YAGO YAGO. A semantic knowledge base. Paul Boeck. Humboldt Universität zu Berlin Institut für Informatik. Dezember /19

Größe: px
Ab Seite anzeigen:

Download "YAGO YAGO. A semantic knowledge base. Paul Boeck. Humboldt Universität zu Berlin Institut für Informatik. Dezember 2012 1/19"

Transkript

1 1/19 A semantic knowledge base Paul Boeck Humboldt Universität zu Berlin Institut für Informatik Dezember 2012

2 2/19 Übersicht 1 Einführung 2 Das Modell Struktur Semantik 3 Das System 4 Anwendung

3 3/19 Einführung Übersicht 1 Einführung 2 Das Modell Struktur Semantik 3 Das System 4 Anwendung

4 4/19 Einführung Motivation Ontologie: formal geordnete Konzepte Verwalten, Suchen und Editieren von bestehendem Wissen Anwendungen: Maschinenelle Übersetzung, Klassifikation von Dokumenten, Kombinieren mehrerer Quellen (WordNet und Wikipedia)

5 5/19 Einführung Wikipedia größte Online-Enzyklopädie Januar 2007: 1,6 Millionen Artikel in der englischen Version alle Artikel in Kategorien geordnet Gauß hat u.a. Kategorien German mathematician, People from Braunschweig, Fellows of the Royal Society

6 6/19 Einführung WordNet manuell erstelltes semantisches Lexikon der englischen Sprache Synsets statt Wörter Relationen zwischen den Synsets: hypernym, hyponym,... enhält synsets

7 7/19 Einführung Wikipedia und WordNet vereinigen Kategorieseiten von Wikipedia listet Artikel auf Daraus ergeben sich Kandidaten für: Entitäten(AlbertEinstein) Klassen(isA(AlbertEinstein, Scientist)) Relationen (haswonprize(alberteinstein, NobelPrize) Hierachien müssen nachbearbeitet werden, z.b. Dog ist in der Kategorie Sequenced genomes

8 8/19 Einführung Wikipedia und WordNet vereinigen Kombiniert große Anzahl der Wikipedia Entitäten saubere Taxonomie von WordNet matching durch NLP auf Kategorien etwa: German Jews who emigrated to the United States to escape Nazism WordNet wird priorisiert Genauigkeit von 97%

9 9/19 Das Modell Übersicht 1 Einführung 2 Das Modell Struktur Semantik 3 Das System 4 Anwendung

10 10/19 Das Modell Struktur Das Modell Datenmodell ist entscheidend für Ontologie Modell muss folgendes abbilden: Entitäten Fakten Relationen zwischen Fakten Eigenschaften von Relationen Erweiterung des Resource Description Framework Schemas (RDFS) verwendet

11 11/19 Das Modell Struktur Entitäten und Relationen Objekte (Städte, Personen, URLs,...) werden durch Entitäten repräsentiert zwei Entitäten können in Relation zueinander stehen Beispiel: CarlFriedrichGauss, UniversityOfHelmstedt stehen in der Relation graduatedfrom Nummern, Daten, Zeichenketten sind auch Entitäten Klassen werden durch die Relation TYPE ausgedrückt Klassenhirachie drch SUBCLASSOF

12 12/19 Das Modell Struktur Relationen Relationen sind Entitäten Daher können Relationen in Relation zueinander stehen subclassof TYPE transitiverelation

13 13/19 Das Modell Struktur Fakten Ein Tripel aus 2 Entitäten und einer Relation wird Fakt genannt Entitäten heißen Argumente des Fakts Fakten bekommen Bezeichner, diese sind Entitäten Fakten über Fakten: Beispiel: #1: AlbertEinstein HASWONPRIZE NobelPrize #2: #1 TIME 1921

14 14/19 Das Modell Semantik Reduktionssystem Fakten lassen sich aus anderen Fakten ableiten: definiere Reduktionssystem P(F) P(F) (F ist Menge aller Fakten) folgende Begriffe werden axiomatisch gesetzt: domain,type,subclassof,relation,class, acyclictransitiverelation,literal boolean,string,number,date,url (domain,domain,relation) z.b. (integer,subclassof,rationalnumber) weitere Regeln wie {(r 1,SUBRELATIONOF, r 2 ), (x, r 1, y)} (x, r 2, y)

15 15/19 Das Modell Semantik Deduktiver Abschluss und kanonische Basis Menge der ableitbaren Fakten D(y) einer Ontologie y ist eindeutig eine Menge von Fakten b heißt Basis, gdw. b y und D(b) = D(y) kanonische Basis ist die kleinste mögliche Basis (mit den Regeln) ist die kanonische Basis eindeutig = Speicherplatz kann gespart werden

16 16/19 Das System Übersicht 1 Einführung 2 Das Modell Struktur Semantik 3 Das System 4 Anwendung

17 17/19 Das System Weitere Relationen TYPE aus Kategorien nach NLP (z.b. Swiss emigrants to the United States SUBCLASSOF aus WordNet MEANS aus Synsets(WordNet) und Weiterleitungen(Wikipedia) locatedin aus Countries in..., Rivers of... Größe: Individuen, Klassen, Fakten

18 18/19 Anwendung Übersicht 1 Einführung 2 Das Modell Struktur Semantik 3 Das System 4 Anwendung

19 19/19 Anwendung Anwendungen Lizenz: CC Attribution 3.0 (teilen, ändern, Namensnennung) WATSON Automated Reasoning Object Runner: Information extraction from web tables (instanceof) Alternative: Google Knowledge Graph (570Mio Einträge, 18Mrd Fakten)

Seminarphase PG 402 Thema: Semantic Web Autor: Phillip Look

Seminarphase PG 402 Thema: Semantic Web Autor: Phillip Look Seminarphase PG 402 Thema: Semantic Web Autor: Phillip Look Phillip Look Folie 1 Übersicht Vision des Semantic Web Ontologien RDF(S) DAML+OIL Suche im Semantic Web Fazit Phillip Look Folie 2 Vision des

