Erratum: Potentialbarriere

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Erratum: Potentialbarriere"

Transkript

1 Erratum: Potentialbarriere E<V : Tunneleffekt in Reinkultur d e n n : V Klassisch würde das Elektron an der Barriere mit % iger Wahrscheinlichkeit reflektiert werden. Quantenmechanisch durchtunnelt es mit einer gewissen Wahrscheinlichkeit die Barriere sinh ( mv ( E ) / ħ a ) TE ( ) = ( + ) 4( E / V )( E / V ) Anmerkung: Das hier gezeigte Diagramm.4 zum Tunneleffekt ersetzt das in der letzten Vorlesung ersetzte fälschlich veröffentlichte. Bild. Das Bild von letzter Woche zeigt das Verhalten an der Potentialstufe und nicht an E [] der Potentialbarriere! (V = 3 e V ) T.8.6 Aufbau der Materie: Das Wasserstoffatom Warum ist schon das Wasserstoffatom ein verdammt schwieriges System? r e Elektron m e R K M K Proton. Problem: Es handelt sich um ein Zweiteilchenproblem!?...das führt zunächst mal auf zwei gekoppelte Schrödinger-Gleichungen für Proton und Elektron. a b e r : Masse Proton =.67* - 7 k g > > Masse (Elektron)=9.* -3 k g Born-Oppenheimer-Näherung: Gegenüber der schnellen Elektronenbewegung kann die Kernbewegung zunächst vernachlässigt werden. Kernkoordinaten geh en dann als Parameter ein. Elektron bewegt sich also im Potential des (festgehaltenen) Protons.

2 Aufbau der Materie: Das Wasserstoffatom Elektron r m e e MK Proton V V o n Elektron gesehenes Potential ( P r o t o n i s t b e i r = ): r r ( r) e = 4πε r. Problem: Das Coulombpotential separiert nicht in sowas wie f(x) +g(y)+h(z) ħ + Vr ( ) Ψ xyz,, = EΨ xyz,, m ( ) ( ) ħ e Ψ = Ψ m 4πε x + y + z ( xyz,, ) E ( xyz,, ) Aufbau der Materie: Das Wasserstoffatom Übergang zu Kugelkoordinaten: Ψ( xyz,, ) b z w. Ψ( x, x, x ) Ψ( r, θϕ, ) 3 x x x 3 = r sinθ c o sϕ = r sinθ sinϕ = r c o sθ r = x + x + x 3 = x + x + x 3 wobei I = rxp " D r e h i m p u l s o p e r a t o r " = + + (sin θ ) + r r r r sinθ θ θ sin θ ϕ I ħ

3 Aufbau der Materie: Das Wasserstoffatom ħ ψ ψ l ( θϕ, ) Ze + + E ψ = mr r r r mr r 4πε r mit dem Separationsansatz: ( r θϕ) Ψ,, = fry ( ) ( θϕ, ) Die Eigenfunktionen des Drehimpulsoperators sind die sogenannten Kugelflächenfunktionen: ( l m) ( l + m) m l +! Yl ( θϕ, ) = ( ) Pl (cos θ ) e 4 π! m m imϕ mit den Eigenwerten: l=,,,... m = l, l +,...,,,,..., l, l m m l Y ( θϕ, ) = ll ( + ) ħ Y ( θϕ, ) l l wobei P l die Legendre -Polynome sind. u n d P = ; P = ς P = ς ; P3 = ς ς.. P ( ς ) = ( ς ) m l m / m d Pl ( ς ) m dς Aufbau der Materie: Das Wasserstoffatom W i n k e l a b h ä n g i g k e i t d e r K u g e l f l ä c h e n f u n k t ion m Yl ( θϕ, ) für l= bzw. l= (m=,,-) zurück zur S-Glg : ħ ψ ψ l ( θϕ, ) Ze + + E ψ = mr r r r mr r 4πε r mit dem Separationsansatz: ( θϕ) m Ψ r,, = fry ( ) l ( θϕ, ) ergibt sich dann eine Differentialgleichung für f(r), den Radialteil der Wellenfunktion 3

4 Aufbau der Materie: Das Wasserstoffatom ( ) ( ) ( + ) + + fr ( ) + = dr r dr ħ πε ħ r r dfr df r me em ll - der Drehimpuls geht hier ein in ein effektives Potential Lösung für f(r):... Aufbau der Materie: Das Wasserstoffatom ( ) ( ) ( + ) + + fr ( ) + = dr r dr ħ πε ħ r r dfr df r me em ll - der Drehimpuls geht hier ein in ein effektives Potential Lösung für f(r):... mit den Energieeigenwerten E E = n ħ ( 4 ) = 4 em Ryd πε n n ; mit E =3.6 Ryd 4

5 H-Atom: Eigenfunktionen - m e h r e r e m ögliche E i g e n f u n k t i o n e n Ψ E n ( r,θ,φ) für einen Eigenwert E n. entartete Zustände - Nomenklatur: n =,, 3, (Hauptquantenzahl) oder K, L, M, l =,,, 3, n - ( N e b e n q u a n t e n z a h l, D r e h i m p u l s q u a n t e n z a h l ) oder s, p, d, f, m = - l, - l +, l (Magnetquantenzahl) - z.b. f ü r n = vier verschiedene Eigenfunktionen und damit vier verschiedene räumliche Elektronenverteilungen i n b r a -k e t -Schreibweise: ( θϕ) Ψ nlmr,,,, = nlm,, H-Atom: Eigenwerte Übergänge (z.b. durch Aufnahme oder Abgabe eines Photons) sind nur zwischen den diskreten Energieniveaus erlaubt ERyd Wn = n=,, 3 E Ryd = 3. 6 e V n nm nm W 3 =-.5 W =- 3.4 W =-3.6 5

6 H-Atom: Eigenwerte Wie beim Potentialtopf sind auch die Eigenwerte d e s H - Atoms d i s k r e t. Ry = n =,,3 n Wn W 3 =-.5 W =- 3.4 Ry = 3.6 nm nm W =-3.6 optische Übergänge beim Wasserstoff Aufbau der Materie: Vom H-Atom zum Periodensystem - in anderen Atomen ähnliche Wellenfunktionen (Orbitale) - das Potential für die äußeren Elektronen wird durch die inneren abgeschirmt - Beschreibung ebenfalls durch die Quantenzahlen n,l,m - wird u. U. sehr kompliziert, da die Elektronen miteinander wechselwirken...dann war da noch die Sache mit dem Spin... 6

