1.1 Eindimensionale, geradlinige Bewegung

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "1.1 Eindimensionale, geradlinige Bewegung"

Transkript

1 1. Inenion O, Geschwindigkei und Beschleunigung eines Köpes zu jedem Zeipunk bescheiben. z e e z e () Oseko: () R. Giwidz Eindimensionle, gedlinige Bewegung Eindimensionles Koodinenssem: 1 Veeinfchend efolg zunächs die Bechung: on Mssenpunken in Ineilssemen (usgedehne Köpe späe) Vesuch: Roieende Dose mi Mkieungspunk Vesuch: Bll o Tfel hochwefen Im Sehen Im Gehen (es späe uch ein oieendes Bezugsssem) R. Giwidz 1

2 1.1.1 Duchschnisgeschwindigkei / milee Geschwindigkei Vesuch: Eisenbhn - Posiionsmken sezen - Meonom fü Zeik Geschwindigkeismessung: 1 1 ( 1 ) ( ) 1 : 1 ( ) ( 1 ) 1 Milee Geschwindigkei = Wegsecke Zeiinell R. Giwidz 3 Den us dem Epeimen in eine Weebelle ufnehmen: /m /s Gfische Dsellung im Zei-Weg-Digmm ()-Digmm /m 1 R. Giwidz 4 /s

3 /m 1 1 Ges /s Die Geschwindigkei is n de Seigung des Gphen im ()-Digmm blesb. R. Giwidz 5 Weiee Möglichkeien die Bewegungsbläufe zu egisieen Soboskopufnhme Film Mkieungsseifen R. Giwidz 6 3

4 1.1. Die Momenngeschwindigkei Rechneisch: d lim d Gphisch: Die Momenngeschwindigkei zu einem besimmen Zeipunk zeig sich ls die Seigung de Tngene n de ()-Kue zu diesem Zeipunk. R. Giwidz 7 Ekus: Ableiung eine Poenzfunkion ( ) c d n d ( ) d d n d n n 1 c c c n d Beispiel: ( ) b b n c R. Giwidz 8 4

5 R. Giwidz 9 Aufgbe: Duchschnisgeschwindigkei Ein Rdfhe fäh mi eine Geschwindigkei on 15 km h -1 den Beg hinuf. Wie schnell muss e dieselbe Secke zuückfhen, um insgesm die doppele Duchschnisgeschwindigkei, lso 3 km h -1, zu eeichen? R. Giwidz 1 5

6 Aufgbe: Wldi Föse Knlle und sein Dckel Wldi gehen nch de Pisch zuück zum Foshus. 1 m o dem Hus füh de Weg us dem Wld heus uf eine feie Wiese. Wldi, de ds Hus sieh, enn o bis zu Tü, dnn jedoch, on Pflichgefühl geieben, zuück zu seinem Hechen, wiede zu Tü und zuück usw., bis de Föse die Tü eeich. Wie wei is Wldi insgesm gelufen, wenn e ieml so schnell läuf wie de Föse geh? R. Giwidz 11 Aufgbe: Flusseise Ein Lskhn fäh zwischen zwei Flusshäfen die 1 km useinnde liegen hin und he. E benöig flussufwäs 1 Sunden, flussbwäs nu 4 Sunden. Beechnen Sie die Sömungsgeschwindigkei des Flusses und die Eigengeschwindigkei des Booes. R. Giwidz 1 6

7 Aufgbe: Flusseise Ein Lskhn fäh zwischen zwei Flusshäfen die 1 km useinnde liegen hin und he. E benöig flussufwäs 1 Sunden, flussbwäs nu 4 Sunden. Beechnen Sie die Sömungsgeschwindigkei des Flusses und die Eigengeschwindigkei des Booes. R. Giwidz Die Beschleunigung (Mß fü die zeiliche Ändeung de Geschwindigkei) Milee Beschleunigung: (Geschwindigkeisändeung / Zeiinell) Momennbeschleunigung: d d lim ( ) d d Beispiel: 3c 6c R. Giwidz 14 7

8 Zusmmenhänge zwischen, und Schiefe Ebene beliebige Bewegung Wie läss sich on de Beschleunigung uf die Geschw. schließen? Beknn: d d "Umkehung" de Diffeeniion nöig. R. Giwidz 15 Ekus: Inegion eine Poenzfunkion Smmfunkion F ( ) f ( ) d ; F ( ) u n ( u ) d n 1 u n 1 d c Inegionskonsne "enhäl" Anfngsbedingungen R. Giwidz 16 n 8

9 Bewegung mi konsne Beschleunigung kons * d R. Giwidz 17 Bewegung mi konsne Beschleunigung * d R. Giwidz 18 9

10 Fhbhn s 3 R. Giwidz 19 Zusmmenhng zwischen und Einfche Fll: ; ; (d.h. S om Uspung) (d.h. Bewegung us dem Snd) 1 ; 1 Allgemein: R. Giwidz 1

11 Feie Fll: R. Giwidz 1 Feie Fll: R. Giwidz 11

12 Feie Fll: R. Giwidz 3 Feie Fll: R. Giwidz 4 1

13 Feie Fll: R. Giwidz 5 Fllbewegung: R. Giwidz 6 13

14 Feie Fll: R. Giwidz 7 14

15 1 R. Giwidz 1 1. Bewegung in zwei und dei Dimensionen R. Giwidz 1..1 Ekus echnen mi Vekoen (I) Scheibweise Beg / "Länge" ; z z z e e e z

16 R. Giwidz 3 Addiion Muliplikion mi Skl ; z z z z b b b b b b b c ; z c R. Giwidz 4,, sind geichee Gößen => genue Beispiel: Senkeche Wuf nch oben ;,,

17 1.. Kinemik mi Vekoen d lim d d d d d z d d d z e e e z d d d Zelegung in Komponenen - einfch Komponenen diffeenzieen (! nu im k. Koodinenssem! ) R. Giwidz 5 Beschleunigung: d e d d d z e e d d z (Zelegung in Komponenen) d d d e d d e d z e z R. Giwidz 6 3

18 1..3 Supeposiionspinzip Bewegungsbläufe lssen zusmmengesez us Teilbewegungen bescheiben R. Giwidz 7 Supeposiionspinzip Addiion on Geschwindigkeien R. Giwidz 8 4

19 Supeposiionspinzip Addiion on Geschwindigkeien R. Giwidz 9 Supeposiionspinzip de schiefe Wuf R. Giwidz 1 5

20 Supeposiionspinzip de schiefe Wuf R. Giwidz 11 Supeposiionspinzip de schiefe Wuf Bhnkue (Wufpbel) g ; R. Giwidz 1 6

21 7 R. Giwidz 13 Supeposiionspinzip de schiefe Wuf ; g Bhnkue (Wufpbel) ; g R. Giwidz 14 Supeposiionspinzip de schiefe Wuf ; g Bhnkue (Wufpbel) ; g ; 1 z g

22 8 R. Giwidz ) Bhnkue De schiefe Wuf R. Giwidz ) Bhnkue (()-Kue) eliminieen ) 1 1) g (Wufpbel) 1 in 1) g cos 1 n ) ( 1 ) ( g g De schiefe Wuf