Mehr

Vorlesung Computerphilologie. Ontologien und Ontologie-Sprachen

Vorlesung Computerphilologie. Ontologien und Ontologie-Sprachen Wintersemester 2006 Institut für Germanistik I Vorlesung Computerphilologie Ontologien und Ontologie-Sprachen Wie kann man Inhalte (von Webseiten) erschließen? v.hahn Uni Hamburg 2005 1 Was bringen Ontologien

Mehr

OWL Web Ontology Language

OWL Web Ontology Language OWL Web Ontology Language Hauptseminar Ontologien in Informatik und Linguistik SS 2007 Bianca Selzam 27.4.2007 Gliederung 1. Einleitung 2. Resource Description Framework (RDF) 3. Resource Description Framework

Mehr

Thema. Intelligente Agenten im Web

Thema. Intelligente Agenten im Web Thema Intelligente Agenten im Web Einführendes Beispiel Suchmaschine Probleme: - Immer mehr falsche Informationen - Anwender werden überfordert - Zeitaufwand erhöht sich - Zunehmendes Sicherheitsrisiko

Mehr

Dr. Christian Stein Ontologie-Design Die nächste Generation des Web für sich nutzen lernen

Dr. Christian Stein Ontologie-Design Die nächste Generation des Web für sich nutzen lernen Technische Universität Braunschweig Humboldt-Universität zu Berlin Projekt iglos Dr. Christian Stein Ontologie-Design Die nächste Generation des Web für sich nutzen lernen Dr. Christian Stein (christian.stein@hu-berlin.de)

Mehr

Freebase Eine Datenbank mit RDF-Tripeln zu Personen, Orten, Dingen(2005-2012)

Freebase Eine Datenbank mit RDF-Tripeln zu Personen, Orten, Dingen(2005-2012) Freebase Eine Datenbank mit RDF-Tripeln zu Personen, Orten, Dingen(2005-2012) Karin Haenelt 1.5.2015 Inhalt Historie Datenbank 2 Historie 2005-2012 Freebase 7.2005, Metaweb Technologies Inc. entwickelt

Mehr

Das Social Semantic Web

Das Social Semantic Web Das Social Semantic Web Treffpunkt für soziale und künstliche Intelligenz IT Businesstalk Vom Breitband zum Web 3.0 Salzburg, 14. Juni 2007 Dr. Sebastian Schaffert Salzburg Research Forschungsgesellschaft

Mehr

Entwicklung eines Electronic Resource Management Systems für Bibliotheken auf Basis von Linked Data Technologien

Entwicklung eines Electronic Resource Management Systems für Bibliotheken auf Basis von Linked Data Technologien Entwicklung eines Electronic Resource Management Systems für Bibliotheken auf Basis von Linked Data Technologien Lydia Unterdörfel, Björn Muschall Wissenschaftskommunikation im Semantischen Web (EFRE)

Mehr

Ontologien und Ontologiesprachen

Ontologien und Ontologiesprachen Ontologien und Ontologiesprachen Semantische Datenintegration SoSe2005 Uni Bremen Yu Zhao Gliederung 1. Was ist Ontologie 2. Anwendungsgebiete 3. Ontologiesprachen 4. Entwicklung von Ontologien 5. Zusammenfassung

Mehr

Semantic Wiki Eine Erweiterung des Wiki-Konzepts von Harald Cichos

Semantic Wiki Eine Erweiterung des Wiki-Konzepts von Harald Cichos Semantic Wiki Eine Erweiterung des Wiki-Konzepts von Harald Cichos Seminar: Semantic Web Wintersemester 2005/2006 Universität Jena Seminarleiter: Prof. Dr. C. Beckstein, Dr. H. Sack, Dipl.-Inform. H. Peter

Mehr

Zusammenfassung des Vortrages Semantic Web (Ontologien und Werkzeuge) Artem Khvat, 27.04.2005 khvat_a@informatik.haw-hamburg.de

Zusammenfassung des Vortrages Semantic Web (Ontologien und Werkzeuge) Artem Khvat, 27.04.2005 khvat_a@informatik.haw-hamburg.de Zusammenfassung des Vortrages Semantic Web (Ontologien und Werkzeuge) Artem Khvat, 27.04.2005 khvat_a@informatik.haw-hamburg.de 1.Geschichte der Ontologien. Ontologien haben ihre weite Verbreitung in den

Mehr

unter Verwendung von Folien von Herrn Prof. Dr. Flensburg, von Laudon/Laudon/Schoder und von Frau Prof. Dr. Schuhbauer

unter Verwendung von Folien von Herrn Prof. Dr. Flensburg, von Laudon/Laudon/Schoder und von Frau Prof. Dr. Schuhbauer Knowledge Management Wissensmanagement 0. Produktionsfaktoren 1. Data Information Knowledge 2. Knowledge representation Wissensdarstellung 3. Interfaces to artificial intelligence 4. Knowledge management

Mehr

RDF und RDF Schema. Einführung in die Problematik Von HTML über XML zu RDF

RDF und RDF Schema. Einführung in die Problematik Von HTML über XML zu RDF RDF und RDF Schema Einführung in die Problematik Von HTML über XML zu RDF Kirsten Albrecht Roland Illig Probleme des HTML-basierten

Mehr

Semantic Web. www.geo-spirit.org. Metadata extraction

Semantic Web. www.geo-spirit.org. Metadata extraction Semantic Web www.geo-spirit.org WP 6 WP 3 Metadata extraction Ontologies Semantic Web Tim Berners Lee Was wäre, wenn der Computer den Inhalt einer Seite aus dem World Wide Web nicht nur anzeigen, sondern

Mehr

Technologien des Semantic Web und ihre Anwendungen

Technologien des Semantic Web und ihre Anwendungen Fakultät Informatik, Institut für Angewandte Informatik, Professur Technische Informationssysteme Technologien des Semantic Web und ihre Ulrike Fischer Dresden, 21.06.07 Gliederung Motivation Begriff Semantic

Mehr

3. Ontologien und Wissensbasen

3. Ontologien und Wissensbasen Ontologien Ontologien stellen mittlerweile die Basis für viele innovative wissensbasierte Systeme dar: 3. Ontologien und Wissensbasen ecommerce/elearning Knowledge Management Informationsextraktion/Data-mining