7 Aufbau der Materie: Vom H-Atom zum Periodensystem Experimenteller Nachweis: Stern und Gerlach (9) - Elektronenstrahl spaltet auf beim Durchgang durch ein inhomogen es Magnetfeld e - Elektronen tragen ein magnetisches Moment - sind komplizierter als eine punktförmige Masse - haben einen Eigendrehimpuls (S p i n ) -dieser Freiheitsgrad muss bei der Beschreibung des Zustandes mit berücksichtigt werden - der Spin kann beim Elektron zwei Werte einnehmen: s= -/;+/ (Fermion) ψ -Erweiterung der ψ ( rt, ) Wellenfunktion: ψ S p i n o r ( rt, ) ( rt, ) - Erweiterung der Quantenzahlen: nlm,, nlms,,, Aufbau der Materie: Vom H-Atom zum Periodensystem - von fundamentaler Bedeutung für den Aufbau der Materie: Pauli sches Ausschliessungsprinzip: Zwei F e r m i o n e n unterscheiden sich in mindestens einer Quantenzahl! nlms,,, d.h. maximal zwei Elektronen sind in einem Zustand mit den Quantenzahlen n,l,m.. der Spin ergibt sich als Konsequenz einer relativistischen Fo rmulierung der Quantenmechanik... das Pauli-Prinzip muss bei einer saubereren Vorgehensweise als Postulat formuliert werden. 7

8 Aufbau der Materie: Vom H-Atom zum Periodensystem Konsequenzen für den Aufbau von Mehrelektronensystemen: -minimale Energie des Mehrelektronenproblems ergibt sich, wenn al le Zustände von unten nach oben mit jeweils zwei Elektronen aufgefüllt werden. W in.5 Ψ W,,.5 Ψ W,, L / L / x i n n m Aufbau des Periodensystems Elektronenkonfigurationen: (beschreibt alle Elektronen des Atoms) H : s H e : s.. C : s s p S i : s s p 6 3 s 3 p 8

9 Aufbau des Periodensystems Vom Atom zum Material Verschiedene Arten der chemischen Bindung: Ionenbindung kovalente Bindung metallische Bindung van-d e r Waals Bindung 9

10 Vom Atom zum Material: Die Ionenbindung N a : s s p 6 3s C l : s s p 6 3s 3 p 5 Energetische Betrachtung: Ionisierungsenergie: Na+5.=Na + + e Elektronenaffiniät: Cl+e=Cl Nettoaufwand:.5 Vom Atom zum Material: Die Ionenbindung Potentielle Energie eines Ionenpaares als Funktion des Abstandes: ϕ = e B n 4πε r + r Coulombanziehung P a u l i -Abstossung

11 Vom Atom zum Material: Die Ionenbindung Potentielle Energie eines Ionenpaares als Funktion des Abstandes: Netto-Energiegewinn pro NaCl-P aar Vom Atom zum Material: Die kovalente Bindung Das allereinfachste Molekül: Das W a s s e r s t o f f m o l e k ü l i o n H + E l e k t r o n m r A r B M R AB M Proton A Proton B..und wieder mal die S- Glg: ħ m V() r () r E () r + Ψ = Ψ... und wieder mal verdammt kompliziert, da 3 Teilchen und ein k ompliziertes Potential

12 Vom Atom zum Material: Die kovalente Bindung electron m r a r b B o r n- O p p e n h e i m e r N ä h e r u n g : Kerne an einer Position festhalten M R ab M proton a proton b H ħ e e = m 4πε r 4πε r a b G e s a m t- Coulombpotential Vom Atom zum Material: Die kovalente Bindung Allgemeines Verfahren zur Lösung der S- G l g. bei komplizierten Potentialen: Bestimmung einer Näherungslösung durch das Rayleigh-Ritz-Verfahren:. Schritt: Annahme einer Schätzfunktion Ψ α Für den Energieerwartungswert gilt dann E = dvψ () rhψ () r E * α α α. Schritt: Variiere Ψ α s o, d a s s E α m i n i m a l w i r d E E α beste Näherungslösung für Ψ

13 Vom Atom zum Material: Die kovalente Bindung A n s a t z f ü r d i e R a t e f u n k t i o n : ψ = cϕ + c ϕ α b, w o b e i ϕ u n d ϕ d i e E i g e n z u s t ä n d e α b e i n e s W a s s e r s t o f f a t o m s b e i a b z w. b s i n d Linearkombination von Atomorbitalen engl.: linear combination o f atomic orbitals, LCAO Für den Energieerwartungswert gilt dann: ħ e e E = dv c + c c + c m 4πεra 4πεrb ( * * ) ϕα ϕb ( ϕα ϕb ) Vom Atom zum Material: Die kovalente Bindung E soll minimal werden E E, = c c Es ergeben sich zwei Lösungen: E C± D S = E + S ± E E S anti -bindend bindend Aufspaltung wird durch das Resonanz/ Austauschintegral bestimmt D = dvϕ * α e ϕ 4πε r a b 3

14 Vom Atom zum Material: Die kovalente Bindung ψ = A*( ϕ + ϕ ) bindend α b b i n d e n d e r Z u s t a n d ψ = B *( ϕ ϕ ) Anti α b anti- b i n d e n d e r Z u s t a n d Es ergibt sich für den bindenden Zustand eine Absenkung, da das E l e k t r o n stärker delokalisiert ist. Vom Atom zum Material: Die kovalente Bindung V a r i a t i o n d e s K e r n a b s t a n d e s : Gebundener Zustand beim Energieminimum Energiegewinn pro Atom bei Si:

15 Von der kovalenten Bindung zum Band b ) M o l e k ü l o r b i t a l e b i n d e n d e r Z u s t a n d ψ = A *( ϕ + ϕ ) Bond α b a n t i - b i n d e n d e r Z u s t a n d ψ = B *( ϕ ϕ ) Anti α b E n e r g e t i s c h e S t r u k t u r E E S a n t i - b o n d i n g b o n d i n g Zwei unendlich entfernte Potentialtöpfe unendlich voneinander entfernte Potentialtöpfe haben dieselben Energiezustände ( ihre Energien sind entartet). E i n E =.9 W E = Ψ.5 Ψ.5 Ψ.5 Ψ x in nm x 5

16 Zwei,5 nm entfernte Potentialtöpfe Werden die Potentialtöpfe einander näher gebracht, wechselwirken sie und die Energieentartung wird aufgehoben. W E =.6.5 E =.3 E 3 =.87 E 4 = x Zwei,3 nm entfernte Potentialtöpfe Die Eigenfunktionen verändern sich ebenfalls. W E =.6.5 E =.4 E 3 =.836 E 4 = x 6

