\W 1;1 und ist in seiner

Größe: px
Ab Seite anzeigen:

Download "\W 1;1 und ist in seiner"

Transkript

1 44 Arkusunktionen 44 Die Umkehrun der Winkelunktionen - Arkusunktionen Die Funktion : sin ; ist in ID IR nicht umkehrbr Eine Umkehrunktion ibt es erst dnn, wenn mn die Deinitionsmene u ein Intervll einschränkt, indem die Sinusunktion stren monoton ist : sin ; ID ; \W ; und ist in seiner Die Funktion besitzt die Wertemene Deinitionsmene stren monoton steiend Die Sinusunktion besitzt nun eine Umkehrunktion Die Umkehrunktion der Sinusunktion nennt mn die Arcussinusunktion ür sie ilt: : rc sin ID ; ; Für die Wertemene der Arcussinusunktion ilt: \W ; Den Grphen der Arcussinusunktion erhält mn durch Spieelun des Grphen der Sinusunktion n der Winkelhlbierenden des und 3 Qudrnten G G Folende Beziehunen erklären sich von selbst: sin rcsin ür ; rcsin sin ür ; W Strk; Beruliche Oberschule Freisin

2 Auch die Kosinusunktion muss mn in seiner Deinitionsmene einschränken um eine Umkehrunktion zu bilden: cos; ID 0; : Die Funktion besitzt die Wertemene \W ; und ist in seiner Deinitionsmene stren monoton llend Die Umkehrunktion der Kosinusunktion nennt mn die Arcuskosinusunktion ür sie ilt: ; ID ; : rccos G Für die Wertemene der Arcuskosinusunktion ilt: \W 0; G Folende Beziehunen erklären sich uch hier von selbst: cos rccos ür ; rccos cos ür 0; Und uch bei der Tnensunktion muss mn die Deinitionsmene einschränken um eine Umkehrunktion zu bilden: : tn ; ID ; G Die Funktion besitzt die Wertemene \W IR und ist in seiner Deinitionsmene stren monoton steiend Die Umkehrunktion der Tnensunktion nennt mn die Arcustnensunktion ür sie ilt: : rctn ; ID Für die Wertemene der Arcuskosinusunktion ilt: \W ; IR G Folende Beziehunen sind dnn schon selbstverständlich: tn rctn ür IR rctn tn ür ; W Strk; Beruliche Oberschule Freisin

3 Aus den Eienschten der Tnensunktion knn mn olende Grenzwerte olern: lim rctn lim rctn Letztendlich ehlen noch ein pr Beziehunen die recht nützlich werden können: rcsin rcsin rccos rccos rctn rctn Diese ereben sich us Smmetriebetrchtunen bei den entsprechenden Grphen! Auben: Berechnen Sie rcsin ) b) rcsin c) rcsin 3 d) rccos e) rccos 3 ) rccos ) rctn h) rctn 3 i) rcsin0,480 k) rccos0,853 l) rctn 0,7536 m) rctn Bestimmen Sie die Lösunsmenen olender Gleichunen bzw Unleichunen ) rcsin 4 ) rccos 0,5 b) rcsin 6 ) rcsin c) rcsin 0,450 h) 0 rcsin 8 d) rctn 3 i) rcsin 5 3 e) rccos 3 Zeien Sie, dss ür 0; 6 ilt: ) rcsin rccos b) rccos rcsin c) rcsin rctn d) rccos rctn ; 0 Welche Veränderunen ereben sich ür 4 Vereinchen Sie ür 0; olende Terme: ) cosrccos d) tnrccos b) sinrccos e) cosrctn c) cosrcsin Welche Veränderunen ereben sich ür ; 0? W Strk; Beruliche Oberschule Freisin 3

4 5 Beweisen Sie olende Beziehunen: rcsin rccos ; ) ür lle ür lle 0; b) rcsin rccos ür lle 0; c) rcsin rcsin 6 Geeben ist die Funktion : rctn ; ID IR \ Bestimmen Sie lim sowie lim und lim Skizzieren Sie den Verlu des Grphen 7 Bestimmen Sie die mimle Deinitionsmene olender Funktionen ) rccos e) rcsin b) rcsinln rccos rcsin 4 rctn c) d) rccos e e ) 44 Die Ableitun der klssischen Arkusunktionen Die Ableitun der Arcusunktionen können wir reltiv einch us dem Ableitunsstz ür die Umkehrunktionen herleiten Dzu ehen wir zunächst von der Funktion : sin us und versuchen die Ableitun der Umkehrunktion zu bilden Ds eht dnn wie olt: sin rcsin W Strk; Beruliche Oberschule Freisin sin ID ; cos cos rcsin rcsin ID ; cos sin sin rcsin sin rcsin 4

5 Vereincht mn die Schreibweise wieder, so olt letztendlich ür die Ableitun der Arcussinusunktion: rcsin ID ; ID ; \W ; G Die lchste Stelle ht die Arcussinusunktion somit im Ursprun mit der Steiun m Außerdem ilt: lim und lim Dh dss der Grph der Arcussinusunktion n den Grenzen der Deinitionsmene prllel zur -Achse verläut G Nch Aube 5) ilt: rcsin rccos rccos Somit olt ür die Ableitun der Arcuskosinusunktion: rcsin rccos rcsin ID ; ID ; \W ; Die steilste Stelle ht die Arcuskosinusunktion somit im Ursprun mit der Steiun m Außerdem ilt: lim und lim Dh dss der Grph der Arcuskosinusunktion n den Grenzen der Deinitionsmene ebenlls prllel zur -Achse verläut G G W Strk; Beruliche Oberschule Freisin 5

6 Die Ableitun der Arcustnensunktion muss llerdins wieder nch dem Ableitunsstz ür die Umkehrunktionen ebildet werden Dzu ehen wir zunächst von der Funktion : tn us und versuchen die Ableitun der Umkehrunktion zu bilden Ds eht dnn wie olt: tn rctn tn ID ; tn tn rctn rctn ID IR tn tn rctn Vereincht mn die Schreibweise wieder, so olt letztendlich ür die Ableitun der Arcustnensunktion: rctn ID IR ID IR \W 0; G G Die steilste Stelle ht die Arcustnensunktion somit im Ursprun mit der Steiun m Außerdem ilt: lim 0 und lim 0 W Strk; Beruliche Oberschule Freisin 6

7 Dh dss der Grph der Arcuskosinusunktion n den Grenzen der Deinitionsmene immer lcher, nhezu wrecht wird Auben: 80 Geeben ist die Funktion : rcsin in der mimlen Deinitionsmene ID 8 Geben Sie die Deinitionsmene der Funktion n und untersuchen Sie den Grphen der Funktion u Smmetrie 8 Ermitteln Sie die Stelle n welcher der Grph der Funktion eine wrechte Tnente besitzt Um welchen besonderen Punkt hndelt es sich? 83 Untersuchen Sie ds Verhlten der Ableitunsunktion n den Rändern des Deinitionsbereichs LE 4cm 84 Zeichnen Sie den Grphen der Funktion F : rcsin eine 85 Zeien Sie, dss die Funktion Stmmunktion der Funktion ist Berechnen Sie sodnn den Wert des Interls 0 d und zeichnen Sie die entsprechende Fläche in ihr Dirmm ein 90 Geeben ist die Funktion : rcsin ID ; in der Deinitionsmene 9 Zeien Sie, dss der Grph der Funktion einen Terrssenpunkt besitzt Geben Sie uch dessen Koordinten n 9 Ermitteln Sie, in welchem Punkt der Grph der Funktion die Winkelhlbierende des und 3 Qudrnten berührt LE 4cm 93 Zeichnen Sie den Grphen der Funktion 00 Geeben ist die Funktion : rccos 0 Zeien Sie, dss der Punkt, IR und ID ; P 0 0 ür jedes IR u dem Grph der Funktion liet Ermitteln Sie llemein die Gleichun der Tnente n den Grphen der Funktion im Punkt P 0 Bestimmen Sie nun IR so, dss die in 0 bestimmte Tnente die Steiun m besitzt Setzen Sie nun 03 Bestimmen Sie Art und Le der reltiven Etrem des Grphen der Funktion 04 Zeichnen Sie den Grphen der Funktion LE 4cm 0 Geeben ist die Funktion : rccos IR und ID ; Zeien Sie, dss die Grphen der Funktion die -Achse immer unter demselben Winkel schneiden W Strk; Beruliche Oberschule Freisin 7