Mehr

!!!!T!!! Systems!() Multimedia Solutions

!!!!T!!! Systems!() Multimedia Solutions Inhalt. Was ist das semantische Web? Wie findet man einen Arzttermin mit Hilfe des semantischen Web? Wie gibt man Inhalten einen Sinn? Welche Werkzeuge stehen zur Verfügung? Wo können strukturierte Inhalte

Mehr

Semantik in Suchmaschinen Beispiele. Karin Haenelt 7.12.2014

Semantik in Suchmaschinen Beispiele. Karin Haenelt 7.12.2014 Semantik in Suchmaschinen Beispiele Karin Haenelt 7.12.2014 Inhalt Google Knowledge Graph Freebase schema.org 2 Google Knowledge Graph Zuordnung von Suchtermen zu Weltentitäten Darstellung von Zusammenhängen

Mehr

Bericht BTI7311: Informatik Seminar Was sind Ontologien?

Bericht BTI7311: Informatik Seminar Was sind Ontologien? Bericht BTI7311: Informatik Seminar Was sind Ontologien? Inhaltsverzeichnis 1 Ontologien...3 1.1 Ontologien in der Philosophie...3 1.2 Ontologien in der Psychologie...3 1.3 Ontologien in der Informatik...3

Mehr

Anfrage Erweiterung 03.11.2011 Jan Schrader

Anfrage Erweiterung 03.11.2011 Jan Schrader Anfrage Erweiterung 03.11.2011 Jan Schrader Vocabulary Mismatch Problem Anfrage und Dokument passen nicht zusammen obwohl Dokument zur Anfrage relevant Grund: Synonymproblem verschiedene Menschen benennen

Mehr

Detecting Near Duplicates for Web Crawling

Detecting Near Duplicates for Web Crawling Detecting Near Duplicates for Web Crawling Gurmeet Singh Manku et al., WWW 2007* * 16th international conference on World Wide Web Detecting Near Duplicates for Web Crawling Finde near duplicates in großen

Mehr

Semantic Web. Anwendungsbereiche & Entwicklungen. http://www.know-center.at. Dr. Michael Granitzer

Semantic Web. Anwendungsbereiche & Entwicklungen. http://www.know-center.at. Dr. Michael Granitzer Semantic Web Anwendungsbereiche & Entwicklungen Dr. Michael Granitzer - gefördert durch das Kompetenzzentrenprogramm Agenda Die Vision und warum das Semantic Web Sinn macht Grundlagen: Wissensrepräsentation

Mehr

Semantic Web Services

Semantic Web Services Semantic Web Services Daniel Fischer TU Chemnitz - WS 2011/12 1 Gliederung (1) Web Services (2) Semantic Web Services: Motivation (3) Ontologien (4) Technologien 1. WSDL 2. SA-WSDL 3. WSMF / WSMO 4. OWL-S

Mehr

Semantic Markup für die Dokumentenklassifizierung. Seminarvortrag von Mirko Pracht

Semantic Markup für die Dokumentenklassifizierung. Seminarvortrag von Mirko Pracht Semantic Markup für die Dokumentenklassifizierung Seminarvortrag von Mirko Pracht Ziel des Vortrags Aufbau digitaler Bibliotheken Verbesserung Informationssuche Semantic Markup Gliederung 1. Grundlagen

Mehr

Was sind Ontologie-Editoren?

Was sind Ontologie-Editoren? Was sind Ontologie-Editoren? Kurzeinführung Protégé Sonja von Mach und Jessica Otte Gliederung Ontologie Editoren- allgemein warum nutzen wofür nutzen Probleme Marktlage Einführung in die praktische Arbeit

Mehr

Projektgruppe. Knowledge Representation Persistence and Reasoning

Projektgruppe. Knowledge Representation Persistence and Reasoning Projektgruppe Seminarvortrag von Stefan Middeke Knowledge Representation Persistence and Reasoning 4. Juni 2010 Überblick Motivation Repräsentation der Daten Speicherung und Abfrage von Daten Folgerungen

Mehr

Entwicklung eines Electronic Resource Management Systems für Bibliotheken auf Basis von Linked Data Technologien

Entwicklung eines Electronic Resource Management Systems für Bibliotheken auf Basis von Linked Data Technologien Entwicklung eines Electronic Resource Management Systems für Bibliotheken auf Basis von Linked Data Technologien Lydia Unterdörfel, Björn Muschall Wissenschaftskommunikation im Semantischen Web Teilprojekt

Mehr

Semantische Reputationsinteroperabilität

Semantische Reputationsinteroperabilität Semantische sinteroperabilität Adrian Paschke (CSW) und Rehab Alnemr (HPI) Corporate Semantic Web Workshop, Xinnovations 2010, 14. September 2010, Berlin Agenda Motivation Unternehmensreputation Probleme

Mehr

MedizinischeDokumentation. Wiederholung, Taxonomien, Ontologien, Terminologien

MedizinischeDokumentation. Wiederholung, Taxonomien, Ontologien, Terminologien MedizinischeDokumentation Wiederholung, Taxonomien, Ontologien, Terminologien 1 Klassifikationen Klasse 1: Blaue Haare Klasse 3: Gelbe Haare Regeln Klasse 2: Keine Haare 1.Genau eine Klasse 2.Disjunktheit

Mehr

Semantische Infomationsintegration à la carte?