23 9 R. Giwidz b) Seighöhe De schiefe Wuf R. Giwidz b) Seighöhe m! sin ) ( ) ( g g g g g g g g s s s s s s Seigzei De schiefe Wuf

24 De schiefe Wuf c) Wufweie R. Giwidz 19 De schiefe Wuf c) Wufweie W ( ) s g sin cos g sin cos g sin( ) g W ( ) Wufweie bh. on Abwufgeschwindigkei und Abwufwinkel R. Giwidz 1

25 De schiefe Wuf d) Mimle Wufweie R. Giwidz 1 De schiefe Wuf d) Mimle Wufweie W miml fü : sin( ) 1 m m m 45 4 R. Giwidz 11

26 1..4 Kinemik de Keisbewegung Beispiele: Kuenfh mi dem Auo, Volksfes, Edbhn, Mondbhn R. Giwidz Kinemik de Keisbewegung Winkel Gdeineilung b φ b [φ]: Rdin (d) Länge b des Keisbogens Bogenmß d Länge des Rdius R. Giwidz 4 1

27 1..4 Kinemik de Keisbewegung Winkel Umfng eines Keises : b 36 im Gdmß enspechen im Bogenmß (in Gd) (in Bogenmß) 36 Einhei des Bogenmßes : 36 1Rdin ˆ 57,3 1d 36 R. Giwidz 5 Ekus: Ebene Polkoodinen R. Giwidz 6 13

28 1..4 Kinemik de Keisbewegung Bescheibung de Keisbewegung in Polkoodinen kons.; ( ); R. Giwidz Kinemik de Keisbewegung Bescheibung de Keisbewegung in Polkoodinen kons.; ( ); ( ) cos( ); ( ) sin( ); R. Giwidz 8 14

29 Keisbewegung - Geschwindigkei R. Giwidz 9 Keisbewegung Geschwindigkei: lim kons. lim e R. Giwidz 3 15

30 Keisbewegung Geschwindigkei: lim kons. lim e d e d R. Giwidz 31 Keisbewegung Winkelgeschwindigkei Definiion: d : ; d fü kons: ; T genue: is Veko R. Giwidz 3 16

31 Keisbewegung Geschwindigkei & Winkelgeschwindigkei: ; Spezilfll: kons; kons. : ; T sin ; cos ; R. Giwidz 33 Keisbewegung - Beschleunigung R. Giwidz 34 17

32 Keisbewegung - Beschleunigung lim Spezilfll gleichfömige Keisbewegung: kons. lim ( e ) R. Giwidz 35 Keisbewegung - Beschleunigung lim Spezilfll gleichfömige Keisbewegung: kons. lim ( e ) lim ( e ) ( e ) R. Giwidz 36 18

33 19 R. Giwidz 37 Keisbewegung - Beschleunigung lim ) ( ) ( ) ( ) ( lim ) ( lim. e e e e e kons Spezilfll gleichfömige Keisbewegung: R. Giwidz 38 Keisbewegung - Beschleunigung lim ) ( ) ( e e Spezilfll gleichfömige Keisbewegung: Rdilbeschleunigung, Zenipedlbeschleunigung, Zenlbeschleunigung ;

34 Allgemein R. Giwidz 39

Einführung in die Physik I. Kinematik der Massenpunkte

Einführung in die Physik I. Kinematik der Massenpunkte Einfühung in die Phsik I Kinemik de Mssenpunke O. von de Lühe und U. Lndgf O und Geschwindigkei Wi bechen den O eines ls punkfömig ngenommenen Köpes im Rum ls Funkion de Zei Eindimensionle Posiion O O

Mehr

Einführung in die Physik I. Kinematik der Massenpunkte. O. von der Lühe und U. Landgraf

Einführung in die Physik I. Kinematik der Massenpunkte. O. von der Lühe und U. Landgraf Einfühung in die Phsik I Kinemaik de Massenpunke O. on de Lühe und U. Landgaf O und Geschwindigkei Wi beachen den O eines als punkfömig angenommenen Köpes im Raum als Funkion de Zei Eindimensionale Posiion

Mehr

Beiblätter zur Vorlesung Physik 1 für Elektrotechniker und Informatiker, Maschinenbauer und Mechatroniker

Beiblätter zur Vorlesung Physik 1 für Elektrotechniker und Informatiker, Maschinenbauer und Mechatroniker Beibläe zu Volesung Physik fü Elekoechnike und Infomike, Mschinenbue und Mechonike WS 4/5 Pof. D. Min Senbeg, Pof. D. Eckehd Mülle Ohne Veändeungen zugelssen zu Klusu GPH Kinemik Dynmik Abei und Enegie

Mehr

Grundbegriffe Geschwindigkeit und Beschleunigung. r = r dt

Grundbegriffe Geschwindigkeit und Beschleunigung. r = r dt Gundbegiffe Geschwindigkei und Beschleunigung Die Geschwindigkei eines Köpes is ein Maß fü seinen je Zeieinhei in eine besimmen Richung zuückgelegen Weg. Sie is, wie de O, ein Veko und definie duch die

Mehr

I MECHANIK. 1. EINFÜHRUNG Grundlagen, Kinematik, Dynamik (Wiederholung der Schulphysik)

I MECHANIK. 1. EINFÜHRUNG Grundlagen, Kinematik, Dynamik (Wiederholung der Schulphysik) Physik EI1 Mechnik - Einfühung Seie I MECHNIK 1. EINÜHRUNG Gundlgen, Kinemik, Dynmik (Wiedeholung de Schulphysik) _Mechnik_Einfuehung1_Bneu.doc - 1/9 Die einfühenden Kpiel weden wi zunächs uf dem Niveu

Mehr

Physik A VL4 ( )

Physik A VL4 ( ) Physik A VL4 (16.1.1) Beschreibung on Bewegungen - Kinemik in einer Rumrichung II Die beschleunige Bewegung Der Freie Fll Der senkreche Wurf Berchung ungleichförmiger Beschleunigung miels Inegrlrechnung

Mehr

Zusammenfassung Kapitel 2 Mechanik eines Massenpunktes

Zusammenfassung Kapitel 2 Mechanik eines Massenpunktes Zusmmenfssung Kpiel Mechnik eines Mssenpunkes 1 Mechnik eines Mssenpunkes idelisiees Gebilde : lle Msse des Köpes in einem Punk konzenie keine Beücksichigung de Ausdehnung eines Köpes Ausdehnung d sei

Mehr

Leseprobe. Dietmar Mende, Günter Simon. Physik. Gleichungen und Tabellen. ISBN (Buch): ISBN (E-Book):

Leseprobe. Dietmar Mende, Günter Simon. Physik. Gleichungen und Tabellen. ISBN (Buch): ISBN (E-Book): Lesepobe Diema Mende, Güne Simon Physik Gleichungen und Tabellen ISBN (Buch): 978-3-446-43754-8 ISBN (E-Book): 978-3-446-43861-3 Weiee Infomaionen ode Besellungen une hp://www.hanse-fachbuch.de/978-3-446-43754-8

