Aufgabenserie Signale

Größe: px
Ab Seite anzeigen:

Download "Aufgabenserie Signale"

Transkript

1 {Bild} Aufgben Regelungstechnik Felix Iseli V Aufgbenserie Signle Aufgbe 5 f5( x) sin( x) + sin( x) + sin( x) + sin( x) + sin( 5x) 5 f( x) sin( x) + sin( x) 6 5 f5( x) f( x) 6 8 x f ( x) sin( x) sin( x) f ( x) f ( x) sin( x) f ( x) sin( x) f 5 ( x) sin( 5x) 5 5 Die fünf ersten Approximtionen f ( x) f ( x) f ( x) f ( x) f 5 ( x) 6 8 x.9.6 / Aufgbenserie Felix Iseli V.xmcd

2 {Bild} Aufgben Regelungstechnik Felix Iseli V n.. 6 A ω n n ( n ) n Amplitude.5 Hrmonische A n ω n in Pi n n-te Approximtion s ( x) n i sin( i x) i 5 n-te Approximtion s ( x) x.9.6 / Aufgbenserie Felix Iseli V.xmcd

3 {Bild} Aufgben Regelungstechnik Felix Iseli V Aufgbe A ω s A cos ω t f t, ϕ ( + ϕ) + A i sin ω t + ϕ ORIGIN zeiger( z) x y x y x y Re( z) Im( z) Re( z) Im( z) x x sin y y cos x 5 Re( z) winkel x, y winkel x, y y 5 Im( z) x x cos winkel x, y 6 y y sin winkel x, y 6 X erweitern( x, y) 6 6 Quelle: Angewndte Mthemtik mit Mthcd, Bnd,ISBN Springer Wien New York.9.6 / Aufgbenserie Felix Iseli V.xmcd

4 {Bild} Aufgben Regelungstechnik Felix Iseli V z f(.s, ) z f(.s, ) z f.5s, x z zeiger( z ) x z zeiger ( z ) x z zeiger z y z zeiger( z ) y z zeiger ( z ) y z zeiger z Zeigerdigrmm in der Koplexen Ebene Im( z ) y z Im( z ) y z Im( z ) y z x z Re z,, Re z, x z, Re z, x z.9.6 / Aufgbenserie Felix Iseli V.xmcd

5 {Bild} Aufgben Regelungstechnik Felix Iseli V Aufgbe f( tx) cos 5 tx cos 6 tx f( tx) f( tx) ej 5 tx + e j 5 tx e j 6 tx + e j 6 tx tx f( tx) ( ej tx e j tx + e j tx e j tx + e j tx e j tx + e j tx e j tx ) f( tx) ej tx + e j t x + e j tx + e j t x f( tx) cos tx ( + cos( tx) ) ( ( + cos( tx) )) f( tx).5 cos tx f( tx) Aufgbe ). d m v F c w v Nicht liner d v d t tx b). d d d m x + µ x F + c F d t d t d t Liner und Zeitinvrint d t nich explizit vorhnden c). d d m x + µ t d t dt x F Liner und Zeitvrint weil t explizit enthlten ist.9.6 5/ Aufgbenserie Felix Iseli V.xmcd

6 {Bild} Aufgben Regelungstechnik Felix Iseli V Aufgbe 5 µ k 5 Lplce d k x µ dt x + F k X( s) + µ s X( s) F( s) G( s) X( s) F( s) µ k G( s) T G( s) G k + µ s k ( s) µ + k s ORIGIN k + T s ORIGIN bodedigrmm G, f min, f mx, Schritte "Frequenzvektor" for N.. Schritte log( f min ) log f mx log( f min ) + Schritte f N "Amplitudengng" A log G( ( f j ) ) "Phsengng" ϕ rg( ( G( f j ))) 8 k for n.. Schritte ϕ ϕ n+ ϕ n if ( ϕ > 8) + ϕ < 8 for pos n + k h k ϕ k k + r pos.. Schritte m ϕ r ϕ r + h m for m.. k if k f A ϕ N Quelle: Angewndte Mthemtik mit Mthcd, Bnd,ISBN Springer Wien New York.9.6 6/ Aufgbenserie Felix Iseli V.xmcd

7 {Bild} Aufgben Regelungstechnik Felix Iseli V f A ϕ bodedigrmm G,,, Amplitudengng mx( A ) Amplitude in db A f Frequenz in Hz Phsengng 5 Phsendrehung in Grd ϕ f Frequenz in Hz.9.6 7/ Aufgbenserie Felix Iseli V.xmcd

8 {Bild} Aufgben Regelungstechnik Felix Iseli V Aufgbe 6 ). T.5 T k G m ( q) F r ( q) ϕ( q) k G ( + q T ) ( + q T ) m ( q) + q T k ( + q T ) f A ϕ bodedigrmm G m,,, 6 Amplitudengng Amplitude in db mx( A ).. Phsendrehung in Grd Phsengng 8.. Sprungntwort.9.6 8/ Aufgbenserie Felix Iseli V.xmcd

9 {Bild} Aufgben Regelungstechnik Felix Iseli V c). c / d). d m v F r µ v d t m q v( q) F r q v( q) m 8 µ e). G Fz ( q) q m + µ µ G m Fz ( q) + µ q 8 q + 8 q + G ( + 8 q) Fz ( q) + µ m µ q f ). G tot ( q) G m ( q) G Fz ( q) G tot ( q) ( +.5 q) ( + q) ( + 8 q) G tot ( q) ( +.5 q) ( + q) ( + 8 q) g). Amplitude in db 6 8 f A ϕ bodedigrmm G tot,,,.. Amplitudengng mx( A ) Phsendrehung in Grd Phsengng 7.. h). v Fz ( q) G tot ( q) v end m ϕ( q) s.9.6 9/ Aufgbenserie Felix Iseli V.xmcd

10 {Bild} Aufgben Regelungstechnik Felix Iseli V Aufgbe 7 ).b). Tx 5 k mb k x tx,.. tx tx Tx Tx k h ( tx) k mb + k x e k ( tx) k mb + k x e Temperrur [ C] Aufheitskurve Abkühlkurve Ziet [s] k us k ein x Tx c). k us k mb + k x e t h ( x) ln x k mb k x k x Tx s t h ( k ein ) s t h k us x 56.8 s Tx d). k k mb + k x e t ( x) ln s t ( k us ) s t k ein.95 s x k mb k x Tx.9.6 / Aufgbenserie Felix Iseli V.xmcd

