Was haben die folgenden Dinge gemeinsam?

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Was haben die folgenden Dinge gemeinsam?"

Transkript

1 Was haben die folgenden Dinge gemeinsam?

2 Parthenon zu Athen

3 Mona Lisa von Leonardo da Vinci

4 Nautilus

5 Berliner Fernsehturm

6 CN Tower

7 Obelix

8 Brüder Grimm

9 Ananas

10 Rose

11 Biene

12 Apple

13 Das goldene Zeitalter Der Goldene Schnitt und seine Anwendung Martin Bünnig Marcel Pietschmann Universität Potsdam Lehrstuhl Didaktik der Mathematik David Kollosche Unterrichtsanlässe aus der Geschichte der Mathematik 27. Januar 2012

14 Goldener Schnitt Gliederung 1 Goldener Schnitt 2 3 M.B. & M.P. Der Goldene Schnitt und seine Anwendung 14/51

15 Goldener Schnitt Übersicht Definition Definition (Euklid, 2. Buch der Elemente, 11. Satz) Eine gegebene Strecke so zu teilen, dass das Rechteck aus der ganzen Strecke und dem Abschnitt dem Quadrat über dem anderen Abschnitt gleich ist. Definition (Beutelspacher u. Petri (1989)) Sei AB eine Strecke. Ein Punkt S von AB teilt AB im goldenen Schnitt, falls sich die größere Teilstrecke (M Major) zur kleineren (m Minor) so verhält wie die Gesamtstrecke zum größeren Teil. M.B. & M.P. Der Goldene Schnitt und seine Anwendung 15/51

16 Goldener Schnitt Übersicht Formal A M S m B Sei a = AB = M + m: a M = M m am = M 2 (M + m)m = M 2 M m + 1 M = 0 m Φ 2 Φ 1 = 0 2 M.B. & M.P. Der Goldene Schnitt und seine Anwendung 16/51

17 Goldener Schnitt Übersicht Das noble Φ Die quadratische Gleichung Φ 2 Φ 1 = 0 hat die Lösungen: Φ 1,2 = 1 ± 5 2 Φ = , 618 Φ = , 618 M.B. & M.P. Der Goldene Schnitt und seine Anwendung 17/51

18 Goldener Schnitt Antike Neuzeit Konstruktion Eigenschaften von Φ Geometrisches Goldenen Schnitt in der Natur Die Pythagoreer und Hippasos Hippasos entdeckt Goldenen Schnitt am Pentagramm Teilung der Diagonalen ergeben kleine und grosse Abschnitte grosser Abschnitt zur ganzen Diagonalen steht im gleichen Verhältnis wie der kleinere Abschnitt zum grösseren M.B. & M.P. Der Goldene Schnitt und seine Anwendung 18/51

19 Goldener Schnitt Antike Neuzeit Konstruktion Eigenschaften von Φ Geometrisches Goldenen Schnitt in der Natur proportio habens medium et duo extrema Euklid erwähnt Goldenen Schnitt erstmalig in seinen Schriften Teilung im äusseren und mittleren Verhältnis Untersuchungen an den platonischen Körpern und dem Fünfeck 5 platonischen Körper Sinnbilder für die Schöpfung 14.Jahrhundert: Göttliche Teilung M.B. & M.P. Der Goldene Schnitt und seine Anwendung 19/51

20 Goldener Schnitt Antike Neuzeit Konstruktion Eigenschaften von Φ Geometrisches Goldenen Schnitt in der Natur Hype entsteht Bezeichnung Goldener Schnitt erst ab 1835 durch den deutschen Mathematiker Martin Ohm Philosophen Adolf Zeising postulierte die Existenz eines Naturgesetzes der Ästhetik Basis ist der Goldene Schnitt Gustav Theodor Fechner fand eine Präferenz bei Menschen für den Goldenen Schnitt bei Rechtecken heraus (1876) rumänischer Diplomat Matila Ghyka interpretierte den Goldenen Schnitt als fundamentales Geheimnis des Universums M.B. & M.P. Der Goldene Schnitt und seine Anwendung 20/51

21 Goldener Schnitt Antike Neuzeit Konstruktion Eigenschaften von Φ Geometrisches Goldenen Schnitt in der Natur Station 1 & 2 Innere Teilung nach Euklid (ca. 525 v. Chr.): Die Strecke AB der Länge a soll gemäß dem goldenen Schnitt geteilt werden. 1 Errichte über dem Punkt A eine Senkrechte der Länge a 2 mit Endpunkt C. 2 Der Kreis vom Radius CB mit Mittelpunkt C schneidet die Verlängerung der Strecke AC in einem Punkt D. 3 Der Kreis um den Punkt A mit dem Radius AD teilt nun die Streke AB im Verhältnis des Goldenen Schnittes. M.B. & M.P. Der Goldene Schnitt und seine Anwendung 23/51

22 Innere Teilung Goldener Schnitt Antike Neuzeit Konstruktion Eigenschaften von Φ Geometrisches Goldenen Schnitt in der Natur C A S B D M.B. & M.P. Der Goldene Schnitt und seine Anwendung 24/51

23 Äußere Teilung Goldener Schnitt Antike Neuzeit Konstruktion Eigenschaften von Φ Geometrisches Goldenen Schnitt in der Natur Z C A a S b B X 2a Y M.B. & M.P. Der Goldene Schnitt und seine Anwendung 25/51

24 Goldener Schnitt Innere Teilung - Version 2 Antike Neuzeit Konstruktion Eigenschaften von Φ Geometrisches Goldenen Schnitt in der Natur C D A S B M.B. & M.P. Der Goldene Schnitt und seine Anwendung 26/51

25 Goldener Schnitt Antike Neuzeit Konstruktion Eigenschaften von Φ Geometrisches Goldenen Schnitt in der Natur Beweis Beweis. Nach Pythagoras gilt: Wegen CD = CB = a 2 ist: AC = a 5 2 AS = AD = AC CD = a 5 2 a 2 = a( 5 1) = a 2 φ M.B. & M.P. Der Goldene Schnitt und seine Anwendung 27/51

26 Goldener Schnitt Antike Neuzeit Konstruktion Eigenschaften von Φ Geometrisches Goldenen Schnitt in der Natur Eigenschaften von Φ Beweise die folgenden Aussagen über die Zahl Φ. Satz 1 Φ 2 = Φ Φ = Φ 1 = ( 5 1) 2 3 Φ + 1 Φ = 5 M.B. & M.P. Der Goldene Schnitt und seine Anwendung 28/51

27 Goldener Schnitt Antike Neuzeit Konstruktion Eigenschaften von Φ Geometrisches Goldenen Schnitt in der Natur Beweis von (1) Beweis. Eigenschaft (1) folgt automatisch aus der der charakteristischen Gleichung. Φ 2 Φ 1 = 0 Φ 2 = Φ + 1 Man kann somit die Potenzen von Φ linearisieren. M.B. & M.P. Der Goldene Schnitt und seine Anwendung 29/51

28 Beweis von (2) Goldener Schnitt Antike Neuzeit Konstruktion Eigenschaften von Φ Geometrisches Goldenen Schnitt in der Natur Beweis. Für den Beweis der Eigenschaft (2) multiplizieren wir zu (1) den Faktor 1 Φ : und daraus Φ = Φ 1 Φ = Φ 1 1 Φ = Φ 1 = = M.B. & M.P. Der Goldene Schnitt und seine Anwendung 30/51

