Datenbanken Unit 4: Das Relationale Modell & Datenintegrität

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Datenbanken Unit 4: Das Relationale Modell & Datenintegrität"

Transkript

1 Datenbanken Unit 4: Das Relationale Modell & Datenintegrität 14. III. 2017

2 Outline 1 Organisatorisches 2 SQL 3 Relationale Algebra Notation 4 Datenintegrität

3 Organisatorisches Erster Zwischentest: nächste Woche am 22. März zur Übungszeit Stoff: alles bisher (ohne Joins) Zwei Beispiele in Minuten Weitere Übungsbeispiele: auf der Lehrveranstaltungsseite Neue Übungsblätter zum Thema Joins: zu machen bis 29. März Wissensüberprüfung über Joins am 29. März

4 SQL-Lesson 4 Heute: Joins NULL-Werte

5 Relationale Algebra Relationale Algebra: formale Sprache für Anfragen an relationale Datenbank theoretische Grundlage für SQL SQL kann typischerweise mehr als in der relationalen Algebra formulierbar Wir verwenden zur Vereinfachung ein wenig Notation aus der relationalen Algebra.

6 Relationale Algebra Selektion Für ein sogenanntes Selektionsprädikat F wählt eine Selektion alle Tupel ( = Zeilen) t einer Relation ( = Tabelle) R, die F erfüllen: σ F (R) := {t R F(t)} Das Prädikat ( = Eigenschaft) F kann dabei aus folgenden Komponenten bestehen: Konstanten Namen von Attributen der Relation R Vergleichsoperatoren: <, >,,, =, Logische Verknüpfungen: (und), (oder), (nicht)

7 Relationale Algebra Selektion Beispiel: Zeige alle Länder Europas, die größer als km 2 sind. Konstanten: Europe, Namen von Attributen der Relation R: country, region, area Vergleichsoperatoren: =, > Logische Verknüpfungen: AND D.h., Selektion entspricht dem WHERE in SQL-Abfrage. (Welche Zeilen?)

8 Relationale Algebra Projektion Selektion wählt Zeilen, Projektion wählt Spalten: Für eine Relation R und Attribute A 1, A 2,..., A n wählt die Projektion Π A1,A 2,...,A n (R) := { (t.a 1, t.a 2,..., t.a n ) t R } für jedes Tupel der Relation die entsprechenden Attributwerte aus. Typischerweise kommt dabei jedes Tupel der Projektion nur einmal vor.

9 Relationale Algebra Projektion Für eine Relation R und Attribute A 1, A 2,..., A n wählt die Projektion Π A1,A 2,...,A n (R) := { (t.a 1, t.a 2,..., t.a n ) t R } für jedes Tupel der Relation die entsprechenden Attributwerte aus. Typischerweise kommt dabei jedes Tupel der Projektion nur einmal vor. Beispiele: Zeige alle Regionen aus cia. Zeige die in sowe vorkommenden Kombinationen von Monaten und Jahren. D.h., Projektion entspricht dem SELECT einer SQL-Abfrage. (Welche Spalten?)

10 Datenintegrität Datenintegrität: Konsistenz der gespeicherten Daten. Bisher implizite Anforderungen an Datenintegrität:

11 Datenintegrität Datenintegrität: Konsistenz der gespeicherten Daten. Bisher implizite Anforderungen an Datenintegrität: Primärschlüssel: keine verschiedenen Zeilen mit demselben Primärschlüssel z.b. keine zwei Studenten mit derselben Matrikelnummer

12 Datenintegrität Datenintegrität: Konsistenz der gespeicherten Daten. Bisher implizite Anforderungen an Datenintegrität: Primärschlüssel: keine verschiedenen Zeilen mit demselben Primärschlüssel z.b. keine zwei Studenten mit derselben Matrikelnummer 1 : N Relationen: Für jeden Wert des Primärschlüssels lässt sich nur ein entsprechender Attributwert speichern. z.b. hat jedes Land in cia nur eine zugeordnete Region region

13 Datenintegrität Datenintegrität: Konsistenz der gespeicherten Daten. Bisher implizite Anforderungen an Datenintegrität: Primärschlüssel: keine verschiedenen Zeilen mit demselben Primärschlüssel z.b. keine zwei Studenten mit derselben Matrikelnummer 1 : N Relationen: Für jeden Wert des Primärschlüssels lässt sich nur ein entsprechender Attributwert speichern. z.b. hat jedes Land in cia nur eine zugeordnete Region region Domänen für Attribute: bestimmt Datentyp für Attribute z.b. population in cia muss Integer sein

14 Datenintegrität Zwei Arten von Datenintegrität: Statische Integrität: Konsistenz des Datensatzes zu einem bestimmten Zeitpunkt Dynamische Integrität: garantiert, dass eine statisch integre Datenbank auch nach Änderungen statisch integer bleibt

15 Referentielle Integrität Idee: Ein Wert für einen Fremdschlüssel braucht entsprechenden Wert für Primärschlüssel. Zur Erinnerung: Wird ein Primärschlüssel einer Tabelle als Attribut in anderer Tabelle verwendet, nennt man letzteren einen Fremdschlüssel. Beispiel: In den Tabellen Orders und Order_Options der ldb-datenbank ist P_No ein Fremdschlüssel: Dieses Attribut bezieht sich auf den Primärschlüssel P_No der Tabelle Parts. Für jeden Wert von P_No in Orders und Order_Options muss es entsprechende P_No in Parts geben.

16 Referentielle Integrität Idee: Ein Wert für einen Fremdschlüssel braucht entsprechenden Wert für Primärschlüssel. Zur Erinnerung: Wird ein Primärschlüssel einer Tabelle als Attribut in anderer Tabelle verwendet, nennt man letzteren einen Fremdschlüssel. Beispiel: director in der movie Datenbank ist ein Fremdschlüssel: director bezieht sich auf den Primärschlüssel id in der Tabelle actor. Für jeden Wert von director muss es entsprechende id in actor geben.

17 Referentielle Integrität: Formale Definition Definition (Fremdschlüssel, referentielle Integrität) Seien R und R zwei Relationen (Tabellen), κ der Primärschlüssel in R und α ein entsprechender Fremdschlüssel in R. Dann muss für alle Tupel (Zeilen) r in R gelten: 1 Entweder r.α enthält lauter NULL-Werte oder nur Werte NULL. 2 Wenn r.α keine NULL-Werte enthält, dann gibt es ein r in R, sodass r.α = r.κ. Dies wird als referentielle Integrität bezeichnet. Beispiel: Jede P_No in Orders ist entweder NULL oder entspricht einer P_No in Parts.

18 Referentielle Integrität: Dangling References Weiteres Beispiel: Jeder Wert für director in movie ist entweder NULL oder entspricht einer id in actor.

19 Referentielle Integrität: Dangling References Weiteres Beispiel: Jeder Wert für director in movie ist entweder NULL oder entspricht einer id in actor. Fügen wir einen neuen Film in die Tabelle movie id title votes score director Databaseland mit einem Wert für director (0), der nicht als id in actor vorkommt, so wird die referentielle Integrität der Datenbank verletzt.