Semantische Infomationsintegration à la carte? Semantische Infomationsintegration à la carte? Ziele und Herausforderungen der Anwendung des CIDOC CRM. Historisch-Kulturwiss. Informationsverarbeitung, Universität Köln 1. Oktober 2010 1 Ein User Scenario

Mehr

PG-402 Wissensmanagement: Ontologiebasierte Wissensextraktion

PG-402 Wissensmanagement: Ontologiebasierte Wissensextraktion PG-402 Wissensmanagement: Ontologiebasierte Wissensextraktion WS2001/2002 Klaus Unterstein 20.10.2001 PG-402 Wissensmanagement: Ontologiebasierte Wissensextraktion 1 Verlauf Begriffsklärung Ontologiebasierte

Mehr

RDF RESOURCE DESCRIPTION FRAMEWORK. Referentin: Claudia Langer

RDF RESOURCE DESCRIPTION FRAMEWORK. Referentin: Claudia Langer RDF RESOURCE DESCRIPTION FRAMEWORK Referentin: Claudia Langer Überblick RDF allgemein RDF und XML Praktisches Beispiel RDF allgemein vom WWW Konsortium (W3C) für das Semantic Web entwickelt Sprache zur

Mehr

Daten, Information, Wissen explizites und implizites Wissen Expertensysteme (Aufgaben, Aufbau, Komponenten) Diagnoseziel Klassifikation

Daten, Information, Wissen explizites und implizites Wissen Expertensysteme (Aufgaben, Aufbau, Komponenten) Diagnoseziel Klassifikation Was bisher geschah Daten, Information, Wissen explizites und implizites Wissen Expertensysteme (Aufgaben, Aufbau, Komponenten) Diagnoseziel Klassifikation sicher heuristisch überdeckend Entscheidungstabellen

Mehr

Aus Daten werden Informationen

Aus Daten werden Informationen Swiss PLM-Forum 2011 Differenzierung durch Standards Aus Daten werden Informationen Jochen Sauter BCT Technology AG Agenda Vorstellung BCT Technology AG Product Lifecycle Management Definition / Daten

Mehr

Klassendiagramm und Datenbankableitung : Version 3 'Verleihnix 1.0'

Klassendiagramm und Datenbankableitung : Version 3 'Verleihnix 1.0' Änderungsprotokoll: Version 2 auf Version 3 (g.schabus) Änderung Datentypen von Geschlecht, Typ und Status. Da wir diese Eigenschaften nicht als Relationen sondern als Eigenschaften abbilden, hat die Geschäftslogik

Mehr

Freie und vernetzte Daten:

Freie und vernetzte Daten: Freie und vernetzte Daten: Das Konzept des Linked Open Data und sein Einsatz beim RISM-OPAC KoFIM-Kolloquium an der Staatsbibliothek zu Berlin, 6. Oktober 2014 Jürgen Diet, Bayerische Staatsbibliothek

Mehr

Einführung Software Domänenspezifische Anpassung Demo Ausblick. ERM mit OntoWiki. Andreas Nareike

Einführung Software Domänenspezifische Anpassung Demo Ausblick. ERM mit OntoWiki. Andreas Nareike Entwicklung eines Electronic Resource Management Systems für Bibliotheken auf Basis von Linked Data Technologien Institut für Informatik, UB Leipzig Universität Leipzig DINI AG KIM Workshop, 15 April 2014

Mehr

Ansatz für einen CIDOC-CRM-Editor

Ansatz für einen CIDOC-CRM-Editor Ansatz für einen CIDOC-CRM-Editor HS WS 08/09: Das Semantic Web in Papierform und Praxis: CIDOC-CRM Dozent: Prof. Dr. Thaller Referent: Stefan Oertel Inhalt Grundsätzliche Anforderungen Welche Lösungen

Mehr

Qualitätssicherung bei der mobilen Datenerfassung

Qualitätssicherung bei der mobilen Datenerfassung Qualitätssicherung bei der mobilen Datenerfassung Stephan Mäs Arbeitsgemeinschaft GIS Universität der Bundeswehr München http://www.unibw.de/bauv11/geoinformatik/agis 9. Seminar GIS & Internet 13.-15.

Mehr

Semantische Modellintegration

Semantische Modellintegration 6. SemTalk User Meeting Potsdam, 12. November 2009 Semantische Modellintegration Prof. Dr. Michael Rebstock Hochschule Darmstadt Forschungsgruppe g e-big michael.rebstock@h-da.de http://www.fbw.h-da.de/ebig

Mehr

Theoretische Informatik 2 (WS 2006/07) Automatentheorie und Formale Sprachen 19

Theoretische Informatik 2 (WS 2006/07) Automatentheorie und Formale Sprachen 19 Inhalt 1 inführung 2 Automatentheorie und ormale prachen Grammatiken Reguläre prachen und endliche Automaten Kontextfreie prachen und Kellerautomaten Kontextsensitive und yp 0-prachen 3 Berechenbarkeitstheorie

Mehr

Ressourcen-Beschreibung im Semantic Web

Ressourcen-Beschreibung im Semantic Web Ressourcen-Beschreibung im Semantic Web Cristina Vertan Inhaltsübersicht Wie sollen die Ressourcen für Semantic Web annotiert werden? Was ist und wie funktioniert RDF? Wie kodiert man RDF-Statements in

Mehr

Semantik auf Knopfdruck? Qualität von CMS-generierten semantischen Daten. Hannes Mühleisen, AG NBI / WBSG

Semantik auf Knopfdruck? Qualität von CMS-generierten semantischen Daten. Hannes Mühleisen, AG NBI / WBSG Semantik auf Knopfdruck? Qualität von CMS-generierten semantischen Daten Hannes Mühleisen, AG NBI / WBSG Xinnovations 2012 Fahrplan 2 Fahrplan Eingebette strukturierte Daten auf Webseiten 2 Fahrplan Eingebette

Mehr

Ein Ansatz für eine Ontologie-basierte Verbindung von IT Monitoring und IT Governance

Ein Ansatz für eine Ontologie-basierte Verbindung von IT Monitoring und IT Governance Ein Ansatz für eine Ontologie-basierte Verbindung von IT Monitoring und IT Governance MITA 2014 23.09.2014 Andreas Textor andreas.textor@hs-rm.de Hochschule RheinMain Labor für Verteilte Systeme Fachbereich

Mehr

AKWM. Natürlichsprachliche Suche. Semantische Suche. www.ontoprise.de. 03.04.2008 Eddie Mönch. Copyright 2008 ontoprise GmbH, Karlsruhe

AKWM. Natürlichsprachliche Suche. Semantische Suche. www.ontoprise.de. 03.04.2008 Eddie Mönch. Copyright 2008 ontoprise GmbH, Karlsruhe AKWM Natürlichsprachliche Suche Semantische Suche 03.04.2008 Eddie Mönch Copyright 2008 ontoprise GmbH, Karlsruhe know how to use Know-how! Profil Kunden Ontoprise ist der führende Anbieter industriebewährter

Mehr

Das Multidimensionale Datenmodell

Das Multidimensionale Datenmodell Das Multidimensionale Datenmodell Konzeptuelle Modellierung Umsetzung des Modells Beispiel ER-Modell 2 / 36 Probleme ER-Modellierung Keine Unterscheidung Klassifikation, Attribute, Kenngrößen Dimension

Mehr

Ausgangsposition. Aspekte der Texttechnologie. Aspekte der Texttechnologie. Susanne J. Jekat Zürcher Hochschule Winterthur E-mail: jes@zhwin.