29 Beweis von (3) Goldener Schnitt Antike Neuzeit Konstruktion Eigenschaften von Φ Geometrisches Goldenen Schnitt in der Natur Beweis. Wir beweisen nun (3) mithilfe von (2): Φ + 1 Φ = = 5 M.B. & M.P. Der Goldene Schnitt und seine Anwendung 31/51

30 Goldener Schnitt Antike Neuzeit Konstruktion Eigenschaften von Φ Geometrisches Goldenen Schnitt in der Natur Berechne Φ 4 Φ 2 Φ 4 Φ 2 = Φ 2 Φ 2 1 Φ 1 Φ = (Φ + 1)(Φ + 1) (Φ 1)(Φ 1) = [Φ + 1 (Φ 1)][Φ Φ 1] = 2 2Φ = 4Φ M.B. & M.P. Der Goldene Schnitt und seine Anwendung 32/51

31 geometrische Figuren Goldener Schnitt Antike Neuzeit Konstruktion Eigenschaften von Φ Geometrisches Goldenen Schnitt in der Natur 1 Goldenes Dreieck: gleichschenkliges Dreieck, bei dem zwei Seiten im Goldenen Schnitt stehen 2 Goldenes Rechteck: Seitenverhältnis entspricht dem Goldenen Schnitt 3 Goldener Winkel: Ψ = Φ 137, 5 M.B. & M.P. Der Goldene Schnitt und seine Anwendung 33/51

32 Vitruv Goldener Schnitt Antike Neuzeit Konstruktion Eigenschaften von Φ Geometrisches Goldenen Schnitt in der Natur M.B. & M.P. Der Goldene Schnitt und seine Anwendung 34/51

33 Goldener Schnitt Mona Lisa von Leonardo da Vinci Antike Neuzeit Konstruktion Eigenschaften von Φ Geometrisches Goldenen Schnitt in der Natur M.B. & M.P. Der Goldene Schnitt und seine Anwendung 35/51

34 Ananas Goldener Schnitt Antike Neuzeit Konstruktion Eigenschaften von Φ Geometrisches Goldenen Schnitt in der Natur M.B. & M.P. Der Goldene Schnitt und seine Anwendung 36/51

35 Pferd Goldener Schnitt Antike Neuzeit Konstruktion Eigenschaften von Φ Geometrisches Goldenen Schnitt in der Natur M.B. & M.P. Der Goldene Schnitt und seine Anwendung 37/51

36 Biene Goldener Schnitt Antike Neuzeit Konstruktion Eigenschaften von Φ Geometrisches Goldenen Schnitt in der Natur M.B. & M.P. Der Goldene Schnitt und seine Anwendung 38/51

37 Apple Goldener Schnitt Antike Neuzeit Konstruktion Eigenschaften von Φ Geometrisches Goldenen Schnitt in der Natur M.B. & M.P. Der Goldene Schnitt und seine Anwendung 39/51

38 Goldener Schnitt Formale Definition Fibonacci-Quotienten algebraische Zusammenhänge Kaninchenproblem Wir berechnen die Nachkommenschaft eines Kaninchenpaares. Wie viele Nachkommen gibt es? 1 Jedes Kaninchenpaar wird im Alter vom 2 Monaten gebärfähig. 2 Jedes Paar bringt (von da an) jeden Monat ein neues Paar zur Welt. 3 Alles Kaninchen leben ewig. M.B. & M.P. Der Goldene Schnitt und seine Anwendung 40/51

39 Goldener Schnitt Formale Definition Fibonacci-Quotienten algebraische Zusammenhänge Es ist f 1 = 1,f 2 = 1,f 3 = 2,f 4 = 3,f 5 = 5,f 6 = 8,... M.B. & M.P. Der Goldene Schnitt und seine Anwendung 41/51

40 Goldener Schnitt Formale Definition Fibonacci-Quotienten algebraische Zusammenhänge Die Fibonacci-Folge Definition f n+2 = f n+1 + f n (1) mit f 1 = 1 und f 2 = 1 (2) Was haben die Fibonacci-Zahlen mit dem Goldenen Schnitt zu tun? M.B. & M.P. Der Goldene Schnitt und seine Anwendung 42/51

41 Goldener Schnitt Formale Definition Fibonacci-Quotienten algebraische Zusammenhänge Fibonacci-Quotienten Es lässt sich zeigen, dass die Folge x n = f n+1 f n konvergent ist und der Grenzwert Φ ist. M.B. & M.P. Der Goldene Schnitt und seine Anwendung 43/51

42 Goldener Schnitt Formale Definition Fibonacci-Quotienten algebraische Zusammenhänge Formel von Binet Andersrum lässt sich zeigen, dass für die Fibonacci-Folge gilt: Satz (Formel von Binet) bzw. x ˆ= Gaußklammer f n = 1 [( ) n f n = φ n ( ) n ] M.B. & M.P. Der Goldene Schnitt und seine Anwendung 44/51

43 Goldener Schnitt Formale Definition Fibonacci-Quotienten algebraische Zusammenhänge Formel von Binet - Approximation Für große n lässt sich die Formel vereinfachen zu: f n φn 5 Die Fibonacci-Zahl f n ist die nächstgelegende ganze Zahl. M.B. & M.P. Der Goldene Schnitt und seine Anwendung 45/51

44 Goldener Schnitt Formale Definition Fibonacci-Quotienten algebraische Zusammenhänge Simpson-Identität Ebenfalls kann gezeigt werden: Satz (Simpson-Identität) f n+1 f n 1 f 2 n = ( 1) n M.B. & M.P. Der Goldene Schnitt und seine Anwendung 46/51

45 Goldener Schnitt Formale Definition Fibonacci-Quotienten algebraische Zusammenhänge Linearisierung der Potenzen von Φ Satz Es gilt: Φ n = f n Φ + f n 1 M.B. & M.P. Der Goldene Schnitt und seine Anwendung 47/51

46 Goldener Schnitt Beutelspacher u. Petri 1989 Beutelspacher, Albrecht ; Petri, B: Der Goldene Schnitt. Mannheim, Wien, Zürich: Bibliographisches Institut ISBN Lausch 2009 Lausch, Huberta: Fibonacci und die Folge(n). Oldenbourg Wissenschaftsverlag, 2009 Walser 1996 Walser, Hans: Der Goldene Schnitt. Teubner Verlag, ISBN Worobjow 1954 Worobjow, N.N.: DIE FIBONACCISCHEN ZAHLEN. TEXT IN GERMAN. Verlag der Wissenschaften, 1954 M.B. & M.P. Der Goldene Schnitt und seine Anwendung 51/51

Vom goldenen Schnitt zum Alexanderplatz in Berlin

Vom goldenen Schnitt zum Alexanderplatz in Berlin Vom goldenen Schnitt zum Alexanderplatz in Berlin Mathematik von 1200 bis 2004 Stefan Kühling, Fachbereich Mathematik skuehling @ fsmath.mathematik.uni-dortmund.de Schnupper Uni 26. August 2004 1 1 Goldener

Mehr

MATHEMATIK IN KUNST UND NATUR. Fibonacci Zahlen und der goldene Schnitt

MATHEMATIK IN KUNST UND NATUR. Fibonacci Zahlen und der goldene Schnitt MATHEMATIK IN KUNST UND NATUR Fibonacci Zahlen und der goldene Schnitt BEGLEITVORTRAG ZUR AUSSTELLUNG MATHEMATIK ZUM ANFASSEN DES MATHEMATIKUMS GIEßEN AN DER HOCHSCHULE PFORZHEIM Prof. Dr. Kirsten Wüst