17 Zwei,5 nm entfernte Potentialtöpfe Je näher sich die P o t e n t i a l t ö p f e k o m m e n, desto weiter spalten sich die Energieniveaus. W.5 E =.9 E =.57 E 3 =.774 E 4 = x Aufspalten der Energiezustände T r ä g t man die Energiezustände als Funktion des Abstandes zwischen den zwei Potentialtöpfen a u f, erhält m a n d e n folgenen Graphen:. E n e r g i e ( ) Abstand in nm 7

18 Vom Molekül zum Festkörper Verallgemeinerung von zwei auf 3 A t o m e Vom Molekül zum Festkörper Verallgemeinerung von zwei auf 3 Atome 8

19 Potential eines Gitters Viele Atome mit Abstand a und überlappenden Potentiale n Es ergibt sich ein periodisches Gesamtpotential (gestrichelt). Energiezustände des Gitters Aufspaltung der Energiezustände Für N Atome Aufspaltung in N Energiezustände Diese energetisch nahe zusammenliegenden Zustände bilden Bänder von erlaubten Zuständen. Komplexes Verhalten durch Überkreuzungen Temperatur = K: 9

3.3. Das Periodensystem

3.3. Das Periodensystem 3.3. Das Periodensystem Nachdem wir nun mit dem Wasserstoff das einfachste aller Atome behandelt haben, wollen wir uns mit den weiteren Atomen beschäftigen. Da das Wasserstoffatom uns schon einiges Kopfzerbrechen

Mehr

ihr Vorzeichen wechselt, wenn man zwei Zeilen oder Kolonnen vertauscht,

ihr Vorzeichen wechselt, wenn man zwei Zeilen oder Kolonnen vertauscht, 10 MEHRELEKTRONENATOME 6 ihr Vorzeichen wechselt, wenn man zwei Zeilen oder Kolonnen vertauscht, erhält man die gewünschten antisymmetrischen Wellenfunktionen als Determinanten, deren Kolonnen jeweils

Mehr

Quantenzahlen. Magnetquantenzahl m => entspricht der Zahl und Orien- (m = -l, -(l-1) 0 +(l-1), +l) tierung der Orbitale in jeder Unterschale.

Quantenzahlen. Magnetquantenzahl m => entspricht der Zahl und Orien- (m = -l, -(l-1) 0 +(l-1), +l) tierung der Orbitale in jeder Unterschale. Quantenzahlen Magnetquantenzahl m => entspricht der Zahl und Orien- (m = -l, -(l-1) 0 +(l-1), +l) tierung der Orbitale in jeder Unterschale. l = 0, 1, 2, 3, (Orbital-)Symbol s, p, d, f, Zahl der Orbitale

Mehr

Aufbau der Elektronenhülle des Wasserstoffatoms

Aufbau der Elektronenhülle des Wasserstoffatoms Aufbau der Elektronenhülle des Wasserstoffatoms Wasserstoff, H: ein Proton im Kern, (+) Elektronenhülle mit nur einem Elektron, (-)( Kern und Elektron ziehen sich aufgrund der Coulombkraft an. Das Elektron

Mehr

Elektronenkonfigurationen von Mehrelektronenatomen

Elektronenkonfigurationen von Mehrelektronenatomen Elektronenkonfigurationen von Mehrelektronenatomen Der Grundzustand ist der Zustand, in dem alle Elektronen den tiefstmöglichen Zustand einnehmen. Beispiel: He: n 1 =n 2 =1 l 1 =l 2 =0 m l1 =m l2 =0 Ortsfunktion

Mehr

22. Chemische Bindungen

22. Chemische Bindungen .05.03. Chemische Bindungen Molekül: System aus zwei oder mehr Atomen Kleinste Einheit einer Substanz, die deren chemische Eigenschaften ausweist Quantenmechanisches Vielteilchensystem: Exakte explizite

Mehr

Die Nebenquantenzahl oder Bahndrehimpulsquantenzahl l kann ganzzahlige Werte von 0 bis n - 1 annehmen. Jede Hauptschale unterteilt sich demnach in n

Die Nebenquantenzahl oder Bahndrehimpulsquantenzahl l kann ganzzahlige Werte von 0 bis n - 1 annehmen. Jede Hauptschale unterteilt sich demnach in n 1 1. Was sind Orbitale? Wie sehen die verschiedenen Orbital-Typen aus? Bereiche mit einer bestimmten Aufenthaltswahrscheinlichkeit eines Elektrons werden als Orbitale bezeichnet. Orbitale sind keine messbaren

Mehr

Grundzustand und erster angeregter Zustand des Heliumatoms Studienprojekt Molekül- und Festkörperphysik

Grundzustand und erster angeregter Zustand des Heliumatoms Studienprojekt Molekül- und Festkörperphysik Grundzustand und erster angeregter Zustand des Heliumatoms Studienprojekt Molekül- und Festkörperphysik Manuel Zingl 83433 WS 2/2 Einleitung Helium (in stabiler Form) setzt sich aus zwei Protonen, ein

Mehr

1 Zwei Teilchen in einem Kastenpotenzial

1 Zwei Teilchen in einem Kastenpotenzial 1 Zwei Teilchen in einem Kastenpotenzial Es geht hier darum herauszu nden, welche prinzipiellen Eigenschaften die Wellenfunktion für mehrere Teilchen im gleichen Potenzial aufweisen muss. Wir unterscheiden

Mehr

er atomare Aufbau der Materie

er atomare Aufbau der Materie er atomare Aufbau der Materie 6. Jhd. v. Chr.: Thales von Milet Wasser = Urgrund aller Dinge 5. Jhd. v. Chr.: Demokrit Atombegriff 5. Jhd. v. Chr.: Empedokles vier Elemente: Erde, Wasser, Feuer, Luft (unterstützt

Mehr

Zustände der Elektronen sind Orbitale, die durch 4 Quantenzahlen

Zustände der Elektronen sind Orbitale, die durch 4 Quantenzahlen Wiederholung der letzten Vorlesungsstunde: Thema: Das wellenmechanische h Atommodell (Orbitalmodell) ll) Zustände der Elektronen sind Orbitale, die durch 4 Quantenzahlen beschrieben werden, Hauptquantenzahl

Mehr

1 Chemische Bindung in Festkörpern

1 Chemische Bindung in Festkörpern Chemische Bindung in Festkörpern In diesem Kapitel befassen wir uns mit verschiedenen Mechanismen, die zu einer Bindung zwischen Atomen führen, sodass daraus ein Festkörper entsteht. Dabei werden wir verschiedene

Mehr

Inhaltsverzeichnis. Experimentalphysik III WS 2013/2014. 1 Grundlagen 2. 3 Wasserstoffatom 7. 4 Größere Atome 9. 2 Quantenmechanik 5

Inhaltsverzeichnis. Experimentalphysik III WS 2013/2014. 1 Grundlagen 2. 3 Wasserstoffatom 7. 4 Größere Atome 9. 2 Quantenmechanik 5 Inhaltsverzeichnis 1 Grundlagen 2 1.1 Wahrscheinlichkeit/Zerfall......... 2 1.2 Photoelektrischer Effekt.......... 2 1.3 De-Broglie-Wellenlänge.......... 3 1.4 Compton-Effekt.............. 3 1.5 Polarisation................