Ausgangsposition. Aspekte der Texttechnologie. Aspekte der Texttechnologie. Susanne J. Jekat Zürcher Hochschule Winterthur E-mail: jes@zhwin. Aspekte der Texttechnologie Susanne J. Jekat Zürcher Hochschule Winterthur E-mail: jes@zhwin.ch Aspekte der Texttechnologie Thema 5 Semantic Web Termine: 24. Mai 2007 Lernfrage: Was ist das Semantic Web

Mehr

Einführung. Arbeitsgruppe. Proseminar Corporate Semantic Web. Prof. Dr. Adrian Paschke

Einführung. Arbeitsgruppe. Proseminar Corporate Semantic Web. Prof. Dr. Adrian Paschke Arbeitsgruppe Proseminar Corporate Semantic Web Einführung Prof. Dr. Adrian Paschke Arbeitsgruppe Corporate Semantic Web (AG-CSW) Institut für Informatik, Freie Universität Berlin paschke@inf.fu-berlin.de

Mehr

Modul 5: Semantik im WWW

Modul 5: Semantik im WWW Modul 5: Semantik im WWW Lernziele The Internet will become a repository of knowledge, Vinton Cerf (geb. not only a compendium of facts. 1943), einer der Väter des Internets [W1] Interoperabilität und

Mehr

Semantic Web Technologies I! Lehrveranstaltung im WS10/11! Dr. Andreas Harth! Dr. Sebastian Rudolph!

Semantic Web Technologies I! Lehrveranstaltung im WS10/11! Dr. Andreas Harth! Dr. Sebastian Rudolph! Semantic Web Technologies I! Lehrveranstaltung im WS10/11! Dr. Andreas Harth! Dr. Sebastian Rudolph! www.semantic-web-grundlagen.de Ontology Engineering! Dr. Sebastian Rudolph! Semantic Web Architecture

Mehr

Neue Konzepte für RDF-Managementsysteme

Neue Konzepte für RDF-Managementsysteme Neue Konzepte für RDF-Managementsysteme Ralf Heese Humboldt-Universität zu Berlin Institut für Informatik, Datenbanken und Informationssysteme Unter den Linden 6, D-10099 Berlin rheese@informatik.hu-berlin.de

Mehr

neofonie DER SPEZIALIST FÜR IHRE INFORMATIONSARCHITEKTUR

neofonie DER SPEZIALIST FÜR IHRE INFORMATIONSARCHITEKTUR neofonie DER SPEZIALIST FÜR IHRE INFORMATIONSARCHITEKTUR Suchportale der nächsten Generation Dr. Thomas Schwotzer Leiter Forschung, neofonie Suche eine Folien Geschichte 1993: Beginn der HTML-Ära 1993

Mehr

Datenmodelle im Kontext von Europeana. Stefanie Rühle (SUB Göttingen)

Datenmodelle im Kontext von Europeana. Stefanie Rühle (SUB Göttingen) Datenmodelle im Kontext von Europeana Stefanie Rühle (SUB Göttingen) Übersicht Datenmodelle RDF DCAM ORE SKOS FRBR CIDOC CRM Datenmodelle "Datenmodellierung bezeichnet Verfahren in der Informatik zur formalen

Mehr

Grundlagen der Informatik II. Teil I: Formale Modelle der Informatik

Grundlagen der Informatik II. Teil I: Formale Modelle der Informatik Grundlagen der Informatik II Teil I: Formale Modelle der Informatik 1 Einführung GdInfoII 1-2 Ziele/Fragestellungen der Theoretischen Informatik 1. Einführung abstrakter Modelle für informationsverarbeitende

Mehr

Klausur Interoperabilität

Klausur Interoperabilität Klausur 21. Juni 2012 9.30 11.00 Uhr Workflow Systems and Technology Group Fakultät für Informatik Universität Wien Univ.-Prof. Dr. Stefanie Rinderle-Ma Allgemeine Hinweise: Die Bearbeitungszeit beträgt

Mehr

Institut für Unternehmensinformatik Konzeption eines Service Repository zur Beschreibung von Services in der Cloud

Institut für Unternehmensinformatik Konzeption eines Service Repository zur Beschreibung von Services in der Cloud Institut für Unternehmensinformatik Konzeption eines Service Repository zur Beschreibung von Services in der Cloud Commit Clusterworkshop Datenmanagement Thomas Specht Mannheim, 22.10.2012 Hochschule Mannheim

Mehr

Web Data Management Systeme

Web Data Management Systeme Web Data Management Systeme Seminar: Web-Qualitätsmanagement Arne Frenkel Agenda Einführung Suchsysteme Suchmaschinen & Meta-Suchmaschinen W3QS WebSQL WebLog Information Integration Systems Ariadne TSIMMIS

Mehr

Semantic Web Technologies I

Semantic Web Technologies I Semantic Web Technologies I Lehrveranstaltung im WS11/12 Dr. Elena Simperl PD Dr. Sebastian Rudolph M. Sc. Anees ul Mehdi Ontology Engineering Dr. Elena Simperl XML und URIs Einführung in RDF RDF Schema

Mehr

RDF(a) und Microformats

RDF(a) und Microformats Weiterführende Themen zu Internet- und WWW-Technologien Hasso-Plattner-Institut 16. Mai 2011 1 Einführung Hintergrund Die Geschichte 2 RDF Ziel Repräsentationen Vokabularien 3 Microformats Motivation Beispiele

