kai.Spichale@adesso.de twitter.com/kspichale spichale.blogspot.de

Java Forum Stuttgart 2013 Kai.Spichale@adesso.de twitter.com/kspichale spichale.blogspot.de NoSQL für Java-Entwickler Java Forum Stuttgart 2013 Kai.Spichale@adesso.de twitter.com/kspichale spichale.blogspot.de 23.06.2013 Agenda Datengröße Key-value Stores 1. Wide Column 2. Cassandra Document

Mehr

BIG DATA - BIG OPPORTUNITIES

BIG DATA - BIG OPPORTUNITIES BIG DATA - BIG OPPORTUNITIES eday: 2014 Wien, 6. März 2014 EBA Executive Business Advice GmbH 1120 Wien, Am Euro Platz 2, Gebäude G Tel.: +43 1 71728 172 Email: office@eba-business.at www.eba-business.at

Mehr

Aktuelle Trends aus Business Intelligence & Datawarehouse

Aktuelle Trends aus Business Intelligence & Datawarehouse Aktuelle Trends aus Business Intelligence & Datawarehouse Autor: Klaus Rohrmoser Es entstehen immer größere Datenmengen, die in immer unterschiedlicheren Formaten und aus immer mehr Datenquellen gespeist

Mehr

SimpleVOC-Yetanother. Bausteine für eine Key/Value- Datenbank

SimpleVOC-Yetanother. Bausteine für eine Key/Value- Datenbank SimpleVOC-Yetanother Memcached? Bausteine für eine Key/Value- Datenbank SimpleVOC Yet another memcached? Bausteine für eine Key/Value Datenbank. Theorie (Martin Schönert) Praxis (Frank Celler) Eine Weisheit

Mehr

Oracle Big Data Technologien Ein Überblick

Oracle Big Data Technologien Ein Überblick Oracle Big Data Technologien Ein Überblick Carsten Czarski Oracle Deutschland B.V. & Co KG Big Data Betrachten von Daten die bislang nicht betrachtet wurden Neue Beziehungen finden...

Mehr

1 WEB ANALYTICS: PROFESSIONELLE WEB-ANALYSEN UND REPORTING FÜR IHR ONLINE MARKETING.

1 WEB ANALYTICS: PROFESSIONELLE WEB-ANALYSEN UND REPORTING FÜR IHR ONLINE MARKETING. 1 WEB ANALYTICS: PROFESSIONELLE WEB-ANALYSEN UND REPORTING FÜR IHR ONLINE MARKETING. Web Analytics, Reporting & Beratung Erfolgskontrolle mit professionellen Web Analysen! Web Analytics mit Google Analytics

Mehr

Institut für Verteilte Systeme

Institut für Verteilte Systeme Institut für Verteilte Systeme Prof. Dr. Franz Hauck Seminar: Multimedia- und Internetsysteme, Wintersemester 2010/11 Betreuer: Jörg Domaschka Bericht zur Seminarssitzung am 2011-01-31 Bearbeitet von :

Mehr

Hadoop. Eine Open-Source-Implementierung von MapReduce und BigTable. von Philipp Kemkes

Hadoop. Eine Open-Source-Implementierung von MapReduce und BigTable. von Philipp Kemkes Hadoop Eine Open-Source-Implementierung von MapReduce und BigTable von Philipp Kemkes Hadoop Framework für skalierbare, verteilt arbeitende Software Zur Verarbeitung großer Datenmengen (Terra- bis Petabyte)

Mehr

Auf einen Blick. 1 Einführung 25. 2 Die Grundlagen 55. 3 Praxis 1 - das Kassenbuch. (zentraler CouchDB-Server) 139

Auf einen Blick. 1 Einführung 25. 2 Die Grundlagen 55. 3 Praxis 1 - das Kassenbuch. (zentraler CouchDB-Server) 139 Auf einen Blick 1 Einführung 25 2 Die Grundlagen 55 3 Praxis 1 - das Kassenbuch (zentraler CouchDB-Server) 139 4 Praxis 2 - das Kassenbuch als CouchApp 161 5 CouchDB-Administration 199 6 Bestehende Anwendungen

Mehr

Big Data Eine Einführung ins Thema

Big Data Eine Einführung ins Thema Joachim Hennebach Marketing Manager IBM Analytics 11. Februar 2016 Big Data Eine Einführung ins Thema Nur kurz: Was ist Big Data? (Die 5 Vs.) Volumen Vielfalt Geschwindigkeit Datenwachstum Von Terabytes

Mehr

Mobile Anwendungen im SAP-Umfeld

Mobile Anwendungen im SAP-Umfeld Erstes Symposium für neue IT in Leipzig 27. September 2013 Michael Rentzsch Informatik DV GmbH michael.rentzsch@informatik-dv.com +49.341.462586920 IT-Trend: Mobile Mobile might be one of the most interesting

Mehr

IMPULS AM VORMITTAG. Smart Grids 2.0, Österreich als Leitmarkt und Leitanbieter 27. Februar 2014

IMPULS AM VORMITTAG. Smart Grids 2.0, Österreich als Leitmarkt und Leitanbieter 27. Februar 2014 IMPULS AM VORMITTAG Smart Grids 2.0, Österreich als Leitmarkt und Leitanbieter 27. Februar 2014 INHALTE Teradata? Wer sind denn die überhaupt? Big Data? Wirklich? Wo? Die vorgegebenen Impulsfragen: 1.