Mehr

VL 19 VL 17 VL 18. 18.1. Mehrelektronensysteme VL 19. 19.1. Periodensystem. Wim de Boer, Karlsruhe Atome und Moleküle, 25.06.

VL 19 VL 17 VL 18. 18.1. Mehrelektronensysteme VL 19. 19.1. Periodensystem. Wim de Boer, Karlsruhe Atome und Moleküle, 25.06. VL 19 VL 17 17.1. Laser (Light Amplification by Stimulated Emission of Radiation) Maser = Laser im Mikrowellenbereich, d.h. Microwave Amplification by Stimulated Emission of Radiation) VL 18 18.1. Mehrelektronensysteme

Mehr

Vorlesung Chemie. Gliederung der Vorlesung. Hochschule Landshut. Fakultät für Maschinenbau. Dozenten Prof. Dr. Pettinger

Vorlesung Chemie. Gliederung der Vorlesung. Hochschule Landshut. Fakultät für Maschinenbau. Dozenten Prof. Dr. Pettinger Vorlesung Chemie Fakultät für Maschinenbau Dozenten Prof. Dr. Pettinger Folie Nr. 1 Gliederung der Vorlesung Folie Nr. 2 1 Literaturempfehlungen Guido Kickelbick, Chemie für Ingenieure, 2008, Verlag Pearson

Mehr

Gibt es myonische Atome?

Gibt es myonische Atome? Minitest 7 Das Myon it ist ein Elementarteilchen, t das dem Elektron ähnelt, jedoch jd eine deutlich höhere Masse (105,6 MeV/c 2 statt 0,511 MeV/c 2 ) aufweist. Wie das Elektron ist es mit einer Elementarladung

Mehr

Kreisprozesse und Wärmekraftmaschinen: Wie ein Gas Arbeit verrichtet

Kreisprozesse und Wärmekraftmaschinen: Wie ein Gas Arbeit verrichtet Kreisprozesse und Wärmekraftmaschinen: Wie ein Gas Arbeit verrichtet Unterrichtsmaterial - schriftliche Informationen zu Gasen für Studierende - Folien Fach Schultyp: Vorkenntnisse: Bearbeitungsdauer Thermodynamik

Mehr

Inhaltsverzeichnis. Inhalt. Vorbemerkung... 9. 1 Einleitung

Inhaltsverzeichnis. Inhalt. Vorbemerkung... 9. 1 Einleitung Inhalt Inhaltsverzeichnis Vorbemerkung... 9 1 Einleitung 1.1 Gegenstand der Physik... 11 1.2 Teilgebiete der Physik... 14 1.3 Maßsysteme, Einheiten und physikalische Größen... 15 1.3.1 Grober Überblick

Mehr

3. Bindungen im Festkörper

3. Bindungen im Festkörper Prof. Dieter Suter Festkörperphysik WS 95 / 96 3.. Grundlagen 3... Übersicht 3. Bindungen im Festkörper Die Struktur eines Festkörpers ergibt sich aus der Wechselwirkung zwischen den darin enthaltenen

Mehr

Fortsetzung der Erkundungen im Periodensystem

Fortsetzung der Erkundungen im Periodensystem Fortsetzung der Erkundungen im Periodensystem Wiederholung Für die chemischen Eigenschaften der Elemente sind die Elektronen der äußersten Schale verantwortlich Valenzorbitale Valenz- oder Außenelektronen

Mehr

Chemische Bindung. Ue Mol 1. fh-pw

Chemische Bindung. Ue Mol 1. fh-pw Ue Mol 1 Chemische Bindung Periodensystem - Atome - Moleküle Periodensystem(e) 3 Nichtmetalle - Metalloide 5 Eigenschaften der Elemente 6 Bindungstypen 7 Ionenbindung 8 Kovalente, homöopolare Bindung 10

Mehr

4.2 Metallkristalle. 4.2.1 Bindungsverhältnisse

4.2 Metallkristalle. 4.2.1 Bindungsverhältnisse 4.2 Metallkristalle - 75 % aller Elemente sind Metalle - hohe thermische und elektrische Leitfähigkeit - metallischer Glanz - Duktilität (Zähigkeit, Verformungsvermögen): Fähigkeit eines Werkstoffs, sich

Mehr

Welche wichtigen Begriffe gibt es?

Welche wichtigen Begriffe gibt es? Welche wichtigen Begriffe gibt es? Moleküle Beispiel: Kohlendioxid CO 2 bestehen aus Protonen (+) bestehen aus Atomkerne Chemische Elemente bestehen aus Atome bestehen aus Neutronen Beispiele: Kohlenstoff

Mehr

1.3. Periodensystem der Elemente

1.3. Periodensystem der Elemente 1.3. Periodensystem der Elemente Anordnung der Elemente Periodizität von Eigenschaften Folie Nr. 1 Anordnung der Elemente Historie: Johann Wolfgang Döbereiner (dt. Pharmazeut, 1780-1849) Döberreiners Triadenregel

Mehr

Spektroskopie Teil 6. Andreas Dreizler. FG Energie- und Kraftwerkstechnik Technische Universität Darmstadt

Spektroskopie Teil 6. Andreas Dreizler. FG Energie- und Kraftwerkstechnik Technische Universität Darmstadt Spektroskopie Teil 6 Andreas Dreizler FG Energie- und Kraftwerkstechnik Technische Universität Darmstadt Nicht-lineare Spektroskopie Einführung Übersicht Beispiel kohärente anti-stokes Raman-Spektroskopie

