SPSS-Ausgabe 1: Univariate Varianzanalyse. Profildiagramm. [DatenSet1] D:\Sozialwiss2006_7\STAT2\Daten\mathsalaries.sav. Seite 1

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "SPSS-Ausgabe 1: Univariate Varianzanalyse. Profildiagramm. [DatenSet1] D:\Sozialwiss2006_7\STAT2\Daten\mathsalaries.sav. Seite 1"

Transkript

1 SPSS-Ausgabe : Univariate Varianzanalyse [DatenSet] D:\Sozialwiss2006_7\STAT2\Daten\mathsalaries.sav Tests der Zwischensubjekteffekte Abhängige Variable: Einkommen Quelle Korrigiertes Modell Konstanter Term QualitätDI ErfahrungDI QualitätDI * ErfahrungDI Fehler Gesamt Korrigierte Gesamtvariation a. R-Quadrat =,506 (korrigiertes R-Quadrat =,43) Quadratsumm Mittel der e vom Typ III df Quadrate F Signifikanz 348,486 a 3 6,62 6,88, , ,620 87,662,000 4,308 4,308 2,424,35 72,369 72,369 0,6,005,704,704,04,84 340, , , , Profildiagramm Seite

2 Geschätztes Randmittel von Einkommen 44,0 Erfahrung (In Bereiche eingeteilt) gering hoch Geschätztes Randmittel 42,0 40,0 38,0 36,0 gering hoch Qualität (In Bereiche eingeteilt) Seite 2

3 SPSS-Ausgabe 2: Faktorenanalyse [DatenSet2] D:\Sozialwiss2006_7\STAT\Daten\allbus2000.sav Geschlechtszugehörigkeit = männlich Abtreib.: Wenn Baby wahrscheinl. krank Abtreib.: Verh. Frau, keine Kinder mehr Abtreib.: Bei Gesundheitsgefährd. d. Frau Abtreib.: Bei finanz. Notlage d. Familie Abtreib.: Nach Vergewaltigung Abtreib.: Ledige Mutter, ohne Ehewunsch Abtreib.: Wenn die Frau es will Kommunalitäten a Anfänglich Extraktion,000,534,000,735,000,595,000,667,000,560,000,743,000,703 a. Geschlechtszugehörigkeit = männlich Komponente Erklärte Gesamtvarianz a Summen von quadrierten Faktorladungen für Anfängliche Eigenwerte Extraktion Rotierte Summe der quadrierten Ladungen Gesamt % der Varianz Kumulierte % Gesamt % der Varianz Kumulierte % Gesamt % der Varianz Kumulierte % 3,228 46,08 46,08 3,228 46,08 46,08 2,833 40,470 40,470,3 8,723 64,832,3 8,723 64,832,705 24,362 64,832,682 9,743 74,575,657 9,392 83,967,465 6,647 90,65,352 5,026 95,64,305 4,359 00,000 a. Geschlechtszugehörigkeit = männlich Seite 3

4 Komponentenmatrix a,b Abtreib.: Wenn Baby wahrscheinl. krank Abtreib.: Verh. Frau, keine Kinder mehr Abtreib.: Bei Gesundheitsgefährd. d. Frau Abtreib.: Bei finanz. Notlage d. Familie Abtreib.: Nach Vergewaltigung Abtreib.: Ledige Mutter, ohne Ehewunsch Abtreib.: Wenn die Frau es will Komponente 2,499,534,833 -,205,35,687,797 -,76,508,550,8 -,294,782 -,303 a. 2 Komponenten extrahiert b. Geschlechtszugehörigkeit = männlich Rotierte Komponentenmatrix a,b Abtreib.: Wenn Baby wahrscheinl. krank Abtreib.: Verh. Frau, keine Kinder mehr Abtreib.: Bei Gesundheitsgefährd. d. Frau Abtreib.: Bei finanz. Notlage d. Familie Abtreib.: Nach Vergewaltigung Abtreib.: Ledige Mutter, ohne Ehewunsch Abtreib.: Wenn die Frau es will Komponente 2,202,702,835,95,00,772,79,205,203,72,856,06,834,084 Rotationsmethode: Varimax mit Kaiser-Normalisierung. a. Die Rotation ist in 3 Iterationen konvergiert. b. Geschlechtszugehörigkeit = männlich Seite 4

5 SPSS-Ausgabe 3: Regression [DatenSet2] D:\Sozialwiss2006_7\STAT\Daten\allbus2000.sav Aufgenommene/Entfernte Variablen b Modell Aufgenommen e Variablen Lebensalter, Entfernte Variablen Methode Wohndauer in Jahren a. Eingeben a. Alle gewünschten Variablen wurden aufgenommen. b. Abhängige Variable: Pers. Nettoeinkommen, offene Abfrage Modellzusammenfassung Standardf Modell R R-Quadrat Korrigiertes R-Quadrat ehler des Schätzers,2 a,05,04 768,85 a. Einflußvariablen : (Konstante), Lebensalter, Wohndauer in Jahren Modell Regression Residuen Gesamt ANOVA b Quadratsu Mittel der mme df Quadrate F Signifikanz,E ,338,000 a 7,7E ,0 7,8E a. Einflußvariablen : (Konstante), Lebensalter, Wohndauer in Jahren b. Abhängige Variable: Pers. Nettoeinkommen, offene Abfrage Seite 5

6 Modell (Konstante) Wohndauer in Jahren Lebensalter Nicht standardisierte Koeffizienten Standardf a. Abhängige Variable: Pers. Nettoeinkommen, offene Abfrage Koeffizienten a Standardisiert e Koeffizienten Korrelationen Nullter Ordnung Partiell Teil B ehler Beta T Signifikanz 583,590 03,394 5,36,000-6,376 2,6 -,073-2,950,003,05 -,060 -,059 5,29 2,544,49 6,02,000,06,2,2 Seite 6

7 SPSS-Ausgabe 4: Reliabilität [DatenSet2] D:\Sozialwiss2006_7\STAT\Daten\allbus2000.sav Skala: ALLE VARIABLEN Fälle Zusammenfassung der Fallverarbeitung Gültig Ausgeschlossen a Insgesamt Anzahl % , , ,0 a. Listenweise Löschung auf der Grundlage aller Variablen in der Prozedur. Reliabilitätsstatistiken Cronbachs Anzahl der Alpha Items,73 4 Item-Skala-Statistiken Ausl.: Mehr Lebensstilanpassung Ausl.: Heim bei knapper Arbeit Ausl.: Polit. Betätigung untersagen Ausl.: Sollten unter sich heiraten Skalenmittelwe rt, wenn Item weggelassen Skalenvarianz, wenn Item weggelassen Korrigierte Item-Skala- Korrelation Cronbachs Alpha, wenn Item weggelassen 9,70 23,80,362,752,4 9,344,599,625,27 8,444,58,634 2,6 9,496,553,652 Skala-Statistiken Mittelwert Varianz Std. -Abweichung Anzahl der Items 4,85 33,074 5,75 4 Seite 7