11 {Bild} Aufgben Regelungstechnik Felix Iseli V Aufgbe 8 ). G ( q) G + q 5 ( q) G. + q 6 ( q) +.q G totl ( q) G ( q) G 5 ( q) G 6 ( q) G totl ( q) ( + q) ( + q) ( +. q) f A ϕ f 6 A 6 ϕ 6 bodedigrmm G,,, bodedigrmm G 6,,, f 5 A 5 ϕ 5 f 7 A 7 ϕ 7 bodedigrmm G 5,,, bodedigrmm G totl,,, b). 5 Amplituden- und Phsengänge Amplitude in db 5 7 Amplitude G Amplitude G Amplitude G Amplitude Gtotl Phse G Phse G Phse G Phse Gtotl Phsendrehung in Grd c). Verstärkung ist etw db. d). Wenn die Phsendrehung bei eine Verstärkung von db grösser ls 8 ist wird ds Sysem instbil. e). Sysem instbil, dher nicht möglich..9.6 / Aufgbenserie Felix Iseli V.xmcd

12 {Bild} Aufgben Regelungstechnik Felix Iseli V Aufgbe 9 ). G 8 ( q) + q b). k log c). G ( q) 5 G q 9 ( q) G ( q) G 8 ( q) erweitern, q q + f 8 A 8 ϕ 8 f A ϕ bodedigrmm G 8,,, bodedigrmm G,,, f 9 A 9 ϕ 9 bodedigrmm G 9,,, Amplitudengng Amplitude in db Gs Gr Go.. Phsendrehung in Grd Phsengng 5.. Gs Gr Go.9.6 / Aufgbenserie Felix Iseli V.xmcd

Anhang D: Stabilität t linearer Systeme

Anhang D: Stabilität t linearer Systeme Anhng D: Stbilität t linerer Systeme (- / ) Im{G o (jω) Re{G o (jω) ω FHD Prof. Dr.-Ing. Gernot Freitg Seite Regelungstechnik - Stbilitätskriterien tskriterien Aufgbe: Entwurf stbiler Regelkreise Problem:

Mehr

Karlsruher Institut für Technologie (KIT) SS 2013 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning

Karlsruher Institut für Technologie (KIT) SS 2013 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning Krlsruher Institut für Technologie KIT SS 3 Institut für Anlysis 943 Prof Dr Tobis Lmm Dr Ptrick Breuning Höhere Mthemtik II für die Fchrichtung Physik 3 Übungsbltt Aufgbe Sei K ein Kreis im R vom Rdius

Mehr

Probeklausur Mathematik für Ingenieure C3

Probeklausur Mathematik für Ingenieure C3 Deprtment Mthemtik Dr. rer. nt. Lrs Schewe Mthis Sirvent Wintersemester 013/014 Probeklusur Mthemtik für Ingenieure C3 Anmerkungen zur Klusur: Die Arbeitszeit wird 90 Minuten betrgen. Sie können sämtliche

Mehr

Kapitel 9. Integration. Josef Leydold Auffrischungskurs Mathematik WS 2017/18 9 Integration 1 / 36. F (x) = f (x) Vermuten und Verifizieren.

Kapitel 9. Integration. Josef Leydold Auffrischungskurs Mathematik WS 2017/18 9 Integration 1 / 36. F (x) = f (x) Vermuten und Verifizieren. Kpitel 9 Integrtion Josef Leydold Auffrischungskurs Mthemtik WS 27/8 9 Integrtion / 36 Stmmfunktion Eine Funktion F() heißt Stmmfunktion einer Funktion f (), flls F () = f () Berechnung: Vermuten und Verifizieren

Mehr

Kapitel 9. Integration. Josef Leydold Auffrischungskurs Mathematik WS 2017/18 9 Integration 1 / 36

Kapitel 9. Integration. Josef Leydold Auffrischungskurs Mathematik WS 2017/18 9 Integration 1 / 36 Kpitel 9 Integrtion Josef Leydold Auffrischungskurs Mthemtik WS 207/8 9 Integrtion / 36 Stmmfunktion Eine Funktion F(x) heißt Stmmfunktion einer Funktion f (x), flls F (x) = f (x) Berechnung: Vermuten

Mehr

v, a Aufgabe D1 H11 Geg.: a = c w v 2, c w = const, c w > 0, v 0, τ Ges.:

v, a Aufgabe D1 H11 Geg.: a = c w v 2, c w = const, c w > 0, v 0, τ Ges.: Aufgbe D1 H11 Nchdem seine Mschinen gestoppt werden, verringert ein Continerschiff seine nfängliche eschwindigkeit v 0 lleine durch Reibung im Wsser. Für die Beschleunigung soll ngenommen werden, dss diese

Mehr

Felder und Wellen. Musterlösung zur 13. Übung. 30. Aufgabe WS 2016/2017. Hinlaufende Welle: E d = E d e j(ωt k d r) e y

Felder und Wellen. Musterlösung zur 13. Übung. 30. Aufgabe WS 2016/2017. Hinlaufende Welle: E d = E d e j(ωt k d r) e y Felder und Wellen WS 6/7 Musterlösung zur 3. Übung 3. Aufgbe Hinlufende Welle: E e = E e e jωt k e r) e y ke = k cosφ e e z +sinφ e e x ) Reflektierte Welle: E r = E r e jωt k r r) e y kr = k cosφ r e

Mehr

Technische Numerik Numerische Integration

Technische Numerik Numerische Integration W I S S E N T E C H N I K L E I D E N S C H A F T Technische Numerik Numerische Integrtion Peter Gngl Institut für Angewndte Mthemtik, Technische Universität Grz c Alle Rechte vorbehlten. Nchdruck und

Mehr

Prüfung im Modul Grundlagen der Regelungstechnik Studiengänge Medizintechnik / Elektrotechnik

Prüfung im Modul Grundlagen der Regelungstechnik Studiengänge Medizintechnik / Elektrotechnik Brandenburgische Technische Universität Cottbus-Senftenberg Fakultät 1 Professur Systemtheorie Prof. Dr.-Ing. D. Döring Prüfung im Modul Grundlagen der Regelungstechnik Studiengänge Medizintechnik / Elektrotechnik

Mehr

Mathematik 1 für Bauwesen 14. Übungsblatt

Mathematik 1 für Bauwesen 14. Übungsblatt Mthemtik für Buwesen Übungsbltt Fchbereich Mthemtik Wintersemester 0/0 Dr Ivn Izmestiev 8/900 Dr Vince Bárány, M Sc Juli Plehnert Gruppenübung Aufgbe G () Berechnen Sie ds Volumen des Rottionskörpers,