Mehr

Atom-, Molekül- und Festkörperphysik

Atom-, Molekül- und Festkörperphysik Atom-, Molekül- und Festkörperphysik für LAK, SS 2014 Peter Puschnig basierend auf Unterlagen von Prof. Ulrich Hohenester 1. Vorlesung, 6. 3. 2014 Wie groß sind Atome? Atomare Einheiten, Welle / Teilchen

Mehr

Atom- und Molekülphysik - Zusammenfassung

Atom- und Molekülphysik - Zusammenfassung Atom- und Molekülphysik - Zusammenfassung Vorlesung: Prof. Tünnermann Zusammenfassung: Fabian Stutzki 12. Juli 2007 Die Zusammenfassung bezieht sich auf Atom- und Molekülphysik (SS 2007). Fehler (auch

Mehr

Kompendium der allgemeinen und anorganischen Chemie

Kompendium der allgemeinen und anorganischen Chemie Kompendium der allgemeinen und anorganischen Chemie Von Dr. rer. nat. habil. Peter Hermann Wissenschaftlicher Oberassistent am Physiologisch-Chemischen Institut der Martin-Luther-Universität Halle-Wittenberg

Mehr

Grundlagen der Chemie Atome, Elemente und das Periodensystem

Grundlagen der Chemie Atome, Elemente und das Periodensystem Atome, Elemente und das Periodensystem Prof. Annie Powell KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Elementarteilchen, Elemente

Mehr

1) Welche Aussagen über die Hauptgruppenelemente im Periodensystem sind richtig?

1) Welche Aussagen über die Hauptgruppenelemente im Periodensystem sind richtig? 1) Welche Aussagen über die Hauptgruppenelemente im Periodensystem sind richtig? 1) Es sind alles Metalle. 2) In der äußeren Elektronenschale werden s- bzw. s- und p-orbitale aufgefüllt. 3) Sie stimmen

Mehr

Grundlagen der Chemie Polare Bindungen

Grundlagen der Chemie Polare Bindungen Polare Bindungen Prof. Annie Powell KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Elektronegativität Unter der Elektronegativität

Mehr

Christoph Lemell Institut für Theoretische Physik http://concord.itp.tuwien.ac.at/~qm_mat/material.html

Christoph Lemell Institut für Theoretische Physik http://concord.itp.tuwien.ac.at/~qm_mat/material.html Angewandte Quantenmechanik (132.070) Christoph Lemell Institut für Theoretische Physik http://concord.itp.tuwien.ac.at/~qm_mat/material.html Übersicht Grundlagen 1) Grenzen der klassischen Physik und Entdeckung

Mehr

Grundwissenskatalog Chemie G8 8. Klasse nt

Grundwissenskatalog Chemie G8 8. Klasse nt Grundwissenskatalog Chemie G8 8. Klasse nt 1. Wissenschaft Chemie: Chemie ist die Lehre von den Stoffen. Chemischer Vorgang: Stoffänderung Physikalischer Vorgang: Zustandsänderung 2. Unterteilung Stoffe:

Mehr

Polarisation des Lichtes

Polarisation des Lichtes Polarisation des Lichtes Licht = transversal schwingende el.-magn. Welle Polarisationsrichtung: Richtung des el. Feldvektors Polarisationsarten: unpolarisiert: keine Raumrichtung bevorzugt (z.b. Glühbirne)

Mehr

4. Energetik des Kristallgitters 4.1 Energie und spezifische Wärme

4. Energetik des Kristallgitters 4.1 Energie und spezifische Wärme 4. Energetik des Kristallgitters 4.1 Energie und spezifische Wärme 1. Hauptsatz der Thermodynamik: du = dq + dw, U = E kin + E pot Keine externen Felder: dw = -pdv Metalle: Thermische Ausdehnung: a 10-6

Mehr

8.6.1 Erwartungswert eines beliebigen Operators O 8.6.2 Beispiel: Erwartungswert des Impulses eines freien Teilchens

8.6.1 Erwartungswert eines beliebigen Operators O 8.6.2 Beispiel: Erwartungswert des Impulses eines freien Teilchens phys4.013 Page 1 8.6.1 Erwartungswert eines beliebigen Operators O 8.6.2 Beispiel: Erwartungswert des Impulses eines freien Teilchens phys4.013 Page 2 8.6.3 Beispiel: Orts- und Impuls-Erwartungswerte für

Mehr

Chemie I für Ingenieure TU Harburg

Chemie I für Ingenieure TU Harburg Chemie I für Ingenieure TU Harburg Bücher D. Forst, M. Kolb, H. Roßwag Chemie für Ingenieure F.A. Cotton, G. Wilkinson Basic Inorganic Chemistry E. Lindner Chemie für Ingenieure G. Hölzel Einführung in

Mehr

Bauchemie 1. 1. Welche elementaren Teilchen enthält a) der Atomkern und b) die Atomhülle?

Bauchemie 1. 1. Welche elementaren Teilchen enthält a) der Atomkern und b) die Atomhülle? Bauchemie 1 1. Welche elementaren Teilchen enthält a) der Atomkern und b) die Atomhülle? a) Der Atomkern besteht aus Neutronen und Protonen, die zusammen auch Nukleonen genannt werden. Er befindet sich

Mehr

Erwin Riedel, Christoph Jan. Übungsbuch. Allgemeine und Anorganische Chemie. 3. Auflage DE GRUYTER

Erwin Riedel, Christoph Jan. Übungsbuch. Allgemeine und Anorganische Chemie. 3. Auflage DE GRUYTER Erwin Riedel, Christoph Jan Übungsbuch Allgemeine und Anorganische Chemie 3. Auflage DE GRUYTER Isolatoren Orbitale Elektronenaffinität Halbleiter Lewis-Formeln Leuchtdioden Formale Fragen 1. Atombau 3

Mehr

Übungen zur VL Chemie für Biologen und Humanbiologen 18.11.2011 Lösung Übung 3

Übungen zur VL Chemie für Biologen und Humanbiologen 18.11.2011 Lösung Übung 3 Übungen zur VL Chemie für Biologen und Humanbiologen 18.11.2011 Lösung Übung 3 Teil 1: Die Geometrie organischer Verbindungen 1. Welche Form hat ein s-orbital? Welche Form haben p-orbitale? Skizzieren

Mehr

Allg. u. Anorg. Chemie

Allg. u. Anorg. Chemie Allg. u. Anorg. Chemie Übungsaufgaben Atommodell SoSe 2014, Amadeu Daten: h=6,6 10-34 J.s, C=3 10 8 m/s. 1) Stellen Sie das klassische Modell für die elektromagnetische Strahlen graphisch dar. Erklären