Mehr

Wir befinden uns inmitten einer Zeit des Wandels.

Wir befinden uns inmitten einer Zeit des Wandels. Wir befinden uns inmitten einer Zeit des Wandels. Geräte Apps Ein Wandel, der von mehreren Trends getrieben wird Big Data Cloud Geräte Mitarbeiter in die Lage versetzen, von überall zu arbeiten Apps Modernisieren

Mehr

Nr. 33. NoSQL Databases

Nr. 33. NoSQL Databases Nr. 33 NoSQL Databases Das Berner-Architekten-Treffen Das Berner-Architekten-Treffen ist eine Begegnungsplattform für an Architekturfragen interessierte Informatikfachleute. Partner Durch Fachvorträge

Mehr

Step 0: Bestehende Analyse-Plattform

Step 0: Bestehende Analyse-Plattform Die Themen 09:30-09:45 Einführung in das Thema (Oracle) 09:45-10:15 Hadoop in a Nutshell (metafinanz) 10:15-10:45 Hadoop Ecosystem (metafinanz) 10:45-11:00 Pause 11:00-11:30 BigData Architektur-Szenarien

Mehr

Big Data Analytics: Herausforderungen und Systemansätze. Prof. Dr. Erhard Rahm. http://dbs.uni-leipzig.de

Big Data Analytics: Herausforderungen und Systemansätze. Prof. Dr. Erhard Rahm. http://dbs.uni-leipzig.de Big Data Analytics: Herausforderungen und Systemansätze Prof. Dr. Erhard Rahm http://dbs.uni-leipzig.de 2 Massives Wachstum an Daten Gartner: pro Tag werden 2.5 Exabytes an Daten generiert 90% aller Daten

Mehr

Redaktionelles Arbeiten auf Basis von Big-Data Methoden aus der Rundfunk/Fernseh-Perspektive

Redaktionelles Arbeiten auf Basis von Big-Data Methoden aus der Rundfunk/Fernseh-Perspektive Redaktionelles Arbeiten auf Basis von Big-Data Methoden aus der Rundfunk/Fernseh-Perspektive Institut für Rundfunktechnik, 17. Februar 2014 Norbert Pillmayer, BU-Leiter Software Solutions, NorCom Information

Mehr

Seminarvorstellung Wintersemester 2013/14. Big Data

Seminarvorstellung Wintersemester 2013/14. Big Data Seminarvorstellung Wintersemester 2013/14 Big Data Prof. Dr. Heiner Diefenbach Fachgebiet Wirtschaftsinformatik Software Business & Information Management Fachbereich Rechts- und Wirtschaftswissenschaften

Mehr

Operational Big Data effektiv nutzen TIBCO LogLogic. Martin Ulmer, Tibco LogLogic Deutschland

Operational Big Data effektiv nutzen TIBCO LogLogic. Martin Ulmer, Tibco LogLogic Deutschland Operational Big Data effektiv nutzen TIBCO LogLogic Martin Ulmer, Tibco LogLogic Deutschland LOGS HINTERLASSEN SPUREN? Wer hat wann was gemacht Halten wir interne und externe IT Richtlinien ein Ist die

Mehr

DATA WAREHOUSE. Big Data Alfred Schlaucher, Oracle

DATA WAREHOUSE. Big Data Alfred Schlaucher, Oracle DATA WAREHOUSE Big Data Alfred Schlaucher, Oracle Scale up Unternehmensdaten zusammenfassen Noch mehr Informationen aus Unternehmens- Daten ziehen! Datenmengen, Performance und Kosten Daten als Geschäftsmodell

Mehr

Oracle Data Warehouse Mit Big Data neue Horizonte für das Data Warehouse ermöglichen

Oracle Data Warehouse Mit Big Data neue Horizonte für das Data Warehouse ermöglichen DATA WAREHOUSE Oracle Data Warehouse Mit Big Data neue Horizonte für das Data Warehouse ermöglichen Alfred Schlaucher, Detlef Schroeder DATA WAREHOUSE Themen Big Data Buzz Word oder eine neue Dimension

Mehr

Von Big zu Smart - Wie Daten in Wirtschaft und Gesellschaft zu Innovationen führen

Von Big zu Smart - Wie Daten in Wirtschaft und Gesellschaft zu Innovationen führen Von Big zu Smart - Wie Daten in Wirtschaft und Gesellschaft zu Innovationen führen 27. März 2014 TUM School of Management Technische Universität München W3-Professorin Lehrstuhl für Strategie und Organisation

Mehr

BIG DATA Impulse für ein neues Denken!