Institut für Marketing und Handel Prof. Dr. W. Toporowski. SPSS Übung 5. Heutige Themen: Faktorenanalyse. Einführung in Amos

Institut für Marketing und Handel Prof. Dr. W. Toporowski. SPSS Übung 5. Heutige Themen: Faktorenanalyse. Einführung in Amos SPSS Übung 5 Heutige Themen: Faktorenanalyse Einführung in Amos 1 Faktorenanalyse Datei Öffnen V:/Lehre/Handelswissenschaft/Daten_Übung3/Preisimage_F_und_C.sav 2 Datensatz (I) v1 Wenn Produkte zu Sonderpreisen

Mehr

Standardab er des. Testwert = 145.5 95% Konfidenzintervall. T df Sig. (2-seitig) Differenz Untere Obere -2.011 698.045-5.82-11.50 -.14.

Standardab er des. Testwert = 145.5 95% Konfidenzintervall. T df Sig. (2-seitig) Differenz Untere Obere -2.011 698.045-5.82-11.50 -.14. Aufgabe : einfacher T-Test Statistik bei einer Stichprobe Standardfehl Standardab er des Mittelwert weichung Mittelwertes 699 39.68 76.59 2.894 Test bei einer Sichprobe Testwert = 45.5 95% Konfidenzintervall

Mehr

Hauptkomponentenanalyse. Die Schritte bei einer Hauptkomponentenanalyse

Hauptkomponentenanalyse. Die Schritte bei einer Hauptkomponentenanalyse Die Schritte bei einer FACTOR /VARIABLES f06_r f06_r f06_r f06_4r f06_5r f06_6r f06_7r f06_8r f06_9r f06_0r /MISSING LISTWISE /ANALYSIS f06_r f06_r f06_r f06_4r f06_5r f06_6r f06_7r f06_8r f06_9r f06_0r

Mehr

Sozialwissenschaftliche Fakultät der Universität Göttingen. Sommersemester Statistik mit SPSS

Sozialwissenschaftliche Fakultät der Universität Göttingen. Sommersemester Statistik mit SPSS Sommersemester 2009 Statistik mit SPSS 15. Mai 2009 15. Mai 2009 Statistik Dozentin: mit Esther SPSSOchoa Fernández 1 Überblick 1. Korrelation vs. Regression 2. Ziele der Regressionsanalyse 3. Syntax für

Mehr

Geschlecht + Anfangsgehalt. T-Test für das Anfangsgehalt Gruppenstatistiken. Der SPSS Output der aktuellen Computerübung zum Aufgabenblatt 3

Geschlecht + Anfangsgehalt. T-Test für das Anfangsgehalt Gruppenstatistiken. Der SPSS Output der aktuellen Computerübung zum Aufgabenblatt 3 Der SPSS Output der aktuellen Computerübung zum Aufgabenblatt 3 Geschlecht + Anfangsgehalt 14000 399 403 7000 12000 335 Anfangsgehalt 10000 8000 6000 4000 2000 N = 28 63 185 291 227 52 215 158 88 284 193

Mehr

Einführung in die Statistik für Politikwissenschaftler Sommersemester 2011

Einführung in die Statistik für Politikwissenschaftler Sommersemester 2011 Einführung in die Statistik für Politikwissenschaftler Sommersemester 2011 Es können von den Antworten alle, mehrere oder keine Antwort(en) richtig sein. Nur bei einer korrekten Antwort (ohne Auslassungen

Mehr

Etwas positive Tendenz ist beim Wechsel der Temperatur von 120 auf 170 zu erkennen.

Etwas positive Tendenz ist beim Wechsel der Temperatur von 120 auf 170 zu erkennen. Explorative Datenanalyse Erstmal die Grafiken: Aufreisskraft und Temperatur 3 1-1 N = 1 15 17 Temperatur Diagramm 3 1 95% CI -1 N = 1 15 17 Temperatur Etwas positive Tendenz ist beim Wechsel der Temperatur

Mehr

Empirische Analysen mit dem SOEP

Empirische Analysen mit dem SOEP Empirische Analysen mit dem SOEP Methodisches Lineare Regressionsanalyse & Logit/Probit Modelle Kurs im Wintersemester 2007/08 Dipl.-Volksw. Paul Böhm Dipl.-Volksw. Dominik Hanglberger Dipl.-Volksw. Rafael

Mehr

Skript Einführung in SPSS

Skript Einführung in SPSS SPSSinteraktiv Faktorenanalyse - 1 - Skript Einführung in SPSS Faktorenanalyse Explorative Faktorenanalyse Hauptkomponentenanalyse (PCA) Hinweise zum Schreiben des statistischen Reports 1. Sämtliche Tabellen

Mehr

Heinz Holling & Günther Gediga. Statistik - Deskriptive Verfahren

Heinz Holling & Günther Gediga. Statistik - Deskriptive Verfahren Heinz Holling & Günther Gediga Statistik - Deskriptive Verfahren Übungen Version 15.12.2010 Inhaltsverzeichnis 1 Übung 1; Kap. 4 3 2 Übung 2; Kap. 5 4 3 Übung 3; Kap. 6 5 4 Übung 4; Kap. 7 6 5 Übung 5;

Mehr

Kreuzvalidierung. 1. Schritt: Aufteilung der Stichprobe in ungefähr gleiche Hälften nach dem Zufall. SPSS:

Kreuzvalidierung. 1. Schritt: Aufteilung der Stichprobe in ungefähr gleiche Hälften nach dem Zufall. SPSS: Kreuzvalidierung. Schritt: Aufteilung der Stichprobe in ungefähr gleiche Hälften nach dem Zufall. SPSS: SPSS erzeugt eine neue Variable Filter_$. Die herausgefilterten Fälle werden im Datenfenster angezeigt

Mehr

Lösungen zu Janssen/Laatz, Statistische Datenanalyse mit SPSS 1

Lösungen zu Janssen/Laatz, Statistische Datenanalyse mit SPSS 1 LÖSUNG 13 a) Lösungen zu Janssen/Laatz, Statistische Datenanalyse mit SPSS 1 Die Variablen sollten hoch miteinander korrelieren. Deshalb sollten die einfachen Korrelationskoeffizienten hoch ausfallen.