Mehr

MATHEMATIK 3 FÜR EI - ÜBUNGSBLATT 2 Wintersemester 2011/2012

MATHEMATIK 3 FÜR EI - ÜBUNGSBLATT 2 Wintersemester 2011/2012 Prof. Dr. O. Junge, A. Bittrcher Zentrum Mthemtik - M3 Technische Universität München MATHEMATIK 3 FÜR EI - ÜBUNGSBLATT Wintersemester / Tutorübungsufgben (3..-4..) Aufgbe T Seien R und α positiv. Die

Mehr

Kapitel 13. Taylorentwicklung Motivation

Kapitel 13. Taylorentwicklung Motivation Kpitel 13 Tylorentwicklung 13.1 Motivtion Sei D R offen. Sie erinnern sich: Eine in D stetig differenzierbre Funktion f : D R wird durch die linere Funktion g(x) = f() + f ()(x ) in einer Umgebung von

Mehr

Grundlagen. der Messtechnik. 2. Teil

Grundlagen. der Messtechnik. 2. Teil Grundlgen der Messtechnik 2. Teil iprom Messbweichungen und Abweichungsurschen Messprinzip: Messmethode: Messverfhren: Physiklisches Phänomen, uf dem die Messung bsiert Spezielle Vorgehensweise bei der

Mehr

f(x + iy) = u(x, y) + iv(x, y), f(z)dz := Re [f(γ(t)) γ(t)] dt + i

f(x + iy) = u(x, y) + iv(x, y), f(z)dz := Re [f(γ(t)) γ(t)] dt + i Funktionentheorie Komplexe Kurvenintegrle Themen des Tutoriums m 24.6.25: Jede komplexe Funktion f : D C knn mn drstellen ls f(x + iy) = u(x, y) + iv(x, y), wobei u und v reellwertige Funktionen uf R 2

Mehr

Höhere Mathematik II für die Fachrichtung Informatik. Lösungsvorschläge zum 8. Übungsblatt

Höhere Mathematik II für die Fachrichtung Informatik. Lösungsvorschläge zum 8. Übungsblatt KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heiko Hoffmnn SS Höhere Mthemtik II für die Fchrichtung Informtik Lösungsvorschläge zum 8. Übungsbltt Aufgbe 9 erechnen

Mehr

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern?

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern? An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern? Beugung m Dopplesplt Es ist nicht möglich, Detils eines Ojektes ufzulösen, die (wesentlich) kleiner sind ls die Wellenlänge

Mehr

Korrekturen Stand: 16. Juni 2005 Martin Horn, Nicolaos Dourdoumas: Regelungstechnik, Pearson-Studium, 2004

Korrekturen Stand: 16. Juni 2005 Martin Horn, Nicolaos Dourdoumas: Regelungstechnik, Pearson-Studium, 2004 Korrekturen Stand: 16. Juni 2005 Martin Horn, Nicolaos Dourdoumas: Regelungstechnik, Pearson-Studium, 2004 Abschnitt 2.2.1 Seite 34: Gleichung (2.4) muss lauten dφ(t) dt Abschnitt 2.2.5 = 0 + A +2A (At)1

Mehr

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 7. Übung/Lösung Mathematik für Studierende der Biologie 25.11.2015

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 7. Übung/Lösung Mathematik für Studierende der Biologie 25.11.2015 LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR BIOLOGIE Prof. Anres Herz, Dr. Stefn Häusler emil: heusler@biologie.uni-muenchen.e Deprtment Biologie II Telefon: 089-280-74800 Großhernerstr. 2 Fx:

Mehr

Regelungs- und Systemtechnik 1 - Übungsklausur 10

Regelungs- und Systemtechnik 1 - Übungsklausur 10 4 6 Fachgebiet Regelungstechnik Leiter: Prof. Dr.-Ing. Johann Reger Bearbeitungszeit: 2 Min Modalitäten Es sind keine Hilfsmittel zugelassen. Bitte schreiben Sie mit dokumentenechtem Schreibgerät (Tinte

Mehr

Rollender Zylinder in Zylinder

Rollender Zylinder in Zylinder Übungen zu Theoretische Physik I - echnik im Sommersemester 013 Bltt 10 vom 1.07.13 Abgbe: 08.07. Aufgbe 43 Rollender Zylinder in Zylinder Ein homogener Zylinder (Gesmtmsse, Rdius, Trägheitsmoment bzgl.

Mehr

3. Beschreibung dynamischer Systeme im Frequenzbereich

3. Beschreibung dynamischer Systeme im Frequenzbereich 3. Laplace-Transformation 3. Frequenzgang 3.3 Übertragungsfunktion Quelle: K.-D. Tieste, O.Romberg: Keine Panik vor Regelungstechnik!.Auflage, Vieweg&Teubner, Campus Friedrichshafen --- Regelungstechnik

Mehr

HS D. V 101 : Pohlsches Pendel. Gruppe : Versuchstag: Namen, Matrikel Nr.: Vorgelegt: Hochschule Düsseldorf Fachbereich EI.

HS D. V 101 : Pohlsches Pendel. Gruppe : Versuchstag: Namen, Matrikel Nr.: Vorgelegt: Hochschule Düsseldorf Fachbereich EI. Gruppe : Nmen, Mtrikel Nr.: HS D Hochschule Düsseldorf Versuchstg: Vorgelegt: Testt : V 11 : Pohlsches Pendel Zusmmenfssung: 12.3.215 Versuch: Pohlsches Pendel Seite 1 von 8 Gruppe : HS D Korrigiert m:

Mehr

Ü b u n g s b l a t t 13. Organisatorisches:

Ü b u n g s b l a t t 13. Organisatorisches: MATHEMATIK FÜ INFOMATIKE I WINTESEMESTE 7/8 POF. D. FIEDICH EISENBAND D. KAI GEHS Ü b u n g s b l t t 13 Orgnistorisches: Dieses Übungsbltt wir nicht mehr korrigiert. D ie Aufgben ennoch klusurrelevnt

Mehr

Übungen zu Analysis für PhysikerInnen I

Übungen zu Analysis für PhysikerInnen I Universität Wien, WS 04/5 Übungen zu Anlysis für PhysikerInnen I Weitere Aufgben zum Lernen und Üben Offene Aufgben ( ) Berechnen Sie direkt mit Hilfe der Definition der Ableitung (Grenzwert des Differenzenquotienten)!