Mehr

Ontologien. Ontologien (aus ISM Kap. 3. Wissensrepräsentation für Texte) Ontologien: Konstrukte. Konzepte/Klassen

Ontologien. Ontologien (aus ISM Kap. 3. Wissensrepräsentation für Texte) Ontologien: Konstrukte. Konzepte/Klassen Ontologien Ontologien (aus ISM Kap. 3. Wissensrepräsentation für Texte) Norbert Fuhr Ursprung: semantische Netze aus der künstlichen Intelligenz (1970er) weiterentwickelt als terminologische Logiken, Beschreibungslogiken

Mehr

Ontologien (aus ISM Kap. 3. Wissensrepräsentation für Texte) Norbert Fuhr

Ontologien (aus ISM Kap. 3. Wissensrepräsentation für Texte) Norbert Fuhr Ontologien (aus ISM Kap. 3. Wissensrepräsentation für Texte) Norbert Fuhr 1 / 23 Ontologien Ursprung: semantische Netze aus der künstlichen Intelligenz (1970er) weiterentwickelt als terminologische Logiken,

Mehr

Enriched Content Browsing

Enriched Content Browsing Enriched Content Browsing Textanalyse meets Web 2.0: Eine Technologiestudie zur automatisierten Anreicherung von Web Inhalten Holger Seubert holger.seubert@de.ibm.com IBM Information Management Agenda

Mehr

OWL und Protégé. Seminar A.I. Tools Matthias Loskyll 14.12.2006

OWL und Protégé. Seminar A.I. Tools Matthias Loskyll 14.12.2006 OWL und Protégé Seminar A.I. Tools Matthias Loskyll 14.12.2006 Überblick Einführung OWL Eigenschaften Sprachbeschreibung Übersicht Protégé Beschreibung des Tools Demo Zusammenfassung 2 Einführung Google?

Mehr

3.5 OWL: WEB Ontology Language (1)

3.5 OWL: WEB Ontology Language (1) 3.5 OWL: WEB Ontology Language (1) 3.5.1 OWL-Syntax (Teil 1) A) Namensräume / RDF-Tag: Die OWL-Syntax basiert auf XML, XML-Schema, RDF und RDFS. Daher sind die zugehörigen Namensräume am Anfang des Quelltextes

Mehr

xtree.voc Weiterentwicklung der Vokabularverwaltungssoftware xtree

xtree.voc Weiterentwicklung der Vokabularverwaltungssoftware xtree xtree.voc Weiterentwicklung der Vokabularverwaltungssoftware xtree Einführung Features Ein Beispiel: Konzept 00000964 aus der Oberbegriffsdatei als SKOS-Graph in xtree.voc Nächste Schritte Datenströme

Mehr

Kapitel DB:III. III. Konzeptueller Datenbankentwurf

Kapitel DB:III. III. Konzeptueller Datenbankentwurf Kapitel DB:III III. Konzeptueller Datenbankentwurf Einführung in das Entity-Relationship-Modell ER-Konzepte und ihre Semantik Charakterisierung von Beziehungstypen Existenzabhängige Entity-Typen Abstraktionskonzepte

Mehr

Seminar Semantic Grid Wintersemester 2004/2005. Ontologiesprachen

Seminar Semantic Grid Wintersemester 2004/2005. Ontologiesprachen Seminar Semantic Grid Wintersemester 2004/2005 Universität Koblenz Seminarleiter: Bernhard Tausch Ontologiesprachen Daniel Akkaya Inhaltsverzeichnis Ontologie 3 Aufbau einer Ontologie 4 RDF.5 RDFS..6 DAML

Mehr

Abstrakt zum Vortrag im Oberseminar. Graphdatenbanken. Gero Kraus HTWK Leipzig 14. Juli 2015

Abstrakt zum Vortrag im Oberseminar. Graphdatenbanken. Gero Kraus HTWK Leipzig 14. Juli 2015 Abstrakt zum Vortrag im Oberseminar Graphdatenbanken Gero Kraus HTWK Leipzig 14. Juli 2015 1 Motivation Zur Darstellung komplexer Beziehungen bzw. Graphen sind sowohl relationale als auch NoSQL-Datenbanken

Mehr

FH Wedel Informatik Seminar WS2006/2007 : Service-orientierte Architektur (SOA) Christian Köhn 13.12.2006

FH Wedel Informatik Seminar WS2006/2007 : Service-orientierte Architektur (SOA) Christian Köhn 13.12.2006 FH Wedel Informatik Seminar WS2006/2007 : Service-orientierte Architektur (SOA) Christian Köhn 13.12.2006 OWL: Zweck, Aufbau und Beispiel Die Beschreibungssprache OWL Christian Köhn :: mi2219 Informatik

Mehr

Wirtschaftsinformatik 2. Tutorium im WS 11/12

Wirtschaftsinformatik 2. Tutorium im WS 11/12 Wirtschaftsinformatik 2. Tutorium im WS 11/12 Entity/Relationship-Modell SQL Statements Tutorium Wirtschaftsinformatik WS 11/12 2.1 Datenmodellierung mit ERM (1) Datenmodellierung zur Erarbeitung des konzeptionellen

Mehr

Kapitel IR:I. I. Einführung. Retrieval-Szenarien Begriffsbildung Einordnung Information Retrieval

Kapitel IR:I. I. Einführung. Retrieval-Szenarien Begriffsbildung Einordnung Information Retrieval Kapitel IR:I I. Einführung Retrieval-Szenarien Begriffsbildung Einordnung Information Retrieval IR:I-1 Introduction STEIN 2005-2010 Retrieval-Szenarien Liefere Dokumente, die die Terme «Information» und

Mehr

Semantic Web Grundlagen

Semantic Web Grundlagen Birte Glimm Institut für Künstliche Intelligenz 30. Jan 2012 Semantic Web Grundlagen Ontology Engineering Foliensatz adaptiert und übersetzt von Eva Blomqvist Ontology Design Patterns. 2/49 Birte Glimm