Mehr

Eigene MC-Fragen Kap. 4 Faktorenanalyse, Aggregation, Normierung. 1. Welche Aussage zu den Prinzipien der Faktorenanalyse ist zutreffend?

Eigene MC-Fragen Kap. 4 Faktorenanalyse, Aggregation, Normierung. 1. Welche Aussage zu den Prinzipien der Faktorenanalyse ist zutreffend? Eigene MC-Fragen Kap. 4 Faktorenanalyse, Aggregation, Normierung 1. Welche Aussage zu den Prinzipien der Faktorenanalyse ist zutreffend? a) Die Faktorenanalyse hat ihren Ursprung in der theoretischen Intelligenzforschung.

Mehr

Kapitel 4: Merkmalszusammenhänge

Kapitel 4: Merkmalszusammenhänge Kapitel 4: Merkmalszusammenhänge Streudiagramme SPSS bietet die Möglichkeit, verschiedene Arten von Streudiagrammen zu zeichnen. Gehen Sie auf Grafiken Streu-/Punkt-Diagramm und wählen Sie die Option Einfaches

Mehr

Lösungen zur Klausur Statistik II Dr. Andreas Voß Sommersemester 2005

Lösungen zur Klausur Statistik II Dr. Andreas Voß Sommersemester 2005 Lösungen zur Klausur Statistik II Dr. Andreas Voß Sommersemester 2005 Name: Mat.Nr.: Bearbeitungshinweise: Insgesamt können 40 Punkte erreicht werden. Die Klausur gilt als bestanden, wenn Sie mindestens

Mehr

Statistik II Übung 2: Multivariate lineare Regression

Statistik II Übung 2: Multivariate lineare Regression Statistik II Übung 2: Multivariate lineare Regression Diese Übung beschäftigt sich mit dem Zusammenhang zwischen Flugpreisen und der Flugdistanz, dem Passagieraufkommen und der Marktkonzentration. Verwenden

Mehr

Multivariate Verfahren

Multivariate Verfahren Faktorenanalyse 1 Matthias Rudolf & Johannes Müller Multivariate Verfahren Eine praxisorientierte Einführung mit Anwendungsbeispielen in SPSS Praxisbeispiel zur Faktorenanalyse: FABA Inhalt: 1 Beschreibung

Mehr

Anhang A: Fragebögen und sonstige Unterlagen

Anhang A: Fragebögen und sonstige Unterlagen Anhang Anhang A: Fragebögen und sonstige Unterlagen A.: Flyer zur Probandenrekrutierung 46 A.: Fragebogen zur Meditationserfahrung 47 48 A.3: Fragebogen Angaben zur Person 49 5 5 A.4: Termin- und Einladungsschreiben

Mehr

Befehl: Analysieren > Deskriptive Statistiken > Häufigkeiten. Unter: Statistiken: Angabe Kurtosis/ Schiefe/ andere Lagemasse

Befehl: Analysieren > Deskriptive Statistiken > Häufigkeiten. Unter: Statistiken: Angabe Kurtosis/ Schiefe/ andere Lagemasse Grundeinstellungen Befehl: Bearbeiten >Optionen > Allgemein: Namen anzeigen Häufigkeiten Befehl: Analysieren > Deskriptive Statistiken > Häufigkeiten Unter: Statistiken: Angabe Kurtosis/ Schiefe/ andere

Mehr

Allgemeines Lineares Modell: Univariate Varianzanalyse und Kovarianzanalyse

Allgemeines Lineares Modell: Univariate Varianzanalyse und Kovarianzanalyse Allgemeines Lineares Modell: Univariate Varianzanalyse und Kovarianzanalyse Univariate Varianz- und Kovarianzanlyse, Multivariate Varianzanalyse und Varianzanalyse mit Messwiederholung finden sich unter

Mehr

Kapitel 6: Zweifaktorielle Varianzanalyse

Kapitel 6: Zweifaktorielle Varianzanalyse Kapitel 6: Zweifaktorielle Varianzanalyse Durchführung einer zweifaktoriellen Varianzanalyse ohne Messwiederholung Dieser Abschnitt zeigt die Durchführung der in Kapitel 6 behandelten zweifaktoriellen

Mehr

Entwicklung der Faktorenanalyse 17.06.2009. Faktorenanalyse. Faktorenanalyse nach Spearman Variablen zur Beschreibung von Intelligenz

Entwicklung der Faktorenanalyse 17.06.2009. Faktorenanalyse. Faktorenanalyse nach Spearman Variablen zur Beschreibung von Intelligenz Faktorenanalyse Thomas Schäfer SS 009 1 Entwicklung der Faktorenanalyse Faktorenanalyse nach Spearman Variablen zur Beschreibung von Intelligenz Hauptkomponentenanalyse (Pearson, Hotelling) Thomas Schäfer

Mehr

Darstellung von Tabellen in Präsentationen und Forschungsberichten

Darstellung von Tabellen in Präsentationen und Forschungsberichten Dr. Constanze Rossmann 1 Darstellung von Tabellen in Präsentationen und Forschungsberichten Faustregeln Der Text muss grundsätzlich auch ohne Tabellen zu verstehen sein. Umgekehrt muss jede Tabelle auch

Mehr

Grundzüge der Faktorenanalyse

Grundzüge der Faktorenanalyse SEITE Grundzüge der Faktorenanalyse Bei der Faktorenanalyse handelt es sich um ein Verfahren, mehrere Variablen durch möglichst wenige gemeinsame, hinter ihnen stehende Faktoren zu beschreiben. Beispiel:

Mehr

SPSS V Gruppenvergleiche ( 2 Gruppen) abhängige (verbundene) Stichproben

SPSS V Gruppenvergleiche ( 2 Gruppen) abhängige (verbundene) Stichproben SPSS V Gruppenvergleiche ( 2 Gruppen) abhängige (verbundene) Stichproben ÜBERSICHT: Testverfahren bei abhängigen (verbundenen) Stichproben parametrisch nicht-parametrisch 2 Gruppen t-test bei verbundenen

Mehr

Beispiel für eine multivariate Varianzanalyse (MANOVA) Daten: POKIV_Terror_V12.sav

Beispiel für eine multivariate Varianzanalyse (MANOVA) Daten: POKIV_Terror_V12.sav Beispiel für eine multivariate Varianzanalyse () Daten: POKIV_Terror_V12.sav Es soll überprüft werden, inwieweit das ATB-Syndrom (Angst vor mit den drei Subskalen affektive Angst von, Terrorpersistenz,