Mehr

Atombau, Periodensystem der Elemente

Atombau, Periodensystem der Elemente Seminar zum Brückenkurs Chemie 2015 Atombau, Periodensystem der Elemente Dr. Jürgen Getzschmann Dresden, 21.09.2015 1. Aufbau des Atomkerns und radioaktiver Zerfall - Erläutern Sie den Aufbau der Atomkerne

Mehr

Allgemeine Chemie für Studierende mit Nebenfach Chemie Andreas Rammo

Allgemeine Chemie für Studierende mit Nebenfach Chemie Andreas Rammo Allgemeine Chemie für Studierende mit Nebenfach Chemie Andreas Rammo Allgemeine und Anorganische Chemie Universität des Saarlandes E-Mail: a.rammo@mx.uni-saarland.de Die Elektronenstruktur der Atome Zur

Mehr

Ferrofluide. Physikalische Grundlagen. http://en.wikipedia.org/wiki/file:ferrofluid_close.jpg

Ferrofluide. Physikalische Grundlagen. http://en.wikipedia.org/wiki/file:ferrofluid_close.jpg Ferrofluide Physikalische Grundlagen http://en.wikipedia.org/wiki/file:ferrofluid_close.jpg Inhalt Definition Herstellung Maßnahmen zur Stabilisierung Abschätzung der Partikelgröße, Abstandsmechanismen

Mehr

1 Grundlagen der optischen Spektroskopie

1 Grundlagen der optischen Spektroskopie Vorbemerkungen 1 Grundlagen der optischen Spektroskopie Gegenstand: Wechselwirkung von Licht mit Materie Licht im engeren Sinn: Licht im infraroten bis ultravioletten Spektralbereich Wir werden uns meist

Mehr

Vorlesung Biophysik. Prof. Dr. Zink: Biophysik

Vorlesung Biophysik. Prof. Dr. Zink: Biophysik Vorlesung Biophysik 1. Physikalisch-chemische Grundlagen zum Verständnis des Aufbaus, der Struktur und der Funktion von Biomolekülen 2. Spektroskopische p Verfahren 1: Absorption und Emission im sichtbaren

Mehr

Chemische Bindung. Ionenbindung (heteropolare Bindung) kovalente Bindung van-der-waals-bindung Metallbindung

Chemische Bindung. Ionenbindung (heteropolare Bindung) kovalente Bindung van-der-waals-bindung Metallbindung Chemische Bindung Ionenbindung (heteropolare Bindung) kovalente Bindung van-der-waals-bindung Metallbindung 1 Was sind Ionen? Ein Ion besteht aus einem oder mehreren Atomen und hat elektrische Ladung Kationen

Mehr

Oxidation und Reduktion Redoxreaktionen Blatt 1/5

Oxidation und Reduktion Redoxreaktionen Blatt 1/5 Oxidation und Reduktion Redoxreaktionen Blatt 1/5 1 Elektronenübertragung, Oxidation und Reduktion Gibt Natrium sein einziges Außenelektron an ein Chloratom (7 Außenelektronen) ab, so entsteht durch diese

Mehr

Bandstrukturen II: NFE-Ansatz

Bandstrukturen II: NFE-Ansatz Bandstrukturen II: NFE-Ansatz Quantenchemische Rechenmethoden: Grundlagen und Anwendungen Caroline Röhr, Universität Freiburg M+K-Kurs, 4.2011 Teilchen im Kasten, potentialfrei (Wdh. 1. Woche) Teilchen

Mehr

3 Gestreckte Abschlussprüfung, Teil 1 Allgemeine und Präparative Chemie

3 Gestreckte Abschlussprüfung, Teil 1 Allgemeine und Präparative Chemie 43 3 Gestreckte Abschlussprüfung, Teil 1 Allgemeine und Präparative Chemie 3.1 Atombau, chemische Bindung, Periodensystem der Elemente 3.1.1 Elektronegativität und Beurteilung der Polarität Zur Beurteilung

Mehr

Grundwissen 8. Klasse Chemie (NTG) Stoffebene. Teilchenebene. Reinstoffe. Kenneigenschaften von Reinstoffen

Grundwissen 8. Klasse Chemie (NTG) Stoffebene. Teilchenebene. Reinstoffe. Kenneigenschaften von Reinstoffen Grundwissen 8. Klasse Chemie (NTG) Stoffebene Teilchenebene = Makroskopische (sichtbare) Ebene Betrachtung einer Stoffportion mit den erkennbaren und messbaren Eigenschaften Sie ermöglicht Aussagen über

Mehr

Vorlesung theoretische Physik D

Vorlesung theoretische Physik D Vorlesung theoretische Physik D Prof. Dr. Wolf Gero Schmidt SS 08 Inhaltsverzeichnis 1 Das Wasserstoffproblem 5 1.1 Schrödingergleichung im Zentralfeld..................... 5 1. Eigenzustände des Wasserstoffatoms.....................

Mehr

Die Einheit der Atommasse m ist u. Das ist der 12. Teil der Masse eines Kohlenstoffatoms. 1 u = 1,6608 * 10-27 kg m(h) = 1 u

Die Einheit der Atommasse m ist u. Das ist der 12. Teil der Masse eines Kohlenstoffatoms. 1 u = 1,6608 * 10-27 kg m(h) = 1 u Analytische Chemie Stöchiometrie Absolute Atommasse Die Einheit der Atommasse m ist u. Das ist der 12. Teil der Masse eines Kohlenstoffatoms. 1 u = 1,6608 * 10-27 kg m() = 1 u Stoffmenge n Die Stoffmenge

Mehr

Mein kleines Chemie-Glossar

Mein kleines Chemie-Glossar Mein kleines Chemie-Glossar Roland Heynkes Aachen, 20. Januar 2008 Dieses kleine Glossar soll die in meinen Texten zur Schulchemie benutzten Fachbegriffe erklären. Es ist unvollständig und muß ständig

Mehr

Physikalisches Anfängerpraktikum: Versuch 607 - Der Zeeman Effekt - Korrektur

Physikalisches Anfängerpraktikum: Versuch 607 - Der Zeeman Effekt - Korrektur Physikalisches Anfängerpraktikum: Versuch 607 - Der Zeeman Effekt - Korrektur Sebastian Rollke 103095 webmaster@rollke.com und Daniel Brenner 105292 daniel.brenner@uni-dortmund.de durchgeführt am 28.Juli