Mehr

Goldener Schnitt in der Mathematik

Goldener Schnitt in der Mathematik Fakultät für Mathematik Goldener Schnitt in der Mathematik Herbert Henning & Christian Hartfeldt Inhaltsverzeichnis 1 Grundlagen zum Goldenen Schnitt 4 2 Stetige Teilung einer Strecke (nach Heron von Alexandria,

Mehr

Der Goldene Schnitt. Seine Bedeutung in Natur und Kultur. Rechnen wie damals Rudolf-Steiner-Schule, Gröbenzell 23. März 2015 Klaus Kühn

Der Goldene Schnitt. Seine Bedeutung in Natur und Kultur. Rechnen wie damals Rudolf-Steiner-Schule, Gröbenzell 23. März 2015 Klaus Kühn Der Goldene Schnitt Seine Bedeutung in Natur und Kultur Rudolf-Steiner-Schule, Gröbenzell 23. März 2015 Klaus Kühn Aktualisierte Version Der Goldene Schnitt 1. Grafisch rechnerisch A B C A B C 2 Der Goldene

Mehr

1.2 Der goldene Schnitt

1.2 Der goldene Schnitt Goldener Schnitt Psclsches Dreieck 8. Der goldene Schnitt Beim Begriff Goldener Schnitt denken viele Menschen n Kunst oder künstlerische Gestltung. Ds künstlerische Problem ist, wie ein Bild wohlproportioniert

Mehr

Aufgaben des MSG-Zirkels 10b Schuljahr 2007/2008

Aufgaben des MSG-Zirkels 10b Schuljahr 2007/2008 Aufgaben des MSG-Zirkels 10b Schuljahr 2007/2008 Alexander Bobenko und Ivan Izmestiev Technische Universität Berlin 1 Hausaufgaben vom 12.09.2007 Zahlentheorie 1 Aufgabe 1.1 Berechne die (quadratischen)

Mehr

1 Der Goldene Schnitt

1 Der Goldene Schnitt 1 Der Goldene Schnitt Wim Kleijne, Ton Konings Vorbemerkung der Herausgeber Der Goldene Schnitt ist ein klassisches Thema der Geometrie mit zahlreichen Anwendungen in anderen mathematischen Gebieten, in

Mehr

Grundregeln der Perspektive und ihre elementargeometrische Herleitung

Grundregeln der Perspektive und ihre elementargeometrische Herleitung Vortrag zu Mathematik, Geometrie und Perspektive von Prof. Dr. Bodo Pareigis am 15.10.2007 im Vorlesungszyklus Naturwissenschaften und Mathematische Wissenschaften im Rahmen des Seniorenstudiums der LMU.

Mehr

Falten regelmäßiger Vielecke

Falten regelmäßiger Vielecke Blatt 1 Gleichseitige Dreiecke Ausgehend von einem quadratischen Stück Papier kann man ohne weiteres Werkzeug viele interessante geometrische Figuren nur mit den Mitteln des Papierfaltens (Origami) erzeugen.

Mehr

http://www.olympiade-mathematik.de 2. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 7 Saison 1962/1963 Aufgaben und Lösungen

http://www.olympiade-mathematik.de 2. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 7 Saison 1962/1963 Aufgaben und Lösungen 2. Mathematik Olympiade Saison 1962/1963 Aufgaben und Lösungen 1 OJM 2. Mathematik-Olympiade Aufgaben Hinweis: Der Lösungsweg mit Begründungen und Nebenrechnungen soll deutlich erkennbar in logisch und

Mehr

Proportionen am Buch. Einige Standard-Blatt-Formate

Proportionen am Buch. Einige Standard-Blatt-Formate Proportionen am Buch Mittelalter / Renaissance: Asien versus Westeuropa. Blattästhetik. Umblättern. Japan oft nur oben/unten, Westeuropa rund herum Freiraum. Satzspiegel: übliche Konstruktionen. Siehe

Mehr

1 C H R I S T O P H D R Ö S S E R D E R M A T H E M A T I K V E R F Ü H R E R

1 C H R I S T O P H D R Ö S S E R D E R M A T H E M A T I K V E R F Ü H R E R C H R I S T O P H D R Ö S S E R D E R M A T H E M A T I K V E R F Ü H R E R L Ö S U N G E N Seite 7 n Wenn vier Menschen auf einem Quadratmeter stehen, dann hat jeder eine Fläche von 50 mal 50 Zentimeter

Mehr

Abschlussprüfung Realschule Bayern II / III: 2009 Haupttermin B 1.0 B 1.1

Abschlussprüfung Realschule Bayern II / III: 2009 Haupttermin B 1.0 B 1.1 B 1.0 B 1.1 L: Wir wissen von, dass sie den Scheitel hat und durch den Punkt läuft. Was nichts bringt, ist beide Punkte in die allgemeine Parabelgleichung einzusetzen und das Gleichungssystem zu lösen,

Mehr

Sangaku - Probleme. Aufgaben aus der japanischen Tempelgeometrie. ein Beitrag von Ingmar Rubin, Berlin. Abbildung 1: Ein typisches Sangaku-Problem

Sangaku - Probleme. Aufgaben aus der japanischen Tempelgeometrie. ein Beitrag von Ingmar Rubin, Berlin. Abbildung 1: Ein typisches Sangaku-Problem A B O B B G F C C N C L K Sangaku - Probleme Aufgaben aus der japanischen Tempelgeometrie ein Beitrag von Ingmar Rubin, Berlin Abbildung 1: Ein typisches Sangaku-Problem Zusammenfassung Der Beitrag beschäftigt

Mehr

Eine Einführung zum numerischen Programmieren mit Excel

Eine Einführung zum numerischen Programmieren mit Excel Eine Einführung zum numerischen Programmieren mit Excel Bastian Gross Universität Trier 30. April 2012 Bastian Gross (Universität Trier) Excel/OpenOffice Kurs 2012 1/36 30. April 2012 1 / 36 Inhaltsverzeichnis

Mehr

Die Fibonacci-Zahlen und der Goldene Schnitt

Die Fibonacci-Zahlen und der Goldene Schnitt Die Fibonacci-Zahlen und der Goldene Schnitt Thomas Peters Thomas Mathe-Seiten www.mathe-seiten.de 31. August 003 Dieser Artikel beginnt mit der Definition der Fibonacci-Zahlen und des Goldenen Schnitts.

Mehr

Bild. Kompostition. fotoclub Gmunden. Wolfgang Spießberger 1

Bild. Kompostition. fotoclub Gmunden. Wolfgang Spießberger 1 Wolfgang Spießberger 1 Goldender Schnitt Das richtige Bildformat Farbe Was ist Farbe? Komplimentärfarben Bildaufbau Standortwahl Bildausschnitt Format Punkte - Linien Diagonalen Blende Brennweite Brechen

Mehr

Eingangstest Mathematik Musterlösungen

Eingangstest Mathematik Musterlösungen Fakultät für Technik Eingangstest Mathematik Musterlösungen 00 Fakultät für Technik DHBW Mannheim . Arithmetik.. (4 Punkte) Vereinfachen Sie folgende Ausdrücke durch Ausklammern, Ausmultiplizieren und

Mehr

Test zur Geometrischen Kreativität (GCT-DE)

Test zur Geometrischen Kreativität (GCT-DE) Pädagogische Hochschule Schwäbisch Gmünd Institut für Mathematik und Informatik Abteilung Informatik Test zur Geometrischen Kreativität (GCT-DE) Erstellt von Mohamed El-Sayed Ahmed El-Demerdash Master

Mehr

Eine Einführung zum numerischen Programmieren mit Excel

Eine Einführung zum numerischen Programmieren mit Excel Eine Einführung zum numerischen Programmieren mit Excel Bastian Groß Nina Weiand Universität Trier 23. Juni 2014 Groß, Weiand (Universität Trier) Excel/OpenOffice Kurs 2014 1/38 23. Juni 2014 1 / 38 Inhaltsverzeichnis

Mehr

Euklides: Dedomena. Was gegeben ist.