Mehr

Kapitel 5: Einfaktorielle Varianzanalyse

Kapitel 5: Einfaktorielle Varianzanalyse Kapitel 5: Einfaktorielle Varianzanalyse Durchführung einer einfaktoriellen Varianzanalyse ohne Messwiederholung Dieser Abschnitt zeigt die Durchführung der in Kapitel 5 vorgestellten einfaktoriellen Varianzanalyse

Mehr

Die Subskala besteht aus folgenden Items (Ausschnitt aus dem Codeplan):

Die Subskala besteht aus folgenden Items (Ausschnitt aus dem Codeplan): Beispiel für eine Itemanalyse mit der SPSS-Prozedur Reliabilitätsanalyse (RELIABILITY) Daten: POKIII_AG1_V06.SAV (POK III, AG 1) Die Skala Körperbewusstsein von Löwe und Clement (1996) 1 besteht aus zwei

Mehr

6. Faktorenanalyse (FA) von Tests

6. Faktorenanalyse (FA) von Tests 6. Faktorenanalyse (FA) von Tests 1 6. Faktorenanalyse (FA) von Tests 1 6.1. Grundzüge der FA nach der Haupkomponentenmethode (PCA) mit anschliessender VARIMAX-Rotation:... 2 6.2. Die Matrizen der FA...

Mehr

? Unterscheiden sich Burschen und Mädchen im Ausmaß der Mithilfe im Haushalt?

? Unterscheiden sich Burschen und Mädchen im Ausmaß der Mithilfe im Haushalt? 341 i Metrische und kategoriale Merkmale An einer Beobachtungseinheit werden metrische und kategoriale Variable erhoben. Beispiel: Hausarbeit von Teenagern (Stunden/Woche) 25 15 STUNDEN 5-5 weiblich männlich?

Mehr

Faktorenanalyse. Fakultät für Human und Sozialwissenschaften Professur für Forschungsmethodik und Evaluation in der Psychologie

Faktorenanalyse. Fakultät für Human und Sozialwissenschaften Professur für Forschungsmethodik und Evaluation in der Psychologie Faktorenanalyse Fakultät für Human und Sozialwissenschaften Professur für Forschungsmethodik und Evaluation in der Psychologie Seminar: Multivariate Analysemethoden Seminarleiter: Dr. Thomas Schäfer Referenten:

Mehr

Projekt Kaffeemaschine Welche Faktoren beeinflussen das Geschmacksurteil?

Projekt Kaffeemaschine Welche Faktoren beeinflussen das Geschmacksurteil? AKULTÄT ANGEWANDTE SOZIALWISSENSCHATEN PRO. DR. SONJA HAUG Projekt Kaffeemaschine Welche aktoren beeinflussen das Geschmacksurteil? Ausgehend von der Verkostung an der Hochschule Regensburg und der dabei

Mehr

Hypothesentests mit SPSS. Beispiel für eine einfaktorielle Varianzanalyse Daten: museum_m_v05.sav

Hypothesentests mit SPSS. Beispiel für eine einfaktorielle Varianzanalyse Daten: museum_m_v05.sav Beispiel für eine einfaktorielle Varianzanalyse Daten: museum_m_v05.sav Hypothese: Die Beschäftigung mit Kunst ist vom Bildungsgrad abhängig. 1. Annahmen Messniveau: Modell: Die Skala zur Erfassung der

Mehr

Prof. Dr. Gabriele Helga Franke TESTTHEORIE UND TESTKONSTRUKTION

Prof. Dr. Gabriele Helga Franke TESTTHEORIE UND TESTKONSTRUKTION Prof. Dr. Gabriele Helga Franke TESTTHEORIE UND TESTKONSTRUKTION 2. FS Master Rehabilitationspsychologie, SoSe 2012 Faktorenanalyse/ faktorielle Validität 2 Einleitung Allgemeines zu Faktorenanalysen (FA)

Mehr

INHALTSVERZEICHNIS Inhaltsverzeichnis Tabellenverzeichnis Abbildungsverzeichnis Anhangsverzeichnis Abkürzungsverzeichnis. 1.

INHALTSVERZEICHNIS Inhaltsverzeichnis Tabellenverzeichnis Abbildungsverzeichnis Anhangsverzeichnis Abkürzungsverzeichnis. 1. INHALTSVERZEICHNIS Inhaltsverzeichnis Tabellenverzeichnis Abbildungsverzeichnis Anhangsverzeichnis Abkürzungsverzeichnis I IV IX X XI 1. Einleitung 1 2. Literaturrückblick 5 2.1 Die biographische Methode

Mehr

Korrelation - Regression. Berghold, IMI

Korrelation - Regression. Berghold, IMI Korrelation - Regression Zusammenhang zwischen Variablen Bivariate Datenanalyse - Zusammenhang zwischen 2 stetigen Variablen Korrelation Einfaches lineares Regressionsmodell 1. Schritt: Erstellung eines

Mehr

Explorative Faktorenanalyse

Explorative Faktorenanalyse Explorative Faktorenanalyse 1 Einsatz der Faktorenanalyse Verfahren zur Datenreduktion Analyse von Datenstrukturen 2 -Ich finde es langweilig, mich immer mit den selben Leuten zu treffen -In der Beziehung

Mehr

17. Januar Ruhr-Universität Bochum. Methodenlehre III, WS 2010/2011. Prof. Dr. Holger Dette. 1. Matrizenrechnung. 2.

17. Januar Ruhr-Universität Bochum. Methodenlehre III, WS 2010/2011. Prof. Dr. Holger Dette. 1. Matrizenrechnung. 2. Ruhr-Universität Bochum 17. Januar 2011 1 / 232 Methodenlehre III NA 3/73 Telefon: 0234 322 8284 Email: holger.dette@rub.de Internet: www.ruhr-uni-bochum.de/mathematik3/index.html Vorlesung: Montag, 8.30

Mehr

Bivariate lineare Regression. Statistik für SozialwissenschaftlerInnen II p.154

Bivariate lineare Regression. Statistik für SozialwissenschaftlerInnen II p.154 Bivariate lineare Regression Statistik für SozialwissenschaftlerInnen II p.154 Grundidee und Typen der Regression Die Regressionsanalyse dient zur Quantifizierung des Zusammenhangs und der statistisch

Mehr

Universität Potsdam. Skalenbildung

Universität Potsdam. Skalenbildung Universität Potsdam Department Erziehungswissenschaft Grundschulpädagogik/-didaktik Skalenbildung Arbeitsschritte der Testanalyse am Beispiel des Lesetests ELFE 1-6, Subtest Textverständnis Datengrundlage

Mehr

Abb. 28: Antwortprofil zur Frage Zielsetzung beim Einsatz der Neukundengewinnung: Gewinnung von Interessenten