Mehr

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am 8.7.211 Arbeitszeit: 12 min Name: Vorname(n): Matrikelnummer: Note: Aufgabe

Mehr

Aufgaben zur Analytischen Mechanik SS 2013 Blatt 10 - Lösungen. Aufgabe 1 Wiederholung Eigenwerte und Eigenvektoren (15 Punkte)

Aufgaben zur Analytischen Mechanik SS 2013 Blatt 10 - Lösungen. Aufgabe 1 Wiederholung Eigenwerte und Eigenvektoren (15 Punkte) Aufgben zur Anlytischen Mechnik SS 013 Bltt 10 - en Aufgbe 1 Wiederholung Eigenwerte und Eigenvektoren (15 Punkte Bestimmen Sie Eigenwerte λ 1 und λ sowie die Eigenvektoren v 1 und v der folgenden Mtrix:

Mehr

Einführung in die Numerische Mathematik Vordiplomsklausur,

Einführung in die Numerische Mathematik Vordiplomsklausur, Institut für Angewndte Anlysis und Numerische Simultion Prof Dr C Eck, Dr M Schulz, Dipl- Mth J Giesselmnn Universität Stuttgrt Sommersemester 9 Einführung in die Numerische Mthemtik Vordiplomsklusur,

Mehr

9 Integralrechnung. 9.1 Das Riemann-Integral: Sei [a, b] ein beschränktes abgeschlossenes Intervall und f : [a, b] R eine beschränkte Funktion.

9 Integralrechnung. 9.1 Das Riemann-Integral: Sei [a, b] ein beschränktes abgeschlossenes Intervall und f : [a, b] R eine beschränkte Funktion. 9 ntegrlrechnung 9. Ds Riemnn-ntegrl: Sei [, b] ein beschränktes bgeschlossenes ntervll und f : [, b] R eine beschränkte Funktion. Problem: Bestimme Flächeninhlt A zwischen Grphen von f und x-achse. Betrchte

Mehr

a 2π a) Der Ebenenabstand ist gegeben durch

a 2π a) Der Ebenenabstand ist gegeben durch Aufgbe 1 Ein bcc Kristll it einer Kntenlänge 6Å der kubischen Einheitszelle wird it Röntgenlicht der Wellenlänge λ3å bestrhlt. ) Welches sind die Millerindizes (h,k,l) (bzw. die Indizes des entsprechenden

Mehr

1. Aufgabe: Impuls des Waggons beim Aufprall ist mit 1 2 mv2 = mgh und v = 2gh p = m v 1 = m 2gh

1. Aufgabe: Impuls des Waggons beim Aufprall ist mit 1 2 mv2 = mgh und v = 2gh p = m v 1 = m 2gh 3 Lösungen 1. Aufgabe: Impuls des Waggons beim Aufprall ist mit 1 2 mv2 = mgh und v = 2gh p = m v 1 = m 2gh 1 (a) Nach dem Aufprall m u 1 = p = m v 1 m u 1 = m 2gh 1 e 1 = 12664Ns e 1 F = p t (b) p 2 =

Mehr

Vordiplomprüfung Mathematik 2016 MT/ST

Vordiplomprüfung Mathematik 2016 MT/ST Vordiplomprüfung Mthemtik 6 MT/ST ufgbe Eine ufgbe für Schnupperlehrlinge in einem rchitekturbüro: Für ein Einfmilienhus muss ein ushub erstellt werden Ds Terrin ist eben und flch Ds Hus ht eine Grundfläche

Mehr

9 Der Residuensatz mit Anwendungen

9 Der Residuensatz mit Anwendungen 36 9 Der Residuenstz mit Anwendungen 9. Definition: f : O C besitze für ε > in U ε ) O die Lurentreihe fz) = c n z ) n. Dnn heißt n= Res f := c S.?? = z = ε 2 ) fz)dz ds Residuum von f in. Andere Schreibweisen:

Mehr

Stammfunktionen, Hauptsätze, unbestimmtes Integral

Stammfunktionen, Hauptsätze, unbestimmtes Integral Stmmfunktionen, Huptsätze, unbestimmtes Integrl Sei I ein Intervll, f beschränkt uf I und R-integrierbr für jedes [, b] I, und I. Dnn heißt die Funktion F mit D(F ) = I und F () = f(t)dt Integrl von f

Mehr

Präsenz-Aufgaben = i. (a) i 15 = i 14 i = (i 2 ) 7 i = ( 1) 7 i = i i 15 = 0 + ( 1)i, i (i i) = i 1 = i i 15 = 0 + 1i,

Präsenz-Aufgaben = i. (a) i 15 = i 14 i = (i 2 ) 7 i = ( 1) 7 i = i i 15 = 0 + ( 1)i, i (i i) = i 1 = i i 15 = 0 + 1i, Präsenz-Aufgben 1. 1. Schreiben Sie z in der Form z α + βi mit α,β R. Aus der Vorlesung ist beknnt: i i i 1, i 1 1 i i i i i 1 i. () i 15 i 1 i (i ) 7 i ( 1) 7 i i i 15 + ( 1)i, (b) i 15 1 i 15 () 1 i

Mehr

Lineare DGL zweiter Ordnung

Lineare DGL zweiter Ordnung Universität Duisburg-Essen Essen, 03.06.01 Fkultät für Mthemtik S. Buer C. Hubcsek C. Thiel Linere DGL zweiter Ordnung Betrchten wir ds AWP { x + x + bx = 0 mit, b, t 0, x 0, v 0 R. Der Anstz xt 0 = x

Mehr

Übung 7: Lösungen. Technische Universität München SS 2004 Zentrum Mathematik Prof. Dr. K. Buchner. Aufgabe T 19 (Ober- und Untersummen)

Übung 7: Lösungen. Technische Universität München SS 2004 Zentrum Mathematik Prof. Dr. K. Buchner. Aufgabe T 19 (Ober- und Untersummen) Technische Universität München SS Zentrum Mthemtik 7.6. Prof. Dr. K. Buchner Dr. W. Aschbcher Anlysis II Aufgbe T 9 Ober- und Untersummen Übung 7: Lösungen : Nch Vorussetzung ist f R-integrierbr, d.h.