Mehr

Kapitel 9 Integralrechnung für Funktionen einer Veränderlichen 9.6 Volumen von Rotationskörpern

Kapitel 9 Integralrechnung für Funktionen einer Veränderlichen 9.6 Volumen von Rotationskörpern Wolte/Dhn: Anlsis Individuell c Spinge 75 Kpitel 9 Integlechnung fü Funktionen eine Veändelichen 9.6 Volumen von Rottionsköpen Wi wenden uns jetzt de Bestimmung des Volumens eines sogennnten Rottionsköpes

Mehr

g T Zahlenbeispiel zum freien Fall: Fallzeit T einer Kapsel im Bremer Fallturm aus H = 110 m Höhe:

g T Zahlenbeispiel zum freien Fall: Fallzeit T einer Kapsel im Bremer Fallturm aus H = 110 m Höhe: Phsik I U Domund WS7/8 Gudun Hille Shauka Khan Kapiel Zahlenbeispiel zum feien Fall: Fallzei eine Kapsel im Beme Fallum aus H = m Höhe: h h H h m H H H ms 9,8m 4,74 s Wähend diese Zei hesch in de Kapsel

Mehr

Aufgaben: 1. Gib eine Gleichung der Ebene E an, die durch A in Richtung von u und v verläuft.

Aufgaben: 1. Gib eine Gleichung der Ebene E an, die durch A in Richtung von u und v verläuft. Prmeergleichung und Koordinenform einer Ebene Prmeergleichung und Koordinenform einer Ebene Die Lge einer Ebene E im Rum is durch drei Größen eindeuig fesgeleg: X. Einen Punk A, durch den die Ebene verläuf..

Mehr

1. Stegreifaufgabe aus der Physik Lösungshinweise

1. Stegreifaufgabe aus der Physik Lösungshinweise . Stegreifufgbe us der Physik Lösungshinweise Gruppe A Aufgbe Ds.Newtonsche Gesetz lässt sich zum Beispiel so formulieren: Wirkt uf einen Körper keine Krft (oder ist die Summe ller Kräfte null) so bleibt

Mehr

Versiera der Agnesi INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. FRIEDRICH W. BUCKEL. Text Nr Stand

Versiera der Agnesi INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK.  FRIEDRICH W. BUCKEL. Text Nr Stand Vesie de Agnesi Tet N. 5455 Stnd 5.. FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK www.mthe-cd.de 5455 Vesie de Agnesi Vowot Die Vesie de Agnesi ist eine lgebische Kuve. Gdes, die mn uf eine

Mehr

Präsenz-Aufgaben = i. (a) i 15 = i 14 i = (i 2 ) 7 i = ( 1) 7 i = i i 15 = 0 + ( 1)i, i (i i) = i 1 = i i 15 = 0 + 1i,

Präsenz-Aufgaben = i. (a) i 15 = i 14 i = (i 2 ) 7 i = ( 1) 7 i = i i 15 = 0 + ( 1)i, i (i i) = i 1 = i i 15 = 0 + 1i, Präsenz-Aufgben 1. 1. Schreiben Sie z in der Form z α + βi mit α,β R. Aus der Vorlesung ist beknnt: i i i 1, i 1 1 i i i i i 1 i. () i 15 i 1 i (i ) 7 i ( 1) 7 i i i 15 + ( 1)i, (b) i 15 1 i 15 () 1 i

Mehr

4 ARBEIT UND LEISTUNG

4 ARBEIT UND LEISTUNG 10PS/TG - MECHANIK P. Rendulić 2008 ARBEIT UND LEISTUNG 27 4 ARBEIT UND LEISTUNG 4.1 Mehnihe Abei 4.1.1 Definiion de Abei enn ein Köpe une de Einwikung eine konnen Kf die Seke in egihung zuükleg, dnn wid

Mehr

Bericht zur Prüfung im Oktober 2006 über Finanzmathematik und Investmentmanagement

Bericht zur Prüfung im Oktober 2006 über Finanzmathematik und Investmentmanagement Berich zur Prüfung im Okober 006 über Finnzmhemik und Invesmenmngemen Grundwissen Peer Albrech Mnnheim Am 07. Okober 006 wurde zum ersen Ml eine Prüfung im Fch Finnzmhemik und Invesmenmngemen nch PO III

Mehr

1.1 Eindimensionale, geradlinige Bewegung

1.1 Eindimensionale, geradlinige Bewegung 1 Kiemaik 1. Ieio Or, Geschwidigkei ud Beschleuigug eies Körpers zu jedem Zeipuk beschreibe. y z e y e z e r () Orsvekor: r () R. Girwidz 1 1 Kiemaik 1.1 Eidimesioale, geradliige Bewegug Eidimesioales

Mehr

Aufgabe 1. Übungsblatt 7. Woche

Aufgabe 1. Übungsblatt 7. Woche T II SS Übunsb 7. Woche Pof. Oseeye Aufbe Zeichnen Sie die Le de oennpoe fü Sb, und Sb und beechnen Sie die Winkeeschwindikei ω des dien Sbes fü die ezeichnee Le. ω Geeben:, ω. b Zeichnen Sie die Le de

Mehr

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009 UNIVERSIÄ KARLSRUHE Institut für Anlysis HDoz. Dr. P. C. Kunstmnn Dipl.-Mth. M. Uhl Sommersemester 9 Höhere Mthemti II für die Fchrichtungen Eletroingenieurwesen, Physi und Geodäsie inlusive Komplexe Anlysis

Mehr

Volumen von Rotationskörpern, Bogenlänge und Mantelfläche

Volumen von Rotationskörpern, Bogenlänge und Mantelfläche Modul Integle 3 Volumen von Rottionsköpen, Bogenlänge und Mntelfläche In diesem Modul geht es um einige spezielle Anwendungen de Integlechnung, und Volumin, Längen und Flächen zu estimmen. Fngen wi mit

Mehr

10 Gewöhnliche Differentialgleichungen

10 Gewöhnliche Differentialgleichungen Mhemik für Physiker III, WS 212/213 Diensg 5.2 $Id: ode.ex,v 1.1 213/2/6 13:25:6 hk Exp $ $Id: picrd.ex,v 1.3 213/2/6 1:22:12 hk Exp $ 1 Gewöhnliche Differenilgleichungen 1.8 Inhomogene linere Differenilgleichungen

Mehr

Abiturprüfung Mathematik 2010 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1 ( )( ) und der Normalen von K

Abiturprüfung Mathematik 2010 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1 ( )( ) und der Normalen von K Abiurprüfung Mhemik (Bden-Würemberg) Berufliche Gymnsien Anlysis, Aufgbe. Für jedes * is die Funkion f gegeben durch f (x) = x x + x +, x Ds Schubild von f is K. ( )( ).. (4 Punke) Zeichnen Sie K und K

Mehr

2.Absorption, Reflexion und Durchlässigkeit

2.Absorption, Reflexion und Durchlässigkeit "Floin Pbs" pope_666@homil.com Pbs Floin 5M (98/99) Wämeshlung.Gundlgen ls Wäme und empeushlung bezeichne mn den negiesom eines offes de nu von dessen emp. bhängig is. Die Wämeshlung wächs mi seigende

Mehr

Wie funktioniert ein GPS System?