Abb. 28: Antwortprofil zur Frage Zielsetzung beim Einsatz der Neukundengewinnung: Gewinnung von Interessenten 2. Zielsetzungen beim Einsatz der Methoden der Neukundengewinnung: G ew innung von Interessenten 1 = trifft nicht zu 7 = trifft zu 1 2 3 4 5 6 7 Katalog Solo-Mailing Verbundmailing Beilagen Paketbeilage

Mehr

6. METRISCHE UND KATEGORIALE MERKMALE

6. METRISCHE UND KATEGORIALE MERKMALE 6. METRISCHE UND KATEGORIALE MERKMALE wenn an einer Beobachtungseinheit eine (oder mehrere) metrische und eine (oder mehrere) kategoriale Variable(n) erhoben wurden Beispiel: Haushaltsarbeit von Teenagern

Mehr

Formelsammlung für das Modul. Statistik 2. Bachelor. Sven Garbade

Formelsammlung für das Modul. Statistik 2. Bachelor. Sven Garbade Version 2015 Formelsammlung für das Modul Statistik 2 Bachelor Sven Garbade Prof. Dr. phil. Dipl.-Psych. Sven Garbade Fakultät für Angewandte Psychologie SRH Hochschule Heidelberg sven.garbade@hochschule-heidelberg.de

Mehr

Einführung in SPSS. Sitzung 5: Faktoranalyse und Mittelwertsvergleiche. Knut Wenzig. 22. Januar 2007

Einführung in SPSS. Sitzung 5: Faktoranalyse und Mittelwertsvergleiche. Knut Wenzig. 22. Januar 2007 Sitzung 5: Faktoranalyse und Mittelwertsvergleiche 22. Januar 2007 Verschiedene Tests Anwendungsfall und Voraussetzungen Anwendungsfall Mehrere Variablen, die Gemeinsamkeiten haben, werden gebündelt. (Datenreduktion)

Mehr

Auswertung mit dem Statistikprogramm SPSS: 30.11.05

Auswertung mit dem Statistikprogramm SPSS: 30.11.05 Auswertung mit dem Statistikprogramm SPSS: 30.11.05 Seite 1 Einführung SPSS Was ist eine Fragestellung? Beispiel Welche statistische Prozedur gehört zu welcher Hypothese? Statistische Berechnungen mit

Mehr

Statistik II Übung 1: Einfache lineare Regression

Statistik II Übung 1: Einfache lineare Regression Statistik II Übung 1: Einfache lineare Regression Diese Übung beschäftigt sich mit dem Zusammenhang zwischen dem Lohneinkommen von sozial benachteiligten Individuen (16-24 Jahre alt) und der Anzahl der

Mehr

Marketing III - Angewandte Marktforschung (SS 2016)

Marketing III - Angewandte Marktforschung (SS 2016) TECHNISCHE UNIVERSITÄT ILMENAU Fakultät für Wirtschaftswissenschaften und Medien Fachgebiet Marketing Univ.-Prof. Dr. rer. pol. habil. Anja Geigenmüller Marketing III - Angewandte Marktforschung (SS 2016)

Mehr

Lineare Regression II

Lineare Regression II Lineare Regression II Varianzanalyse als multiple Regession auf Designvariablen Das lineare Regressionsmodell setzt implizit voraus, dass nicht nur die abhängige, sondern auch die erklärenden Variablen

Mehr

Inhalt. Einführung in die Faktorenanalyse mit SPSS. 1. Faktorenanalyse: Wozu? 1. Faktorenanalyse: Wie?

Inhalt. Einführung in die Faktorenanalyse mit SPSS. 1. Faktorenanalyse: Wozu? 1. Faktorenanalyse: Wie? Einführung in die Faktorenanalyse mit SPSS Benutzertreffen am URZ Christoph Witzel. Juni 00 Inhalt. Faktorenanalyse: Wozu und wie?. Beispieldaten Metalle. Vorgehensweise. Verfahren zur Berechnung der Faktoren.

Mehr

Einführung in die Hauptkomponentenanalyse und Faktorenanalyse mit SPSS. Datenanalyse HS09 Susan Kriete Dodds 18. November 2009

Einführung in die Hauptkomponentenanalyse und Faktorenanalyse mit SPSS. Datenanalyse HS09 Susan Kriete Dodds 18. November 2009 Einführung in die Hauptkomponentenanalyse und Faktorenanalyse mit SPSS Datenanalyse HS09 Susan Kriete Dodds 18. November 2009 Hauptkomponentenanalyse Öffne die Datei Kamera.csv Analysieren > Dimensionsreduzierung

Mehr

9 Faktorenanalyse. Wir gehen zunächst von dem folgenden Modell aus (Modell der Hauptkomponentenanalyse): Z = F L T

9 Faktorenanalyse. Wir gehen zunächst von dem folgenden Modell aus (Modell der Hauptkomponentenanalyse): Z = F L T 9 Faktorenanalyse Ziel der Faktorenanalyse ist es, die Anzahl der Variablen auf wenige voneinander unabhängige Faktoren zu reduzieren und dabei möglichst viel an Information zu erhalten. Hier wird davon

Mehr

Klausur zur Vorlesung Statistik III für Studenten mit dem Wahlfach Statistik

Klausur zur Vorlesung Statistik III für Studenten mit dem Wahlfach Statistik Ludwig Fahrmeir, Nora Fenske Institut für Statistik Bitte für die Korrektur freilassen! Aufgabe 1 2 3 4 Punkte Klausur zur Vorlesung Statistik III für Studenten mit dem Wahlfach Statistik 29. März 21 Hinweise:

Mehr

Teil: lineare Regression

Teil: lineare Regression Teil: lineare Regression 1 Einführung 2 Prüfung der Regressionsfunktion 3 Die Modellannahmen zur Durchführung einer linearen Regression 4 Dummyvariablen 1 Einführung o Eine statistische Methode um Zusammenhänge

Mehr

Übung: Praktische Datenerhebung

Übung: Praktische Datenerhebung Übung: Praktische Datenerhebung WS 2011 / 2012 Modul: Methoden der empirischen Sozialforschung 1 (Übung zur Vorlesung) Judith Jahn / Aline Hämmerling 1 Ablauf Block 1 Dauer 3 h Inhalt Einführung: Ziel

Mehr

Multivariate Verfahren

Multivariate Verfahren Selbstkontrollarbeit 2 Multivariate Verfahren Musterlösung Aufgabe 1 (28 Punkte) Der Marketing-Leiter einer Lebensmittelherstellers möchte herausfinden, mit welchem Richtpreis eine neue Joghurt-Marke auf

Mehr

Exploratorische Faktorenanalyse: Hauptachsenanalyse und Hauptkomponentenanalyse SPSS-Beispiel zu Kapitel 13 1

Exploratorische Faktorenanalyse: Hauptachsenanalyse und Hauptkomponentenanalyse SPSS-Beispiel zu Kapitel 13 1 Exploratorische Faktorenanalyse: Hauptachsenanalyse und Hauptkomponentenanalyse SPSS-Beispiel zu Kapitel 13 1 Karin Schermelleh-Engel, Christina S. Werner & Helfried Moosbrugger Inhaltsverzeichnis 1 Vorbemerkungen...