Euklides: Dedomena. Was gegeben ist. Euklides: Dedomena. (Die "Data" des Euklid) Was gegeben ist. Verzeichnis der Lehrsätze Dedomena Ins Deutsche übertragen von Dr. phil. Rudolf Haller mit Benützung von Euclidis Opera Omnia, ediderunt I.

Mehr

Die goldenen Linien auf dem Geobrett und das ägyptische Dreieck

Die goldenen Linien auf dem Geobrett und das ägyptische Dreieck Die goldenen Linien auf dem Geobrett und das ägyptische Dreieck Horst Steibl TU Braunschweig GDM-Tagung Berlin 2007 1 Die goldenen Linien auf dem Geobrett und das ägyptische Dreieck Wie Tim und Tom, die

Mehr

Hausarbeit Fach: Geometrie. Der Goldene Schnitt. Proportionen in Kunst und Natur Unterrichtsskizzen für die 8. Klasse

Hausarbeit Fach: Geometrie. Der Goldene Schnitt. Proportionen in Kunst und Natur Unterrichtsskizzen für die 8. Klasse Hausarbeit Fach: Geometrie Der Goldene Schnitt Proportionen in Kunst und Natur Unterrichtsskizzen für die 8. Klasse Gliederung: Einführung Teil I Der Goldene Schnitt Geometrisch mathematischer Inhalt Definition

Mehr

Leseprobe. Monika Noack, Alexander Unger, Robert Geretschläger, Hansjürg Stocker. Mathe mit dem Känguru 3. Die schönsten Aufgaben von 2009 bis 2011

Leseprobe. Monika Noack, Alexander Unger, Robert Geretschläger, Hansjürg Stocker. Mathe mit dem Känguru 3. Die schönsten Aufgaben von 2009 bis 2011 Leseprobe Monika Noack, lexander Unger, Robert Geretschläger, Hansjürg Stocker Mathe mit dem Känguru 3 Die schönsten ufgaben von 009 bis 011 ISN: 978-3-446-480-1 Weitere Informationen oder estellungen

Mehr

Berufsreifeprüfung Studienberechtigung. Mathematik. Einstiegsniveau

Berufsreifeprüfung Studienberechtigung. Mathematik. Einstiegsniveau Berufsreifeprüfung Studienberechtigung Mathematik Einstiegsniveau Zusammenstellung von relevanten Unterstufenthemen, die als Einstiegsniveau für BRP /SBP Kurse Mathematik beherrscht werden sollten. /brp

Mehr

Y b 2 - a 2 = p 2 - q 2 (*)

Y b 2 - a 2 = p 2 - q 2 (*) Um den Flächeninhalt eines Dreieckes zu bestimmen, das keinen rechten Winkel besitzt, muss man bekanntlich die Längen einer Seite mit der dazugehörigen Höhe kennen Wir setzen voraus, dass uns alle 3 Seitenlängen

Mehr

Arbeitsblätter zum Thema Papierfalten und Algebra für den Unterricht Hochbegabter in der Sekundarstufe II

Arbeitsblätter zum Thema Papierfalten und Algebra für den Unterricht Hochbegabter in der Sekundarstufe II Arbeitsblätter zum Thema Papierfalten und Algebra für den Unterricht Hochbegabter in der Sekundarstufe II Robert Geretschläger Graz, Österreich, 2009 Blatt 1 Lösen quadratischer Gleichungen mit Zirkel

Mehr

Übungsbuch Algebra für Dummies

Übungsbuch Algebra für Dummies ...für Dummies Übungsbuch Algebra für Dummies von Mary Jane Sterling, Alfons Winkelmann 1. Auflage Wiley-VCH Weinheim 2012 Verlag C.H. Beck im Internet: www.beck.de ISBN 978 3 527 70800 0 Zu Leseprobe

Mehr

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt - 17 - Die Frage ist hier also: Für welche x R gilt x = x + 1? Das ist eine quadratische Gleichung für x. Es gilt x = x + 1 x x 3 = 0, und man kann quadratische Ergänzung machen:... ( ) ( ) x x + = 3 +

Mehr

Sie und Er oder Der Mensch

Sie und Er oder Der Mensch Sie und Er oder Der Mensch Leonardo da Vinci (italienische Künstler und Wissenschaftler 1452-1519) zeichnete der Mensch nach antiken griechischen Schönheitsideal Verhältnisse. In der Zeit der Renaissance

Mehr

INFOMAPPE ZUM EINSTUFUNGSTEST MATHEMATIK AN DER FOS/BOS MEMMINGEN

INFOMAPPE ZUM EINSTUFUNGSTEST MATHEMATIK AN DER FOS/BOS MEMMINGEN INFOMAPPE ZUM EINSTUFUNGSTEST MATHEMATIK AN DER FOS/BOS MEMMINGEN Liebe Schülerinnen und Schüler, wie schnell man einen bereits einmal gekonnten Stoff wieder vergisst, haben Sie sicherlich bereits schon

Mehr

Aufsatz über die Beziehung des aegyptischen Dreiecks (3/4/5) zum goldenen Schnitt

Aufsatz über die Beziehung des aegyptischen Dreiecks (3/4/5) zum goldenen Schnitt 29.4.2001 1 Aufsatz über die Beziehung des aegyptischen Dreiecks (3/4/5) zum goldenen Schnitt CHEOPS UND CHEFREN Jedem Schüler und Maurerlehrling ist es geläufig, das rechtwinklige Dreieck mit den Seitenproportionen

Mehr

Curriculum Mathematik. Bereich Schulabschluss

Curriculum Mathematik. Bereich Schulabschluss Curriculum Mathematik Bereich Schulabschluss Im Folgenden finden Sie eine Übersicht über alle Lerneinheiten im Fach Mathematik. Das Fach Mathematik ist in Lernstufen, Kapitel, Lerneinheiten und Übungen

Mehr

Wassily Kandinsky: Structure joyeuse. Beschreibe die Figuren und zeichne sie aus freier Hand in dein Heft.

Wassily Kandinsky: Structure joyeuse. Beschreibe die Figuren und zeichne sie aus freier Hand in dein Heft. 6 Flächen Wie heißen die Figuren? a) Dreiecke Viereck d) Quadrat b) Kreis Quadrate e) Dreiecke Rechteck c) Rechtecke Viereck f) Kreis Wassily Kandinsky: Structure joyeuse Lege Vierecke. a) Nimm vier gleich

Mehr

Was ist Mathematik? Eine Strukturwissenschaft, eine Geisteswissenschaft, aber keine Naturwissenschaft.