20 Referentielle Integrität: Dangling References Weiteres Beispiel: Jeder Wert für director in movie ist entweder NULL oder entspricht einer id in actor. Fügen wir einen neuen Film in die Tabelle movie id title votes score director Databaseland mit einem Wert für director (0), der nicht als id in actor vorkommt, so wird die referentielle Integrität der Datenbank verletzt. Der entsprechende Eintrag für director ist eine sogenannte Dangling Reference. Bei Änderungen in einer Datenbank müssen solche Einträge vermieden werden! (dynamische Integrität)

21 Erhaltung der referentiellen Integrität Definition (Fremdschlüssel, referentielle Integrität) Seien R und R zwei Relationen, κ der Primärschlüssel in R und α ein entsprechender Fremdschlüssel in R. Dann muss für alle Tupel r in R gelten: 1 Entweder r.α enthält lauter NULL-Werte oder nur Werte NULL. 2 Wenn r.α keine NULL-Werte enthält, dann gibt es ein r in R, sodass r.α = r.κ. Dies wird als referentielle Integrität bezeichnet.

22 Erhaltung der referentiellen Integrität Gemäß der Definition muss gelten: Π α (R ) Π κ (R), wobei Π α (R ) alle α-werte in R sind und Π κ (R) alle κ-werte in R. Erlaubte Änderungen in Datenbank:

23 Erhaltung der referentiellen Integrität Gemäß der Definition muss gelten: Π α (R ) Π κ (R), wobei Π α (R ) alle α-werte in R sind und Π κ (R) alle κ-werte in R. Erlaubte Änderungen in Datenbank: 1 Hinzufügen von r in R wenn r (α) in Π κ (R): z.b. einen neuen Film hinzufügen, dessen director in actor bereits vorkommt

24 Erhaltung der referentiellen Integrität Gemäß der Definition muss gelten: Π α (R ) Π κ (R), wobei Π α (R ) alle α-werte in R sind und Π κ (R) alle κ-werte in R. Erlaubte Änderungen in Datenbank: 1 Hinzufügen von r in R wenn r (α) in Π κ (R): z.b. einen neuen Film hinzufügen, dessen director in actor bereits vorkommt 2 Ändern eines Wertes r.α von w auf w mit w in Π κ (R): z.b. Ändern des director eines Films auf einen in actor vorkommenden Wert

25 Erhaltung der referentiellen Integrität Gemäß der Definition muss gelten: Π α (R ) Π κ (R), wobei Π α (R ) alle α-werte in R sind und Π κ (R) alle κ-werte in R. Erlaubte Änderungen in Datenbank: 1 Hinzufügen von r in R wenn r (α) in Π κ (R): z.b. einen neuen Film hinzufügen, dessen director in actor bereits vorkommt 2 Ändern eines Wertes r.α von w auf w mit w in Π κ (R): z.b. Ändern des director eines Films auf einen in actor vorkommenden Wert 3 Ändern oder Löschen von r.κ in R wenn σ α=r.κ (R ) = : z.b. Ändern oder Löschen einer id in actor, wenn es keine Filme in movie mit dieser id als director gibt

26 Wenn referentielle Integrität verletzt wird Was kann man im Falle einer Verletzung der referentiellen Integrität (verursacht durch eine Änderung in der Datenbank) machen?

27 Wenn referentielle Integrität verletzt wird Was kann man im Falle einer Verletzung der referentiellen Integrität (verursacht durch eine Änderung in der Datenbank) machen? 1 Erlaube entsprechende Operation nicht / mache sie wieder rückgängig.

28 Wenn referentielle Integrität verletzt wird Was kann man im Falle einer Verletzung der referentiellen Integrität (verursacht durch eine Änderung in der Datenbank) machen? 1 Erlaube entsprechende Operation nicht / mache sie wieder rückgängig. 2 Setze Werte im Fremdschlüssel auf NULL: Beispiel: Wenn ein director in actor gelöscht oder seine id verändert wird, dann setze den Wert von director in movie auf NULL.

29 Wenn referentielle Integrität verletzt wird Was kann man im Falle einer Verletzung der referentiellen Integrität (verursacht durch eine Änderung in der Datenbank) machen? 1 Erlaube entsprechende Operation nicht / mache sie wieder rückgängig. 2 Setze Werte im Fremdschlüssel auf NULL.

30 Wenn referentielle Integrität verletzt wird Was kann man im Falle einer Verletzung der referentiellen Integrität (verursacht durch eine Änderung in der Datenbank) machen? 1 Erlaube entsprechende Operation nicht / mache sie wieder rückgängig. 2 Setze Werte im Fremdschlüssel auf NULL. 3 Kaskadieren: Beispiele:

31 Wenn referentielle Integrität verletzt wird Was kann man im Falle einer Verletzung der referentiellen Integrität (verursacht durch eine Änderung in der Datenbank) machen? 1 Erlaube entsprechende Operation nicht / mache sie wieder rückgängig. 2 Setze Werte im Fremdschlüssel auf NULL. 3 Kaskadieren: Beispiele: Wenn id in actor verändert wird verändere entsprechende Werte von director in movie.

32 Wenn referentielle Integrität verletzt wird Was kann man im Falle einer Verletzung der referentiellen Integrität (verursacht durch eine Änderung in der Datenbank) machen? 1 Erlaube entsprechende Operation nicht / mache sie wieder rückgängig. 2 Setze Werte im Fremdschlüssel auf NULL. 3 Kaskadieren: Beispiele: Wenn id in actor verändert wird verändere entsprechende Werte von director in movie. Wenn id in actor gelöscht wird lösche alle entsprechenden Filme in movie.

33 Wenn referentielle Integrität verletzt wird Was kann man im Falle einer Verletzung der referentiellen Integrität (verursacht durch eine Änderung in der Datenbank) machen? 1 Erlaube entsprechende Operation nicht / mache sie wieder rückgängig. 2 Setze Werte im Fremdschlüssel auf NULL. 3 Kaskadieren: Beispiele: Wenn id in actor verändert wird verändere entsprechende Werte von director in movie. Wenn id in actor gelöscht wird lösche alle entsprechenden Filme in movie. NB: Kaskadieren kann riskant sein, da z.b. ein Löschvorgang mehrere automatische Operationen auslösen kann!

34 Wenn referentielle Integrität verletzt wird Was kann man im Falle einer Verletzung der referentiellen Integrität (verursacht durch eine Änderung in der Datenbank) machen? 1 Erlaube entsprechende Operation nicht / mache sie wieder rückgängig 2 Setze Werte im Fremdschlüssel auf NULL. 3 Kaskadieren

35 Wenn referentielle Integrität verletzt wird Was kann man im Falle einer Verletzung der referentiellen Integrität (verursacht durch eine Änderung in der Datenbank) machen? 1 Erlaube entsprechende Operation nicht / mache sie wieder rückgängig 2 Setze Werte im Fremdschlüssel auf NULL. 3 Kaskadieren 4 Verwende Trigger: d.h., lasse bestimmte Prozeduren ablaufen, wenn es Änderung in Datenbank gibt.

36 Wenn referentielle Integrität verletzt wird Was kann man im Falle einer Verletzung der referentiellen Integrität (verursacht durch eine Änderung in der Datenbank) machen? 1 Erlaube entsprechende Operation nicht / mache sie wieder rückgängig 2 Setze Werte im Fremdschlüssel auf NULL. 3 Kaskadieren 4 Verwende Trigger: d.h., lasse bestimmte Prozeduren ablaufen, wenn es Änderung in Datenbank gibt. NB: Wie Kaskadieren beinhaltet auch das Verwenden von Triggern u.u. bestimmte Risiken!