Mehr

XDOC Extraktion, Repräsentation und Auswertung von Informationen

XDOC Extraktion, Repräsentation und Auswertung von Informationen XDOC Extraktion, Repräsentation und Auswertung von Informationen Manuela Kunze Otto-von-Guericke Universität Magdeburg Fakultät für Informatik Institut für Wissens- und Sprachverarbeitung Gliederung Ausgangspunkt

Mehr

Theoretische Grundlagen des Software Engineering

Theoretische Grundlagen des Software Engineering Theoretische Grundlagen des Software Engineering 11: Abstrakte Reduktionssysteme schulz@eprover.org Reduktionssysteme Definition: Reduktionssystem Ein Reduktionssystem ist ein Tupel (A, ) Dabei gilt: A

Mehr

Kapitel WT:VIII (Fortsetzung)

Kapitel WT:VIII (Fortsetzung) Kapitel WT:VIII (Fortsetzung) VIII. Semantic Web WWW heute Semantic Web Vision RDF: Einführung RDF: Konzepte RDF: XML-Serialisierung RDF: Anwendungen RDFS: Einführung RDFS: Konzepte Semantik im Web Semantik

Mehr

Lohntabelle gültig ab 1. Januar 2016

Lohntabelle gültig ab 1. Januar 2016 Klasse 1 A 34'953 2'912.75 16.00 37'865.75 B 36'543 3'045.25 16.73 39'588.25 C 38'130 3'177.50 17.46 41'307.50 1 39'720 3'310.00 18.19 43'030.00 2 41'307 3'442.25 18.91 44'749.25 3 42'897 3'574.75 19.64

Mehr

Cognitive Systems Master thesis

Cognitive Systems Master thesis Cognitive Systems Master thesis Recherche Phase SS 2011 Gliederung 1. Einleitung 2. Analogie Modelle 2.1 SME 2.2 Ava 2.3 Lisa 3. Zusammenfassung 4. Ausblick 2 Einleitung Analogie Problemsituation wird

Mehr

Mathematische Grundlagen der Informatik 2

Mathematische Grundlagen der Informatik 2 Zusammenfassung Math2I Mathematische Grundlagen der Informatik 2 Emanuel Duss emanuel.duss@gmail.com 12. April 2013 1 Zusammenfassung Math2I Mathematische Grundlagen der Informatik 2 Dieses Dokument basiert

Mehr

Bild Nummer 1: Bild Nummer 2: Seite B 1

Bild Nummer 1: Bild Nummer 2: Seite B 1 Bild Nummer 1: Bild Nummer 2: Seite B 1 Bild Nummer 3: Bild Nummer 4: Seite B 2 Bild Nummer 5: Bild Nummer 6: Seite B 3 Bild Nummer 7: Bild Nummer 8: Seite B 4 Bild Nummer 9: Bild Nummer 10: Seite B 5

Mehr

Better Backlinking Semantische Kategorisierung von Websites

Better Backlinking Semantische Kategorisierung von Websites Better Backlinking Semantische Kategorisierung von Websites Stephan Sommer-Schulz info@nerdbynature.net Inhaltsübersicht 1. Ziel: Kategorisierung 2. Backlinks 3. Kategorien - Auswahl 4. Semantische Verfahren

Mehr

Semantic-Web-Sprachen XML, RDF (und RDFS), OWL

Semantic-Web-Sprachen XML, RDF (und RDFS), OWL Semantic-Web-Sprachen XML, RDF (und RDFS), OWL PTI 991 Wissensmanagementsystemen Dozent: Prof. Sybilla Schwarz 1 Agenda Problem Semantisches Web Semantische Sprache XML RDF RDFS OWL Zusammenfassung 2 Problem

Mehr

Extraktion von Metadaten als Basis für eine semantische Integration heterogener Informationssysteme

Extraktion von Metadaten als Basis für eine semantische Integration heterogener Informationssysteme Extraktion von Metadaten als Basis für eine semantische Integration heterogener Informationssysteme Liane Haak, Axel Hahn Abteilung Wirtschaftsinformatik Carl von Ossietzky Universität Oldenburg Fakultät

Mehr

Seminar:Semantic Web Technologien. RDF Schema (vs. XMLS), Ontologien und OWL

Seminar:Semantic Web Technologien. RDF Schema (vs. XMLS), Ontologien und OWL Seminar:Semantic Web Technologien RDF Schema (vs. XMLS), Ontologien und OWL Lina Sun Matrikelnummer:2240486 sunla@studi.informatik.uni-stuttgart.com Betreuer: Steffen Koch 1. August 2007 Inhaltsverzeichnis

Mehr

Semantic Web Paradigmen

Semantic Web Paradigmen #1 10.12.2014 SIMON HEIMLER Semantic Web Paradigmen Semantic Web Paradigmen Simon Heimler heimlersimon@gmail.com Master of Applied Research Computer Science Prof. Dr. Sabine Müllenbach Faculty of Computer

Mehr

Übersetzung des Singapore Framework für Dublin-Core-Anwendungsprofile

Übersetzung des Singapore Framework für Dublin-Core-Anwendungsprofile Übersetzung des Singapore Framework für Dublin-Core-Anwendungsprofile Identifier: http://www.kimforum.org/material/pdf/uebersetzung_singapore_20090213.pdf Title: Übersetzung des Singapore Framework für

Mehr

Theorie der Informatik

Theorie der Informatik Theorie der Informatik 6. Formale Sprachen und Grammatiken Malte Helmert Gabriele Röger Universität Basel 17. März 2014 Einführung Beispiel: Aussagenlogische Formeln Aus dem Logikteil: Definition (Syntax

Mehr

Die virtuelle Forschungsumgebung WissKI Museumsdokumentation im Semantic Web. Georg Hohmann Germanisches Nationalmuseum g.hohmann@gnm.