Was ist Mathematik? Eine Strukturwissenschaft, eine Geisteswissenschaft, aber keine Naturwissenschaft. Vorlesung 1 Einführung 1.1 Praktisches Zeiten: 10:00-12:00 Uhr Vorlesung 12:00-13:00 Uhr Mittagspause 13:00-14:30 Uhr Präsenzübung 14:30-16:00 Uhr Übungsgruppen Material: Papier und Stift wacher Verstand

Mehr

5. Komplexe Zahlen. 5.1 Was ist eine Zahl?

5. Komplexe Zahlen. 5.1 Was ist eine Zahl? 5. Komplexe Zahlen Komplexe Zahlen sind Zahlen der Form a + bi, wo a und b reelle Zahlen sind und i = 1 ist. Wurzeln aus negativen Zahlen gibt es nicht, wird man da antworten, und in der Tat gibt es keine

Mehr

1.2 Einführung der Zahl Dominik Schomas Clemens Blank

1.2 Einführung der Zahl Dominik Schomas Clemens Blank 1.2 Einführung der Zahl Dominik Schomas Clemens Blank Die Zahl wird über den konstanten Quotienten eingeführt. Der Umfang sowie der Durchmesser werden von den Schülern experimentell gemessen mit und in

Mehr

Gymnasium Unterstrass Zürich Seite 1 Aufnahmeprüfung 2009 Mathematik (2. Sek)

Gymnasium Unterstrass Zürich Seite 1 Aufnahmeprüfung 2009 Mathematik (2. Sek) Gymnasium Unterstrass Zürich Seite 1 Aufnahmeprüfung 2009 Mathematik (2. Sek) Gymnasium Unterstrass Zürich Aufnahmeprüfung 2009 Kurzgymnasium (Anschluss 2. Sekundarklasse) Mathematik Name: Die Prüfung

Mehr

Lösungen zur Vorrundenprüfung 2006

Lösungen zur Vorrundenprüfung 2006 Lösungen zur Vorrundenprüfung 2006 Zuerst einige Bemerkungen zum Punkteschema. Eine vollständige und korrekte Lösung einer Aufgabe ist jeweils 7 Punkte wert. Für komplette Lösungen mit kleineren Fehlern

Mehr

MATHEMATIKLEHRPLAN 4. SCHULJAHR SEKUNDARSTUFE

MATHEMATIKLEHRPLAN 4. SCHULJAHR SEKUNDARSTUFE Europäische Schulen Büro des Generalsekretärs Abteilung für pädagogische Entwicklung Ref.:2010-D-581-de-2 Orig.: EN MATHEMATIKLEHRPLAN 4. SCHULJAHR SEKUNDARSTUFE Kurs 4 Stunden/Woche VOM GEMISCHTER PÄDAGOGISCHER

Mehr

Integration von Schülerinnen und Schülern mit einer Sehschädigung an Regelschulen

Integration von Schülerinnen und Schülern mit einer Sehschädigung an Regelschulen Integration von Schülerinnen und Schülern mit einer Sehschädigung an Regelschulen Didaktikpool Falttechniken zum Einsatz im Mathematikunterricht mit sehgeschädigten Kindern Emmy Csocsán / Christina Blackert

Mehr

Übersicht. 1. Zuordnungen. Arbeitsblätter... 15 32 Lösungen...255 257. 2. Prozent- und Zinsrechnung. Arbeitsblätter... 33 54 Lösungen...

Übersicht. 1. Zuordnungen. Arbeitsblätter... 15 32 Lösungen...255 257. 2. Prozent- und Zinsrechnung. Arbeitsblätter... 33 54 Lösungen... Übersicht 1. Zuordnungen Arbeitsblätter... 15 32 Lösungen...255 257 2. Prozent- und Zinsrechnung Arbeitsblätter... 33 54 Lösungen...258 260 3. Geometrie: Figuren - Kongruenz Arbeitsblätter... 55 118 Lösungen...261

Mehr

1.3 Gestaltungsformen 19. Bild 1.40: Plattenmitte in Raummitte

1.3 Gestaltungsformen 19. Bild 1.40: Plattenmitte in Raummitte .3 Gestaltungsformen 9 Bild.39: Fugenkreuz in Raummitte Bild.40: Plattenmitte in Raummitte Bild.4: Mitte Kante in Raummitte.3. Gestaltung durch das Fliesen- und Plattenformat Zeitlos und damit am häufigsten

Mehr

Mathematik I Prüfung für den Übertritt aus der 9. Klasse

Mathematik I Prüfung für den Übertritt aus der 9. Klasse Aufnahmeprüfung 015 für den Eintritt in das 9. Schuljahr eines Gymnasiums des Kantons Bern Mathematik I Prüfung für den Übertritt aus der 9. Klasse Bitte beachten: - Bearbeitungsdauer: 60 Minuten - Alle

Mehr

OECD Programme for International Student Assessment PISA 2000. Lösungen der Beispielaufgaben aus dem Mathematiktest. Deutschland

OECD Programme for International Student Assessment PISA 2000. Lösungen der Beispielaufgaben aus dem Mathematiktest. Deutschland OECD Programme for International Student Assessment Deutschland PISA 2000 Lösungen der Beispielaufgaben aus dem Mathematiktest Beispielaufgaben PISA-Hauptstudie 2000 Seite 3 UNIT ÄPFEL Beispielaufgaben

Mehr

Anwengungen geometrischer Abbildungen Kongruenz- und Ähnlichkeitsabbildung

Anwengungen geometrischer Abbildungen Kongruenz- und Ähnlichkeitsabbildung Anwengungen geometrischer Abbildungen Kongruenz- und Ähnlichkeitsabbildung Amina Duganhodzic Proseminar: Mathematisches Problemlösen Unter der Leitung von Privat Dozentin Dr. Natalia Grinberg 26. Juni

Mehr

Basteln und Zeichnen

Basteln und Zeichnen Titel des Arbeitsblatts Seite Inhalt 1 Falte eine Hexentreppe 2 Falte eine Ziehharmonika 3 Die Schatzinsel 4 Das Quadrat und seine Winkel 5 Senkrechte und parallele Linien 6 Ein Scherenschnitt 7 Bastle

Mehr

START MATHEMATIK-STAFFEL 2011 Ihr habt 60 Minuten Zeit für 20 Aufgaben. Die Gesamtzahl der zu erreichenden Punkte ist 500.

START MATHEMATIK-STAFFEL 2011 Ihr habt 60 Minuten Zeit für 20 Aufgaben. Die Gesamtzahl der zu erreichenden Punkte ist 500. START MATHEMATIK-STAFFEL 2011 Ihr habt 60 Minuten Zeit für 20 Aufgaben. Die Gesamtzahl der zu erreichenden Punkte ist 500. Staffel-Aufgaben 1 (20 Punkte, Rest 480 Punkte) Drei gleichschenklige Dreiecke

Mehr

Zeitraum prozessbezogene Kompetenzen inhaltsbezogene Kompetenzen Lambacher Schweizer 5 Seiten. Größen und Messen Konstruieren Winkel zeichnen

Zeitraum prozessbezogene Kompetenzen inhaltsbezogene Kompetenzen Lambacher Schweizer 5 Seiten. Größen und Messen Konstruieren Winkel zeichnen Zeitraum prozessbezogene Kompetenzen inhaltsbezogene Kompetenzen Lambacher Schweizer 5 Seiten Mit symbolischen, formalen und technischen Elementen der Mathematik umgehen Symbolschreib- symbolische und

Mehr

3.2 Spiegelungen an zwei Spiegeln

3.2 Spiegelungen an zwei Spiegeln 3 Die Theorie des Spiegelbuches 45 sehen, wenn die Person uns direkt gegenüber steht. Denn dann hat sie eine Drehung um die senkrechte Achse gemacht und dabei links und rechts vertauscht. 3.2 Spiegelungen