Mehr

Varianzananalyse. How to do

Varianzananalyse. How to do Varianzananalyse How to do Die folgende Zusammenfassung zeigt beispielhaft, wie eine Varianzanalyse mit SPSS durchgeführt wird und wie die Ergebnisse in einem Empra-Bericht oder in einer Bachelor- oder

Mehr

3.3 Das allgemeine lineare Modell (ALM), Methode der kleinsten Quadrate

3.3 Das allgemeine lineare Modell (ALM), Methode der kleinsten Quadrate 31 und 31 und (), Methode der 33 Das allgemeine (), Methode der kleinsten Quadrate 37 Modelle mit Messwiederholungen 1 / 113 Eine grundsätzliche Bemerkung zu Beginn Es bestehen viele Ähnlichkeiten zwischen

Mehr

Abb. 30: Antwortprofil zum Statement Diese Kennzahl ist sinnvoll

Abb. 30: Antwortprofil zum Statement Diese Kennzahl ist sinnvoll Reklamationsquote Stornierungsquote Inkassoquote Customer-Lifetime-Value Hinsichtlich der obengenannten Kennzahlen bzw. Kontrollgrößen für die Neukundengewinnung wurden den befragten Unternehmen drei Statements

Mehr

Kapitel 8. Einfache Regression. Anpassen des linearen Regressionsmodells, OLS. Eigenschaften der Schätzer für das Modell

Kapitel 8. Einfache Regression. Anpassen des linearen Regressionsmodells, OLS. Eigenschaften der Schätzer für das Modell Kapitel 8 Einfache Regression Josef Leydold c 2006 Mathematische Methoden VIII Einfache Regression 1 / 21 Lernziele Lineares Regressionsmodell Anpassen des linearen Regressionsmodells, OLS Eigenschaften

Mehr

Institut für Soziologie Dipl.-Soz. Benjamin Gedon. Methoden 2. Logistische Regression II

Institut für Soziologie Dipl.-Soz. Benjamin Gedon. Methoden 2. Logistische Regression II Institut für Soziologie Dipl.-Soz. Methoden 2 Logistische Regression II Bringen Sie zur nächsten Übung und in die Klausur einen (nicht programmierbaren) Taschenrechner mit! # 2 Programm Wiederholung der

Mehr

Faktorenanalyse. 1. Grundlegende Verfahren. Bacher, SoSe2007

Faktorenanalyse. 1. Grundlegende Verfahren. Bacher, SoSe2007 Faktorenanalyse Bacher, SoSe2007 1. Grundlegende Verfahren explorative FA (EXFA): Für eine Menge von Variablen/Items werden zugrunde liegende gemeinsame (latente) Dimensionen/Faktoren gesucht, die Faktorstruktur

Mehr

Univariate Kennwerte mit SPSS

Univariate Kennwerte mit SPSS Univariate Kennwerte mit SPSS In diesem Paper wird beschrieben, wie eindimensionale Tabellen und Kennwerte mit SPSS erzeugt werden. Eine Herleitung der Kennwerte und eine inhaltliche Interpretation der

Mehr

Ausgewählte Kapitel der Statistik: Regressions- u. varianzanalytische Modelle Lösung von Grundaufgaben mit SPSS (ab V. 11.0)

Ausgewählte Kapitel der Statistik: Regressions- u. varianzanalytische Modelle Lösung von Grundaufgaben mit SPSS (ab V. 11.0) Ausgewählte Kapitel der Statistik: Regressions- u. varianzanalytische e Lösung von Grundaufgaben mit SPSS (ab V..0) Text: akmv_v.doc Daten: akmv??.sav Lehrbuch: W. Timischl, Biostatistik. Wien - New York:

Mehr

Statistik II (Sozialwissenschaften)

Statistik II (Sozialwissenschaften) Dr. Hans-Otfried Müller Institut für Mathematische Stochastik Fachrichtung Mathematik Technische Universität Dresden http://www.math.tu-dresden.de/sto/mueller/ Statistik II (Sozialwissenschaften) 2. Konsultationsübung,

Mehr

Inhaltsverzeichnis. Vorwort

Inhaltsverzeichnis. Vorwort V Vorwort XI 1 Zum Gebrauch dieses Buches 1 1.1 Einführung 1 1.2 Der Text in den Kapiteln 1 1.3 Was Sie bei auftretenden Problemen tun sollten 2 1.4 Wichtig zu wissen 3 1.5 Zahlenbeispiele im Text 3 1.6

Mehr

Multivariate lineare Regression. Statistik für SozialwissenschaftlerInnen II p.167

Multivariate lineare Regression. Statistik für SozialwissenschaftlerInnen II p.167 Multivariate lineare Regression Statistik für SozialwissenschaftlerInnen II p.167 Multivariate Regression Verfahren zur Prüfung des gemeinsamen linearen Einflusses mehrerer unabhängiger Variablen auf eine

Mehr

Kapitel 22 Partielle Korrelationen

Kapitel 22 Partielle Korrelationen Kapitel 22 Partielle Korrelationen Bereits im vorhergehenden Kapitel wurden mit der Prozedur KORRELATION, BIVARIAT Korrelationskoeffizienten berechnet. Korrelationskoeffizienten dienen allgemein dazu,

Mehr

Kriminalitätsfurcht und subjektive Wahrnehmung der Kriminalitätsentwicklung

Kriminalitätsfurcht und subjektive Wahrnehmung der Kriminalitätsentwicklung Kriminalitätsfurcht und subjektive Wahrnehmung der Kriminalitätsentwicklung Welche Rolle spielen die Massenmedien? Was sind die Konsequenzen für die Einstellung zum Strafen? Michael Windzio Kriminologisches

Mehr

Zur Erklärung menschlicher Verhaltensweisen oder allgemeiner sozialer Phänomene ist häufig eine Vielzahl von Einflussfaktoren zu berücksichtigen.