Mehr

Lösung Arbeitsblatt Geometrie / Trigonometrie

Lösung Arbeitsblatt Geometrie / Trigonometrie Fchhochschule Nordwestschweiz (FHNW) Hochschule für Technik Institut für Mthemtik und Nturwissenschften Lösung Arbeitsbltt Geometrie / Trigonometrie Dozent: - Brückenkurs Mthemtik 016 Winkelbeziehugen

Mehr

Klausur Grundlagen der Elektrotechnik (Musterlösung)

Klausur Grundlagen der Elektrotechnik (Musterlösung) Prüfung Grundlgen der Elektrotehnik Seite von 0.03.03 Klusur Grundlgen der Elektrotehnik (Musterlösung) Lösung :. Berehnung des Quershnitts A A π (d/)² π (0,mm/)² 7,85 0 9 m² Berehnung des Widerstndes

Mehr

G S. p = = 1 T. =5 K R,db K R

G S. p = = 1 T. =5 K R,db K R TFH Berlin Regelungstechnik Seite von 0 Aufgabe 2: Gegeben: G R p =5 p 32ms p 32 ms G S p = p 250 ms p 8 ms. Gesucht ist das Bodediagramm von G S, G R und des offenen Regelkreises. 2. Bestimmen Sie Durchtrittsfrequenz

Mehr

Musterlösung der 1. Klausur zur Vorlesung

Musterlösung der 1. Klausur zur Vorlesung Prof. Dr. M. Röger Dipl.-Mth. C. Zwilling Fkultät für Mthemtik TU Dortmund Musterlösung der. Klusur zur Vorlesung Anlysis I (24.02.206) Wintersemester 205/6 Aufgbe. Sei R mit sin() 0. Der Beweis erfolgt

Mehr

(x t) n f (n+1) (t) dt. f(x) =f(a)+ f (t) dt

(x t) n f (n+1) (t) dt. f(x) =f(a)+ f (t) dt 6 Der Stz von Tylor Gleichmäßige Konvergenz Potenzreihen Der Stz von Tylor Es sei D ein Intervll, X ein Bnchrum und f : D X eine Funtion Stz Tylorsche Formel Ist f (n +)-ml stetig differenzierbr, so gilt

Mehr

Klausur Theoretische Elektrotechnik A Aufgabe 1 (25 Punkte)

Klausur Theoretische Elektrotechnik A Aufgabe 1 (25 Punkte) Klausur A Aufgabe 1 25 Punkte) 1. Leiten Sie die Wellengleichung für eine eindimensionale ebene Welle mit x = y = ) aus den Maxwellschen Gleichungen für den zeitharmonischen Fall her. Betrachtet wird zunächst

Mehr

Beispiel-Abiturprüfung

Beispiel-Abiturprüfung Mthemtik BeispielAbiturprüfung Prüfungsteile A und B Bewertungsschlüssel und Lösungshinweise (nicht für den Prüfling bestimmt) Die Bewertung der erbrchten Prüfungsleistungen ht sich für jede Aufgbe nch

Mehr

Gewöhnliche Dierentialgleichungen

Gewöhnliche Dierentialgleichungen Prof. Dr. Guido Sweers WS 28/29 Jan Gerdung, M.Sc. Gewöhnliche Dierentialgleichungen Übungsblatt 6 Die Lösungen müssen in den Übungsbriefkasten Gewöhnliche Dierentialgleichungen Raum 3 im MI) geworfen

Mehr

Mathematik für Wirtschaftswissenschaftler im WS 12/13 Lösungen zu den Übungsaufgaben Blatt 8

Mathematik für Wirtschaftswissenschaftler im WS 12/13 Lösungen zu den Übungsaufgaben Blatt 8 Mthemtik für Wirtschftswissenschftler im WS /3 Lösunen zu den Übunsufben Bltt 8 Aufbe 3 Berechnen Sie die folenden Interle durch prtielle Intertion. ) c) e d. (Hinweis: Interieren Sie zweiml prtiell).

Mehr

Q12 * Mathematik m4 * Klausur am * Gruppe A

Q12 * Mathematik m4 * Klausur am * Gruppe A Q * Mthemti m4 * Klusur m..0 * Gruppe A. Berechnen Sie die beiden bestimmten Integrle. ) d b) 0,5 d. Ds Bild zeigt den Grphen der Funtion f mit 5 f () ; R. ) Zeigen Sie, dss der Grph von f genu drei Wendepunte

Mehr

Lösung Übungsserie 7 (Bewegungen auf Bahnkurven in SIMULINK modellieren)

Lösung Übungsserie 7 (Bewegungen auf Bahnkurven in SIMULINK modellieren) Name: Seite: 1 Fachhochschule Nordwestschweiz (FHNW) Hochschule für Technik Lösung Übungsserie 7 (Bewegungen auf Bahnkurven in SIMULINK modellieren) Dozent: R. Burkhardt (roger.burkhardt@fhnw.ch) Büro:

Mehr

Zum Satz von Taylor. Klaus-R. Loeffler. 2 Der Satz von Taylor 2

Zum Satz von Taylor. Klaus-R. Loeffler. 2 Der Satz von Taylor 2 Zum Stz von Tylor Klus-R. Loeffler Inhltsverzeichnis 1 Der verllgemeinerte Stz von Rolle 1 2 Der Stz von Tylor 2 3 Folgerungen, Anwendungen und Gegenbeispiele 4 3.1 Jede gnzrtionle Funktion ist ihr eigenes

Mehr

Kapitel IV Euklidische Vektorräume. γ b

Kapitel IV Euklidische Vektorräume. γ b Kpitel IV Euklidische Vektorräume 1 Elementrgeometrie in der Eene Sei E die Zeicheneene In der Schule lernt mn: (11) Stz des Pythgors: Sei E ein Dreieck mit den Seiten, und c, und sei γ der c gegenüerliegende

Mehr

Arbeitsblatt Geometrie / Trigonometrie

Arbeitsblatt Geometrie / Trigonometrie Fchhochschule Nordwestschweiz (FHNW) Hochschule für Technik Institut für Mthemtik und Nturwissenschften Arbeitsbltt Geometrie / Trigonometrie Dozent: - rückenkurs Mthemtik 2016 Modul: Mthemtik Dtum: 2016

Mehr

Einführung in die Physik I. Schwingungen und Wellen 1

Einführung in die Physik I. Schwingungen und Wellen 1 Einführung in die Physik I Schwingungen und Wellen O. von der Lühe und U. Landgraf Schwingungen Periodische Vorgänge spielen in eine große Rolle in vielen Gebieten der Physik E pot Schwingungen treten

Mehr

Vorkurs Mathematik für Ingenieure WS 2016/2017 Übung 3. (a) Berechnen Sie die fehlenden Strecken und Winkel im folgenden rechtwinkligen Dreieck: b h