37 Komplexere Integritätsbedingungen Referentielle Integrität ist eine einfache Form von Bedingungen an die Datenintegrität. Komplexere Integritätsbedingungen sind möglich. Beispiel: Erlaube nur jenen Studierenden eine Prüfungsanmeldung, die auch zur Lehrveranstaltung angemeldet waren und/oder bestimmte andere Fächer bereits positiv abgeschlossen haben. über Trigger oder Applikation in höherer Programmiersprache behandeln

38 SQL and Datenintegrität In Abhängigkeit von der SQL Implementierung gibt es in SQL die Möglichkeit, Primär- und Fremdschlüssel in Tabellen festzulegen (MySQL ) die statische Datenintegrität zu überprüfen (MySQL ) Kaskadieren zu benutzen (MySQL ) Trigger zu definieren (MySQL )

Semantische Integrität (auch: Konsistenz) der in einer Datenbank gespeicherten Daten als wichtige Anforderung

Semantische Integrität (auch: Konsistenz) der in einer Datenbank gespeicherten Daten als wichtige Anforderung 6. Datenintegrität Motivation Semantische Integrität (auch: Konsistenz) der in einer Datenbank gespeicherten Daten als wichtige Anforderung nur sinnvolle Attributwerte (z.b. keine negativen Semester) Abhängigkeiten

Mehr

DATENBANKEN SQL UND SQLITE VON MELANIE SCHLIEBENER

DATENBANKEN SQL UND SQLITE VON MELANIE SCHLIEBENER DATENBANKEN SQL UND SQLITE VON MELANIE SCHLIEBENER INHALTSVERZEICHNIS 1. Datenbanken 2. SQL 1.1 Sinn und Zweck 1.2 Definition 1.3 Modelle 1.4 Relationales Datenbankmodell 2.1 Definition 2.2 Befehle 3.

Mehr

6. Datenintegrität. Integritätsbedingungen

6. Datenintegrität. Integritätsbedingungen 6. Integritätsbedingungen dienen zur Einschränkung der Datenbankzustände auf diejenigen, die es in der realen Welt tatsächlich gibt. sind aus dem erstellten Datenmodell ableitbar (semantisch) und können

Mehr

VO Datenmodellierung. Katrin Seyr

VO Datenmodellierung. Katrin Seyr Datenintegrität Datenintegrität VO Datenmodellierung Katrin Seyr Institut für Informationssysteme Technische Universität Wien Katrin Seyr Seite 1 Datenintegrität 1. Überblick Überblick 1 Überblick 2 Integritätsbedingungen

Mehr

Referentielle Integrität

Referentielle Integrität Datenintegrität Integitätsbedingungen Schlüssel Beziehungskardinalitäten Attributdomänen Inklusion bei Generalisierung statische Integritätsbedingungen Bedingungen an den Zustand der Datenbasis dynamische

Mehr

Referentielle Integrität

Referentielle Integrität Datenintegrität Integitätsbedingungen Schlüssel Beziehungskardinalitäten Attributdomänen Inklusion bei Generalisierung statische Integritätsbedingungen Bedingungen an den Zustand der Datenbasis dynamische

Mehr

Informatik für Ökonomen II: Datenintegrität. Prof. Dr. Carl-Christian Kanne

Informatik für Ökonomen II: Datenintegrität. Prof. Dr. Carl-Christian Kanne Informatik für Ökonomen II: Datenintegrität Prof. Dr. Carl-Christian Kanne 1 Konsistenzbedingungen DBMS soll logische Datenintegrität gewährleisten Beispiele für Integritätsbedingungen Schlüssel Beziehungskardinalitäten

Mehr

SQL Tutorial. SQL - Tutorial SS 06. Hubert Baumgartner. INSO - Industrial Software

SQL Tutorial. SQL - Tutorial SS 06. Hubert Baumgartner. INSO - Industrial Software SQL Tutorial SQL - Tutorial SS 06 Hubert Baumgartner INSO - Industrial Software Institut für Rechnergestützte Automation Fakultät für Informatik Technische Universität Wien Inhalt des Tutorials 1 2 3 4

Mehr

Nachtrag: Farben. Farbblindheit. (Light und Bartlein 2004)

Nachtrag: Farben. Farbblindheit. (Light und Bartlein 2004) Nachtrag: Farben Farbblindheit (Light und Bartlein 2004) 1 Vorgeschlagene Farbskalen (Light and Bartlein 2004) Farbkodierung metrisch skalierter Daten Unterscheide: 1. Sequential Data (ohne Betonung der

Mehr

Als logisches Datenmodell wird hier das Relationenmodell vorgestellt, das heute den Standard für relationale Datenbanken darstellt.

Als logisches Datenmodell wird hier das Relationenmodell vorgestellt, das heute den Standard für relationale Datenbanken darstellt. Das Relationenmodell Logische Datenmodell Das Entity Relation Modell wird in ein logisches Datenmodell umgesetzt. Welches logische Datenmodell gewählt wird, hängt von dem verwendeten Datenbanksystem ab.

Mehr

Uni Duisburg-Essen Fachgebiet Informationssysteme Prof. Dr. N. Fuhr

Uni Duisburg-Essen Fachgebiet Informationssysteme Prof. Dr. N. Fuhr Raum: LF 230 Bearbeitung: 9.-11. Mai 2005 Datum Gruppe Vorbereitung Präsenz Aktuelle Informationen unter: http://www.is.informatik.uni-duisburg.de/courses/dbp_ss03/ Tabellen in IBM DB2 Tabellen Eine relationale

Mehr

Einführung in SQL. Sprachumfang: Indizes. Datensätzen. Zugriffsrechten

Einführung in SQL. Sprachumfang: Indizes. Datensätzen. Zugriffsrechten Einführung in SQL Die Sprache SQL (Structured Query Language) ist eine Programmiersprache für relationale Datenbanksysteme, die auf dem ANSI-SQL-Standard beruht. SQL wird heute von fast jedem Datenbanksystem

Mehr

1. Funktionen und Datenflüsse; Tabellenkalkulationssysteme

1. Funktionen und Datenflüsse; Tabellenkalkulationssysteme Grundwissen Informatik 1. und Datenflüsse; Tabellenkalkulationssysteme Zellbezug relativer Zellbezug absoluter Zellbezug iterative Berechnungen Datentypyen z. B. A4 A ist der Spaltenbezeichner 4 ist die

Mehr

7. Übung - Datenbanken

7. Übung - Datenbanken 7. Übung - Datenbanken Informatik I für Verkehrsingenieure Aufgaben inkl. Beispiellösungen 1. Aufgabe: DBS a Was ist die Kernaufgabe von Datenbanksystemen? b Beschreiben Sie kurz die Abstraktionsebenen

Mehr

Datumsangaben, enthält mindestens Jahr, Monat, Tag

Datumsangaben, enthält mindestens Jahr, Monat, Tag Datenbanken mit SQL Informatik - Sprenger Häufig wird mit Tabellenkalkulationen gearbeitet, obwohl der Einsatz von Datenbanken sinnvoller ist. Tabellenkalkulationen wie Microsoft Excel oder LibreOffice

Mehr

Datenbanken: Datenintegrität. www.informatikzentrale.de

Datenbanken: Datenintegrität. www.informatikzentrale.de Datenbanken: Datenintegrität Definition "Datenkonsistenz" "in der Datenbankorganisation (...) die Korrektheit der gespeicherten Daten im Sinn einer widerspruchsfreien und vollständigen Abbildung der relevanten