Mehr

RSA-Verschlüsselung. von Johannes Becker Gießen 2006/2008

RSA-Verschlüsselung. von Johannes Becker Gießen 2006/2008 RSA-Verschlüsselung von Johannes Becker Gießen 2006/2008 Zusammenfassung Es wird gezeigt, wieso das nach Ronald L. Rivest, Adi Shamir und Leonard Adleman genannte RSA-Krptosstem funktioniert, das mittlerweile

Mehr

50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 11 13. 501322 Lösung 10 Punkte

50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 11 13. 501322 Lösung 10 Punkte 50. Mathematik-Olympiade. Stufe (Regionalrunde) Klasse 3 Lösungen c 00 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 503 Lösung 0 Punkte Es seien

Mehr

Das Falten-und-Schneiden Problem

Das Falten-und-Schneiden Problem Das Falten-und-Schneiden Problem Kristian Bredies Uttendorf, 14. Februar 2005 Inhalt Einleitung Origami Das Falten-und-Schneiden Problem Mathematische Analyse Flaches Origami Lokale Eigenschaften Faltbarkeit

Mehr

Quadratische Gleichungen

Quadratische Gleichungen Quadratische Gleichungen Aufgabe: Versuche eine Lösung zu den folgenden Zahlenrätseln zu finden:.) Verdoppelt man das Quadrat einer Zahl und addiert, so erhält man 00..) Addiert man zum Quadrat einer Zahl

Mehr

Gegeben ist die Funktion f durch. Ihr Schaubild sei K.

Gegeben ist die Funktion f durch. Ihr Schaubild sei K. Aufgabe I 1 Gegeben ist die Funktion f durch. Ihr Schaubild sei K. a) Geben Sie die maximale Definitionsmenge D f an. Untersuchen Sie K auf gemeinsame Punkte mit der x-achse. Bestimmen Sie die Intervalle,

Mehr

a' c' Aufgabe: Spiegelung an den Dreiecksseiten und Anti-Steinersche Punkte Darij Grinberg

a' c' Aufgabe: Spiegelung an den Dreiecksseiten und Anti-Steinersche Punkte Darij Grinberg ufgabe: Spiegelung an den Dreiecksseiten und nti-steinersche Punkte Darij Grinberg Eine durch den Höhenschnittpunkt H eines Dreiecks B gehende Gerade g werde an den Dreiecksseiten B; und B gespiegelt;

Mehr

DAS ABI-PFLICHTTEIL Büchlein

DAS ABI-PFLICHTTEIL Büchlein DAS ABI-PFLICHTTEIL Büchlein für Baden-Württemberg Alle Originalaufgaben Haupttermine 004 0 Ausführlich gerechnete und kommentierte Lösungswege Mit vielen Zusatzhilfen X π Von: Jochen Koppenhöfer und Pascal

Mehr

Was war vor dem Startwert?

Was war vor dem Startwert? 63 Hans Walser Was war vor dem Startwert? Das mathematische Analogon zur Frage, was vor Adam und Eva war, ist die Frage, ob und wie Folgen und mathematische Strukturen, welche einen natürlichen Anfang

Mehr

Vergleichsarbeit Mathematik

Vergleichsarbeit Mathematik Senatsverwaltung für Bildung, Jugend und Sport Vergleichsarbeit Mathematik 3. Mai 005 Arbeitsbeginn: 0.00 Uhr Bearbeitungszeit: 0 Minuten Zugelassene Hilfsmittel: - beiliegende Formelübersicht (eine Doppelseite)

Mehr

http://www.olympiade-mathematik.de 7. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 12 Saison 1967/1968 Aufgaben und Lösungen

http://www.olympiade-mathematik.de 7. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 12 Saison 1967/1968 Aufgaben und Lösungen 7. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 12 Saison 1967/1968 Aufgaben und Lösungen 1 OJM 7. Mathematik-Olympiade 1. Stufe (Schulolympiade) Klasse 12 Aufgaben Hinweis: Der Lösungsweg mit

Mehr

Literatur zu geometrischen Konstruktionen

Literatur zu geometrischen Konstruktionen Literatur zu geometrischen Konstruktionen Hadlock, Charles Robert, Field theory and its classical problems. Carus Mathematical Monographs, 19. Mathematical Association of America, Washington, D.C., 1978.

Mehr

Schulcurriculum des Faches Mathematik. für die Klassenstufen 5 10

Schulcurriculum des Faches Mathematik. für die Klassenstufen 5 10 Schulcurriculum des Faches Mathematik für die Klassenstufen 5 10 Mathematik - Klasse 5 Ganze Zahlen Potenzen und Zweiersystem /das unendlich Große in der Mathematik Messen und Rechnen mit Größen Messungen

Mehr

Wie löst man Mathematikaufgaben?

Wie löst man Mathematikaufgaben? Wie löst man Mathematikaufgaben? Manfred Dobrowolski Universität Würzburg Wie löst man Mathematikaufgaben? 1 Das Schubfachprinzip 2 Das Invarianzprinzip 3 Das Extremalprinzip Das Schubfachprinzip Verteilt

Mehr

WERRATALSCHULE Gesamtschule mit gymnasialer Oberstufe Heringen (Werra)

WERRATALSCHULE Gesamtschule mit gymnasialer Oberstufe Heringen (Werra) WERRATALSCHULE Gesamtschule mit gymnasialer Oberstufe Heringen (Werra) SCHULCURRICULUM IM FACH MATHEMATIK BILDUNGSGANG HAUPTSCHULE Fachcurriculum Klasse 7H Mathematik Schwerpunkte Kompetenzen Inhalte Mathematische

Mehr

Gymnasium. Testform B

Gymnasium. Testform B Mathematiktest für Schülerinnen und Schüler der 8 Klassenstufe Teil 1 Gymnasium Testform B Zentrum für empirische pädagogische Forschung und Fachbereich Psychologie an der Universität Koblenz-Landau im

Mehr

Aufgabenbeispiele/ Schwerpunkte zur Vorbereitung auf die Eignungsprüfung im Fach Mathematik

Aufgabenbeispiele/ Schwerpunkte zur Vorbereitung auf die Eignungsprüfung im Fach Mathematik Aufgabenbeispiele/ Schwerpunkte zur Vorbereitung auf die Eignungsprüfung im Fach Mathematik. Bruchrechnung (ohne Taschenrechner!!!) a) Mache gleichnamig! 4 und ; und ; 4 7 b) Berechne! 8 7 8 + 4 9 8 4

Mehr

Eignungstest Mathematik

Eignungstest Mathematik Eignungstest Mathematik Klasse 4 Datum: Name: Von Punkten wurden Punkte erreicht Zensur: 1. Schreibe in folgende Figuren die Bezeichnungen für die jeweilige Figur! Für eine Rechteck gibt ein R ein, für

Mehr

Lösungen zur Prüfung 2009: Pflichtbereich

Lösungen zur Prüfung 2009: Pflichtbereich 009 Pflichtbereich Lösungen zur Prüfung 009: Pflichtbereich ufgabe P1: erechnung des lächeninhalts G : ür den lächeninhalt des Dreiecks G gilt (siehe igur 1): G = Man muss also zuerst die Länge G und die

Mehr

Quadratwurzel. Wie lassen sich die Zahlen auf dem oberen und unteren Notizzettel einander sinnvoll zuordnen?