Vorkurs Mathematik für Ingenieure WS 2016/2017 Übung 3. (a) Berechnen Sie die fehlenden Strecken und Winkel im folgenden rechtwinkligen Dreieck: b h Prof. Dr. J. Pnnek Dynmics in Logistics Vorkurs Mthemtik für Ingenieure WS 206/207 Übung 3 Aufgbe : Trigonometrie () Berechnen Sie die fehlenden Strecken und Winkel im folgenden rechtwinkligen Dreieck:

Mehr

3. Leistungsdichtespektren

3. Leistungsdichtespektren Stochastische Prozesse: 3. Leistungsdichtespektren Wird das gleiche Geräusch mehrmals gemessen, so ergeben sich in der Regel unterschiedliche zeitliche Verläufe des Schalldrucks. Bei Geräuschen handelt

Mehr

Elektromagnetische Felder Klausur 17. Februar 2004

Elektromagnetische Felder Klausur 17. Februar 2004 1. a I = 2 3 3 ν2 t B R U R = I R y I c F = P ν = 4 9 ν3 t 2 B 2 1R d I wird um den Faktor 3 2 e F = größer bei gleicher Spannung, entsprechend F 2. a T = E E = 2 E2 R = E E = 1 = E 2 + E 2 = (2E 2 + E

Mehr

( ) 2. Aufgabe 1: Frequenzkennlinien und BODE-Diagramm Z = Verlauf der Betragskennlinie. a) Übergang zum Frequenzgang. b) Betrag des Frequenzganges

( ) 2. Aufgabe 1: Frequenzkennlinien und BODE-Diagramm Z = Verlauf der Betragskennlinie. a) Übergang zum Frequenzgang. b) Betrag des Frequenzganges Aufgbe : requenzkennlinien und BODE-Digrmm Verluf der Bergkennlinie Übergng zum requenzgng T, jω jω Tjω b Berg de requenzgnge jω A ω jω jω A A ω ω Tj Tjω ω Tω Tω c db-kennlinie ω 0log A ω ω 0log Tω ω 0.log

Mehr

Übungsblatt 3 Musterlösung

Übungsblatt 3 Musterlösung Fllstudien WS4 Übungsbltt 3 Musterlösung Lösung 9 (Numerierung) ) Wir berechnen mit die y mit den Kontrollpnten in umgeehrter Nummerierung zu ( ) n y c n t ( t) n ( ) n c i t n i ( t) i n i ( ) n c i t

Mehr

Projektaufgabe Mathematik II Der passive RC-Tiefpaß

Projektaufgabe Mathematik II Der passive RC-Tiefpaß Projektaufgabe Mathematik II Der passive RC-Tiefpaß Messtechnik II / Mathematik II für KEB, TFH Berlin, Gruppe D 22. Dezember 2006 Torben Zech 738845 Martin Henning 73650 Abdurrahman Namdar 739068 Inhaltsverzeichnis

Mehr

Klassische und relativistische Mechanik

Klassische und relativistische Mechanik Klassische und relativistische Mechanik Othmar Marti 13. 02. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und relativistische Mechanik

Mehr

Mathematik 2 (Master Sicherheitstechnik)

Mathematik 2 (Master Sicherheitstechnik) Priv.-Doz. Dr. J. uppenthal Wuppertal, 8.4.6 Aufgabe 5. Mathematik Master Sicherheitstechnik) Übungsblatt Gegeben seien die Schwingungen f t) 3 sin4πt + π) und f t) 4 sin4πt + π/). Berechnen Sie die Amplitude

Mehr

Schwingungen. Antonia Blachnik und Jörg Laubersheimer. Wintersemester 2008/2009,

Schwingungen. Antonia Blachnik und Jörg Laubersheimer. Wintersemester 2008/2009, Universität Heidelberg Proseminar Analysis Leitung: PD Dr. Gudrun Thäter Wintersemester 2008/2009, 09.12.2008 Inhaltsverzeichnis 1 Einführung 2 ohne Reibung mit Reibung 3 4 Einführung Denition Eine Schwingung

Mehr

Lösung Arbeitsblatt Potenzen / Wurzeln / Logarithmen

Lösung Arbeitsblatt Potenzen / Wurzeln / Logarithmen Fchhochschule Nordwestschweiz FHNW) Hochschule für Technik Institut für Geistes- und Nturwissenschft Lösung Arbeitsbltt Potenzen / Wurzeln / Logrithmen Dozent: - Klsse: Brückenkurs 0 Büro: - Semester:

Mehr

Analytische Zahlentheorie

Analytische Zahlentheorie 4. April 005. Übungsblatt Aufgabe (4 Punkte Sei k N. Beweisen Sie, dass f : N C mit f(n := n k streng multiplikativ ist. Sei τ die Funktion, die der natürlichen Zahl n die Anzahl der Teiler von n zuordnet

Mehr

Anleitung zu Blatt 7, Analysis II

Anleitung zu Blatt 7, Analysis II Deprtment Mthemtik der Universität Hmburg Dr. H. P. Kini Anleitung zu Bltt 7, Anlysis II SoSe 1 Kurvenintegrle (1. Art) Die ins Netz gestellten Kopien der Anleitungsfolien sollen nur die Mitrbeit während

Mehr

Uebungsserie 1.1 Harmonische Signale und Ihre Darstellung

Uebungsserie 1.1 Harmonische Signale und Ihre Darstellung 28. September 2016 Elektrizitätslehre 3 Martin Weisenhorn Uebungsserie 1.1 Harmonische Signale und Ihre Darstellung Aufgabe 1. Die nachfolgende Grafik stellt das Oszillogramm zweier sinusförmiger Spannungen

Mehr

Frequenzgang der Verstäkung von OPV-Schaltungen

Frequenzgang der Verstäkung von OPV-Schaltungen Frequenzgang der Verstäkung von OPV-Schaltungen Frequenzgang der Spannungsverstärkung eines OPV Eigenschaten des OPV (ohne Gegenkopplung: NF-Verstärkung V u 4 Transitrequenz T 2. 6. Hz T Knickrequenz =

Mehr

Lösungen. Lösungen Teil I. Lösungen zum Kapitel 3. u(t) 2mV. t/s. u(t) 2mV 1mV. t/ms. u(t) t/ms -2V. x(t) 1. a) u(t) = 2mV3 (t 2ms)