Mehr

Q2: Detaillierte Eingabebeschreibungen

Q2: Detaillierte Eingabebeschreibungen Q2: Detaillierte Eingabebeschreibungen Martin Lehner, Gymnasium Biel-Seeland, Schweiz martin.lehner@gymbiel-seeland.ch Inhaltsverzeichnis 1 Allgemeines 2 2 Elektronische Rechnungen 2 2.1 Elektronische

Mehr

Vorlesung: PC I (Einführung in die Physikalische Chemie)

Vorlesung: PC I (Einführung in die Physikalische Chemie) Vorlesung PC I (Einführung in die Physikalische Chemie) Wintersemester 2012 / 2013 für Studierende der Bachelor-Studiengänge Chemie" und Water Science C. Mayer Vorlesung: Übungen: Mittwoch, 08:00 bis 10:00,

Mehr

Vorlesung Anorganische Chemie

Vorlesung Anorganische Chemie Vorlesung Anorganische Chemie Prof. Ingo Krossing WS 2007/08 B.Sc. Chemie Lernziele Block 6 Entropie und Gibbs Enthalpie Gibbs-elmholtz-Gleichung Absolute Entropien Gibbs Standardbildungsenthalpien Kinetik

Mehr

Die Idee des Atoms geht auf Demokrit von Abdera und Leukipp von Milet zurück. (5. Jhdt. v. Chr.) atomos (griech.) = unteilbar

Die Idee des Atoms geht auf Demokrit von Abdera und Leukipp von Milet zurück. (5. Jhdt. v. Chr.) atomos (griech.) = unteilbar 2Aufbau der Materie Hofer 1 2 Aufbau der Materie 2.1 Die Bestandteile der Materie Chemische Versuche und hoch auflösende Spezialmikroskope zeigen, dass alle Stoffe aus den chemischen Grundstoffen oder

Mehr

Christian-Ernst-Gymnasium

Christian-Ernst-Gymnasium Christian-Ernst-Gymnasium Am Langemarckplatz 2 91054 ERLANGEN GRUNDWISSEN CHEMIE 9 - MuG erstellt von der Fachschaft Chemie C 9.1 Stoffe und en Element kann chemisch nicht mehr zerlegt werden Teilchen

Mehr

Elektrische Leitung. Strom

Elektrische Leitung. Strom lektrische Leitung 1. Leitungsmechanismen Bändermodell 2. Ladungstransport in Festkörpern i) Temperaturabhängigkeit Leiter ii) igen- und Fremdleitung in Halbleitern iii) Stromtransport in Isolatoren iv)

Mehr

Facultatea de Chimie și Inginerie Chimică, Universitatea Babeș-Bolyai Admitere 2015

Facultatea de Chimie și Inginerie Chimică, Universitatea Babeș-Bolyai Admitere 2015 1. Welche Aussage betreffend die Besetzung der Energieniveaus mit Elektronen ist wahr? A. Die 3. Schale kann höchstens 8 Elektronen enthalten B. Die 3d-Unterschale wird mit Elektronen ausgefüllt vor der

Mehr

Auflösungsvermögen von Mikroskopen

Auflösungsvermögen von Mikroskopen Auflösungsvermögen von Mikroskopen Menschliches Auge Lichtmikroskopie 0.2 µm Optisches Nahfeld Rasterelektronen mikroskopie Transmissions Elektronenmikroskopie Rastersonden mikroskopie 10 mm 1 mm 100 µm

Mehr

Erläutere den CO 2 -Nachweis. Definiere den Begriff exotherme Reaktion und zeichne ein passendes Energiediagramm. Grundwissenskatalog Chemie 8 NTG

Erläutere den CO 2 -Nachweis. Definiere den Begriff exotherme Reaktion und zeichne ein passendes Energiediagramm. Grundwissenskatalog Chemie 8 NTG Erläutere den CO 2 -Nachweis. Wird das Gas in Kalkwasser (Ca(OH) 2 ) eingeleitet bildet sich ein schwerlöslicher Niederschlag von Calciumcarbonat (CaCO 3 ). Abgabe von innerer Energie (Wärme, Knall,...)

Mehr

Grundwissen Chemie 8I

Grundwissen Chemie 8I 1) Stoffe, Experimente Chemie ist die Lehre von den Stoffen, ihren Eigenschaften, ihrem Aufbau, ihren Veränderungen und ihrer Herstellung. Einfache Möglichkeiten der Stofferkennung (Farbe, Glanz, Kristallform,

Mehr

Ab initio Methoden zur Berechnung der elektronischen Struktur

Ab initio Methoden zur Berechnung der elektronischen Struktur Hauptseminar Elektronentransport in anostrukturen Ab initio Methoden zur Berechnung der elektronischen Struktur Michael Kühn 3.0.2009 Inhalt Inhalt:. Vorbemerkung 2. Die Hartree-Fock-Theorie (HF) 3. Die

Mehr

GRUNDWISSEN CHEMIE DER 9. JAHRGANGSSTUFE (SG)

GRUNDWISSEN CHEMIE DER 9. JAHRGANGSSTUFE (SG) Auszug aus dem Lehrplan: Die Schüler können das Stoff-Teilchen Konzept auf Stoffe aus ihrer Lebenswelt anwenden. Sie können chemische Formeln und Reaktionsgleichungen erstellen und interpretieren. Sie

Mehr

2. Chemische Bindungen 2.1

2. Chemische Bindungen 2.1 2. Chemische Bindungen 2.1 Chemische Bindungen Deutung von Mischungsversuchen Benzin und Wasser mischen sich nicht. Benzin ist somit eine hydrophobe Flüssigkeit. Auch die Siedepunkte der beiden Substanzen

Mehr

Allgemeine Chemie für Biologen

Allgemeine Chemie für Biologen Universität Regensburg Allgemeine Chemie für Biologen Rudolf Robelek Vorlesungsübersicht Ü Übersicht über die Kapitel der Vorlesung Kapitel 1: Materie - Elemente, Verbindungen, Mischungen Kapitel 2: Elektronenhülle,

Mehr

5 Theorie der chemischen Bindung

5 Theorie der chemischen Bindung Kaitel 5 Seite 5 Theorie der chemischen Bindung 5. Heteroolare und homöoolare Bindung Die heteroolare Bindung eines Moleüls z. B. des Kochsalzmoleüls NaCl vgl. Abb. ann eletrostatisch erlärt werden: Bei

Mehr

Grundwissen Chemie 9. Klasse

Grundwissen Chemie 9. Klasse Grundwissen Chemie 9. Klasse 1. Stoffe 1.1. Reinstoffe können durch physikalische Trennverfahren nicht zerlegt werden. Sie sind gekennzeichnet durch charakteristische Kenneigenschaften (Siedepunkt, Schmelzpunkt,