Wie funktioniert ein GPS System? GPS Sem Wie funkionie ein GPS Sem? Im Pinip gn einfh. Mehee Sellien, die ih in eine w. meheen geoionäen Umlufhnen üe de Ede efinden, hlen egelmäßig ihen deei kuellen Snd de Aomei u. D GPS Geä uf de Edoeflähe

Mehr

Motivation der Dierenzial- und Integralrechnung

Motivation der Dierenzial- und Integralrechnung Moivaion der Dierenzial- und Inegralrechnung Fakulä Grundlagen Hochschule Esslingen SS 2010 4 3 2 1 0 5 10 15 20 25 30 Fakulä Grundlagen (Hochschule Esslingen) SS 2010 1 / 9 Übersich 1 Vorberachungen Ableiungsbegri

Mehr

3 Hyperbolische Geometrie

3 Hyperbolische Geometrie Ausgewählte Kpitel der Geometrie 3 Hperbolische Geometrie [... ] Im Folgenden betrchten wir nun spezielle gebrochen-linere Abbildungen, nämlich solche, für die (mit den Bezeichnungen ϕ,b,c,d wie oben die

Mehr

Karlsruher Institut für Technologie (KIT) SS 2013 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning

Karlsruher Institut für Technologie (KIT) SS 2013 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning Krlsruher Institut für Technologie KIT SS 3 Institut für Anlysis 943 Prof Dr Tobis Lmm Dr Ptrick Breuning Höhere Mthemtik II für die Fchrichtung Physik 3 Übungsbltt Aufgbe Sei K ein Kreis im R vom Rdius

Mehr

Lösungen zum Pflichtteil (ohne GTR und Formelsammlung) Gebrochenrationale Funktionen

Lösungen zum Pflichtteil (ohne GTR und Formelsammlung) Gebrochenrationale Funktionen www.mthe-ufgben.com Lösungen zum Pflichtteil (ohne GTR und Formelsmmlung) Gebrochenrtionle Funktionen Aufgbe : ) wgr. Asymptote: y, b) wgr. Asymptote: y 0 senkr. Asymptote: x - mit VZW senkr. Asymptote:

Mehr

Beispiele: cos(x) dx = sin(x) + c (1) e t dt = e t + c (2)

Beispiele: cos(x) dx = sin(x) + c (1) e t dt = e t + c (2) . Stmmfunktion Definition Stmmfunktion: Gegeen sei eine Funktion f(). Gesucht ist eine Funktion F (), so dss d = f(). Die Funktion F() heisst Stmmfunktion. Schreiweise: F () = f()d. Mn spricht uch vom

Mehr

( ) ( 1) ( ) ( ) ( ) S ( 1;1) a () 1 1. Analysis Ableitungen: x x. Berechnung der Koeffizienten: b = ( ) Gleichung der Tangenten t:

( ) ( 1) ( ) ( ) ( ) S ( 1;1) a () 1 1. Analysis Ableitungen: x x. Berechnung der Koeffizienten: b = ( ) Gleichung der Tangenten t: Lösungen Abiur Leisungskurs Mhemik www.mhe-schule.de Seie von 9 P Anlysis = R, ² k.. p = + b+, b, R Ableiungen: k' ( ) = = p' = + b Berechnung der Koeffizienen: ; p =.. S : () p' () k' () + b + = b= =

Mehr

Vorkurs Mathematik-Physik, Teil 6 c 2016 A. Kersch

Vorkurs Mathematik-Physik, Teil 6 c 2016 A. Kersch Vorkurs Mahemaik-Physik, Teil 6 c 6 A. Kersch Kinemaik In der Kinemaik geh es um die Frage: wie kann ich Bewegungen, also Bahnen von punkförmigen (Kinemaik der Translaion) oder ausgedehnen Körpern (Kinemaik

Mehr

AnKa Hyp. , tan α= Weil die Ankathete des einen Winkels der Gegenkathete des anderen entspricht, gilt auch: sin α = cos β und sinβ = cosα.

AnKa Hyp. , tan α= Weil die Ankathete des einen Winkels der Gegenkathete des anderen entspricht, gilt auch: sin α = cos β und sinβ = cosα. Trigonometrie Wenn mn die Trigonometrischen Funktionen Sinus, Kosinus und Tngens berechnen will, ist es wichtig, uf welchen Winkel sie sich beziehen. Die Kthete, die direkt m Winkel nliegt, heißt Ankthete

Mehr

Großübung Balkenbiegung Biegelinie

Großübung Balkenbiegung Biegelinie Großüung Bkeniegung Biegeinie Es geen die in der Voresung geroffenen Annhmen: - Der Bken is unese gerde. - Ds eri sei üer den Querschni homogen und iner esisch. - Die Besung erfog durch Biegemomene und

Mehr

5 Ellipsen, Parabeln und Hyperbeln

5 Ellipsen, Parabeln und Hyperbeln 5 Ellipsen, Prbeln und Hperbeln Ellipsen: Seien b > reelle Zhlen und E = E,b := { + b = } Eine Qudrik Q R heißt Ellipse, wenn es reelle Zhlen b > gibt, so dss q E,b. Die Kurven E,b heißen Ellipsen in metrischer

Mehr

Musterlösung für die Nachklausur zur Analysis II

Musterlösung für die Nachklausur zur Analysis II MATHEMATISCHES INSTITUT WiSe 213/14 DER UNIVERSITÄT MÜNCHEN Musterlösung für die Nchklusur zur Anlysis II Aufgbe 1 Gilt folgende Aussge? Eine im Punkt x R 2 prtiell differenzierbre Funktion f : R 2 R ist

Mehr

8 Längenberechnungen Winkelberechnungen - Skalarprodukt

8 Längenberechnungen Winkelberechnungen - Skalarprodukt 8 Längenberechnungen Winkelberechnungen - Sklrprodukt 8 Längenberechnungen Winkelberechnungen - Sklrprodukt Wir wissen, wie mn zwei Vektoren und b ddiert b b. Mn knn zwei Vektoren ber uch miteinnder multiplizieren!

Mehr

Analysis II (lehramtsbezogen): Rechnen mit Integralen

Analysis II (lehramtsbezogen): Rechnen mit Integralen Anlysis II (lehrmtsbezogen): Rechnen mit Integrlen A. Ppke. November Substitution Wir wiederholen kurz die grundlegende Methode der Substitution und wenden sie im Beispiel n. Stz. (Integrtion durch Substitution).