Zur Erklärung menschlicher Verhaltensweisen oder allgemeiner sozialer Phänomene ist häufig eine Vielzahl von Einflussfaktoren zu berücksichtigen. 4.3 Faktorenanalyse Problemstellung Zur Erklärung menschlicher Verhaltensweisen oder allgemeiner sozialer Phänomene ist häufig eine Vielzahl von Einflussfaktoren zu berücksichtigen. Je größer jedoch die

Mehr

Regression ein kleiner Rückblick. Methodenseminar Dozent: Uwe Altmann Alexandra Kuhn, Melanie Spate

Regression ein kleiner Rückblick. Methodenseminar Dozent: Uwe Altmann Alexandra Kuhn, Melanie Spate Regression ein kleiner Rückblick Methodenseminar Dozent: Uwe Altmann Alexandra Kuhn, Melanie Spate 05.11.2009 Gliederung 1. Stochastische Abhängigkeit 2. Definition Zufallsvariable 3. Kennwerte 3.1 für

Mehr

Messen im psychologischen Kontext II: Reliabilitätsüberprüfung und explorative Faktorenanalyse

Messen im psychologischen Kontext II: Reliabilitätsüberprüfung und explorative Faktorenanalyse Messen im psychologischen Kontext II: Reliabilitätsüberprüfung und explorative Faktorenanalyse Dominik Ernst 26.05.2009 Bachelor Seminar Dominik Ernst Reliabilität und explorative Faktorenanalyse 1/20

Mehr

2. Korrelation, lineare Regression und multiple Regression

2. Korrelation, lineare Regression und multiple Regression 2., Linear 2., lineare multiple 2., lineare 2.1 2.2 Lineare 2.1 2.2 Lineare 2.7 Partielle 2.7 Partielle 1 / 149 2., Linear 2., lineare 2.1 2.2 Lineare 2.1 2.7 Partielle 2 / 149 2.1 Beispiel: Arbeitsmotivation

Mehr

Multivariate Statistische Methoden

Multivariate Statistische Methoden Multivariate Statistische Methoden und ihre Anwendung in den Wirtschafts- und Sozialwissenschaften Von Prof. Dr. Hans Peter Litz Carl von Ossietzky Universität Oldenburg v..v.-'... ':,. -X V R.Oldenbourg

Mehr

Multivariate Statistische Methoden und ihre Anwendung

Multivariate Statistische Methoden und ihre Anwendung Multivariate Statistische Methoden und ihre Anwendung in den Wirtschafts- und Sozialwissenschaften Von Prof. Dr. Hans Peter Litz Carl von Ossietzky Universität Oldenburg R. Oldenbourg Verlag München Wien

Mehr

Master of Science in Pflege

Master of Science in Pflege Master of Science in Pflege Modul: Statistik Itemanalyse / Skalenanalyse / Faktoranalyse Oktober 2012 Prof. Dr. Jürg Schwarz Folie 2 Programm 17. Oktober 2012: Vormittag (09.15 12.30) Vorlesung - Einführung,

Mehr

TESTTHEORIE UND TESTKONSTRUKTION - PRAKTISCHE ANWENDUNG - TEIL 3

TESTTHEORIE UND TESTKONSTRUKTION - PRAKTISCHE ANWENDUNG - TEIL 3 TESTTHEORIE UND TESTKONSTRUKTION - PRAKTISCHE ANWENDUNG - TEIL 3 Prof. Dr. Franke SS2012 Hochschule Magdeburg-Stendal (FH) M.Sc. Rehabilitationspsychologie Gliederung Reliabilität 1. Überblick 2. Berechnung

Mehr

Webergänzung zu Kapitel 10

Webergänzung zu Kapitel 10 Webergänzung zu Kapitel 10 10.1.4 Varianzanalyse (ANOVA: analysis of variance) Im Kapitel 10 haben wir uns hauptsächlich mit Forschungsbeispielen beschäftigt, die nur zwei Ergebnissätze hatten (entweder

Mehr

Europäische Deutsche und deutsche Europäer - Identitätswandel im Zuge der europäischen Integration. Yvonne Kaufmann & Michaela Zauner

Europäische Deutsche und deutsche Europäer - Identitätswandel im Zuge der europäischen Integration. Yvonne Kaufmann & Michaela Zauner Europäische Deutsche und deutsche Europäer - Identitätswandel im Zuge der europäischen Integration Yvonne Kaufmann & Michaela Zauner Bericht aus dem POK IV WS 2003/04 1 Gliederung 1. Theoretischer Hintergrund,

Mehr

1 Einfachregression 1.1In 10 Haushalten wurden Einkommen und Ausgaben für Luxusgüter erfragt:

1 Einfachregression 1.1In 10 Haushalten wurden Einkommen und Ausgaben für Luxusgüter erfragt: Beispiele zum Üben und Wiederholen zu Wirtschaftsstatistik 2 (Kurs 3) 1 Einfachregression 1.1In 10 Haushalten wurden Einkommen und Ausgaben für Luxusgüter erfragt: Haushaltseinkommen 12 24 30 40 80 60

Mehr

Die Datenerhebung erfolgte in Form einer voll standardisierten schriftlichen Befragung. [...]

Die Datenerhebung erfolgte in Form einer voll standardisierten schriftlichen Befragung. [...] Methodenlehreklausur 3/0 Name: 1 Bearbeitungszeit: 2 Stunden 30 Minuten Zugelassene Hilfsmittel: Taschenrechner Teil I: Offenes Beispiel Eva Neumann, Hans Werner Bierhoff (2004): Ichbezogenheit versus

Mehr

Beispiel für eine Profilanalyse Daten: POKIII_AG1_V03.sav

Beispiel für eine Profilanalyse Daten: POKIII_AG1_V03.sav Beispiel für eine Daten: POKIII_AG1_V03.sav Es soll überprüft werden, ob es geschlechtsspezifische Unterschiede bei den Einstellungen zum Tanz gibt. Aus dem Fragebogen der AG 1 des POK III wurden folgende

Mehr

Übungsklausur Lineare Modelle. Prof. Dr. H. Toutenburg

Übungsklausur Lineare Modelle. Prof. Dr. H. Toutenburg Übungsklausur Lineare le Prof. Dr. H. Toutenburg Aufgabe Ein lineares Regressionsmodell mit der abhängigen Variablen Körpergröße und der unabhängigen Variablen Geschlecht wurde einmal mit der dummykodierten

Mehr

2. Korrelation, lineare Regression und multiple Regression

2. Korrelation, lineare Regression und multiple Regression multiple 2.2 Lineare 2.2 Lineare 1 / 130 2.2 Lineare 2 / 130 2.1 Beispiel: Arbeitsmotivation Untersuchung zur Motivation am Arbeitsplatz in einem Chemie-Konzern 25 Personen werden durch Arbeitsplatz zufällig

Mehr

Faktorenanalyse Beispiel

Faktorenanalyse Beispiel Faktorenanalyse Zweck der Faktorenanalyse ist die Dimensionsreduktion einer gegebenen Variablenanzahl, d. h. also die Zusammenfassung vorhandener Variablen zu wenigen latenten, i. d. R. voneinander unabhängigen

Mehr

Weitere (wählbare) Kontraste in der SPSS Prozedur Allgemeines Lineares Modell

Weitere (wählbare) Kontraste in der SPSS Prozedur Allgemeines Lineares Modell Einfaktorielle Versuchspläne 27/40 Weitere (wählbare) Kontraste in der SPSS Prozedur Allgemeines Lineares Modell Abweichung Einfach Differenz Helmert Wiederholt Vergleich Jede Gruppe mit Gesamtmittelwert

Mehr

Im Modell der Varianzanalyse (mit festen Effekten) ist das. aus dem Durchschnittsmesswert für y plus dem Effekt des.