8 Setzen Sie nun Ermitteln Sie Art und Le der reltiven Etrem des Grphen der Funktion 3 Zeichnen Sie den Grphen der Funktion LE 4cm, IR und ID IR Untersuchen Sie den Grphen der Funktion u Smmetrie Zeien Sie, dss lle Grphen den Koordintenursprun emeinsm hben Geben Sie llemein die Gleichun der Tnente durch den Koordintenursprun n den Grph der Funktion n 3 Zeien Sie, dss der Koordintenursprun ür lle IR Wendepunkt ist 4 Bestimmen Sie nun IR 0 0 Geeben ist die Funktion : rctn so, dss ilt: Setzen Sie nun 0,4 5 Ermitteln Sie Art und Le der reltiven Etrem des Grphen der Funktion 0,4 6 Zeichnen Sie ür 8 8 den Grphen der Funktion 0,4, IR und ID IR Der Grph der Funktion wird mit G bezeichnet 3 Zeien Sie, dss ilt: Ws olern Sie drus? 3 Zeien Sie, dss lle Grphen G durch den Koordintenursprun verluen und dort eine von unbhänie Tnente besitzen 33 Zeien Sie, dss lle Grphen G höchstens eine Stelle mit wrechter Tnente besitzen 34 Bestimmen Sie nun IR 0 30 Geeben ist die Funktion : rctn so, dss ilt: Geben Sie die Art des reltiven Etremum n und Zeichnen Sie den dzuehörien Funktionsrphen 444 Die Ableitun der llemeinen Arkusunktionen Die Ableitun der llemeinen Arcusunktionen können wir reltiv einch us der Kettenreel olern Für diese ilt nämlich: Somit olt ür die Ableitun der Funktion rcsin Für die Ableitun der Arcuskosinusunktion W Strk; Beruliche Oberschule Freisin 8

9 rccos Und ür die Ableitun der Arcustnensunktion rctn Auben: 40 Geeben ist die Funktion : rctn rctn, ID IR Der Grph der Funktion wird mit G bezeichnet 4 Untersuchen Sie den Grphen G u Smmetrie und zeien Sie, dss die Funktion keine Nullstellen ht 4 Bestimmen Sie lim Gibt es eine wrechte Asmptote? 43 Bestimmen Sie Le und Art des reltiven Etremum 44 Ermitteln Sie die Koordinten der Wendepunkte 45 Zeichnen Sie ür 4 4 den Grphen G, ; 50 Geeben ist die Funktion : rcsin Der Grph der Funktion wird mit G bezeichnet ; die Deinitionsmene der Funktion 5 Ermitteln Sie in Abhänikeit von und zeien Sie, dss der Grph G chsensmmetrisch zu -Achse verläut 5 Zeien Sie, dss die Grphen G ür lle einen reltiven Tiepunkt n der Stelle 0 0 besitzen 53 Untersuchen Sie ür ds Verhlten des Grphen G n den Rändern seiner Deinitionsmene : rcsin u Stetikeit und 54 Untersuchen Sie, die Funktion Dierenzierbrkeit n der Stelle 0 0 Zeichnen Sie den Grphen G 60 Geeben ist die Funktion : rctn Der Grph der Funktion wird mit G bezeichnet 6 Geben Sie die Deinitionsmene ID der Funktion n und untersuchen Sie ds Verhlten des Grphen G n den Rändern des Deinitionsbereichs 6 Zeien Sie, dss der Grph G kein Etremum besitzt, jedoch einen Wendepunkt ht Geben Sie uch die Gleichun der Wendetnente n 63 Zeichnen Sie ür 4 4 den Grphen G W Strk; Beruliche Oberschule Freisin 9

10 70 Geeben ist die Funktion : rccos Der Grph der Funktion wird mit G bezeichnet 7 Ermitteln Sie die mimle Deinitionsmene der Funktion und untersuchen Sie den Grphen G u Smmetrie 7 Bilden Sie die erste Ableitun der Funktion und eben Sie dmit die Monotonieintervlle der Funktion 73 Untersuchen Sie den Grph G u Dierenzierbrkeit n der Stelle Zeichnen Sie den Grphen G 80 (AP 000 AI) Geeben ist nun die Funktion Deinitionsmene ID IR 4 : rctn mit der 4 8 Geben Sie die Nullstellen von n, und bestimmen Sie ds Smmetrieverhlten des Grphen von und ds Verhlten von () ür sowie die Gleichun der Asmptote des Grphen von 8 Ermitteln Sie ds Monotonieverhlten und die Art und Le des Etrempunktes des Grphen von Untersuchen Sie ds Verhlten von in der Umebun des Etrempunktes 6 Teilerebnis : ür Zeichnen Sie den Grphen von ür 6 6 in ein Koordintensstem einle cm 90 (LK Ininitesimlrechnun II) Geeben ist die Funktion : mit der rößtmölichen Deinitionsmene ID Der zu ehörende Grph heißt G 9 Bestimmen Sie ID, untersuchen Sie den Grphen G u Smmetrie und eben Sie die Nullstellen n 9 Berechnen Sie die Ableitun von und eben Sie die mimle Deinitionsmene ID von n 4 Teilerebnis : Ermitteln Sie ohne Benützun der zweiten Ableitun Art und Koordinten der Etrempunkte von G Untersuchen Sie ds Verhlten von n den Rändern von ID und deuten Sie die Erebnisse eometrisch 0,5, 0,9 und 0 Zeichnen Sie den Grphen G unter Verwendun der bisherien Erebnisse LE 5 cm 93 Berechnen Sie 94 Nun wird die Funktion : rcsin mit der Deinitionsmene ID 0; betrchtet Der Grph von heißt G Geben Sie die Wertemene und die Nullstellen von n Beründen Sie usührlich ohne Bezunhme u die erste Ableitun, dss n W Strk; Beruliche Oberschule Freisin 0

11 der Stelle ein lokles Mimum ht, und eben Sie den zuehörien Funktionswert n und eben Sie die mimle Deinitionsmene ID von 95 Berechnen Sie n Wie verhält sich n den Rändern von ID? 96 Zeien Sie, dss in der Form rcsin ür 0; rcsin c ür ; mit c IR drestellt werden knn, und bestimmen Sie den Wert von c 97 Zeichnen Sie den Grphen G unter Verwendun der bisherien Erebnisse in ds bereits nelete Koordintensstem W Strk; Beruliche Oberschule Freisin

2012 A I Angabe. 1.0 f sei eine ganzrationale Funktion mit der Ableitungsfunktion

2012 A I Angabe. 1.0 f sei eine ganzrationale Funktion mit der Ableitungsfunktion 0 A I Angbe.0 sei eine gnzrtionle Funktion mit der Ableitungsunktion und ID ID IR.. Geben Sie die Nullstellen der Funktion n, skizzieren Sie den Grphen von und ermitteln Sie die mimlen Monotonieintervlle

Mehr

lokales Maximum lokales u. globales Minimum

lokales Maximum lokales u. globales Minimum 6 Extrempunte Deinition: Eine Funtion : x (x) ht n der Stelle x ID ein loles (reltives) Mximum/Minimum, wenn die Funtionswerte in einer beliebig leinen Umgebung von x leiner/größer ls n dieser Stelle sind