Quadratwurzel. Wie lassen sich die Zahlen auf dem oberen und unteren Notizzettel einander sinnvoll zuordnen? 1. Zahlenpartner Quadratwurzel Wie lassen sich die Zahlen auf dem oberen und unteren Notizzettel einander sinnvoll zuordnen? Quelle: Schnittpunkt 9 (1995) Variationen: (a) einfachere Zahlen (b) ein weiteres

Mehr

JAHRESPRÜFUNG MATHEMATIK. 1. Klassen Kantonschule Reussbühl Luzern. 27. Mai 2014 Zeit: 13:10 14:40 (90 Minuten)

JAHRESPRÜFUNG MATHEMATIK. 1. Klassen Kantonschule Reussbühl Luzern. 27. Mai 2014 Zeit: 13:10 14:40 (90 Minuten) KLASSE: NAME: VORNAME: Mögliche Punktzahl: 51 48 Pte. = Note 6 Erreichte Punktzahl: Note: JAHRESPRÜFUNG MATHEMATIK 1. Klassen Kantonschule Reussbühl Luzern 7. Mai 014 Zeit: 1:10 14:40 (90 Minuten) Allgemeines

Mehr

Nachklausur zur Einführung in die Geometrie im SS 2002 Lösung Aufgabe 1 1.Weg (kurz und einfach):

Nachklausur zur Einführung in die Geometrie im SS 2002 Lösung Aufgabe 1 1.Weg (kurz und einfach): Nachklausur zur Einführung in die Geometrie im SS 2002 Lösung ufgabe 1 1.Weg (kurz und einfach): C! **C* Umlaufsinn erhalten Verschiebung oder Drehung Verbindungsgeraden *, *, CC* nicht parallel Drehung

Mehr

Bei Konstruktionen dürfen nur die folgenden Schritte durchgeführt werden : Beliebigen Punkt auf einer Geraden, Strecke oder Kreislinie zeichnen.

Bei Konstruktionen dürfen nur die folgenden Schritte durchgeführt werden : Beliebigen Punkt auf einer Geraden, Strecke oder Kreislinie zeichnen. Geometrie I. Zeichnen und Konstruieren ================================================================== 1.1 Der Unterschied zwischen Zeichnen und Konstruieren Bei der Konstruktion einer geometrischen

Mehr

Download. Mathematik üben Klasse 8 Terme und Gleichungen. Differenzierte Materialien für das ganze Schuljahr. Jens Conrad, Hardy Seifert

Download. Mathematik üben Klasse 8 Terme und Gleichungen. Differenzierte Materialien für das ganze Schuljahr. Jens Conrad, Hardy Seifert Download Jens Conrad, Hardy Seifert Mathematik üben Klasse 8 Terme und Gleichungen Differenzierte Materialien für das ganze Schuljahr Downloadauszug aus dem Originaltitel: Mathematik üben Klasse 8 Terme

Mehr

Karin Roller. Fibonacci- Das Profi-Tool

Karin Roller. Fibonacci- Das Profi-Tool Karin Roller Vorstandsmitglied der VTAD e.v. und Regionalmanagerin in Stuttgart Privatinvestorin (Futures und Forex) Technische Analystin CFTe II (Certified Financial Technician) berufliche Eignung als

Mehr

n 0 1 2 3 4 5 6 7 8 9 10 11 12 S n 1250 1244, 085 1214, 075 1220, 136 1226, 167 Nach einem Jahr beträgt der Schuldenstand ca. 1177,09.

n 0 1 2 3 4 5 6 7 8 9 10 11 12 S n 1250 1244, 085 1214, 075 1220, 136 1226, 167 Nach einem Jahr beträgt der Schuldenstand ca. 1177,09. Gymnasium Leichlingen 10a M Lö 2007/08.2 2/2 Aufgaben/Lösungen der Klassenarbeit Nr. 4 von Fr., 2008-04-25 2 45 Aufgabe 1: Die A-Bank bietet Kredite zu einem Zinssatz von 6% pro Jahr an. Ein privater Keditvermittler

Mehr

Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs. 09.02. Klausur (08-10 Uhr Audimax, HS 1)

Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs. 09.02. Klausur (08-10 Uhr Audimax, HS 1) Vorlesungsübersicht Wintersemester 2015/16 Di 08-10 Audimax Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier

Mehr

Klausur zu Physik1 für B_WIng(v201)

Klausur zu Physik1 für B_WIng(v201) M. Anders Wedel, den 13.08.07 Klausur zu Physik1 ür B_WIng(v201) Klausurdatum: 16.2.07, 14:00, Bearbeitungszeit: 90 Minuten Achtung! Es ird nur geertet, as Sie au diesen Blättern oder angeheteten Leerseiten

Mehr

Der Zwei-Quadrate-Satz von Fermat

Der Zwei-Quadrate-Satz von Fermat Der Zwei-Quadrate-Satz von Fermat Proseminar: Das BUCH der Beweise Fridtjof Schulte Steinberg Institut für Informatik Humboldt-Universität zu Berlin 29.November 2012 1 / 20 Allgemeines Pierre de Fermat

Mehr

Stoffverteilungsplan Werkrealschule. Einblicke Mathematik für die Werkrealschule in Baden-Württemberg. 978-3-12-746390-3 Lehrer:

Stoffverteilungsplan Werkrealschule. Einblicke Mathematik für die Werkrealschule in Baden-Württemberg. 978-3-12-746390-3 Lehrer: Stoffverteilungsplan Werkrealschule Einblicke Mathematik für die Werkrealschule in Baden-Württemberg Band 5 Schule: 978-3-12-746390-3 Lehrer: Woche Leitidee Kompetenzstandards Zeitraum 1 mit Mathematik

Mehr

Stefan Riese Phänomen Goldener Schnitt

Stefan Riese Phänomen Goldener Schnitt Stefan Riese Phänomen Goldener Schnitt The Golden Rule is not a rule. Bas Jacobs, Underware, Netherlands It can be a»tool«which helps you to create a certain balance in your work. But never ever take it

Mehr

Vektorgeometrie. mathenachhilfe.ch. Version: 28. Dezember 2007 (Bitte nur für den Eigengebrauch verwenden) 1. Mathematische Operationen für Vektoren

Vektorgeometrie. mathenachhilfe.ch. Version: 28. Dezember 2007 (Bitte nur für den Eigengebrauch verwenden) 1. Mathematische Operationen für Vektoren Vektorgeometrie Version: 28. Dezemer 2007 Bitte nur für den Eigengerauch verwenden) mathenachhilfe.ch. Mathematische Operationen für Vektoren Addition + a + 3 = a + + + 3 + Sutraktion a 3 = a 3 Skalare

Mehr

Pythagoräische Zahlentripel und Kettenbrüche

Pythagoräische Zahlentripel und Kettenbrüche VSMP SSPMP SSIMF Pthagoräische Zahlentripel und Kettenbrüche René Fehlmann, Gmnasium Neufeld, rene.fehlmann@gmneufeld.ch Einleitung Bekanntlich schrieb Pierre de Fermat in seine Ausgabe der Arithmetika

Mehr

2. Propädeutische Geometrie Klasse 5/6. Für den Geometrieunterricht ausnützen!

2. Propädeutische Geometrie Klasse 5/6. Für den Geometrieunterricht ausnützen! 2. Propädeutische Geometrie Klasse 5/6 2.1 Zur Entwicklung der Schüler Kinder im Alter von 10-12 Jahren sind wissbegierig neugierig leicht zu motivieren anhänglich (Lehrperson ist Autorität) zum Spielen

Mehr

Darstellende Geometrie Übungen. Tutorial. Übungsblatt: Perspektive - Rekonstruktion

Darstellende Geometrie Übungen. Tutorial. Übungsblatt: Perspektive - Rekonstruktion Darstellende Geometrie Übungen Institut für Architektur und Medien Tutorial Übungsblatt: Perspektive - Rekonstruktion Gegeben sind ein Foto von einem quaderförmigen Objekt sowie die Abmessungen des Basisrechteckes.