Mehr

Lineare DGL zweiter Ordnung

Lineare DGL zweiter Ordnung Universität Duisburg-Essen Essen, 03.06.01 Fkultät für Mthemtik S. Buer C. Hubcsek C. Thiel Linere DGL zweiter Ordnung Betrchten wir ds AWP { x + x + bx = 0 mit, b, t 0, x 0, v 0 R. Der Anstz xt 0 = x

Mehr

Hamburg Kernfach Mathematik Zentralabitur 2013 Erhöhtes Anforderungsniveau Analysis 2

Hamburg Kernfach Mathematik Zentralabitur 2013 Erhöhtes Anforderungsniveau Analysis 2 Hmburg Kernfch Mhemik Zenrlbiur 2013 Erhöhes Anforderungsniveu Anlysis 2 Smrphones Die Mrkeinführung eines neuen Smrphones vom Elekronikherseller PEAR wird ses ufgereg erwre. Zur Modellierung der Enwicklung

Mehr

Von Winkelfunktionen zur Dreiecksgeometrie

Von Winkelfunktionen zur Dreiecksgeometrie Von Winkelfunktionen zur Dreiecksgeometrie Jens Wirth, Freiberg wirth@mth.tu-freiberg.de 1 Definition y Es sei P ein Punkt uf dem Einheitskreis, 10P = φ. Dnn besitzt 1 P P die Koordinten (cos(φ), sin(φ)).

Mehr

Formelsammlung Mechanik

Formelsammlung Mechanik oellun Mechnik Beufliche Gniu chobechule oellun Phik Mechnik Heinich-Enuel-Meck-Schule Dd Snd: 8..8 oellun Mechnik Beufliche Gniu chobechule Gößen und Einheien de Mechnik oel e de Einheien Beziehun zwichen

Mehr

Lösungen Quadratische Gleichungen. x = x x = Also probieren wir es 3 4 = 12. x + + = Lösen Sie die folgenden Gleichungen nach x auf:

Lösungen Quadratische Gleichungen. x = x x = Also probieren wir es 3 4 = 12. x + + = Lösen Sie die folgenden Gleichungen nach x auf: Aufgbe : ) Lösen Sie die folgenden Gleichungen nch uf: = kein Problem einfch die Wurel iehen und ds ± nicht vergessen.. = = ±, b) + 5 = 0 Hier hben wir bei jedem Ausdruck ein, lso können wir usklmmern:

Mehr

2 Trigonometrische Formeln

2 Trigonometrische Formeln $Id: trig.tex,v 1.8 015/05/04 10:16:36 hk Exp $ Trigonometrische Formeln.1 Die Additionstheoreme In der letzten Sitzung htten wir begonnen die Additionstheoreme der trigonometrischen Funktionen zu besprechen.

Mehr

Universität Passau Lehrstuhl für Finanzierung

Universität Passau Lehrstuhl für Finanzierung Universiä Pssu Lehrsuhl für Finnzierung Nuzenfunkionen und Risikoversion Snd 26..2 Um ds Bernoulli-Prinzi (execed-uiliy-rincile) zu konkreisieren, is die Sezifikion einer (von Neumnn - Morgensern -) Nuzenfunkion

Mehr

2 Trigonometrische Formeln

2 Trigonometrische Formeln Mthemtische Probleme, SS 013 Donnerstg.5 $Id: trig.tex,v 1.3 013/05/03 10:50:31 hk Exp hk $ Trigonometrische Formeln.1 Die Additionstheoreme In der letzten Sitzung htten wir geometrische Herleitungen der

Mehr

1.7 Inneres Produkt (Skalarprodukt)

1.7 Inneres Produkt (Skalarprodukt) Inneres Produkt (Sklrprodukt) 17 1.7 Inneres Produkt (Sklrprodukt) Montg, 27. Okt. 2003 7.1 Wir erinnern zunächst n die Winkelfunktionen sin und cos, deren Wirkung wir m Einheitskreis vernschulichen: ϕ

Mehr

Aufgaben aus Zentralen Klassenarbeiten Mathematik (Baden-Württemberg) zu Logarithmen und Wachstum

Aufgaben aus Zentralen Klassenarbeiten Mathematik (Baden-Württemberg) zu Logarithmen und Wachstum www.mhe-ufgben.com Aufgben us Zenrlen Klssenrbeien Mhemik 96-99 (Bden-Würemberg) zu Logrihmen und Wchsum ZK 96 ) Besimme mi Hilfe der Definiion des Logrihmus : ) 6 b) c) d) 0 000 ) Es is 0, 6. Berechne

Mehr

Tutorium zur Vorlesung Grundlagen der Mathematik II Bearbeitungsvorschlag

Tutorium zur Vorlesung Grundlagen der Mathematik II Bearbeitungsvorschlag MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Dr. E. Schörner SS 017 Bltt 8 0.06.017 Tutorium zur Vorlesung Grundlgen der Mthemtik II Berbeitungsvorschlg 9. Zu betrchten ist ein gleichseitiges Dreieck

Mehr

Mathematik für Wirtschaftswissenschaftler im WS 12/13 Lösungen zu den Übungsaufgaben Blatt 8

Mathematik für Wirtschaftswissenschaftler im WS 12/13 Lösungen zu den Übungsaufgaben Blatt 8 Mthemtik für Wirtschftswissenschftler im WS /3 Lösunen zu den Übunsufben Bltt 8 Aufbe 3 Berechnen Sie die folenden Interle durch prtielle Intertion. ) c) e d. (Hinweis: Interieren Sie zweiml prtiell).

Mehr

Integrationsmethoden

Integrationsmethoden Universität Perborn Dezember 8 Institut für Mthemtik C. Kiser Integrtionsmethoen Prtielle Integrtion (Prouktintegrtion) Unbestimmte Integrtion er Prouktregel (u v) () = u ()v() + u()v () liefert (u v)()

Mehr

5.5. Anwendungsaufgaben aus der Physik

5.5. Anwendungsaufgaben aus der Physik .. Anwendungsaufgaben aus de Physik Aufgabe 1: Kinemaik Skizzieen Sie die Geschwindigkeis-Zei- und Weg-Zei Diagamme im Beeich < < 1 s und sellen Sie die Funkionsgleichungen fü v() und s() auf. a) Ein Köpe

Mehr

1.1. Grundbegriffe zur Mechanik

1.1. Grundbegriffe zur Mechanik ... Die geradlinig gleichförmige Bewegung.. Grundbegriffe zur Mechanik Ein Körper beweg sich geradlinig und gleichförmig enlang der -Achse, wenn seine Geschwindigkei (eloci) 0 konsan bleib. Srecke Zeiabschni

Mehr

Uneigentliche Riemann-Integrale

Uneigentliche Riemann-Integrale Uneigentliche iemnn-integrle Zweck dieses Abschnitts ist es, die Vorussetzungen zu lockern, die wir n die Funktion f : [, b] bei der Einführung des iemnn-integrls gestellt hben. Diese Vorussetzungen wren:

Mehr

2 Geradlinige Bewegung eines Massenpunkts

2 Geradlinige Bewegung eines Massenpunkts 13 2 Gerdlinige Bewegung eine Menpunk Bei ielen Bewegungufgben knn die Drehbewegung eine Körper ernchläig werden, wenn nur deen rnloriche Bewegung inereier. In dieem Fll drf der Körper l Menpunk berche

Mehr

Abiturprüfung Mathematik 2011 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1. gegeben durch. auf der y-achse und schneidet G

Abiturprüfung Mathematik 2011 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1. gegeben durch. auf der y-achse und schneidet G wwwmhe-ufgbencom Abiurprüfung Mhemik 0 (Bden-Würemberg) Berufliche ymnsien Anlysis, Aufgbe Für jedes mi > is die Funkion g gegeben durch x g (x) = e, x Ds Schubild von g is ( Punke) Nennen Sie drei gemeinsme