Mehr

Arkus-Funktionen. Aufgabensammlung 1

Arkus-Funktionen. Aufgabensammlung 1 ANALYSIS Arkus-Funktionen Aufgbensmmlung 1 Dtei Nummer 4730 Stnd: 15. November 017 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK 4730 Aufgbensmmlung Arkusfunktionen Aufgbe 1 (Lösung Seite

Mehr

Mathematikaufgaben > Analysis > Funktionenscharen

Mathematikaufgaben > Analysis > Funktionenscharen Michel Buhlmnn Mthemtikugen > Anlysis > Funktionenschren Auge: Gegeen ist die Funktionenschr t t t mit reellen Prmeter t >. Die zugehörigen Schuilder heißen K t. Skizziere die Schuilder K,5, K und K jeweils

Mehr

Abitur - Leistungskurs Mathematik. Sachsen-Anhalt 1999

Abitur - Leistungskurs Mathematik. Sachsen-Anhalt 1999 Abitur - Leistungskurs Mthemtik Schsen-Anhlt 999 Gebiet L - Anlysis Augbe.. y, D, R,. Die Funktionenschr sei gegeben durch Die Grphen der Funktionen der Schr werden mit G bezeichnet. ) Ermitteln Sieden

Mehr

definiert ist, heißt an der Stelle x0

definiert ist, heißt an der Stelle x0 1 Stetigkeit 1 Stetigkeit Bei der Behndlung der bschnittsweise deinierten Funktionen km es vor, dss der Grph dieser Funktion n der Nhtstelle einen Sprung ht. Andere dgegen hben keine Sprungstelle! Doch

Mehr

Übung Analysis in einer Variable für LAK, SS 2010

Übung Analysis in einer Variable für LAK, SS 2010 Übung Anlysis in einer Vrible für LAK, SS Christoph B ) Es sei I R ein offenes Intervll, ξ I und f,...,f n : I R seien lle in ξ differenzierbr. Beweisen Sie: Dnn ist uch f f n : I R in ξ differenzierbr

Mehr

Abiturprüfung Mathematik 13 Technik A I - Lösung mit CAS

Abiturprüfung Mathematik 13 Technik A I - Lösung mit CAS GS 0.06.207 - m7_3t-_lsg_cas_gs.pdf Abiturprüfung 207 - Mthemtik 3 Technik A I - Lösung mit CAS Teilufgbe Gegeben sind die Funktionen f mit f ( ) Definitionsmenge D f IR. mit IR \ {0} und der e Teilufgbe.

Mehr

Affine (lineare) Funktionen und Funktionenscharen

Affine (lineare) Funktionen und Funktionenscharen Aine (lineare) Funktionen Funktionenscharen 1. Erkläre olende Berie: a) Ursprunserade b) Steiun bzw. Steiunsdreieck c) steiende u. allende erade d) eradenbüschel, Parallelenschar e) y-achsenabschnitt )

Mehr

1 Kurvendiskussion /40

1 Kurvendiskussion /40 009 Herbst, (Mthemtik) Aufgbenvorschlg B Kurvendiskussion /0 Gegeben ist eine Funktion f mit der Funktionsgleichung: f ( ) 0 6 = ; mit.. Untersuchen Sie ds Verhlten der Funktionswerte von f im Unendlichen.

Mehr

2010 A I Lösung. a IR. 1.1 Ermitteln Sie in Abhängigkeit von a die Anzahl, Lage und Vielfachheiten der Nullstellen von f P 4. so, dass der Punkt.

2010 A I Lösung. a IR. 1.1 Ermitteln Sie in Abhängigkeit von a die Anzahl, Lage und Vielfachheiten der Nullstellen von f P 4. so, dass der Punkt. 00 A I Lösung.0 Gegeben sind die reellen Funktionen f : x x x x mit ID f IR.. Ermitteln Sie in Abhängigkeit von die Anzhl, Lge und Vielfchheiten der Nullstellen von f. IR und ( BE) f x x x x 0 x 0; x ;

Mehr

, B liegen. 4. Untersuche die Lage von g und h und bestimme gegebenenfalls den Schnittpunkt:

, B liegen. 4. Untersuche die Lage von g und h und bestimme gegebenenfalls den Schnittpunkt: Lebeziehunen - Lösunen. Prüfen sie ob die Punke A5, B und C : x lieen. A ; B ; C. Prüfen sie ob die Punke A 4, B 4 und C 7 : x lieen. A ; B ; C. Prüfen sie ob die Punke A 4 und B : x x x lieen. A ; B in

Mehr

8 Längenberechnungen Winkelberechnungen - Skalarprodukt

8 Längenberechnungen Winkelberechnungen - Skalarprodukt 8 Längenberechnungen Winkelberechnungen - Sklrprodukt 8 Längenberechnungen Winkelberechnungen - Sklrprodukt Wir wissen, wie mn zwei Vektoren und b ddiert b b. Mn knn zwei Vektoren ber uch miteinnder multiplizieren!

Mehr

Reiner Winter. Analysis. Aufgaben mit Musterlösungen

Reiner Winter. Analysis. Aufgaben mit Musterlösungen Reiner Winter Analysis Aufaben mit Musterlösunen. Aufabe: Geeben sei die Funktion ƒ(x) 5 x5 4 x mit x IR +... Untersuchen Sie die Funktion ƒ(x) auf Symmetrie, Nullstellen, Extrempunkte und Wendepunkte.

Mehr

mathphys-online Abschlussprüfung Berufliche Oberschule 2010 Mathematik 12 Nichttechnik - A II - Lösung

mathphys-online Abschlussprüfung Berufliche Oberschule 2010 Mathematik 12 Nichttechnik - A II - Lösung mthphys-online Abschlussprüfung Berufliche Oberschule Mthemtik Nichttechnik - A II - Lösung Teilufgbe. Der Grph G f einer gnzrtionlen Funktion f dritten Grdes besitzt den Extrempunkt E( / ), 7 schneidet

Mehr

(0 4) 4 :( 2) Bestimmung von Geradengleichungen Aufgabe 1

(0 4) 4 :( 2) Bestimmung von Geradengleichungen Aufgabe 1 Bestimmun von Geradenleichunen Auabe Geeben ist die Geradenleichun (x) = -x +. Gesucht sind die Schnittpunkte mit den Koordinatenachsen. Lösun: Mit der y-achse (x=0): S y (0 ) Mit der x-achse (y=0): x

Mehr

3. Ganzrationale Funktionen

3. Ganzrationale Funktionen 3. Gnzrtionle Funktionen ) Definitionen und Beispiele Definition: Eine gnzrtionle Funktion n-ten Grdes ht ls Definitionsterm ein Polynom n-ten Grdes, d.h. y = f() = n n n-1 n-1 1 0. n 0, i ( i = 1, n)

Mehr

Abiturprüfung Mathematik 2013 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1

Abiturprüfung Mathematik 2013 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1 www.mthe-ufgben.com Abiturprüfung Mthemtik 013 (Bden-Württemberg) Berufliche Gymnsien Anlysis, Aufgbe 1 1.1 Die Funktion f ist gegeben durch π f( x) = + sin x ; x. Ds Schubild von f ist K. 1.1.1 (8 Punkte)

Mehr

2006 AII. f : x f x x 4 g : x f x. f x f x 0 gilt und geben Sie die Bedeutung dieser Gleichung für den Graphen von f an. (4 BE)

2006 AII. f : x f x x 4 g : x f x. f x f x 0 gilt und geben Sie die Bedeutung dieser Gleichung für den Graphen von f an. (4 BE) 006 AII.0 Geeben sind die reellen Funktionen f : x f x x : x f x mit ID f ID IR.. Zeien Sie, dass in der esamten Definitionsmene und f x f x 0 ilt und eben Sie die Bedeutun dieser Gleichun für den Graphen

Mehr

Ortskurven besonderer Punkte

Ortskurven besonderer Punkte Ortskurven besonderer Punkte 1. Wir betrchten die Funktionenschr f mit f (x = x+ e x, D f =R und R\{0}. ( Bestimme in Anhängigkeit des Schrprmeters die Nullstellen von f und ds Verhlten von f für x ±.