BIG DATA Impulse für ein neues Denken! BIG DATA Impulse für ein neues Denken! Wien, Januar 2014 Dr. Wolfgang Martin Analyst und Mitglied im Boulder BI Brain Trust The Age of Analytics In the Age of Analytics, as products and services become

Mehr

Dokumentenorientierte Datenbanken - MongoDB

Dokumentenorientierte Datenbanken - MongoDB Dokumentenorientierte Datenbanken - MongoDB Jan Hentschel Ultra Tendency UG Übersicht Dokumente sind unabhängige Einheiten Bessere Performance (zusammengehörige Daten werden gemeinsam gelesen) Objektmodell

Mehr

Die Microsoft-Komplettlösung für Datawarehousing, Big Data und Business Intelligence im Überblick. Volker.Hinz@microsoft.com

Die Microsoft-Komplettlösung für Datawarehousing, Big Data und Business Intelligence im Überblick. Volker.Hinz@microsoft.com Die Microsoft-Komplettlösung für Datawarehousing, Big Data und Business Intelligence im Überblick Volker.Hinz@microsoft.com Was sagt der Markt? Fakten Meinung der Analysten zu Microsofts Angeboten Nutzen

Mehr

#Big Data in #Austria

#Big Data in #Austria Mario Meir-Huber und Martin Köhler #Big Data in #Austria Big Data Herausforderungen und Potenziale 23.6.2014 Vorstellung Studie Studie #BigData in #Austria Start: 1.11.2013 30.04.2014 Projektpartner: IDC

Mehr

Abschlussarbeiten für StudentInnen

Abschlussarbeiten für StudentInnen Camunda bietet StudentInnen die Möglichkeit, ihre Abschlussarbeit zu einem praxisnahen und wirtschaftlich relevanten Thema zu schreiben. Alle Themen im Überblick Elasticsearch (Backend) Java Client (Backend)

Mehr

Echtzeiterkennung von Cyber-Angriffen auf IT-Infrastrukturen. Frank Irnich SAP Deutschland

Echtzeiterkennung von Cyber-Angriffen auf IT-Infrastrukturen. Frank Irnich SAP Deutschland Echtzeiterkennung von Cyber-Angriffen auf IT-Infrastrukturen Frank Irnich SAP Deutschland SAP ist ein globales Unternehmen... unser Fokusgebiet... IT Security für... 1 globales Netzwerk > 70 Länder, >

Mehr

Big Data & High-Performance Analytics

Big Data & High-Performance Analytics Big Data & High-Performance Analytics Wolfgang Schwab, Senior Business Advisor Berlin 20.4.2012 PROJECTING THE GROWTH OF BIG DATA Source: IDC Digital Universe Study, sponsored by EMC, May 2010 THRIVING

Mehr

BIG DATA: EXPECT THE UNEXPECTED. T-SYSTEMS AUSTRIA 2014 Dipl.-Ing. Axel Quitt @ Bundestagung der Jungen Wirtschaft

BIG DATA: EXPECT THE UNEXPECTED. T-SYSTEMS AUSTRIA 2014 Dipl.-Ing. Axel Quitt @ Bundestagung der Jungen Wirtschaft BIG DATA: EXPECT THE UNEXPECTED T-SYSTEMS AUSTRIA 2014 Dipl.-Ing. Axel Quitt @ Bundestagung der Jungen Wirtschaft Big Data Ein Wort wie eine Grippeepidemie Quelle: Google Trends Unternehmen werden mit

Mehr

1 Einführung... 25. 2 Die Grundlagen... 55. 3 Praxis 1 das Kassenbuch (zentraler CouchDB-Server)... 139. 4 Praxis 2 das Kassenbuch als CouchApp...

1 Einführung... 25. 2 Die Grundlagen... 55. 3 Praxis 1 das Kassenbuch (zentraler CouchDB-Server)... 139. 4 Praxis 2 das Kassenbuch als CouchApp... Auf einen Blick 1 Einführung... 25 2 Die Grundlagen... 55 3 Praxis 1 das Kassenbuch (zentraler CouchDB-Server)... 139 4 Praxis 2 das Kassenbuch als CouchApp... 161 5 CouchDB-Administration... 199 6 Bestehende

Mehr

NoSQL-Datenbanken. Kapitel 1: Einführung. Lars Kolb Sommersemester 2014. Universität Leipzig http://dbs.uni-leipzig.de 1-1

NoSQL-Datenbanken. Kapitel 1: Einführung. Lars Kolb Sommersemester 2014. Universität Leipzig http://dbs.uni-leipzig.de 1-1 NoSQL-Datenbanken Kapitel 1: Einführung Lars Kolb Sommersemester 2014 Universität Leipzig http://dbs.uni-leipzig.de 1-1 Inhaltsverzeichnis NoSQL-Datenbanken Motivation und Definition Kategorisierung, Eigenschaften

Mehr

Big Data. Hype oder Chance? Sebastian Kraubs

Big Data. Hype oder Chance? Sebastian Kraubs Big Data Hype oder Chance? Sebastian Kraubs Heute reden alle über Big Data Quellen: http://blogs.sybase.com/sybaseiq/2011/09/big-data-big-opportunity/ und McKinsey Studie 2011 Anwendungen Daten Technologien

Mehr