Mehr

Gomory-Hu Bäume. Jens M. Schmidt V-S V-X Jens M. Schmidt

Gomory-Hu Bäume. Jens M. Schmidt V-S V-X Jens M. Schmidt Gomory-Hu Bäume S V-S X V-X Üerlick Flussäquivlene Grphen und Gomory-Hu Bäume Nich-kreuzende Schnie, Symmerische Sumodulre Mengenfunkionen Algorihmus von Gomory und Hu Fluss-äquivlene Grphen Sei G ungeriche

Mehr

Abitur - Leistungskurs Mathematik. Sachsen-Anhalt 1999

Abitur - Leistungskurs Mathematik. Sachsen-Anhalt 1999 Abitur - Leistungskurs Mthemtik Schsen-Anhlt 999 Gebiet L - Anlysis Augbe.. y, D, R,. Die Funktionenschr sei gegeben durch Die Grphen der Funktionen der Schr werden mit G bezeichnet. ) Ermitteln Sieden

Mehr

ARBEITSBLATT 5L-6 FLÄCHENBERECHNUNG MITTELS INTEGRALRECHNUNG

ARBEITSBLATT 5L-6 FLÄCHENBERECHNUNG MITTELS INTEGRALRECHNUNG Mthemtik: Mg. Schmid WolfgngLehrerInnentem RBEITSBLTT 5L-6 FLÄHENBEREHNUNG MITTELS INTEGRLREHNUNG Geschichtlich entwickelte sich die Integrlrechnug us folgender Frgestellung: Wie knn mn den Flächeninhlt

Mehr

Die Lagrangepunkte im System Erde-Mond

Die Lagrangepunkte im System Erde-Mond Die Lgngepunkte i Syste Ede-ond tthis Bochdt Tnnenbusch-ynsiu Bonn bochdt.tthis@t-online.de Einleitung: Welche Käfte spüt eine Rusonde, die sich ntiebslos in de Nähe von Ede und ond ufhält? Zunächst sind

Mehr

Zwei Kreise im gleichseitigen Dreieck

Zwei Kreise im gleichseitigen Dreieck -. ein Aufgbe us der pnischen Tempelgeometrie 3. August 006 Gegeben sei ds gleichseitige Dreieck ABC mit der Seitenlänge. Auf der öhenlinie h c = CD befinden sich die Mittelpunkte der Kreise k 1 und k.

Mehr

Integralrechnung. www.mathe-total.de. Aufgabe 1

Integralrechnung. www.mathe-total.de. Aufgabe 1 Integrlrechnung Aufgbe Bestimme die Fläche zwischen der Kurve der Funktion f() = und -Achse über dem Intervll I = [; 3] näherungsweise. Bestimme die Obersumme und Teile ds Intervll I in drei gleich große

Mehr

Die Geschwindigkeit v ist die lokale Änderungsrate des Ortes x d.h. v = lim. Zeit 3s 7s Entfernung vom Bezugspunkt. 3s 2 m = 6 m 6 m + 1 Bezugspunkt s

Die Geschwindigkeit v ist die lokale Änderungsrate des Ortes x d.h. v = lim. Zeit 3s 7s Entfernung vom Bezugspunkt. 3s 2 m = 6 m 6 m + 1 Bezugspunkt s 6 Integrlrechnung ================================================================== 6.1 Lokle Änderungsrte und Gesmtänderung ------------------------------------------------------------------------------------------------------------------

Mehr

v(x) = lim Das Integral entspricht der Fläche unter einer Funktion v 1 dt = v Rt 1 wird aus dem Integral: s ¼ Rt 1 R t 1

v(x) = lim Das Integral entspricht der Fläche unter einer Funktion v 1 dt = v Rt 1 wird aus dem Integral: s ¼ Rt 1 R t 1 Gundegiffe des Messens und de quniiven Bescheiung Physiklische Gößen und Einheien 9 f() 2 2 2 2 A..8 Weg-Zei-Digmm (,-Digmm) zu Besimmung von Geschwindigkeien. Gleichfömige Bewegung. Nich gleichfömige

Mehr

a = c d b Matheunterricht: Gesucht ist x. Physikunterricht Gesucht ist t: s = vt + s0 -s0 s - s0 = vt :v = t 3 = 4x = 4x :4 0,5 = x

a = c d b Matheunterricht: Gesucht ist x. Physikunterricht Gesucht ist t: s = vt + s0 -s0 s - s0 = vt :v = t 3 = 4x = 4x :4 0,5 = x Bltt 1: Hilfe zur Umformung von Gleichungen mit vielen Vriblen Im Mthemtikunterricht hben Sie gelernt, wie mn Gleichungen mit einer Vriblen umformt, um diese Vrible uszurechnen. Meistens hieß sie. In Physik

Mehr

Analytische Geometrie

Analytische Geometrie Pives Gymsim Mies J Mhemik Alyishe Geomeie Ueihsfzeihe de Mhemikleisskse / i de Shljhe / d / Noe Mez Am Solz He Ihlsvezeihis LÄNG BTRAG) INS VKTORS INHITSVKTOR SKALARPRODUKT WINKL ZWISCHN ZWI VKTORN NORMALNFORM

Mehr

Rollender Zylinder in Zylinder

Rollender Zylinder in Zylinder Übungen zu Theoretische Physik I - echnik im Sommersemester 013 Bltt 10 vom 1.07.13 Abgbe: 08.07. Aufgbe 43 Rollender Zylinder in Zylinder Ein homogener Zylinder (Gesmtmsse, Rdius, Trägheitsmoment bzgl.

Mehr

Multiplikative Inverse

Multiplikative Inverse Multipliktive Inverse Ein Streifzug durch ds Bruchrechnen in Restklssen von Yimin Ge, Jänner 2006 Viele Leute hben Probleme dbei, Brüche und Restklssen unter einen Hut zu bringen. Dieser kurze Aufstz soll

Mehr

6.4 Uneigentliche Integrale

6.4 Uneigentliche Integrale 6.4 Uneigentliche Integrle 3 Beispiele : d + + d ( + ) t + d t t d t ( t + t + t ) + t + t t ln ( + t) + c + ln ( + + ) + c + t rctn + c 6.4 Uneigentliche Integrle bisher : beschränkte Funktionen uf endlichen

Mehr

( ) ( ) 4. Der Hauptsatz der Infinitesimalrechnung. Hauptsatz (1. Form) I. Newton ( ), G.F. Leibniz ( )

( ) ( ) 4. Der Hauptsatz der Infinitesimalrechnung. Hauptsatz (1. Form) I. Newton ( ), G.F. Leibniz ( ) 4. Der Huptstz der Infinitesimlrechnung Huptstz (. orm) I. Newton (64-77), G.. Leiniz (646-76) ür jede im Intervll [,] stetige unktion f sei ( ) = f ( t) dt sogennnte Integrlfunktion dnn gilt: Die Integrlfunktion