Mehr

Mathematik für Wirtschaftswissenschaftler im WS 12/13 Lösungen zu den Übungsaufgaben Blatt 8

Mathematik für Wirtschaftswissenschaftler im WS 12/13 Lösungen zu den Übungsaufgaben Blatt 8 Mthemtik für Wirtschftswissenschftler im WS /3 Lösunen zu den Übunsufben Bltt 8 Aufbe 3 Berechnen Sie die folenden Interle durch prtielle Intertion. ) c) e d. (Hinweis: Interieren Sie zweiml prtiell).

Mehr

Abbildung 1: Achilles und seine Schildkröte.

Abbildung 1: Achilles und seine Schildkröte. PROBEKLAUSUR II MATHEMATIK STUDIENGANG MB THEMA I: FOLGEN UND REIHEN (5 Minuten) Augbe 1 (Grenzwertig)**: Prdoon des ZENO: Achilles läut mit einer Schildkröte um die Wette. Weil Achilles zehnml so schnell

Mehr

Formelsammlung für das berufliche Gymnasium Niedersachsen Mathematik

Formelsammlung für das berufliche Gymnasium Niedersachsen Mathematik Bohner Ott Deusch Formelsmmlung ür ds eruliche Gymnsium Niederschsen Mthemtik Merkur M Verlg Rinteln irtschtswissenschtliche Bücherei ür Schule und Pris Begründet von Hndelsschul-Direktor Dipl.-Hdl. Friedrich

Mehr

1 Folgen. 1. Februar 2016 ID 03/455. a) Folgende Folge ist gegeben: a n+1 = 7a n 12a n 1, a 0 = 1, a 1 = 0 (1) Charakteristisches Polynom:

1 Folgen. 1. Februar 2016 ID 03/455. a) Folgende Folge ist gegeben: a n+1 = 7a n 12a n 1, a 0 = 1, a 1 = 0 (1) Charakteristisches Polynom: Tutorium Ynnick Schrör Lösung zur Bonusklusur vom WS 1/13 Ynnick.Schroer@rub.de 1. Februr 016 ID 03/455 1 Folgen ) Folgende Folge ist gegeben: n+1 7 n 1 n 1, 0 1, 1 0 (1) Chrkteristisches Polynom: q 7q

Mehr

Ein Kluger denkt so viel, dass er keine Zeit zum Reden hat. Ein Dummer redet so viel, dass er keine Zeit zum Denken hat. (Anonym)

Ein Kluger denkt so viel, dass er keine Zeit zum Reden hat. Ein Dummer redet so viel, dass er keine Zeit zum Denken hat. (Anonym) Ein Kluger dent so viel, dss er eine Zeit zum Reden ht. Ein Dummer redet so viel, dss er eine Zeit zum Denen ht. (Anonym) 6 Gnzrtionle Funtionen 6 Gnzrtionle Funtionen Wir wollen nun uch Funtionen betrchten,

Mehr

9 Integralrechnung. 9.1 Das Riemann-Integral: Sei [a, b] ein beschränktes abgeschlossenes Intervall und f : [a, b] R eine beschränkte Funktion.

9 Integralrechnung. 9.1 Das Riemann-Integral: Sei [a, b] ein beschränktes abgeschlossenes Intervall und f : [a, b] R eine beschränkte Funktion. 9 ntegrlrechnung 9. Ds Riemnn-ntegrl: Sei [, b] ein beschränktes bgeschlossenes ntervll und f : [, b] R eine beschränkte Funktion. Problem: Bestimme Flächeninhlt A zwischen Grphen von f und x-achse. Betrchte

Mehr

Analysis (1. Semester)

Analysis (1. Semester) Fchhochschule Wiesbden Pro. Dr. M. Götz Fchbereich 8 MNDU Anlysis. Semester ür den Studiengng Interntionles Wirtschtsingenieurwesen Foliensmmlung* ls Ergänzung zur Mitschrit im Unterricht *Hinweis: Der

Mehr

Lösungsvorschlag zu den Präsenzaufgaben der 13. Übung

Lösungsvorschlag zu den Präsenzaufgaben der 13. Übung FAKULTÄT FÜR MATHEMATIK Prof. Dr. Ptrizio Neff Christin Thiel 07.07.04 Lösungsvorschlg zu den Präsenzufgben der 3. Übung Präsenzufgbe : Wir hben die Determinnte bisher ls Kriterium zur Invertierbrkeit

Mehr

Kapitel 7. Integralrechnung für Funktionen einer Variablen

Kapitel 7. Integralrechnung für Funktionen einer Variablen Kpitel 7. Integrlrechnung für Funktionen einer Vriblen In diesem Kpitel sei stets D R, und I R ein Intervll. 7. Ds unbestimmte Integrl (Stmmfunktion) Es sei f : I R eine Funktion. Eine differenzierbre

Mehr

Flächenberechnung. Aufgabe 1:

Flächenberechnung. Aufgabe 1: Flächenerechnung Aufge : Berechnen Sie den Flächeninhlt zwischen dem Funktionsgrphen und der -Achse in den Grenzen von is von: ) f() = ) f() = - Skizzieren Sie die Funktionsgrphen und schrffieren Sie die

Mehr

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 10. dt. Welche der folgenden Aussagen ist richtig? t3 + 2

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 10. dt. Welche der folgenden Aussagen ist richtig? t3 + 2 D-MAVT/D-MATL Anlysis I HS 7 Dr. Andres Steiger Lösung - Serie.. Sei f(x) : () f() . x (c) f( ) . Die Funktion g : t t + ist, dss ds Integrl b dt. Welche der folgenden Aussgen

Mehr

Höhere Mathematik für Ingenieure , Uhr

Höhere Mathematik für Ingenieure , Uhr Studiengng: Mtrikelnummer: 3 5 6 Z Punkte Note Prüfungsklusur zum Modul Höhere Mthemtik für Ingenieure 0. 7. 05, 8.00 -.00 Uhr Zugelssene Hilfsmittel: A-Blätter eigene, hndschriftliche Ausrbeitungen ber

Mehr

2 Berechnung von Flächeninhalten unter Kurvenstücken

2 Berechnung von Flächeninhalten unter Kurvenstücken Übungsmteril 1 Berechnung von Flächeninhlten unter Kurvenstücken.1 Annäherung durch Rechtecke Um die Fläche zu berechnen, die zwischen dem Funktionsgrphen einer Funktion und der -Achse eingeschlossen wird,

Mehr

+ 2 2 = 0 = 1 ± Die drei Nullstellen. x x x 2,3

+ 2 2 = 0 = 1 ± Die drei Nullstellen. x x x 2,3 Hilfsmittelfreier Teil. Beispielufgbe 1 zur Anlysis Gegeben ist die Funktion f mit der Gleichung f ( x ) = x 3 + x x. Die zeigt den Grphen der Funktion f. (1) Berechnen Sie lle Nullstellen der Funktion

Mehr

Zentrale schriftliche Abiturprüfung Mathematik. Grundkurs

Zentrale schriftliche Abiturprüfung Mathematik. Grundkurs Ministerium für Bildung, Jugend und Sport Zentrle schriftliche Abiturprüfung 2006 Aufgbenstellungen A1 und A2 (Whl für Prüflinge) Mthemtik für Prüflinge Aufgbenstellungen A3 (siehe Extrbltt) (wird durch

Mehr

Schriftliche Abiturprüfung Grundkursfach Mathematik. - Nachtermin -

Schriftliche Abiturprüfung Grundkursfach Mathematik. - Nachtermin - Abschrift des Originlmterils vom Sächsischen Sttsministerium für Kultus Sächsisches Sttsministerium für Kultus Schuljhr 00/03 Geltungsbereich: - Allgemein bildendes Gymnsium - Abendgymnsium und Kolleg

Mehr

Unbestimmte Integrale. Üben. Unbestimmte Integrale. Lösung. Berechne: Klasse. Schwierigkeit. Nr. math. Thema. Art. Klasse. math. Thema.