Mehr

Datenintegrität. Bisherige Integritätsbedingungen

Datenintegrität. Bisherige Integritätsbedingungen Datenintegrität Integitätsbedingungen chlüssel Beziehungskardinalitäten Attributdomänen Inklusion bei Generalisierung statische Bedingungen an den Zustand der Datenbasis dynamische Bedingungen an Zustandsübergänge

Mehr

Datenbankmodelle 2. Das relationale Modell

Datenbankmodelle 2. Das relationale Modell Datenbankmodelle 2 Das relationale Modell Datenbankmodelle ER-Modell Netzwerkmodell hierarchisches Modell relationales Modell objektorientierte Modelle Relationales Modell - 2 relationales Modell basiert

Mehr

OM Datenbanken. OM Datenbanken. 8.1 Was ist ein Datenbanksystem? Motivation

OM Datenbanken. OM Datenbanken. 8.1 Was ist ein Datenbanksystem? Motivation 1 Inhalt: Relationale Datenbanken 8.1 Was ist ein Datenbanksystem? 8.2 Relationale Datenbanksysteme 8.3 Abbildung des objektorientierten Modells auf Tabellen 2 8.1 Was ist ein Datenbanksystem? Motivation

Mehr

Referenzielle Integrität SQL

Referenzielle Integrität SQL Referenzielle Integrität in SQL aus Referential Integrity Is Important For Databases von Michael Blaha (Modelsoft Consulting Corp) VII-45 Referenzielle Integrität Definition: Referenzielle Integrität bedeutet

Mehr

SQL für Trolle. mag.e. Dienstag, 10.2.2009. Qt-Seminar

SQL für Trolle. mag.e. Dienstag, 10.2.2009. Qt-Seminar Qt-Seminar Dienstag, 10.2.2009 SQL ist......die Abkürzung für Structured Query Language (früher sequel für Structured English Query Language )...ein ISO und ANSI Standard (aktuell SQL:2008)...eine Befehls-

Mehr

Schlüssel bei temporalen Daten im relationalen Modell

Schlüssel bei temporalen Daten im relationalen Modell Schlüssel bei temporalen Daten im relationalen Modell Gesine Mühle > Präsentation > Bilder zum Inhalt zurück weiter 322 Schlüssel im relationalen Modell Schlüssel bei temporalen Daten im relationalen Modell

Mehr

Access Grundkurs. M. Eng. Robert Maaßen

Access Grundkurs. M. Eng. Robert Maaßen Access Grundkurs M. Eng. Robert Maaßen Wer steht da? M. Eng. Robert Maaßen ich@robertmaassen.de www.robertmaassen.de Studium: Informatik Vertiefungsrichtung Medientechnik, Diplom Ingenieur (FH), HAWK,

Mehr

Datenintegrität. Arten von Integritätsbedingungen. Statische Integritätsbedingungen. Referentielle Integrität. Integritätsbedingungen in SQL.

Datenintegrität. Arten von Integritätsbedingungen. Statische Integritätsbedingungen. Referentielle Integrität. Integritätsbedingungen in SQL. Datenintegrität Arten von Integritätsbedingungen Statische Integritätsbedingungen Referentielle Integrität Integritätsbedingungen in SQL Trigger 1 Datenintegrität Einschränkung der möglichen Datenbankzustände

Mehr

Datenintegrität. Einschränkung der möglichen Datenbankzustände und -übergänge auf die in der Realität möglichen

Datenintegrität. Einschränkung der möglichen Datenbankzustände und -übergänge auf die in der Realität möglichen Datenintegrität Einschränkung der möglichen Datenbankzustände und -übergänge auf die in der Realität möglichen Formulierung von Integritätsbedingungen ist die wichtigste Aufgabe des DB-Administrators!

Mehr

Datenintegrität. Einschränkung der möglichen Datenbankzustände und -übergänge auf die in der Realität möglichen

Datenintegrität. Einschränkung der möglichen Datenbankzustände und -übergänge auf die in der Realität möglichen Datenintegrität Einschränkung der möglichen Datenbankzustände und -übergänge auf die in der Realität möglichen Formulierung von Integritätsbedingungen ist die wichtigste Aufgabe des DB-Administrators!

Mehr

Konstante Relationen

Konstante Relationen Konstante Relationen values-syntax erzeugt konstante Relation values ( [, Konstante] * )[, ( [, Konstante] * )]* Beispiel values (1, eins ), (2, zwei ), (3, drei ); Resultat ist eine

Mehr

Übung Datenbanksysteme I Transaktionen, Selektivität und XML. Thorsten Papenbrock

Übung Datenbanksysteme I Transaktionen, Selektivität und XML. Thorsten Papenbrock Übung Datenbanksysteme I Transaktionen, Selektivität und XML Thorsten Papenbrock Übersicht: Übungsthemen 2 Transaktionen Selektivität XML Thorsten Papenbrock Übung Datenbanksysteme I JDBC Transaktionen:

Mehr

SQL structured query language

SQL structured query language Umfangreiche Datenmengen werden üblicherweise in relationalen Datenbank-Systemen (RDBMS) gespeichert Logische Struktur der Datenbank wird mittels Entity/Realtionship-Diagrammen dargestellt structured query

Mehr

Relationale Datenbanken in der Praxis

Relationale Datenbanken in der Praxis Seite 1 Relationale Datenbanken in der Praxis Inhaltsverzeichnis 1 Datenbank-Design...2 1.1 Entwurf...2 1.2 Beschreibung der Realität...2 1.3 Enitiy-Relationship-Modell (ERM)...3 1.4 Schlüssel...4 1.5

Mehr

105.3 SQL-Datenverwaltung

105.3 SQL-Datenverwaltung LPI-Zertifizierung 105.3 SQL-Datenverwaltung Copyright ( ) 2009 by Dr. W. Kicherer. This work is licensed under the Creative Commons Attribution-Noncommercial-Share Alike 2.0 Germany License. To view a

Mehr

9. Einführung in Datenbanken

9. Einführung in Datenbanken 9. Einführung in Datenbanken 9.1 Motivation und einführendes Beispiel 9.2 Modellierungskonzepte der realen Welt 9.3 Anfragesprachen (Query Languages) 9.1 Motivation und einführendes Beispiel Datenbanken

Mehr

SQL: statische Integrität

SQL: statische Integrität SQL: statische Integrität.1 SQL: statische Integrität Im allgemeinen sind nur solche Instanzen einer Datenbank erlaubt, deren Relationen die der Datenbank bekannten Integritätsbedingungen erfüllen. Integritätsbedingungen

Mehr

Datenbanken SQL Einführung Datenbank in MySQL einrichten mit PhpMyAdmin

Datenbanken SQL Einführung Datenbank in MySQL einrichten mit PhpMyAdmin Datenbanken SQL Einführung Datenbank in MySQL einrichten mit PhpMyAdmin PhpMyAdmin = grafsches Tool zur Verwaltung von MySQL-Datenbanken Datenbanken erzeugen und löschen Tabellen und Spalten einfügen,

Mehr

Einführung in SQL Datenbanken bearbeiten

Einführung in SQL Datenbanken bearbeiten Einführung in SQL Datenbanken bearbeiten Jürgen Thomas Entstanden als Wiki-Buch Bibliografische Information Diese Publikation ist bei der Deutschen Nationalbibliothek registriert. Detaillierte Angaben

Mehr

Einführung in Datenbanksysteme. H. Wünsch 01.2001

Einführung in Datenbanksysteme. H. Wünsch 01.2001 Einführung in Datenbanksysteme H. Wünsch 01.2001 H. Wünsch 01/2001 Einführung Datenbanken 2 Was sind Datenbanken? Datenbanken sind Systeme zur Beschreibung, Speicherung und Wiedergewinnung von Datenmengen.