Mehr

nennt man eine Zerlegung (Partition, Unterteilung) des Intervalls [a, b]. Die Feinheit der Zerlegung ist dabei

nennt man eine Zerlegung (Partition, Unterteilung) des Intervalls [a, b]. Die Feinheit der Zerlegung ist dabei Kpitel 8: Integrtion Erläuterung uf Folie 8.1 Ds bestimmte Integrl Sei f : [, b] R eine beschränkte Funktion uf einem (zunächst) kompkten Intervll [, b]. Definition: 1) Eine Menge der Form Z = { = x 0

Mehr

Darstellung von Ebenen

Darstellung von Ebenen Drstellung von Ebenen. Ebenengleichung in Prmeterform: Sei E eine Ebene. Dnn lässt sich die Ebene drstellen durch eine Gleichung der Form p u x = p + r v u + s v (r, s R). p u v Der Vektor p heißt Stützvektor

Mehr

Vorkurs Mathematik DIFFERENTIATION

Vorkurs Mathematik DIFFERENTIATION Vorkurs Mthemtik 6 DIFFERENTIATION Beispiel (Ableitung von sin( )). Es seien f() = sin g() = h() =f(g()) = sin. (f () =cos) (g () =) Also ist die Ableitung von h: h () =f (g())g () =cos = cos. Mn nennt

Mehr

KINEMATIK Bewegungslehre Wie bewegt sich ein Objekt?

KINEMATIK Bewegungslehre Wie bewegt sich ein Objekt? . Mechnik Wi eilen in de Voleung Phyik fü Ingenieue die Mechnik uf in die Teilgebiee Mechnik de Menpunk Mechnik de en Köpe (Kp..4) Mechnik de Flüigkeien und Ge (Kp..5) Zunäch weden lo hupächlich ogennne

Mehr

Aufgaben zu Kreisen und Kreisteilen

Aufgaben zu Kreisen und Kreisteilen www.mthe-ufgben.com ufgben zu Keisen und Keisteilen Keisfläche: ( Rdius des Keises) Keisumfng: U Keisingfläche: ( ußen innen ) Keisusschnitt / Keissekto: Öffnungswinkel, b Keisbogen α bzw. b 60 α α b 60

Mehr

Teilfachprüfung Mathematik Studiengang: Wirtschaft Neue Diplomprüfungsordnung (NPO)

Teilfachprüfung Mathematik Studiengang: Wirtschaft Neue Diplomprüfungsordnung (NPO) Fchhochschule Düsseldorf SS 2007 Teilfchprüfung Mthemtik Studiengng: Wirtschft Neue Diplomprüfungsordnung (NPO) Prüfungsdtum: 29..2007 Prüfer: Prof. Dr. Horst Peters / Dipl. Volkswirt Lothr Schmeink Prüfungsform:

Mehr

π 2 r 2 r 2 sin 2 (t)r cos(t) dt π 2 cos2 (t) cos(t) dt = r 2 π dt = cos(x) sin(x) u v = cos(x) sin(x) + = cos(x) sin(x) + x

π 2 r 2 r 2 sin 2 (t)r cos(t) dt π 2 cos2 (t) cos(t) dt = r 2 π dt = cos(x) sin(x) u v = cos(x) sin(x) + = cos(x) sin(x) + x Wir substituieren x x(t) r sin(t), t [ π, π ]. Dnn ist x (t) r cos(t), lso r x dx π π r π r r sin (t)r cos(t) dt π cos (t) cos(t) dt r π π cos (t) dt Wir integrieren cos mittels prtieller Integrtion: Sei

Mehr

Probeklausur Mathematik für Ingenieure C3

Probeklausur Mathematik für Ingenieure C3 Deprtment Mthemtik Dr. rer. nt. Lrs Schewe Mthis Sirvent Wintersemester 013/014 Probeklusur Mthemtik für Ingenieure C3 Anmerkungen zur Klusur: Die Arbeitszeit wird 90 Minuten betrgen. Sie können sämtliche

Mehr

4. Quadratische Funktionen.

4. Quadratische Funktionen. 4-1 Funkionen 4 Quadraische Funkionen 41 Skalierung, Nullsellen Eine quadraische Funkion is von der Form f() = c 2 + b + a mi reellen Zahlen a, b, c; is c 0, so sprechen wir von einer echen quadraischen

Mehr

Freie ungedämpfte Schwingung eines Massenpunktes (Federschwinger) = 2a. Die allgemeine Lösung der DGL ist dann eine Linearkombination beider Lösungen:

Freie ungedämpfte Schwingung eines Massenpunktes (Federschwinger) = 2a. Die allgemeine Lösung der DGL ist dann eine Linearkombination beider Lösungen: Die Schwingungs-Differenilgleichung Freie ungedämpfe Schwingung eines Mssenpunes Federschwinger Bei Auslenung des Mssenpunes: Hooesches Gesez F - Federonsne Die Bewegungsgleichung lue dher: d m oder m

Mehr

3 Uneigentliche Integrale

3 Uneigentliche Integrale Mthemtik für Ingenieure II, SS 29 Dienstg 9.5 $Id: uneigentlich.te,v.5 29/5/9 6:23:8 hk Ep $ $Id: prmeter.te,v.2 29/5/9 6:8:3 hk Ep $ 3 Uneigentliche Integrle Mn knn die eben nchgerechnete Aussge e d =,

Mehr

Notizen zur Vorlesung Analysis 3

Notizen zur Vorlesung Analysis 3 Notizen zur Vorlesung Anlysis 3 Henrik chumcher TUHH, 26. Jnur 207 2 Integrtion über Oberflächen 2. Oberflächenintegrl einer Funktion Definition 2.37 (Metrische Fundmentlform) ei R 2 ein reguläres Gebiet

Mehr

Übungsblatt zu Funktionenscharen

Übungsblatt zu Funktionenscharen Übungsbl zu Funkionenschren Seie von Gnzrionle Funkionen Ohne Inegrlrechnung Bei Funkionenschren Beispiel: f 6 erhäl mn für ein besimmes jeweils eine Funkion: Beispiel: : f : f Diese Funkionen hben Unerschiede,

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof. Dr. M. Wolf Dr. M. Prähofer Aufgben TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mthemtik Mthemtik für Physiker 3 Anlysis ) Sommersemester Probeklusur Lösung) http://www-m5.m.tum.de/allgemeines/ma93 S

Mehr

Aufgaben zur Analytischen Mechanik SS 2013 Blatt 10 - Lösungen. Aufgabe 1 Wiederholung Eigenwerte und Eigenvektoren (15 Punkte)

Aufgaben zur Analytischen Mechanik SS 2013 Blatt 10 - Lösungen. Aufgabe 1 Wiederholung Eigenwerte und Eigenvektoren (15 Punkte) Aufgben zur Anlytischen Mechnik SS 013 Bltt 10 - en Aufgbe 1 Wiederholung Eigenwerte und Eigenvektoren (15 Punkte Bestimmen Sie Eigenwerte λ 1 und λ sowie die Eigenvektoren v 1 und v der folgenden Mtrix:

Mehr

Für den Mathe GK, Henß. - Lineare Algebra und analytische Geometrie -

Für den Mathe GK, Henß. - Lineare Algebra und analytische Geometrie - Für den Mthe GK, Henß - Linere Alger und nlytische Geometrie - Bis uf die Astände ist jetzt lles drin.. Ich h noch ne tolle Seite entdeckt mit vielen Beispielen und vor llem Aufgen zum Üen mit Lösungen..