Unbestimmte Integrale. Üben. Unbestimmte Integrale. Lösung. Berechne: Klasse. Schwierigkeit. Nr. math. Thema. Art. Klasse. math. Thema. f) e) cos sin sin) (cos d) ) ( ) ( Berechne: f) e) sin) (cos d) ) ( ) ( Bestimme diejenige Stmmfunktion von f, deren Grph durch P verläuft! f : ; P( /) f : P(/ ) f : cos P( / ) d) f : P(/ ). Eine beliebige

Mehr

Integralrechnung. www.mathe-total.de. Aufgabe 1

Integralrechnung. www.mathe-total.de. Aufgabe 1 Integrlrechnung Aufgbe Bestimme die Fläche zwischen der Kurve der Funktion f() = und -Achse über dem Intervll I = [; 3] näherungsweise. Bestimme die Obersumme und Teile ds Intervll I in drei gleich große

Mehr

19 Aufstellen von Funktionstermen

19 Aufstellen von Funktionstermen 9 Austellen von Funktionstermen 9 Austellen von Funktionstermen Kert man die Kurvendiskussion um, so ordert man jetzt, dass aus voreebenen Eienscaten eines Funktionsraen die entsrecende Funktion eunden

Mehr

Anforderungsniveau Prüfungsteil Sachgebiet digitales Hilfsmittel erhöht B Analysis CAS

Anforderungsniveau Prüfungsteil Sachgebiet digitales Hilfsmittel erhöht B Analysis CAS Gemeinsme Abiturufgbenpools der Länder Aufgbensmmlung Aufgbe für ds Fch Mthemtik Kurzbeschreibung Anforderungsniveu Prüfungsteil Schgebiet digitles Hilfsmittel erhöht B Anlysis CAS 1 Aufgbe 1 Gegeben ist

Mehr

Repetitionsaufgaben Exponential-und Logarithmusfunktion

Repetitionsaufgaben Exponential-und Logarithmusfunktion Repetitionsufgben Eponentil-und Logrithmusfunktion Inhltsverzeichnis A) Vorbemerkungen B) Lernziele C) Eponentilfunktionen mit Beispielen 2 D) Aufgben Ep.fkt. mit Musterlösungen 6 E) Logrithmusfunktionen

Mehr

Gebrochenrationale Funktionen (Einführung)

Gebrochenrationale Funktionen (Einführung) Gebrochenrtionle Funktionen (Einführung) Ac Eine gebrochenrtionle Funktion R ist von der Form R(x) P(x) und Q(x) gnzrtionle Funktionen n-ten Grdes sind. P(x) Q(x), wobei Im Allgemeinen ht eine gebrochenrtionle

Mehr

Höhere Mathematik für die Fachrichtung Physik

Höhere Mathematik für die Fachrichtung Physik Krlsruher Institut für Technologie Institut für Anlysis Dr. Christoph Schmoeger Dipl.-Mth. Sebstin Schwrz Höhere Mthemtik für die Fchrichtung Physik Lösungsvorschläge zum. Übungsbltt Aufgbe 6 (Übung) )

Mehr

Analysis. Klausur zu e-funktionen (Produkt-/Kettenregel, momentane Änderungsrate) (Bearbeitungszeit: 90 Minuten) Gymnasium J1.

Analysis. Klausur zu e-funktionen (Produkt-/Kettenregel, momentane Änderungsrate) (Bearbeitungszeit: 90 Minuten) Gymnasium J1. Anlysis Klusur zu e-funktionen (Produkt-/Kettenregel, momentne Änderungsrte) (Berbeitungszeit: 90 Minuten) Gymnsium J Alender Schwrz www.mthe-ufgben.com Jnur 05 Pflichtteil - ohne Hilfsmittel Aufgbe :

Mehr

Uneigentliche Riemann-Integrale

Uneigentliche Riemann-Integrale Uneigentliche iemnn-integrle Zweck dieses Abschnitts ist es, die Vorussetzungen zu lockern, die wir n die Funktion f : [, b] bei der Einführung des iemnn-integrls gestellt hben. Diese Vorussetzungen wren:

Mehr

R. Brinkmann Seite Aufgabe Die Gerade g verläuft durch die Punkte P 4 3,5 und P 2,5 1.

R. Brinkmann  Seite Aufgabe Die Gerade g verläuft durch die Punkte P 4 3,5 und P 2,5 1. R. Brinkmnn http://brinkmnn-du.de Seite 9.09.0 Lösung linere Funktionen Teil IX en: A A A A Die Gerde g verläuft durch die Punkte P,5 und P,5. 5 Die Gerde h verläuft durch die Punkte P( 5,5 ) und P. Wie

Mehr

Grundwissen Abitur Analysis

Grundwissen Abitur Analysis GYMNASIUM MIT SCHÜLERHEIM PEGNITZ mthem-technolog u sprchl Gmnsium WILHELM-VON-HUMBOLDT-STRASSE 7 9257 PEGNITZ FERNRUF 0924/48333 FAX 0924/2564 Grundwissen Abitur Anlsis Ws sind Potenzfunktion mit ntürlichen

Mehr

( ) ( ) 4. Der Hauptsatz der Infinitesimalrechnung. Hauptsatz (1. Form) I. Newton ( ), G.F. Leibniz ( )

( ) ( ) 4. Der Hauptsatz der Infinitesimalrechnung. Hauptsatz (1. Form) I. Newton ( ), G.F. Leibniz ( ) 4. Der Huptstz der Infinitesimlrechnung Huptstz (. orm) I. Newton (64-77), G.. Leiniz (646-76) ür jede im Intervll [,] stetige unktion f sei ( ) = f ( t) dt sogennnte Integrlfunktion dnn gilt: Die Integrlfunktion

Mehr

Kapitel 8 Anwendungen der Di erentialrechnung

Kapitel 8 Anwendungen der Di erentialrechnung Kpitel 8 Anwendungen der Di erentilrechnung Kpitel 8 Anwendungen der Di erentilrechnung Mthemtischer Vorkurs TU Dortmund Seite 99 / 235 Kpitel 8 Anwendungen der Di erentilrechnung Stz 8.1 (Mittelwertstz

Mehr

f : G R ϕ n 1 (x 1,...,x n 1 ) Das ist zwar die allgemeine Form, aber es ist nützlich sie sich für den R 2 und R 3 explizit anzuschauen.

f : G R ϕ n 1 (x 1,...,x n 1 ) Das ist zwar die allgemeine Form, aber es ist nützlich sie sich für den R 2 und R 3 explizit anzuschauen. Trnsformtionsstz von Sebstin üller Integrtion über Normlgebiete Allgemein knn mn im R n ein Normlgebiet wie folgt definieren: G : { R n 1 b, ϕ 1 ( 1 ) ψ 1 ( 1 ), ϕ ( 1, ) 3 ψ ( 1, ),... ϕ n 1 ( 1,...,

Mehr

Mathematik 1 für Bauwesen 14. Übungsblatt

Mathematik 1 für Bauwesen 14. Übungsblatt Mthemtik für Buwesen Übungsbltt Fchbereich Mthemtik Wintersemester 0/0 Dr Ivn Izmestiev 8/900 Dr Vince Bárány, M Sc Juli Plehnert Gruppenübung Aufgbe G () Berechnen Sie ds Volumen des Rottionskörpers,