Lösungen. Lösungen Teil I. Lösungen zum Kapitel 3. u(t) 2mV. t/s. u(t) 2mV 1mV. t/ms. u(t) t/ms -2V. x(t) 1. a) u(t) = 2mV3 (t 2ms) Lösungen Lösungen eil I Lösungen zum Kapitel 3. a ut = mv3 t ms ut mv t/ms b ut = mv3t mv3 t ms mv3 t ms mv mv ut t/ms p c ut = V3 t ms sin ms t V ut -V 3 4 5 6 t/ms d xt = 4 s r t s 4 s r t s 4 s r t

Mehr

Regelungs- und Systemtechnik 1 - Übungsklausur 2

Regelungs- und Systemtechnik 1 - Übungsklausur 2 4 6 Fachgebiet Regelungstechnik Leiter: Prof. Dr.-Ing. Johann Reger Bearbeitungszeit: 12 Min Modalitäten Es sind keine Hilfsmittel zugelassen. Bitte schreiben Sie mit dokumentenechtem Schreibgerät (Tinte

Mehr

Musterlösungen zu Serie 6

Musterlösungen zu Serie 6 D-ERDW, D-HEST, D-USYS Mathematik II FS 3 Dr. Ana Cannas da Silva Musterlösungen zu Serie 6. Die Bogenlänge des Graphen einer differenzierbaren Funktion b f : [a, b] R ist durch + (f (x)) dx gegeben. Insbesondere

Mehr

Grundlagen der Physik 3 Lösung zu Übungsblatt 10

Grundlagen der Physik 3 Lösung zu Übungsblatt 10 Grundlgen der Physik 3 Lösung zu Übungsbltt Dniel Weiss 5. Dezember Inhltsverzeichnis Aufgbe - Dynmik im Kstenpotentil Aufgbe - Minimlenergie des hrmonischen Oszilltors 3 Aufgbe 3 - Näherung relistischer

Mehr

Funktionen beschreiben mathematisch den Zusammenhang zwischen 2 Größen bzw. Mengen.

Funktionen beschreiben mathematisch den Zusammenhang zwischen 2 Größen bzw. Mengen. I. Funktionen Funktionen beschreiben mthemtisch den Zusmmenhng zwischen Größen bzw. Mengen. Allgemein: f() bhängige Vrible unbhängige Vrible Funktion: Gegeben seien die Mengen A und B. Ist jedem Element

Mehr

Aufgabe 1. BMS Mathematik - G Abschlussprüfung_11 Seite: 1/14. a) Vereinfachen Sie die Terme so weit wie möglich: (I) = (II)

Aufgabe 1. BMS Mathematik - G Abschlussprüfung_11 Seite: 1/14. a) Vereinfachen Sie die Terme so weit wie möglich: (I) = (II) Aufgbe 1 BMS Mthemtik - G Abschlussprüfung_11 Seite: 1/14 ) Vereinfchen Sie die Terme so weit wie möglich: 9 h + h + h (I) 7 8 h + h 8 7 (II) n n 4 n n+ 4 b) Bestimmen Sie die Lösungsmenge für : ln 1 3

Mehr

Regelungstechnik II PVK - Lösungen. Nicolas Lanzetti

Regelungstechnik II PVK - Lösungen. Nicolas Lanzetti Regelungstechnik II PVK - Lösungen Nicolas Lanzetti lnicolas@student.ethz.ch Nicolas Lanzetti Regelungstechnik II FS 6 Inhaltsverzeichnis Wiederholung Regelungstechnik I 3 SISO Reglersynthese 3 3 Realisierung

Mehr

1 Maxwellgleichungen (S.2) 2 Kontinuitätsgleichung (S.29) 3 Poynting-Vektor (S.33) 4 Grenzbedingungen (S.38) 5 Potentiale statischer Felder (S.

1 Maxwellgleichungen (S.2) 2 Kontinuitätsgleichung (S.29) 3 Poynting-Vektor (S.33) 4 Grenzbedingungen (S.38) 5 Potentiale statischer Felder (S. Maxwellgleichungen (S.) Differentialform rot E = B rot H = J + D div D = η div B = 0 Integralform Ed r = Ḃdf F (F ) (F ) (V ) (V ) Hd r = ( J + D)df(= I) F Dd f = V Bd f = 0 ηdv(= Q) Kontinuitätsgleichung

Mehr

Bemerkung Als Folge von Satz 6.2 kann man jede ganze Funktion schreiben als Potenzreihe. α m z m. f(z) = m=0. 2πi. re it t [0,2π] 2πi

Bemerkung Als Folge von Satz 6.2 kann man jede ganze Funktion schreiben als Potenzreihe. α m z m. f(z) = m=0. 2πi. re it t [0,2π] 2πi Funktionentheorie, Woche 7 Eigenschaften holomorpher Funktionen 7.1 Ganze Funktionen Definition 7.1 Eine Funktion f : C C, die holomorph ist auf C, nennt man eine ganze Funktion. Bemerkung 7.1.1 Als Folge

Mehr

Mathematik II. Vorlesung 41. Satz Es sei f :[a,b] R n, t f(t), eine differenzierbare Kurve. Dann gibt es ein c [a,b] mit

Mathematik II. Vorlesung 41. Satz Es sei f :[a,b] R n, t f(t), eine differenzierbare Kurve. Dann gibt es ein c [a,b] mit Prof. Dr. H. Brenner Osnbrück SS 1 Mthemtik II Vorlesung 41 Die Mittelwertbschätzung für differenzierbre Kurven Stz 41.1. Es sei f :[,b] R n, t f(t), eine differenzierbre Kurve. Dnn gibt es ein c [,b]

Mehr

komplizierteren Funktionen versucht man, die Fläche durch mehrere Rechtecke anzunähern.

komplizierteren Funktionen versucht man, die Fläche durch mehrere Rechtecke anzunähern. Mthemtik für Nturwissenschftler I 4. 4 Integrlrechnung 4. Integrierbrkeit Die Grundidee der Integrlrechnung ist die Berechnung der Fläche zwischen dem Grphen einer Funktion und der x-achse. Recht einfch

Mehr

(1 ξ) f (k) (ξ) + k! z x n+1. (n + 1)! 2 f (n + 1)!