Im Modell der Varianzanalyse (mit festen Effekten) ist das. aus dem Durchschnittsmesswert für y plus dem Effekt des. Einfatorielle Varianzanalyse Varianzanalyse untersucht den Einfluss verschiedener Bedingungen ( = nominalsalierte(r) Variable(r)) auf eine metrische Variable. Die Bedingungen heißen auch atoren und ihre

Mehr

SPSS III Mittelwerte vergleichen

SPSS III Mittelwerte vergleichen SPSS III Mittelwerte vergleichen A Zwei Gruppen ------------ Zwei-Stichproben t-test Beispieldatei: Seegräser Fragestellung: Unterscheidet sich die Anzahl der Seegräser in Gebieten mit und ohne Seeigelvorkommen

Mehr

Zusammenhangsanalyse mit SPSS. Messung der Intensität und/oder der Richtung des Zusammenhangs zwischen 2 oder mehr Variablen

Zusammenhangsanalyse mit SPSS. Messung der Intensität und/oder der Richtung des Zusammenhangs zwischen 2 oder mehr Variablen - nominal, ordinal, metrisch In SPSS: - Einfache -> Mittelwerte vergleichen -> Einfaktorielle - Mehrfaktorielle -> Allgemeines lineares Modell -> Univariat In SPSS: -> Nichtparametrische Tests -> K unabhängige

Mehr

3 Zusammenhangsmaße Zusammenhangshypothesen

3 Zusammenhangsmaße Zusammenhangshypothesen 3 Zusammenhangsmaße Zusammenhangshypothesen Zusammenhänge (zwischen 2 Variablen) misst man mittels Korrelationen. Die Wahl der Korrelation hängt ab von: a) Skalenniveau der beiden Variablen: 1) intervallskaliert

Mehr

Angewandte Statistik 3. Semester

Angewandte Statistik 3. Semester Angewandte Statistik 3. Semester Übung 5 Grundlagen der Statistik Übersicht Semester 1 Einführung ins SPSS Auswertung im SPSS anhand eines Beispieles Häufigkeitsauswertungen Grafiken Statistische Grundlagen

Mehr

Kapitel 5 FRAGESTELLUNG 1. Öffne die Datei alctobac.sav.

Kapitel 5 FRAGESTELLUNG 1. Öffne die Datei alctobac.sav. Kapitel 5 FRAGESTELLUNG 1 Öffne die Datei alctobac.sav. Zuerst werden wir ein Streudiagramm erstellen, um einen grafischen Überblick von diesem Datensatz zu erhalten. Gehe dazu auf Grafiken / Streudiagramm

Mehr

Lineare Modelle in R: Klassische lineare Regression

Lineare Modelle in R: Klassische lineare Regression Lineare Modelle in R: Klassische lineare Regression Achim Zeileis 2009-02-20 1 Das Modell Das klassische lineare Regressionsmodell versucht den Zusammenhang zwischen einer abhängigen Variablen (oder Responsevariablen)

Mehr

Häufigkeitsauszählungen, zentrale statistische Kennwerte und Mittelwertvergleiche

Häufigkeitsauszählungen, zentrale statistische Kennwerte und Mittelwertvergleiche Lehrveranstaltung Empirische Forschung und Politikberatung der Universität Bonn, WS 2007/2008 Häufigkeitsauszählungen, zentrale statistische Kennwerte und Mittelwertvergleiche 30. November 2007 Michael

Mehr

Univariate Lineare Regression. (eine unabhängige Variable)

Univariate Lineare Regression. (eine unabhängige Variable) Univariate Lineare Regression (eine unabhängige Variable) Lineare Regression y=a+bx Präzise lineare Beziehung a.. Intercept b..anstieg y..abhängige Variable x..unabhängige Variable Lineare Regression y=a+bx+e

Mehr

Das Dialogfeld für die Regressionsanalyse ("Lineare Regression") findet sich im Statistik- Menu unter "Regression"-"Linear":

Das Dialogfeld für die Regressionsanalyse (Lineare Regression) findet sich im Statistik- Menu unter Regression-Linear: Lineare Regression Das Dialogfeld für die Regressionsanalyse ("Lineare Regression") findet sich im Statistik- Menu unter "Regression"-"Linear": Im einfachsten Fall werden mehrere Prädiktoren (oder nur

Mehr

Master of Science in Pflege

Master of Science in Pflege Master of Science in Pflege Modul: Statistik Einführung in die Varianzanalyse (ANOVA) / ANCOVA / ANOVA mit Messwiederholung November 2012 Prof. Dr. Jürg Schwarz Folie 2 Programm 7. November 2012: Vormittag

Mehr

Einfache statistische Auswertungen mit dem Programm SPSS

Einfache statistische Auswertungen mit dem Programm SPSS Einfache statistische Auswertungen mit dem Programm SPSS Datensatz: fiktive_daten.sav Dipl. Päd. Anne Haßelkus Dr. Dorothea Dette-Hagenmeyer 11/2011 Überblick 1 Deskriptive Statistiken; Mittelwert berechnen...

Mehr

Statistik II Übung 2: Multivariate lineare Regression

Statistik II Übung 2: Multivariate lineare Regression Statistik II Übung 2: Multivariate lineare Regression Diese Übung beschäftigt sich mit dem Zusammenhang zwischen Flugpreisen und der Flugdistanz, dem Passagieraufkommen und der Marktkonzentration. Verwenden

Mehr

Kapitel 4: Merkmalszusammenhänge

Kapitel 4: Merkmalszusammenhänge Kapitel 4: Merkmalszusammenhänge Streudiagramme 1 Korrelationen 3 Lineare Regression 6 Zusammenhang zwischen Korrelation, Regression und t-test 8 Streudiagramme SPSS bietet die Möglichkeit, verschiedene

Mehr