Mehr

( ), Lösungen zum Übungsblatt Differentialrechnung. für Funktionen einer Variablen für Naturwissenschaftler (HM1) = +

( ), Lösungen zum Übungsblatt Differentialrechnung. für Funktionen einer Variablen für Naturwissenschaftler (HM1) = + Lösungen zum Üungsltt Differentilrechnung für Funktionen einer Vrilen für Nturwissenschftler HM Aufge rechtsseitige Aleitung: f f und eenflls ist die linksseitige Aleitung f lso esitzt f in eine uneigentliche

Mehr

Vorkurs Mathematik DIFFERENTIATION

Vorkurs Mathematik DIFFERENTIATION Vorkurs Mthemtik 6 DIFFERENTIATION Beispiel (Ableitung von sin( )). Es seien f() = sin g() = h() =f(g()) = sin. (f () =cos) (g () =) Also ist die Ableitung von h: h () =f (g())g () =cos = cos. Mn nennt

Mehr

Die Versiera der Agnesi

Die Versiera der Agnesi Vermischte Aufgben: Anlysis und Geometrie S.. 1 Die Versier der Agnesi Am 16. Mi 014 zeigte Google ls Erinnerung n den 96. Geburtstg der itlienischen Mthemtikerin Mri Getn Agnesi ein sogennntes Doodle.

Mehr

Apsel/Wende Probeabitur LK Mathematik 2004/2005 Seite 2

Apsel/Wende Probeabitur LK Mathematik 2004/2005 Seite 2 Apsel/Wende Probebitur LK Mthemtik 004/005 Seite Hinweise für Schüler Aufgbenuswhl Von den vorliegenden Aufgben sind die Pflichtufgben P und P zu lösen. Von den Whlufgben W3 bis W6 sind Aufgben uszuwählen

Mehr

Übungen zu Analysis für PhysikerInnen I

Übungen zu Analysis für PhysikerInnen I Universität Wien, WS 04/5 Übungen zu Anlysis für PhysikerInnen I Weitere Aufgben zum Lernen und Üben Offene Aufgben ( ) Berechnen Sie direkt mit Hilfe der Definition der Ableitung (Grenzwert des Differenzenquotienten)!

Mehr

Lernkarten. Analysis. 11 Seiten

Lernkarten. Analysis. 11 Seiten Lernkrten Anlysis Seiten Zum Ausdrucken muss mn jeweils eine Vorderseite drucken, dnn ds Bltt wenden, nochmls einlegen und die Rückseite drucken. Am esten druckt mn die Krten uf festem Ppier oder uf Visitenkrten-

Mehr

Analysis I. Nicolas Lanzetti

Analysis I. Nicolas Lanzetti Anlysis I Nicols Lnzetti lnicols@student.ethz.ch Nicols Lnzetti Anlysis I HS 204 Vorwort Dieses Skript wurde unter Verwendung meiner Notizen verfsst. Es dient der Möglichkeit, den Stoff der Vorlesung Anlysis

Mehr

SBP Mathe Grundkurs 2. Differentialquotient. Namen und Schreibweisen für Differentialquotienten. Ableitung von f(x) = c.

SBP Mathe Grundkurs 2. Differentialquotient. Namen und Schreibweisen für Differentialquotienten. Ableitung von f(x) = c. SBP Mthe Grundkurs 2 # 0 by Clifford Wolf # 0 Antwort Diese Lernkrten sind sorgfältig erstellt worden, erheben ber weder Anspruch uf Richtigkeit noch uf Vollständigkeit. Ds Lernen mit Lernkrten funktioniert

Mehr

Teil mit Taschenrechner (ohne CAS)

Teil mit Taschenrechner (ohne CAS) Sächsisches Sttsministerium ür Kultus Schuljhr 0/05 Schritliche Abschlussprüung n Fchoberschulen/ Zustzprüung zum Erwerb der Fchhochschulreie in berulichen Bildungsgängen Mthemtik nichttechnische Richtungen

Mehr

Die Hyperbeläste kommen den Koordinaten-achsen beliebig nahe. Sie sind Asymptoten der Hyperbel.

Die Hyperbeläste kommen den Koordinaten-achsen beliebig nahe. Sie sind Asymptoten der Hyperbel. .8. Die indirekte (umgekehrte) Proportionlität Die Funktion f : y \ heisst umgekehrte (indirekte) Proportionlität. Spezilfll : f: Bilde den Kehrwert der gegebenen Zhl. An der Stelle ist die Funktion nicht

Mehr

Klausur - Theoretische Mechanik für Bachelor (T1)

Klausur - Theoretische Mechanik für Bachelor (T1) Klusur zur T: Theoretische Mechnik, SoSe4 Prof. Dr. Dieter Lüst Theresienstr. 37, Zi. 45 Dr. Reinke Sven Isermnn Reinke.Isermnn@lmu.de Klusur - Theoretische Mechnik für Bchelor T) Hinweis: Die Klusur besteht

Mehr

a S 1 S 2 S G e z a/2 e y e x a/2 Abbildung 1: Werbetafel.

a S 1 S 2 S G e z a/2 e y e x a/2 Abbildung 1: Werbetafel. VU Modellbildun Beispiele zu Kpitel : Mechnische Systeme 1.) Geeben ist die in Abbildun 1 drestellte Werbetfel mit der Msse m. Die Werbetfel ist mittels zwei Seilen S 1 und S n einer Wnd befestit. Außerdem

Mehr

In diesem Abschnitt soll der Zusammenhang zwischen dem bestimmten Integral und dem Flächeninhalt untersucht werden.

In diesem Abschnitt soll der Zusammenhang zwischen dem bestimmten Integral und dem Flächeninhalt untersucht werden. 7. Bestimmtes Integrl nd Flächeninhlt In diesem Abschnitt soll der Zsmmenhng zwischen dem bestimmten Integrl nd dem Flächeninhlt nterscht werden. einführendes Beispiel: Berechne die folgenden bestimmten

Mehr

Kapitel 9 Integralrechnung

Kapitel 9 Integralrechnung Kpitel 9 Integrlrechnung Kpitel 9 Integrlrechnung Mthemtischer Vorkurs TU Dortmund Seite 1 / 18 Kpitel 9 Integrlrechnung Definition 9.1 (Stmmfunktion) Es seien f, F : I R Funktionen. F heißt Stmmfunktion

Mehr

Mathematische Probleme, SS 2018 Donnerstag 7.6. $Id: dreieck.tex,v /06/07 14:52:59 hk Exp $

Mathematische Probleme, SS 2018 Donnerstag 7.6. $Id: dreieck.tex,v /06/07 14:52:59 hk Exp $ $Id: dreieck.tex,v 1.45 2018/06/07 14:52:59 hk Exp $ 2 Dreiecke 2.2 Ähnliche Dreiecke Wir htten zwei Dreiecke kongruent gennnt wenn sie sich durch eine ewegung der Ebene ineinnder überführen lssen und

Mehr

Mathematik LK 12 M1, 1. Kursarbeit Integration Lösung f (x)dx=lim S n. a I. Dann heißt. a, x I. Dann gilt:

Mathematik LK 12 M1, 1. Kursarbeit Integration Lösung f (x)dx=lim S n. a I. Dann heißt. a, x I. Dann gilt: Mthemtik LK M,. Kursrbeit Integrtion Lösung..3 Aufgbe :. Erkläre mit Hilfe der Definition des Integrls den Unterschied zwischen dem Integrl einer Funktion und dem Flächeninhlt der Fläche zwischen dem Grphen

Mehr

1.2. Orthogonale Basen und Schmistsche Orthogonalisierungsverfahren.

1.2. Orthogonale Basen und Schmistsche Orthogonalisierungsverfahren. .. Orthogonle Bsen und Schmistsche Orthogonlisierungsverfhren. Definition.. Eine Bsis B = { b, b,..., b n } heit orthogonl, wenn die Vektoren b i, i =,,..., n, prweise orthogonl sind, d.h. bi b j = fur

Mehr

Strophoiden DEMO. Text Nr Stand 17. April 2016 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK.