(1 ξ) f (k) (ξ) + k! z x n+1. (n + 1)! 2 f (n + 1)! 0.. Lösung der Aufgbe. Wir schreiben f = sup{ f : [0, ]}. Für ξ ]0, [ und n N gibt es nch dem Stz von Tlor ein c ]ξ, [ so, dss: f = fξ + n ξ k f k ξ + k! k= Aus der Ttsche, dss f k 0 für lle k N ist, folgt

Mehr

Physik Profilkurs ÜA 07 mechanische Wellen Ks. 2011

Physik Profilkurs ÜA 07 mechanische Wellen Ks. 2011 Aufgabe 1) Ein Wellenträger wird mit f = 2,0 Hz harmonisch angeregt, wobei sich Wellen der Länge 30 cm und der Amplitude 3,0 cm bilden. Zur Zeit t o = 0,0 s durchläuft der Anfang des Wellenträgers gerade

Mehr

Schwingungen und Wellen

Schwingungen und Wellen Schwingungen Wellen Jochen Trommer jtrommer@uni-leipzig.de Universität Leipzig Institut für Linguistik Phonologie/Morphologie SS 2007 Schwingungen beim Federpendel Schwingungen beim Federpendel Wichtige

Mehr

4. Standardübertragungsglieder

4. Standardübertragungsglieder 4. PT-Glied : Verzögerungsglied. Ordnung 4. P-Glied : Proportionalglied 4.3 I-Glied: Integrator 4.4 D-Glied: Differenzierer (ideal/real) 4.5 PT-Glied: Verzögerungsglied. Ordnung 4.6 Totzeitglied Campus

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof. Dr. Simone Wrzel Mx Lein Husufgben 1. Flächeninhlte Teil 1 TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mthemtik Mthemtik 4 für Physik Anlysis 3 Wintersemester 9/1 Lösungsbltt 1.1.9 Wie gross ist der Flächeninhlt

Mehr

Elektrische Schwingungen

Elektrische Schwingungen E5 Physiklisches Prktikum Elektrische Schwingungen Elektrische Schwingungen m Serien- und Prllelschwingkreis werden erzeugt und untersucht. Dbei sollen nterschiede zwischen den beiden Schltungen und Gemeinsmkeiten

Mehr

Technische Mechanik A (Statik) Kurzlösungen zu den Übungsaufgaben

Technische Mechanik A (Statik) Kurzlösungen zu den Übungsaufgaben Prof. Dr.-Ing. Clus-Peter ritzen Technische Mechnik A (ttik) zu den Übungsufgben Arbeitsgruppe für Technische Mechnik Institut für Mechnik und Regelungstechnik - Mechtronik Hinweis - Es sind nicht für

Mehr

2 Lineare Operatoren. T(αx + βy) = αtx + βty x,y X, α, β K. (b) Ist T linear, so heißt

2 Lineare Operatoren. T(αx + βy) = αtx + βty x,y X, α, β K. (b) Ist T linear, so heißt 2 Linere Opertoren Im Folgenden seien X,Y, Z stets normierte Räumen über dem selben Körper K = C oder K = R. 2.1. Definition. () Eine Abbildung T : X Y heißt liner, flls T(αx + βy) = αtx + βty x,y X, α,

Mehr

Signale und Systeme VL 7. LTI-Systeme und DGL

Signale und Systeme VL 7. LTI-Systeme und DGL LTI-Systeme und GL Zeitkontinuierliche LTI-Systeme Gegenüberstellung zeitkontinuierlich zeitdiskret Linere ifferenzengleichungen Übertrgungsfunktion Zusmmenfssung Übungen Litertur und Quellen 9.06.206

Mehr

Aufgabe Σ

Aufgabe Σ Fchbereich Mthemtik WS 01/13 Prof. J. Ltschev 7. Februr 013 Höhere Anlysis Modulbschlussprüfung Sie benötigen nur Schreibgeräte. Die Verwendung jeglicher nderer Hilfsmittel (wie z. B. Tschenrechner, Hndys,

Mehr

b f(x)p(x) dx = f(ξ) 2e 2 , Hess f (2, 0) =

b f(x)p(x) dx = f(ξ) 2e 2 , Hess f (2, 0) = Es seien U R n offen und ψ : U R n stetig differenzierbr. Weiter sei f : U R zweiml stetig differenzierbr. Kennzeichnen Sie whre Aussgen mit W und flsche Aussgen mit F. F Flls dψ(x) ein Isomorphismus für

Mehr

Elektrische Schwingungen

Elektrische Schwingungen E5 Physiklisches Prktikum Elektrische Schwingungen Elektrische Schwingungen m Serien- und Prllelschwingkreis werden erzeugt und untersucht. Dbei sollen nterschiede zwischen den beiden Schltungen und Gemeinsmkeiten

Mehr

Grundlagen der Signalverarbeitung

Grundlagen der Signalverarbeitung Grundlagen der Signalverarbeitung Digitale und analoge Filter Wintersemester 6/7 Wiederholung Übertragung eines sinusförmigen Signals u t = U sin(ω t) y t = Y sin ω t + φ ω G(ω) Amplitude: Y = G ω U Phase:

Mehr

Formelsammlung. Folgen und Reihen

Formelsammlung. Folgen und Reihen Lehrstuhl für BWL, insb. Mthemtik und Sttistik Dipl.-Mth. Mrie Hielscher Mthemtik für Betriebswirte II Formelsmmlung Folgen und Reihen en Folge n ) n N0 : D R, n n := n) mit D N 0 n-te Prtilsumme von n

Mehr

Formelsammlung für die Klausur: Mathematik für Chemiker I

Formelsammlung für die Klausur: Mathematik für Chemiker I Universität-Duisburg-Essen / Cmpus Essen 15. 1. 2004 FB 6 - Mthemtik Prof. Dr. D. Lutz / Dr. G. Wolf Formelsmmlung für die Klusur: Mthemtik für Chemiker I Binomilkoezienten, binomische Formel: n! = 1 2

Mehr

Serie 12 Musterlösung

Serie 12 Musterlösung Serie 2 Musterlösung ineare Algebra www.adams-science.org Klasse: Ea, Eb, Sb Datum: HS 7 In dieser Serie werden alle echnungen in der Basis und in SI-Einheiten durchgeführt. e ˆ cos(ω t) und e 2 ˆ sin(ω

Mehr

Der Kreissektor (Kreisausschnitt) Kreissektors mit dem Mittelpunktswinkel ϕ : Bogenlänge: b Sektor. Flächeinhalt:: ASektor

Der Kreissektor (Kreisausschnitt) Kreissektors mit dem Mittelpunktswinkel ϕ : Bogenlänge: b Sektor. Flächeinhalt:: ASektor Grundwissen Mthemtik 0.Klsse 0 / Die Kugel Volumen der Kugel: Oberfläche der Kugel: V O Kugel Kugel 4 πr 4πr Der Kreissektor (Kreisusschnitt) Kreissektors mit dem Mittelpunktswinkel ϕ : ϕ Bogenlänge: b

Mehr