Mehr

Gliederung und Einordnung

Gliederung und Einordnung Gliederung und Einordnung 1. Objektorientierte Programmierung mit Object Pascal (5. Studienbrief, Kapitel 5) 9.4. + 16.4. 2. Software-Bausteine am Beispiel der Delphi-Komponenten (5. Studienbrief, Kapitel

Mehr

Software-Engineering Einführung

Software-Engineering Einführung Software-Engineering Einführung 7. Übung (04.12.2014) Dr. Gergely Varró, gergely.varro@es.tu-darmstadt.de Erhan Leblebici, erhan.leblebici@es.tu-darmstadt.de Tel.+49 6151 16 4388 ES Real-Time Systems Lab

Mehr

Mengenvergleiche: Alle Konten außer das, mit dem größten Saldo.

Mengenvergleiche: Alle Konten außer das, mit dem größten Saldo. Mengenvergleiche: Mehr Möglichkeiten als der in-operator bietet der θany und der θall-operator, also der Vergleich mit irgendeinem oder jedem Tupel der Unteranfrage. Alle Konten außer das, mit dem größten

Mehr

CARL HANSER VERLAG. Christopher Allen. Oracle PL/SQL für Einsteiger Der Einsatz von SQL und PL/SQL in der Oracle-Datenbank 3-446-21801-7

CARL HANSER VERLAG. Christopher Allen. Oracle PL/SQL für Einsteiger Der Einsatz von SQL und PL/SQL in der Oracle-Datenbank 3-446-21801-7 CARL HANSER VERLAG Christopher Allen Oracle PL/SQL für Einsteiger Der Einsatz von SQL und PL/SQL in der Oracle-Datenbank 3-446-21801-7 www.hanser.de Inhaltsverzeichnis Danksagung...XI Einleitung...XIII

Mehr

Informatik 12 Datenbanken SQL-Einführung

Informatik 12 Datenbanken SQL-Einführung Informatik 12 Datenbanken SQL-Einführung Gierhardt Vorbemerkungen Bisher haben wir Datenbanken nur über einzelne Tabellen kennen gelernt. Stehen mehrere Tabellen in gewissen Beziehungen zur Beschreibung

Mehr

Übung 1: Ein Website News-System mit MySQL

Übung 1: Ein Website News-System mit MySQL Übung 1: Ein Website News-System mit MySQL In der Vorübung haben wir bereits mit Hilfe eines ERMs den Datenbankentwurf erstellt und daraus die folgenden Tabellen abgeleitet: Nun muss diese Datenbank in

Mehr

Labor 3 - Datenbank mit MySQL

Labor 3 - Datenbank mit MySQL Labor 3 - Datenbank mit MySQL Hinweis: Dieses Labor entstand z.t. aus Scripten von Prof. Dr. U. Bannier. 1. Starten des MySQL-Systems MySQL ist ein unter www.mysql.com kostenlos erhältliches Datenbankmanagementsystem.

Mehr

3. Das Relationale Datenmodell

3. Das Relationale Datenmodell 3. Das Relationale Datenmodell Das Relationale Datenmodell geht zurück auf Codd (1970): E. F. Codd: A Relational Model of Data for Large Shared Data Banks. Comm. of the ACM 13(6): 377-387(1970) DBMS wie

Mehr

Mini-Workshop Relationale Datenbanken und SQL

Mini-Workshop Relationale Datenbanken und SQL SFB441 Linguistische Datenstrukturen Mini-Workshop Relationale Datenbanken und SQL Dirk Wiebel 14.07.2003 1.1 Der Begriff Datenbank "Eine Datenbank ist eine Sammlung von nicht-redundanten Daten, die von

Mehr

5.3 Datenänderung/-zugriff mit SQL (DML)

5.3 Datenänderung/-zugriff mit SQL (DML) 5.3 Datenänderung/-zugriff mit SQL (DML) Hinweis: - DML-Anweisungen sind mengenorientiert - Mit einer Anweisungen kann mehr als ein Tupel eingefügt, geändert, gelöscht oder gelesen werden Benutzungs- und

Mehr

Objektrelationale und erweiterbare Datenbanksysteme

Objektrelationale und erweiterbare Datenbanksysteme Objektrelationale und erweiterbare Datenbanksysteme Erweiterbarkeit SQL:1999 (Objekt-relationale Modellierung) In der Vorlesung werden nur die Folien 1-12 behandelt. Kapitel 14 1 Konzepte objekt-relationaler

Mehr

3. Übung. Einführung MS Access. TU Dresden - Institut für Bauinformatik Folie-Nr.: 1

3. Übung. Einführung MS Access. TU Dresden - Institut für Bauinformatik Folie-Nr.: 1 WP3-13 Bauinformatik-Vertiefte Grundlagen 3. Übung Einführung MS Access Folie-Nr.: 1 Allgemeines Microsoft Access ist ein Datenbank-Management-System (DBMS) zur Verwaltung von Daten in Datenbanken und

Mehr

Datenbanksysteme I. Klausur zum Praktikum. Mehrere Professoren prüfen mit genau einem Beisitzer genau einen Studenten.

Datenbanksysteme I. Klausur zum Praktikum. Mehrere Professoren prüfen mit genau einem Beisitzer genau einen Studenten. Lehrstuhl für Datenbanken und Informationssysteme Wintersemester 1999/2000 Universität Augsburg, Institut für Informatik 25. Februar 2000 Prof. Dr. Werner Kießling A. Leubner, M. Wagner Datenbanksysteme

Mehr

Die SQL-Syntax für den Befehl CREATE TABLE sieht folgendermassen aus:

Die SQL-Syntax für den Befehl CREATE TABLE sieht folgendermassen aus: Einführung in MySQL SQL (Structured Query Language) ist eine Computersprache zum Speichern, Bearbeiten und Abfragen von Daten in relationalen Datenbanken. Eine relationale Datenbank kann man sich als eine

Mehr

5. SQL: Erstellen von Tabellen. Erzeugen und Löschen von Tabellen. Umgang mit Bedingungen (Constraints) Einfügen und Löschen von Daten

5. SQL: Erstellen von Tabellen. Erzeugen und Löschen von Tabellen. Umgang mit Bedingungen (Constraints) Einfügen und Löschen von Daten 5. SQL: Erstellen von Tabellen Erzeugen und Löschen von Tabellen Umgang mit Bedingungen (Constraints) Einfügen und Löschen von Daten 106 SQL Structured Query Language Historie: Anfänge ca. 1974 als SEQUEL

Mehr

Datenbanken: Relationales Datenbankmodell RDM

Datenbanken: Relationales Datenbankmodell RDM Das RDM wurde in den 70'er Jahren von Codd entwickelt und ist seit Mitte der 80'er Jahre definierter Standard für Datenbanksysteme! Der Name kommt vom mathematischen Konzept einer Relation: (Sind A, B

Mehr

Besonders für den Anfänger empfiehlt sich folgende Vorgehensweise für die Erstellung von Manipulationsabfragen:

Besonders für den Anfänger empfiehlt sich folgende Vorgehensweise für die Erstellung von Manipulationsabfragen: Manipulationsabfragen Datenbanksysteme 6 Manipulationsabfragen Lerninhalte Tabellenerstellungsabfragen Löschabfragen Anfügeabfragen Aktualisierungsabfragen Lerninhalte Mit den Datenbanksprachen SQL und

Mehr

2 Grundlagen in MySQL und phpmyadmin

2 Grundlagen in MySQL und phpmyadmin Kapitel 2 Grundlagen in MySQL und phpmyadmin Seite 1/22 2 Grundlagen in MySQL und phpmyadmin Bemerkung: Da die Schüler der 9. Jahrgangsstufe sich mit Datenbanken und Datenbankabfragen beschäftigt haben,

Mehr

Im Fall einer Personaldatenbank würde eine Relation beispielsweise wie folgt aussehen:

Im Fall einer Personaldatenbank würde eine Relation beispielsweise wie folgt aussehen: Grundwissen zu relationalen Datenbanken Die Funktion einer relationalen Dankbank besteht in der elektronischen Verwaltung von Daten in Computersystemen. Die Basis für relationale Datenbanken bildet das

Mehr

SQL SQL. SQL = Structured Query Language (SEQUEL) IBM San Jose Research Laboratory SYSTEM R. Grundlagen der Datenbanksysteme I

SQL SQL. SQL = Structured Query Language (SEQUEL) IBM San Jose Research Laboratory SYSTEM R. Grundlagen der Datenbanksysteme I SQL SQL = Structured Query Language (SEQUEL) IBM San Jose Research Laboratory SYSTEM R VII-1 Beispielrelationen Filiale ( Name Leiter Stadt Einlagen ) Konto ( KontoNr KundenNr FilialName Saldo ) Kredit

Mehr

Datenbanken in der Praxis 6. Integrität, DBS-Architektur, Sichten

Datenbanken in der Praxis 6. Integrität, DBS-Architektur, Sichten Datenbanken in der Praxis 6. Integrität, DBS-Architektur, Sichten Inhalt Konsistenz von Daten Datenintegrität Referentielle Integrität Architektur von Datenbanksystemen Drei-Ebenen-Architektur Individuelle

Mehr

Das SQL-Schlüsselwort ALL entspricht dem Allquantor der Prädikatenlogik

Das SQL-Schlüsselwort ALL entspricht dem Allquantor der Prädikatenlogik Beispielaufgaben Informationssysteme erstellt von Fabian Rump zur IS Vorlesung 2009/10 1 Multiple Choice Aussage richtig falsch Eine SQL-Abfrage beginnt immer mit dem Schlüsselwort SELECT Eine Datenbank

Mehr

SQL-DDL und SQL-Anfragen. CREATE TABLE Kategorie (Bezeichnung VARCHAR(15) NOT NULL PRIMARY KEY, Klassifikationskriterium VARCHAR(100) NOT NULL )

SQL-DDL und SQL-Anfragen. CREATE TABLE Kategorie (Bezeichnung VARCHAR(15) NOT NULL PRIMARY KEY, Klassifikationskriterium VARCHAR(100) NOT NULL ) Technische Universität München WS 2003/04, Fakultät für Informatik Datenbanksysteme I Prof. R. Bayer, Ph.D. Lösungsblatt 6 Dipl.-Inform. Michael Bauer Dr. Gabi Höfling 1.12.2003 SQL-DDL und SQL-Anfragen

Mehr

Integritätsbedingungen / Normalformen- Beispiel: Kontoführung

Integritätsbedingungen / Normalformen- Beispiel: Kontoführung Technische Universität München WS 2003/04, Fakultät für Informatik Datenbanksysteme I Prof. R. Bayer, Ph.D. Lösungsblatt 8 Dipl.-Inform. Michael Bauer Dr. Gabi Höfling 12.01. 2004 Integritätsbedingungen

Mehr

Projektaufgabe Datenbankenverwaltung

Projektaufgabe Datenbankenverwaltung Realisierung DB-gestützter Anwendungssysteme Projektaufgabe Datenbankenverwaltung Prof. Dr. Ingo Claßen HTW Berlin 1 Einleitung In den Datenbanklehrveranstaltungen im Studiengang Wirtschaftsinformatik

Mehr

Inhaltsverzeichnis. jetzt lerne ich

Inhaltsverzeichnis. jetzt lerne ich Inhaltsverzeichnis jetzt lerne ich Einführung 15 1 Erste Schritte 21 1.1 Datenbanken und Datenbank-Managementsysteme 21 1.2 Zugriff auf Datenbanken 22 1.3 Was der Großvater noch wusste... 22 1.4 Einordnung

Mehr

Objektrelationale Datenbanken

Objektrelationale Datenbanken Vorlesung Datenbanksysteme vom 26.11.2008 Objektrelationale Datenbanken Konzepte objektrelationaler DBs SQL:1999 OO vs. OR Konzepte objektrelationaler Datenbanken Große Objekte (LOBs: Large Objects) Mengenwertige

Mehr

Vorlesung Datenbankmanagementsysteme

Vorlesung Datenbankmanagementsysteme Vorlesung Datenbankmanagementsysteme SQL zur Datenanalyse & Einführung Online Analytical Processing (OLAP) (auf Basis von Oracle) Vorlesung Datenbankmanagementsysteme SQL zur Datenanalyse M. Lange, S.

Mehr

SQL und MySQL. Kristian Köhntopp

SQL und MySQL. Kristian Köhntopp SQL und MySQL Kristian Köhntopp Wieso SQL? Datenbanken seit den frühen 1950er Jahren: Hierarchische Datenbanken Netzwerkdatenbanken Relationale Datenbanken = SQL Relational? 10 9 8 7 6 f(y) := y = x r(y)

Mehr

SQL. strukturierte Datenbankabfragesprache eine Datenbanksprache zur. Structured Query Language:

SQL. strukturierte Datenbankabfragesprache eine Datenbanksprache zur. Structured Query Language: SQL Structured Query Language: strukturierte Datenbankabfragesprache eine Datenbanksprache zur Definition, Abfrage und Manipulation von Daten in relationalen Datenbanken In der SQL-Ansicht arbeiten In

Mehr

1 Grundbegriffe...1. 2 Datenbanksysteme...7. 3 Entwicklung von Datenbanksystemen...15. Inhaltsverzeichnis. 1.1 Information und Daten...

1 Grundbegriffe...1. 2 Datenbanksysteme...7. 3 Entwicklung von Datenbanksystemen...15. Inhaltsverzeichnis. 1.1 Information und Daten... Inhaltsverzeichnis 1 Grundbegriffe...1 1.1 Information und Daten...2 1.2 Datenorganisation...3 1.3 Dateikonzept...5 1.4 Kontroll- und Vertiefungsfragen...6 2 Datenbanksysteme...7 2.1 Datenintegration...7

Mehr

Einführung relationale Datenbanken. Themenblock: Erstellung eines Cube. Schlüssel. Relationenmodell Relationenname Attribut. Problem.