Strophoiden DEMO. Text Nr Stand 17. April 2016 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. Strophoiden Tet Nr. 5415 Stnd 17. April 016 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK www.mthe-cd.de 5415 Strophoiden Vorwort Strophoiden sind wenig beknnte Kurven. Sie werden über eine

Mehr

Beispiel-Abiturprüfung

Beispiel-Abiturprüfung Mthemtik BeispielAbiturprüfung Prüfungsteile A und B Bewertungsschlüssel und Lösungshinweise (nicht für den Prüfling bestimmt) Die Bewertung der erbrchten Prüfungsleistungen ht sich für jede Aufgbe nch

Mehr

Musterlösung der 1. Klausur zur Vorlesung

Musterlösung der 1. Klausur zur Vorlesung Prof. Dr. M. Röger Dipl.-Mth. C. Zwilling Fkultät für Mthemtik TU Dortmund Musterlösung der. Klusur zur Vorlesung Anlysis I (24.02.206) Wintersemester 205/6 Aufgbe. Sei R mit sin() 0. Der Beweis erfolgt

Mehr

Ein Kluger denkt so viel, dass er keine Zeit zum Reden hat. Ein Dummer redet so viel, dass er keine Zeit zum Denken hat. (Anonym)

Ein Kluger denkt so viel, dass er keine Zeit zum Reden hat. Ein Dummer redet so viel, dass er keine Zeit zum Denken hat. (Anonym) Ein Kluger dent so viel, dss er eine Zeit zum Reden ht. Ein Dummer redet so viel, dss er eine Zeit zum Denen ht. (Anonym) 6 Gnzrtionle Funtionen 6 Gnzrtionle Funtionen Wir wollen nun uch Funtionen betrchten,

Mehr

3. Mathematik-Schularbeit für die 5. Klasse Autor: Gottfried Gurtner

3. Mathematik-Schularbeit für die 5. Klasse Autor: Gottfried Gurtner 3. Mthemtik-Schulrbeit für die 5. Klsse Autor: Gottfried Gurtner Arbeitszeit: 75 Minuten Lernstoff: Mthemtische Grundkompetenzen: AG.1 Einfche Terme und Formeln ufstellen, umformen und im Kontext deuten

Mehr

Tutorium Mathematik ITB1(B), WI1(B)

Tutorium Mathematik ITB1(B), WI1(B) Tutorium Mathematik ITB(B), WI(B) Aufgabenblatt D Differenzialrechnung Prof Dr Peter Plappert Fachbereich Grundlagen Die Aufgaben dieses Aufgabenblattes sollen ohne die Benutzung von Taschenrechnern bearbeitet

Mehr

Der Kreissektor (Kreisausschnitt) Kreissektors mit dem Mittelpunktswinkel ϕ : Bogenlänge: b Sektor. Flächeinhalt:: ASektor

Der Kreissektor (Kreisausschnitt) Kreissektors mit dem Mittelpunktswinkel ϕ : Bogenlänge: b Sektor. Flächeinhalt:: ASektor Grundwissen Mthemtik 0.Klsse 0 / Die Kugel Volumen der Kugel: Oberfläche der Kugel: V O Kugel Kugel 4 πr 4πr Der Kreissektor (Kreisusschnitt) Kreissektors mit dem Mittelpunktswinkel ϕ : ϕ Bogenlänge: b

Mehr

Mathematik 9/E1 oder 10/E1 Test zu den Übungsaufgaben Übergang in die Einführungsphase E1

Mathematik 9/E1 oder 10/E1 Test zu den Übungsaufgaben Übergang in die Einführungsphase E1 Mthemtik 9/E1 oder 10/E1 Test zu den Übungsufgben Übergng in die Einführungsphse E1 Freitg, 0. September 016 Zeit : 90 Minuten Nme :!!! Dokumentieren Sie lle Ansätze und Zwischenrechnungen!!! Teil A (ohne

Mehr

Grundwissen Mathematik Klasse 9 Übungsaufgaben

Grundwissen Mathematik Klasse 9 Übungsaufgaben Grundwissen Mthemtik Klsse 9 Übungsufgben Rechnen mit Wurzeln:. Rdiziere so weit wie möglich! 7 8 b c d) e) ( b ) f) b c ( ) g) b b. Berechne! ( 8 8 )( 7 ) 7 9 9. Mche den Nenner rtionl und vereinfche

Mehr

Übungsblatt Gleichungssysteme Klasse 8

Übungsblatt Gleichungssysteme Klasse 8 Üungsltt Gleichungsssteme Klsse 8 Auge : Berechne die Lösungen des Gleichungspres: I II 7 Kontrolliere durch Einseten. Auge : Löse dem Additionsverhren: I 7-6 II 9 Auge : Gegeen ist olgendes linere Gleichungssstem

Mehr

Es soll der Betrag eines Vektors berechnet werden, wenn dieser in Komponenten oder Koordinatenschreibweise gegeben ist. a 3. x 2

Es soll der Betrag eines Vektors berechnet werden, wenn dieser in Komponenten oder Koordinatenschreibweise gegeben ist. a 3. x 2 R. Brinkmnn http://brinkmnn-du.de Seite 8.. Vektoren im krtesischen Koordintensystem Betrg eines Vektors Es soll der Betrg eines Vektors berechnet werden, wenn dieser in Komponenten oder Koordintenschreibweise

Mehr

1. Beispiel für die Vereinbarung eines Verschiebungsvektors im Zylinderkoordinatensystem. Quellpunkt: ( 0,0, Aufpunkt: ( r,0,0)

1. Beispiel für die Vereinbarung eines Verschiebungsvektors im Zylinderkoordinatensystem. Quellpunkt: ( 0,0, Aufpunkt: ( r,0,0) . Beispiel für die Vereinbrung eines Verschiebungsvektors im Zlinderkoordintensstem ( 0,0, ' ) Quellpunkt: ( 0,0, ') Aufpunkt: ( r,0,0) R r ' r r,0,0 ( ) Vektor um Quellpunkt: 0 r ' 0 ' Vektor um Aufpunkt:

Mehr

Mathematischer Vorkurs NAT-ING1

Mathematischer Vorkurs NAT-ING1 Mthemtischer Vorkurs NAT-ING1 (02.09. 20.09.2013) Dr. Robert Strehl WS 2013-2014 Mthemtischer Vorkurs TU Dortmund Seite 1 / 20 Mthemtischer Vorkurs TU Dortmund Seite 2 / 20 Definition 9.1 (Stmmfunktion)

Mehr

D-MAVT/D-MATL Analysis I HS 2016 Dr. Andreas Steiger. Lösung - Serie 9

D-MAVT/D-MATL Analysis I HS 2016 Dr. Andreas Steiger. Lösung - Serie 9 D-MAVT/D-MATL Anlysis I HS 26 Dr. Andres Steiger Lösung - Serie 9. MC-Aufgben (Online-Abgbe). Es sei f die Funktion f() = e + 7. Welche der folgenden Funktionen sind Stmmfunktionen von f? () g() = 2 2

Mehr

4 Die Integralfunktion*

4 Die Integralfunktion* Übungsmteril 1 Die Integrlfuntion* In den vorigen Kpiteln hben wir bereits ds unbestimmte und ds bestimmte Integrl und deren Eigenschften ennengelernt. Ersteres liefert die Menge der Stmmfuntionen einer

Mehr

Pflichtteil Aufgben Aufgbe : ( VP) Bilden Sie die erste Ableitung der Funktion f mit sin() f() = Aufgbe : ( VP) Berechnen Sie ds Integrl ( ) 0 4 d Aufgbe : ( VP) Lösen Sie die Gleichung 4e + 6e = 4 Aufgbe

Mehr

Kapitel 9. Integration. Josef Leydold Auffrischungskurs Mathematik WS 2017/18 9 Integration 1 / 36. F (x) = f (x) Vermuten und Verifizieren.