Die virtuelle Forschungsumgebung WissKI Museumsdokumentation im Semantic Web. Georg Hohmann Germanisches Nationalmuseum g.hohmann@gnm. Die virtuelle Forschungsumgebung WissKI Museumsdokumentation im Semantic Web Georg Hohmann Germanisches Nationalmuseum g.hohmann@gnm.de WissKI Das Projekt WissKI = Abk. Wissenschaftliche KommunikationsInfrastruktur

Mehr

Das Knowledge Grid. Eine Architektur für verteiltes Data Mining

Das Knowledge Grid. Eine Architektur für verteiltes Data Mining Das Knowledge Grid Eine Architektur für verteiltes Data Mining 1 Gliederung 1. Motivation 2. KDD und PDKD Systeme 3. Knowledge Grid Services 4. TeraGrid Projekt 5. Das Semantic Web 2 Motivation Rapide

Mehr

50/11. Amtliches Mitteilungsblatt. 21. Dezember 2011. Seite. Zweite Ordnung zur Änderung der Studienordnung

50/11. Amtliches Mitteilungsblatt. 21. Dezember 2011. Seite. Zweite Ordnung zur Änderung der Studienordnung Nr. 50/11 Amtliches Mitteilungsblatt der HTW Berlin Seite 841 50/11 21. Dezember 2011 Amtliches Mitteilungsblatt Seite Zweite Ordnung zur Änderung der Studienordnung für den Internationalen Studiengang

Mehr

Bereiche der KI. KI und das Web Eine Übersicht. Allgemeines zur KI. Einfluss der KI auf die Informatik. Herausforderungen im Web

Bereiche der KI. KI und das Web Eine Übersicht. Allgemeines zur KI. Einfluss der KI auf die Informatik. Herausforderungen im Web Bereiche der KI KI und das Web Eine Übersicht Web Site Engineering, Vorlesung Nr. 13 Neuronale Netze Suchverfahren Expertensysteme Fallbasiertes Schließen (Case-Based Reasoning) Planen Maschinelles Lernen

Mehr

Linked Open Cultural Heritage.

Linked Open Cultural Heritage. Linked Open Cultural Heritage. Herausforderungen, Risiken und Chancen der Datenvernetzung im Bereich des Kulturerbes. Georg Hohmann Germanisches Nationalmuseum Referat für Museums- und Kulturinformatik

Mehr

Zusammenfassung. 1 Wir betrachten die folgende Signatur F = {+,,, 0, 1} sodass. 3 Wir betrachten die Gleichungen E. 4 Dann gilt E 1 + x 1

Zusammenfassung. 1 Wir betrachten die folgende Signatur F = {+,,, 0, 1} sodass. 3 Wir betrachten die Gleichungen E. 4 Dann gilt E 1 + x 1 Zusammenfassung Zusammenfassung der letzten LV Einführung in die Theoretische Informatik Woche 7 Harald Zankl Institut für Informatik @ UIBK Wintersemester 2014/2015 1 Wir betrachten die folgende Signatur

Mehr

Internetauftritt: Hochschulpartnerschaften - Datenbank

Internetauftritt: Hochschulpartnerschaften - Datenbank Hochschule für Technik, Wirtschaft und Kultur Leipzig (FH) University of Applied Sciences Internetauftritt: Hochschulpartnerschaften - Datenbank Modul: Anleitung für Typo3 bzgl. Partnerhochschulen einpflegen

Mehr

Reasoner for the Semantic Web

Reasoner for the Semantic Web Reasoner for the Semantic Web KAON & KAON2 Seminar A.I. Tools Erik Endres 18.1.2007 Übersicht Reasoner KAON1 KAON2 & Protégé Reasoner Ontologien machen Daten für Maschinen verarbeitbar. Reasoner setzen

Mehr

Rollen in GFO und HL7-RIM

Rollen in GFO und HL7-RIM n in GFO und HL7-RIM Frank Loebe Forschungsgruppe Ontologien in der Medizin (Onto-Med) Institut für Medizinische Informatik, Statistik und Epidemiologie (IMISE), Universität Leipzig frank.loebe@imise.uni-leipzig.de

Mehr

Motivation. Formale Grundlagen der Informatik 1 Kapitel 5 Kontextfreie Sprachen. Informales Beispiel. Informales Beispiel.

Motivation. Formale Grundlagen der Informatik 1 Kapitel 5 Kontextfreie Sprachen. Informales Beispiel. Informales Beispiel. Kontextfreie Kontextfreie Motivation Formale rundlagen der Informatik 1 Kapitel 5 Kontextfreie Sprachen Bisher hatten wir Automaten, die Wörter akzeptieren Frank Heitmann heitmann@informatik.uni-hamburg.de

Mehr

Die Suche nach Wissen statt nach Webseiten

Die Suche nach Wissen statt nach Webseiten Informatik/Mathematik/Komplexe Systeme Die Suche nach Wissen statt nach Webseiten Suchanek, Fabian; Weikum, Gerhard Max-Planck-Institut für Informatik, Saarbrücken Abteilung - Datenbanken und Informationssysteme

Mehr

Graphen: Einführung. Vorlesung Mathematische Strukturen. Sommersemester 2011

Graphen: Einführung. Vorlesung Mathematische Strukturen. Sommersemester 2011 Graphen: Einführung Vorlesung Mathematische Strukturen Zum Ende der Vorlesung beschäftigen wir uns mit Graphen. Graphen sind netzartige Strukturen, bestehend aus Knoten und Kanten. Sommersemester 20 Prof.

Mehr

Semantic Web Grundlagen

Semantic Web Grundlagen Birte Glimm Institut für Künstliche Intelligenz 7. Nov 2011 Semantic Web Grundlagen Semantik von RDF(S) 2/47 Birte Glimm Semantic Web Grundlagen 7. Nov 2011 Organisatorisches: Inhalt Einleitung und XML

Mehr

Verknüpfte Daten abfragen mit SPARQL. Thomas Tikwinski, W3C.DE/AT

Verknüpfte Daten abfragen mit SPARQL. Thomas Tikwinski, W3C.DE/AT Verknüpfte Daten abfragen mit SPARQL Thomas Tikwinski, W3C.DE/AT Agenda SPARQL Eine Anfragesprache für RDF Was ist eine SPARQL-Abfrage? Beispiel Arbeiten mit Variablen Komplexere Anfragen Filtern und sortieren

Mehr