Einführung relationale Datenbanken. Themenblock: Erstellung eines Cube. Schlüssel. Relationenmodell Relationenname Attribut. Problem. Themenblock: Erstellung eines Cube Einführung relationale Datenbanken Problem Verwaltung großer Mengen von Daten Praktikum: Data Warehousing und Data Mining Idee Speicherung der Daten in Form von Tabellen

Mehr

Einleitung Projektion Selektion Join Mengenop. Vollst.keit. Einleitung Projektion. Selektion Join. Vollst.keit. Einleitung Projektion Selektion Join

Einleitung Projektion Selektion Join Mengenop. Vollst.keit. Einleitung Projektion. Selektion Join. Vollst.keit. Einleitung Projektion Selektion Join Parsen der Anfrage (SQL) Transformation in eine Standardform (Relationenalgebra) Logische Optimierung Transformation in alternative Zugriffspläne, Physische Optimierung Ausführung des gewählten Zugriffsplans

Mehr

Themenblock: Erstellung eines Cube

Themenblock: Erstellung eines Cube Themenblock: Erstellung eines Cube Praktikum: Data Warehousing und Data Mining Einführung relationale Datenbanken Problem Verwaltung großer Mengen von Daten Idee Speicherung der Daten in Form von Tabellen

Mehr

Sructred Query Language

Sructred Query Language Sructred Query Language Michael Dienert 11. November 2010 Inhaltsverzeichnis 1 Ein kurzer Versionsüberblick 1 2 SQL-1 mit einigen Erweiterungen aus SQL-92 2 3 Eine Sprache zur Beschreibung anderer Sprachen

Mehr

In die Zeilen würden die Daten einer Adresse geschrieben werden. Das Ganze könnte in etwa folgendermaßen aussehen:

In die Zeilen würden die Daten einer Adresse geschrieben werden. Das Ganze könnte in etwa folgendermaßen aussehen: 1 Einführung in Datenbanksysteme Fast jeder kennt Excel und hat damit in seinem Leben schon einmal gearbeitet. In Excel gibt es Arbeitsblätter, die aus vielen Zellen bestehen, in die man verschiedene Werte

Mehr

Datenbankpraxis mit Microsoft Access. Datenbankpraxis mit Microsoft Access

Datenbankpraxis mit Microsoft Access. Datenbankpraxis mit Microsoft Access Datenbankpraxis mit Microsoft Access Grundlegende Konzepte und ihre Umsetzung in Microsoft Access Vorlesung 3. Januar 006 Ingo Scholtes Was wir bereits wissen (/3) Datenbankdesign Flache Datenbanken sind

Mehr

Views in SQL. 2 Anlegen und Verwenden von Views 2

Views in SQL. 2 Anlegen und Verwenden von Views 2 Views in SQL Holger Jakobs bibjah@bg.bib.de, holger@jakobs.com 2010-07-15 Inhaltsverzeichnis 1 Wozu dienen Views? 1 2 Anlegen und Verwenden von Views 2 3 Schreibfähigkeit von Views 3 3.1 Views schreibfähig

Mehr

Universität Augsburg, Institut für Informatik WS 2006/2007 Dr. W.-T. Balke 27. Nov. 2006 M. Endres, A. Huhn, T. Preisinger Lösungsblatt 5

Universität Augsburg, Institut für Informatik WS 2006/2007 Dr. W.-T. Balke 27. Nov. 2006 M. Endres, A. Huhn, T. Preisinger Lösungsblatt 5 Universität Augsburg, Institut für Informatik WS 2006/2007 Dr. W.-T. Balke 27. Nov. 2006 M. Endres, A. Huhn, T. Preisinger Lösungsblatt 5 Aufgabe 1: Projektion Datenbanksysteme I π A1,...,A n (π B1,...,B

Mehr

Vorlesung Informatik II

Vorlesung Informatik II Vorlesung Informatik II Universität Augsburg Wintersemester 2011/2012 Prof. Dr. Bernhard Bauer Folien von: Prof. Dr. Robert Lorenz Lehrprofessur für Informatik 08. Exkurs: Datenbanken 1 Motivation Datenbanksysteme

Mehr

Kapitel 3: Datenbanksysteme

Kapitel 3: Datenbanksysteme LUDWIG- MAXIMILIANS- UNIVERSITY MUNICH DEPARTMENT INSTITUTE FOR INFORMATICS Skript zur Vorlesung: Einführung in die Informatik: Systeme und Anwendungen Sommersemester 2009 Kapitel 3: Datenbanksysteme Vorlesung:

Mehr

Kapitel 33. Der xml-datentyp. In diesem Kapitel: Der xml-datentyp 996 Abfragen aus xml-datentypen 1001 XML-Indizierung 1017 Zusammenfassung 1023

Kapitel 33. Der xml-datentyp. In diesem Kapitel: Der xml-datentyp 996 Abfragen aus xml-datentypen 1001 XML-Indizierung 1017 Zusammenfassung 1023 Kapitel 33 Der xml-datentyp In diesem Kapitel: Der xml-datentyp 996 Abfragen aus xml-datentypen 1001 XML-Indizierung 1017 Zusammenfassung 1023 995 996 Kapitel 33: Der xml-datentyp Eine der wichtigsten

Mehr

DBS ::: SERIE 5. Join Right Semi- Join Left Semi-Join Projektion Selektion Fremdschlüssel. Kreuzprodukt

DBS ::: SERIE 5. Join Right Semi- Join Left Semi-Join Projektion Selektion Fremdschlüssel. Kreuzprodukt DBS ::: SERIE 5 Die Relation produkt enthält Hersteller, Modellnummer und Produktgattung (pc, laptop oder drucker aller Produkte. Die Modellnummer ist (der Einfachheit halber eindeutig für alle Hersteller

Mehr

U8: SQL Datenbank Daniel Baron 1

U8: SQL Datenbank Daniel Baron 1 U8: SQL Datenbank Daniel Baron 1 Allgemein Eine SQL Datenbank ist eine meist serverseitige Software, die Daten speichern und verwalten kann. Dabei werden diese Daten in Tabellen abgelegt und indiziert.

Mehr

Wirtschaftsinformatik 2

Wirtschaftsinformatik 2 Wirtschaftsinformatik 2 Prof. Dr. Dr. L. Schmidt-Thieme MSc. André Busche Übung 4 1. Übungsblatt 4 2. Allgemeines zu XML 25.05.12 2/ Übungsblatt 4 Allgemeiner Hinweis: in den nachfolgenden SQL-Kommandos

Mehr

SQL SQL. SQL = Structured Query Language (SEQUEL) IBM San Jose Research Laboratory SYSTEM R. Grundlagen der Programmierung 2

SQL SQL. SQL = Structured Query Language (SEQUEL) IBM San Jose Research Laboratory SYSTEM R. Grundlagen der Programmierung 2 SQL SQL = Structured Query Language (SEQUEL) IBM San Jose Research Laboratory SYSTEM R IV-1 Beispielrelationen Filiale ( Name Leiter Stadt Einlagen ) Konto ( KontoNr KundenNr FilialName Saldo ) Kredit

Mehr

IV. Datenbankmanagement

IV. Datenbankmanagement Wirtschaftsinformatik 2 (PWIN) IV. Datenbankmanagement Kapitel 2: Datenmanipulationssprache SQL Wirtschaftsinformatik 2 (PWIN) SS 2009, Professur für Mobile Business & Multilateral Security 1 Agenda 1.

Mehr

Informatik Datenbanken SQL-Einführung

Informatik Datenbanken SQL-Einführung Informatik Datenbanken SQL-Einführung Gierhardt Inhaltsverzeichnis 1 Vorbemerkungen 1 2 Auswahl-Abfragen mit SELECT 2 2.1 Selektion...................................... 2 2.2 Projektion.....................................