Kapitel 9. Integration. Josef Leydold Auffrischungskurs Mathematik WS 2017/18 9 Integration 1 / 36. F (x) = f (x) Vermuten und Verifizieren. Kpitel 9 Integrtion Josef Leydold Auffrischungskurs Mthemtik WS 27/8 9 Integrtion / 36 Stmmfunktion Eine Funktion F() heißt Stmmfunktion einer Funktion f (), flls F () = f () Berechnung: Vermuten und Verifizieren

Mehr

Abschlussprüfung an Fachoberschulen / Zusatzprüfung zum Erwerb der Fachhochschulreife in beruflichen Bildungsgängen im Schuljahr 2007/2008

Abschlussprüfung an Fachoberschulen / Zusatzprüfung zum Erwerb der Fachhochschulreife in beruflichen Bildungsgängen im Schuljahr 2007/2008 Abschlussprüung n Fchoberschulen / Zustzprüung zum Erwerb der Fchhochschulreie in berulichen Bildungsgängen im Schuljhr 007/008 Hupttermin: Nch- bzw Wiederholtermin: 009008 Schulrten: Fch: Prüungsduer:

Mehr

Mathematik Rechenfertigkeiten

Mathematik Rechenfertigkeiten 2 Mthemtik Rechenfertigkeiten Skript Freitg Dominik Tsndy, Mthemtik Institut, Universität Zürich Winterthurerstrsse 9, 857 Zürich Irmgrd Bühler (Überrbeitung: Dominik Tsndy) 9.August 2 Inhltsverzeichnis

Mehr

Bericht zur Mathematischen Zulassungsprüfung im Mai 2011

Bericht zur Mathematischen Zulassungsprüfung im Mai 2011 Bericht zur Mthemtischen Zulssungsprüfung im Mi Heinz-Willi Goelden, Wolfgng Luf, Mrtin Pohl Am 4. Mi fnd die Mthemtische Zulssungsprüfung sttt. Die Prüfung bestnd us einer 9-minütigen Klusur, in der 5

Mehr

1 Differenzen- und Differentialquotient 2. 2 Differentiationsregeln 5. 3 Ableitung spezieller Funktionen 6. 4 Unbestimmtes und bestimmtes Integral 7

1 Differenzen- und Differentialquotient 2. 2 Differentiationsregeln 5. 3 Ableitung spezieller Funktionen 6. 4 Unbestimmtes und bestimmtes Integral 7 Universität Bsel Wirtschftswissenschftliches Zentrum Abteilung Quntittive Methoden Mthemtischer Vorkurs Dr. Thoms Zehrt Differentil- und Integrlrechnung Inhltsverzeichnis 1 Differenzen- und Differentilquotient

Mehr

Diskrete Energien. Lösung: (a) λ 1 = 2a, λ 2 = a = 2a 2, λ 3 = 2a 3, λ n = 2a n. = π a n, p n = k n = h 2a n. k n = 2π λ n. W n = p2 n 2m = h2

Diskrete Energien. Lösung: (a) λ 1 = 2a, λ 2 = a = 2a 2, λ 3 = 2a 3, λ n = 2a n. = π a n, p n = k n = h 2a n. k n = 2π λ n. W n = p2 n 2m = h2 Diskrete Energien 1. 8 entdeckten Mrc Fries und Andrew Steele uf einem Meteoriten sogennnte Crbon Whiskers, lnggestreckte Nnostrukturen us Kohlenstoff, von denen ngenommen wird, dss sie im Rum um junge

Mehr

(1 ξ) f (k) (ξ) + k! z x n+1. (n + 1)! 2 f (n + 1)!

(1 ξ) f (k) (ξ) + k! z x n+1. (n + 1)! 2 f (n + 1)! 0.. Lösung der Aufgbe. Wir schreiben f = sup{ f : [0, ]}. Für ξ ]0, [ und n N gibt es nch dem Stz von Tlor ein c ]ξ, [ so, dss: f = fξ + n ξ k f k ξ + k! k= Aus der Ttsche, dss f k 0 für lle k N ist, folgt

Mehr

Grundwissen 8 Klasse. y = c x ist, das x-y-diagramm eine Ursprungsgerade ist.

Grundwissen 8 Klasse. y = c x ist, das x-y-diagramm eine Ursprungsgerade ist. Grundwissen 8 Klsse Direkt proportionle Größen x und y sind direkt proportionl, wenn zum n-en Wert ür x der n-e Wert ür y eört, die Wertepre quotientenlei y y2 sind:, x x2 y x ist, ds x-y-dirmm eine Ursprunserde

Mehr

Integration von Regelfunktionen

Integration von Regelfunktionen Integrtion von Regelfunktionen Inhltsverzeichnis Einleitung 2 Treppen- und Regelfunktionen 3 Denition des Integrls 4 Rechen mit Integrlen 2 4. Grundlegende Eigenschften.............................................

Mehr

Es berechnet die Fläche zwischen Kurve und x-achse.

Es berechnet die Fläche zwischen Kurve und x-achse. 1. Welche Idee steckt hinter dem Integrl? 2. Welche geometrische Bedeutung ht ds Integrl? 3. Wie erechnet mn ein Integrl? Aufsummieren unendlich vieler infinitesiml kleiner Beiträge, die lle die Form eines

Mehr

2. Flächenberechnungen

2. Flächenberechnungen Anlysis Integrlrechnung. Flächenberechnungen.. Die Flächenfunktion ) Flächenfunktionen ufzeichnen Skizziere zur gegebenen Funktion diejenige Funktion, welche die Fläche unterhlb der Funktionskurve misst.

Mehr

10 Das Riemannsche Integral

10 Das Riemannsche Integral 10 Ds Riemnnsche Integrl 50 10 Ds Riemnnsche Integrl Ziel dieses Prgrphen ist es, den Inhlt einer Fläche, die vom Grphen einer Funktion berndet wird, exkt zu definieren. f(b) f() = t 0 t1 t2 t3 t4 t5 t

Mehr

Stammfunktionen, Hauptsätze, unbestimmtes Integral

Stammfunktionen, Hauptsätze, unbestimmtes Integral Stmmfunktionen, Huptsätze, unbestimmtes Integrl Sei I ein Intervll, f beschränkt uf I und R-integrierbr für jedes [, b] I, und I. Dnn heißt die Funktion F mit D(F ) = I und F () = f(t)dt Integrl von f

Mehr

Satz 6.5 (Mittelwertsatz der Integralrechnung) Sei f : [a, b] R stetig. Dann gibt es ein ξ [a, b], so dass. b a. f dx = (b a)f(ξ) f dx (b a)m.

Satz 6.5 (Mittelwertsatz der Integralrechnung) Sei f : [a, b] R stetig. Dann gibt es ein ξ [a, b], so dass. b a. f dx = (b a)f(ξ) f dx (b a)m. Stz 6.5 (Mittelwertstz der Integrlrechnung) Sei f : [, b] R stetig. Dnn gibt es ein ξ [, b], so dss 9:08.06.2015 gilt. f dx = (b )f(ξ) Lemm 6.6 Sei f : [, b] R stetig und m f(x) M für lle x [, b]. Dnn

Mehr

, für x 2, ax wenn x > 3. 2x+a wenn x Integralrechnung

, für x 2, ax wenn x > 3. 2x+a wenn x Integralrechnung . INTEGRALRECHNUNG 69 Aufgbe 9.3 Bestimme lle Extrem der Funktion f : [,] R, x ( x) +9x. Aufgbe 9.3 Bestimme die Extrem der Funktion f : R\{} R : x x4 5x 4 (x ) 3. Untersuche die Funktion hinsichtlich

Mehr