Mehr

Das Mathematikabitur. Abiturvorbereitung Geometrie. Autor: Claus Deser Abiturvorbereitung Mathematik 1

Das Mathematikabitur. Abiturvorbereitung Geometrie. Autor: Claus Deser Abiturvorbereitung Mathematik 1 Das Mathematikabitur Abiturvorbereitung Geometrie Autor: Claus Deser Abiturvorbereitung Mathematik 1 Gliederung Was sind Vektoren/ ein Vektorraum? Wie misst man Abstände und Winkel? Welche geometrischen

Mehr

Euklidischer Algorithmus, Restklassenring und seine Struktur, Chinesischer Restklassensatz

Euklidischer Algorithmus, Restklassenring und seine Struktur, Chinesischer Restklassensatz Tobias Kraushaar Kaiserstr. 178 44143 Dortmund Matr.- Nr.: 122964 Euklidischer Algorithmus, Restklassenring und seine Struktur, Chinesischer Restklassensatz 1. EINLEITUNG... 2 2. HAUPTTEIL... 3 2.1. Der

Mehr

Primzahlen zwischen 50 und 60. Primzahlen zwischen 70 und 80. Primzahlen zwischen 10 und 20. Primzahlen zwischen 40 und 50. den Term 2*x nennt man

Primzahlen zwischen 50 und 60. Primzahlen zwischen 70 und 80. Primzahlen zwischen 10 und 20. Primzahlen zwischen 40 und 50. den Term 2*x nennt man die kleinste Primzahl zwischen 0 und 60 zwischen 0 und 10 zwischen 60 und 70 zwischen 70 und 80 zwischen 80 und 90 zwischen 90 und 100 zwischen 10 und 20 zwischen 20 und 0 zwischen 0 und 40 zwischen 40

Mehr

Winkelfunktionen. Dr. H. Macholdt. 21. September 2007

Winkelfunktionen. Dr. H. Macholdt. 21. September 2007 Winkelfunktionen Dr. H. Macholdt 21. September 2007 1 1 Altgrad, Bogenmaß und Neugrad Die Einteilung eines Kreises in 360 Grad ist schon sehr alt und geht auf die Sumerer zurück, die offensichtlich von

Mehr

5.1 Drei wichtige Beweistechniken... 55 5.2 Erklärungen zu den Beweistechniken... 56

5.1 Drei wichtige Beweistechniken... 55 5.2 Erklärungen zu den Beweistechniken... 56 5 Beweistechniken Übersicht 5.1 Drei wichtige Beweistechniken................................. 55 5. Erklärungen zu den Beweistechniken............................ 56 Dieses Kapitel ist den drei wichtigsten

Mehr

Erinnerung/Zusammenfassung zu Abbildungsmatrizen

Erinnerung/Zusammenfassung zu Abbildungsmatrizen Erinnerung/Zusammenfassung zu Abbildungsmatrizen Thomas Coutandin (cthomas@student.ethz.ch) 7. November 2 Abbildungsmatrizen Im Folgenden betrachten wir stets endlich dimensionale K-Vektorräume (K irgend

Mehr

Mathematischer Vorbereitungskurs für Ökonomen

Mathematischer Vorbereitungskurs für Ökonomen Mathematischer Vorbereitungskurs für Ökonomen Dr. Thomas Zehrt Wirtschaftswissenschaftliches Zentrum Universität Basel Gleichungen Inhalt: 1. Grundlegendes 2. Lineare Gleichungen 3. Gleichungen mit Brüchen

Mehr

Vorlesung Analysis I / Lehramt

Vorlesung Analysis I / Lehramt Vorlesung Analysis I / Lehramt TU Dortmund, Wintersemester 2012/ 13 Winfried Kaballo Die Vorlesung Analysis I für Lehramtsstudiengänge im Wintersemester 2012/13 an der TU Dortmund basiert auf meinem Buch

Mehr

http://www.olympiade-mathematik.de 4. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 8 Saison 1964/1965 Aufgaben und Lösungen

http://www.olympiade-mathematik.de 4. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 8 Saison 1964/1965 Aufgaben und Lösungen 4. Mathematik Olympiade Saison 1964/1965 Aufgaben und Lösungen 1 OJM 4. Mathematik-Olympiade Aufgaben Hinweis: Der Lösungsweg mit Begründungen und Nebenrechnungen soll deutlich erkennbar in logisch und

Mehr

Modul Diskrete Mathematik WiSe 2011/12

Modul Diskrete Mathematik WiSe 2011/12 1 Modul Diskrete Mathematik WiSe 2011/12 Ergänzungsskript zum Kapitel 4.2. Hinweis: Dieses Manuskript ist nur verständlich und von Nutzen für Personen, die regelmäßig und aktiv die zugehörige Vorlesung

Mehr

Der Goldene Schnitt 1

Der Goldene Schnitt 1 Der Goldene Schnitt 1 Der Goldene Schnitt Der Goldene Schnitt (lat. sectio aurea) ist ein bestimmtes Verhältnis zweier Zahlen oder Größen: Definition Wenn eine Strecke durch einen Punkt so geteilt wird,

Mehr

Essen und Trinken Teilen und Zusammenfügen. Schokoladentafeln haben unterschiedlich viele Stückchen.

Essen und Trinken Teilen und Zusammenfügen. Schokoladentafeln haben unterschiedlich viele Stückchen. Essen und Trinken Teilen und Zusammenfügen Vertiefen Brüche im Alltag zu Aufgabe Schulbuch, Seite 06 Schokoladenstücke Schokoladentafeln haben unterschiedlich viele Stückchen. a) Till will von jeder Tafel

Mehr

Lenstras Algorithmus für Faktorisierung

Lenstras Algorithmus für Faktorisierung Lenstras Algorithmus für Faktorisierung Bertil Nestorius 9 März 2010 1 Motivation Die schnelle Faktorisierung von Zahlen ist heutzutage ein sehr wichtigen Thema, zb gibt es in der Kryptographie viele weit

Mehr

Erster Prüfungsteil: Aufgabe 1

Erster Prüfungsteil: Aufgabe 1 Erster Prüfungsteil: Aufgabe Kriterien: Der Prüfling Lösung: Punkte: a) entscheidet sich für passenden Wert 8 000 000 b) wählt ein geeignetes Verfahren zur z. B. Dreisatz Berechnung gibt das richtige Ergebnis

Mehr

Computer im mathbuch Detaillierte Auflistung der Verwendungsmöglichkeit eines Computers im Mathematikunterricht mit dem mathbu.

Computer im mathbuch Detaillierte Auflistung der Verwendungsmöglichkeit eines Computers im Mathematikunterricht mit dem mathbu. Computer im mathbuch Detaillierte Auflistung der Verwendungsmöglich eines Computers im Mathematikunterricht mit dem mathbu.ch 7 9 / 9+ Sj LU Aufgabe(n) Adressat Lernphase Mathematischer Inhalt Beschreibung

Mehr