Mehr

StructuredQueryLanguage(SQL)

StructuredQueryLanguage(SQL) StructuredQueryLanguage(SQL) Themen: ErstelenundÄndernvonTabelen AbfragenvonDaten Einfügen,ÄndernundLöschenvonDaten Erstelennutzerde niertersichten(views) 2012Claßen,Kempa,Morcinek 1/23 SQL Historie System

Mehr

Aufgabenblatt 3 SQL. Vorbereitungen für Aufgabenblätter 3 und 4: IMDb in DB2 laden

Aufgabenblatt 3 SQL. Vorbereitungen für Aufgabenblätter 3 und 4: IMDb in DB2 laden Aufgabenblatt 3 SQL Abgabetermin: Sonntag, 09.06.13 Zur Prüfungszulassung muss ein Aufgabenblatt mit mind. 25% der Punkte bewertet werden und alle weiteren Aufgabenblätter mit mindestens 50% der Punkte.

Mehr

Kapitel 3: Datenbanksysteme

Kapitel 3: Datenbanksysteme LUDWIG- MAXIMILIANS- UNIVERSITY MUNICH DEPARTMENT INSTITUTE FOR INFORMATICS Skript zur Vorlesung: Einführung in die Informatik: Systeme und Anwendungen Sommersemester 2015 Kapitel 3: Datenbanksysteme Vorlesung:

Mehr

4. Datenabfrage mit QBE 11

4. Datenabfrage mit QBE 11 Informationsbestände analysieren Datenabfrage mit QBE 4. Datenabfrage mit QBE 11 4.1. QBE vs. SQL Relationale Datenbanken haben schon früh den Anspruch gestellt, auch für Nicht- Informatiker nutzbar zu

Mehr

3 Arbeiten mit geographischen Daten

3 Arbeiten mit geographischen Daten 3 Arbeiten mit geographischen Daten 3.1 Spatial Datatypes: Bisher wurden Koordinaten nur von GIS-Systemen verwendet. Es gibt immer mehr Applikationen, die geographische und/oder geometrische Daten verarbeiten.

Mehr

Inhalt. Ein Einführung in die Nutzung von SQL-Datenbanken am Beispiel Oracle. Daten und Tabellen - ein Beispiel. Daten und Tabellen - Normalisierung

Inhalt. Ein Einführung in die Nutzung von SQL-Datenbanken am Beispiel Oracle. Daten und Tabellen - ein Beispiel. Daten und Tabellen - Normalisierung Inhalt Ein Einführung in die Nutzung von SQL-Datenbanken am Beispiel Oracle Daten und Tabellen Normalisierung, Beziehungen, Datenmodell SQL - Structured Query Language Anlegen von Tabellen Datentypen (Spalten,

Mehr

XAMPP-Systeme. Teil 3: My SQL. PGP II/05 MySQL

XAMPP-Systeme. Teil 3: My SQL. PGP II/05 MySQL XAMPP-Systeme Teil 3: My SQL Daten Eine Wesenseigenschaft von Menschen ist es, Informationen, in welcher Form sie auch immer auftreten, zu ordnen, zu klassifizieren und in strukturierter Form abzulegen.

Mehr

Kapitel DB:III. III. Konzeptueller Datenbankentwurf

Kapitel DB:III. III. Konzeptueller Datenbankentwurf Kapitel DB:III III. Konzeptueller Datenbankentwurf Einführung in das Entity-Relationship-Modell ER-Konzepte und ihre Semantik Charakterisierung von Beziehungstypen Existenzabhängige Entity-Typen Abstraktionskonzepte

Mehr

PHP & MySQL. MySQL Einführung. Zellescher Weg 12 Willers-Bau A109 Tel. +49 351-463 - 32424. Michael Kluge (Michael.Kluge@tu-dresden.

PHP & MySQL. MySQL Einführung. Zellescher Weg 12 Willers-Bau A109 Tel. +49 351-463 - 32424. Michael Kluge (Michael.Kluge@tu-dresden. Zentrum für Informationsdienste und Hochleistungsrechnen (ZIH) PHP & MySQL MySQL Einführung Zellescher Weg 12 Willers-Bau A109 Tel. +49 351-463 - 32424 (Michael.Kluge@tu-dresden.de) Inhalt Grundsätzliches

Mehr

Datenbanken. Christian Heidrich. 15.02.2007 Datenbanken Wie sag ich s meinen Schülern?!

Datenbanken. Christian Heidrich. 15.02.2007 Datenbanken Wie sag ich s meinen Schülern?! Datenbanken Christian Heidrich Lehrplan Gymnasium Inf 9.2 (NTG) Realschule Inf 8.3 und 10.1 Fachoberschule (Technik) TI 12.3 Unterrichtliche Gliederung Einblick: Große Datenmengen und ihre Verwaltung (2)

Mehr

Datenbank - Teil 3. Ziele: Eine Datenbank anlegen mit SQL. Daten eingeben mit SQL. Abfragen stellen mit SQL und PHP.

Datenbank - Teil 3. Ziele: Eine Datenbank anlegen mit SQL. Daten eingeben mit SQL. Abfragen stellen mit SQL und PHP. Ziele: Eine Datenbank anlegen mit SQL Daten eingeben mit SQL Abfragen stellen mit SQL und PHP 1 Datenbankserver Entwickelt von der schwedischen Aktiengesellschaft MySQL Unter GNU General Public License

Mehr

Probabilistische Datenbanken

Probabilistische Datenbanken Probabilistische Datenbanken Seminar Intelligente Datenbanken AG Intelligente Datenbanken Prof. Dr. Rainer Manthey 26.04.05 Maarten van Hoek - 1 - Inhaltsverzeichnis 1.0 Einleitung...3 2.0 Modell probabilistischer

Mehr

Kapitel DB:VI (Fortsetzung)

Kapitel DB:VI (Fortsetzung) Kapitel DB:VI (Fortsetzung) VI. Die relationale Datenbanksprache SQL Einführung SQL als Datenanfragesprache SQL als Datendefinitionssprache SQL als Datenmanipulationssprache Sichten SQL vom Programm aus

Mehr

Datenbanktechnologie mit praktischen Übungen in MySQL und PHP

Datenbanktechnologie mit praktischen Übungen in MySQL und PHP Datenbanktechnologie mit praktischen Übungen in MySQL und PHP Übung, Sommersemester 2013 29. April 2013 - MySQL 2 Sebastian Cuy sebastian.cuy@uni-koeln.de Aufgaben Anmerkungen Best practice: SQL Befehle

Mehr

SQL-Befehlsliste. Vereinbarung über die Schreibweise

SQL-Befehlsliste. Vereinbarung über die Schreibweise Vereinbarung über die Schreibweise Schlüsselwort [optionale Elemente] Beschreibung Befehlsworte in SQL-Anweisungen werden in Großbuchstaben geschrieben mögliche, aber nicht zwingend erforderliche Teile

Mehr

Inhalt. 1. MySQL-Einführung 1. 2. Datenbankentwurf 27

Inhalt. 1. MySQL-Einführung 1. 2. Datenbankentwurf 27 Inhalt 1. MySQL-Einführung 1... 1.1 Geschichte von MySQL... 1 1.2 Entscheidungskriterien für MySQL... 2 1.3 Installation eines MySQL-Servers... 3 1.3.1 Linux... 5 1.3.2 Windows 9x/Me/NT/2000/XP... 7 1.3.3

Mehr