Mehr

f : G R ϕ n 1 (x 1,...,x n 1 ) Das ist zwar die allgemeine Form, aber es ist nützlich sie sich für den R 2 und R 3 explizit anzuschauen.

f : G R ϕ n 1 (x 1,...,x n 1 ) Das ist zwar die allgemeine Form, aber es ist nützlich sie sich für den R 2 und R 3 explizit anzuschauen. Trnsformtionsstz von Sebstin üller Integrtion über Normlgebiete Allgemein knn mn im R n ein Normlgebiet wie folgt definieren: G : { R n 1 b, ϕ 1 ( 1 ) ψ 1 ( 1 ), ϕ ( 1, ) 3 ψ ( 1, ),... ϕ n 1 ( 1,...,

Mehr

Green-Funktion. Wir betrachten (z. B.) eine inhomogene lineare DGL 2. Ordnung. y +y = r(x) Die allgemeine Lösung mit y(0) = 0 und y( π 2

Green-Funktion. Wir betrachten (z. B.) eine inhomogene lineare DGL 2. Ordnung. y +y = r(x) Die allgemeine Lösung mit y(0) = 0 und y( π 2 Green-Funkion Wir berchen (z. B.) eine inhomogene linere DGL 2. Ordnung y +y = r() Die llgemeine Lösung mi y() = und y( π 2 ) = (Rndwerufgbe) sez sich us der llgemeinen Lösung der zugehörigen homogenen

Mehr

Experimentalphysik II (Kip SS 2007)

Experimentalphysik II (Kip SS 2007) peimenalphsik II Kip SS 7 Zusavolesungen: Z-1 in- und mehdimensionale Inegaion Z- Gadien Divegen und Roaion Z-3 Gaußsche und Sokessche Inegalsa Z-4 Koninuiäsgleichung Z-5 lekomagneische Felde an Genflächen

Mehr

Blatt 9. Bewegung starrer Körper- Lösungsvorschlag

Blatt 9. Bewegung starrer Körper- Lösungsvorschlag Fkultät für Physik der LMU München Lehrstuhl für Kosmologie, Prof. Dr. V. Mukhnov Übungen zu Klssischer Mechnik (T) im SoSe 0 Bltt 9. Bewegung strrer Körper- Lösungsvorschlg Aufgbe 9.. Trägheitstensor

Mehr

8.4 Integrationsmethoden

8.4 Integrationsmethoden 8.4 Integrtionsmethoden 33 8.4 Integrtionsmethoden Die Integrtion von Funktionen erweist sich in prktischen Fällen oftmls schwieriger ls die Differenzition. Während sich ds Differenzieren durch Anwendung

Mehr

Geometrie in der Mathematik-Olympiade

Geometrie in der Mathematik-Olympiade 34 Klhos eye Geomeie in de hemik-olympide De uo h beeis in seine bhndlung [7] eweisideen in de Geomeie (hemikinfomion N. 55) u.. uf die Poblemik de Geomeieufgben im Rhmen de hemik-olympiden hingewiesen,

Mehr

Affine Geometrie 11. Jahrgang

Affine Geometrie 11. Jahrgang Affine Geomeie. Jhgng Gliedeung. Vekoen. Dellung von Vekoen. Rechnen mi Vekoen. Linee Ahängigkei. Geden- und Eenengleichungen. Gedengleichungen. Eenengleichungen in Pmeefom. Inzidenzpoleme. Punk und Gede

Mehr

1. Ableitung von Funktionen mit einer Veränderlichen

1. Ableitung von Funktionen mit einer Veränderlichen . Ableitung von Funktionen mit einer Veränerlichen. Algebrische Interprettion Die Ableitung einer Funktion f f f+ f = lim. 0 = ist efiniert ls In Worten usgerückt ist ie Ableitung er Grenzwert er Änerungsrte

Mehr

Übungen: Extremwertaufgaben

Übungen: Extremwertaufgaben Übungen: Extemwetufgben.0 Eine Stenwte ht meist die Fom eines Zylindes (Rdius, Höhe h) mit eine oben ufgesetzten Hlbkugel (siehe z. B. die im Bild unten gezeigte Fitz-Weiths-Stenwte in Neumkt). Die gesmte

Mehr

Hauptprüfung Abiturprüfung 2015 (ohne CAS) Baden-Württemberg

Hauptprüfung Abiturprüfung 2015 (ohne CAS) Baden-Württemberg Bden-Würemberg: Abiur 05 Anlysis www.mhe-ufgben.com Hupprüfung Abiurprüfung 05 (ohne CAS) Bden-Würemberg Anlysis Hilfsmiel: GTR, Formelsmmlung berufliche Gymnsien (AG, BTG, EG, SG, TG, WG) Alexnder Schwrz

Mehr

Analysis: Exponentielles Wachstum Analysis Übungsaufgaben zum Exponentiellen Wachstum zum Einstieg Gymnasium Klasse 10

Analysis: Exponentielles Wachstum Analysis Übungsaufgaben zum Exponentiellen Wachstum zum Einstieg Gymnasium Klasse 10 www.mhe-ufgben.com Anlysis: Eponenielles Wchsum Anlysis Übungsufgben zum Eponeniellen Wchsum zum Einsieg Gymnsium Klsse 1 Alender Schwrz www.mhe-ufgben.com Jnur 214 1 www.mhe-ufgben.com Anlysis: Eponenielles

Mehr

14. INTEGRATION VON VEKTORFUNKTIONEN

14. INTEGRATION VON VEKTORFUNKTIONEN 120 Dieses Skript ist ein Auszug mit Lücken us Einführung in die mthemtische Behndlung der Nturwissenschften I von Hns Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie ds Buch uch kufen und

Mehr

MATHEMATIK 3 FÜR EI - ÜBUNGSBLATT 2 Wintersemester 2011/2012

MATHEMATIK 3 FÜR EI - ÜBUNGSBLATT 2 Wintersemester 2011/2012 Prof. Dr. O. Junge, A. Bittrcher Zentrum Mthemtik - M3 Technische Universität München MATHEMATIK 3 FÜR EI - ÜBUNGSBLATT Wintersemester / Tutorübungsufgben (3..-4..) Aufgbe T Seien R und α positiv. Die

Mehr

Differenzial- und Integralrechnung III

Differenzial- und Integralrechnung III Differenzil- und Integrlrechnung III Riner Huser April 2012 1 Einleitung 1.1 Polynome und Potenzfunktionen Die Polynome oder Polynomfunktionen lssen sich durch die endliche Anzhl von n+1 Prmetern i R in

Mehr

Grundwissen Klasse 10

Grundwissen Klasse 10 Grundwissen Klsse 0 I. Funktionen. Potenzfunktionen und gnzrtionle Funktionen (Mthehelfer : S.56-57) - Grphen von Potenzfunktionen mit gnzzhligen Eponenten zeichnen - Grphen von gnzrtionlen Funktionen

Mehr