Mehr

Einheiten und Einheitenrechnungen

Einheiten und Einheitenrechnungen Chemie für Studierende der Human- und Zahnmedizin WS 2013/14 Übungsblatt 1: allgemeine Chemie, einfache Berechnungen, Periodensystem, Orbitalbesetzung, Metalle und Salze Einheiten und Einheitenrechnungen

Mehr

Die Avogadro-Konstante N A

Die Avogadro-Konstante N A Die Avogadro-Konstante N A Das Ziel der folgenden Seiten ist es, festzustellen, wie viele Atome pro cm³ oder pro g in einem Stoff enthalten sind. Chemische Reaktionen zwischen Gasen (z.b. 2H 2 + O 2 2

Mehr

Grundwissen Chemie 9. Jahrgangsstufe Sprachlicher Zweig

Grundwissen Chemie 9. Jahrgangsstufe Sprachlicher Zweig Grundwissen Chemie 9. Jahrgangsstufe Sprachlicher Zweig 1. Stoffeigenschaften und modell a) modell Alle Stoffe bestehen aus kleinsten Die eines Stoffes sind untereinander gleich. Die verschiedener Stoffe

Mehr

Chemische Bindungsanalyse in Festkörpern

Chemische Bindungsanalyse in Festkörpern Fakultät Mathematik und Naturwissenschaften Fachrichtung Chemie und Lebensmittel Chemie Professur AC2 Dr. Alexey I. Baranov Chemische Bindungsanalyse in Festkörpern Sommersemester 2015 Bindung in Orbitaldarstellung:

Mehr

Einführung in die numerische Quantenchemie

Einführung in die numerische Quantenchemie Einführung in die numerische Quantenchemie Michael Martins michael.martins@desy.de Characterisation of clusters and nano structures using XUV radiation p.1 Literatur A. Szabo, N.S. Ostlund, Modern Quantum

Mehr

Begriffe, Definitionen. Begriffe, Definitionen

Begriffe, Definitionen. Begriffe, Definitionen Elemente, Verbindungen, Moleküle, le, Atome, Elementarteilchen, Neutronen, Isotope,... Elementsymbol: A Z X Beispiel: 35 Cl 17 X: Elementsymbol Z: rdnungszahl, Zahl der Protonen A: Massenzahl, Zahl der

Mehr

Stoff, Reinstoff, Gemisch, homogenes Gemisch, heterogenes Gemisch. Reinstoff, Element, Verbindung. Zweiatomige Elemente.

Stoff, Reinstoff, Gemisch, homogenes Gemisch, heterogenes Gemisch. Reinstoff, Element, Verbindung. Zweiatomige Elemente. 1 1 Einteilung der Stoffe: Stoff, Reinstoff, Gemisch, homogenes Gemisch, heterogenes Gemisch Stoff Reinstoff Mischen Gemisch Bei gleichen Bedingungen (Temperatur, Druck) immer gleiche Eigenschaften (z.b.

Mehr

SO(2) und SO(3) Martin Schlederer. 06. Dezember 2012

SO(2) und SO(3) Martin Schlederer. 06. Dezember 2012 SO(2) und SO(3) Martin Schlederer 06. Dezember 2012 Inhaltsverzeichnis 1 Motivation 2 2 Wiederholung 2 2.1 Spezielle Orthogonale Gruppe SO(n)..................... 2 2.2 Erzeuger.....................................

Mehr

Spektroskopische und theoretische Untersuchungen von Übergangsmetallkomplexen mit non-innocent Liganden

Spektroskopische und theoretische Untersuchungen von Übergangsmetallkomplexen mit non-innocent Liganden Spektroskopische und theoretische Untersuchungen von Übergangsmetallkomplexen mit non-innocent Liganden Jurema Schmidt Vortrag im Seminar Moderne Anwendungen der magnetischen Resonanz 17.10.2013 Inhalt

Mehr

Schalenmodell des Atoms

Schalenmodell des Atoms Lernaufgabe zum Thema Schalenmodell des Atoms für das Unterrichtsfach Chemie. Schultyp: Mittelschule Adressat: 1. Semester Chemieunterricht Bearbeitungsdauer gesamt: 45 min. Hinführung zur Lernaufgabe:

Mehr

Raman- Spektroskopie. Natalia Gneiding. 5. Juni 2007

Raman- Spektroskopie. Natalia Gneiding. 5. Juni 2007 Raman- Spektroskopie Natalia Gneiding 5. Juni 2007 Inhalt Einleitung Theoretische Grundlagen Raman-Effekt Experimentelle Aspekte Raman-Spektroskopie Zusammenfassung Nobelpreis für Physik 1930 Sir Chandrasekhara

Mehr

3. Cluster und Nanopartikel. Cluster: Anzahl von Atomen und Struktur ist wohldefiniert Nanopartikel: Anzahl von Atomen nicht genau bestimmt

3. Cluster und Nanopartikel. Cluster: Anzahl von Atomen und Struktur ist wohldefiniert Nanopartikel: Anzahl von Atomen nicht genau bestimmt 3. Cluster und Nanopartikel Cluster: Anzahl von Atomen und Struktur ist wohldefiniert Nanopartikel: Anzahl von Atomen nicht genau bestimmt 1 Struktur ist grössenabhängig Bsp.: Au-Cluster Erst große Cluster

Mehr

GRUNDWISSEN CHEMIE 9 - MuG erstellt von der Fachschaft Chemie

GRUNDWISSEN CHEMIE 9 - MuG erstellt von der Fachschaft Chemie Christian-Ernst-Gymnasium Am Langemarckplatz 2 91054 ERLANGEN GRUNDWISSEN CHEMIE 9 - MuG erstellt von der Fachschaft Chemie C 9.1 Stoffe und Reaktionen Reinstoff Element Kann chemisch nicht mehr zerlegt

Mehr

Element. Verbindung. Reinstoff. homogenes Gemisch

Element. Verbindung. Reinstoff. homogenes Gemisch Element Reinstoff, der chemisch nicht mehr zersetzt werden kann und dessen Teilchen(Atome oder Moleküle) aus einer einzigen Atomart (d.h. Teilchen mit gleicher Ordnungszahl) besteht. Verbindung Reinstoff,

Mehr

In reiner Form bestehen sie aus 6,022 10 23 Atomen. Sie können weder chemisch noch physikalisch zerlegt werden.

In reiner Form bestehen sie aus 6,022 10 23 Atomen. Sie können weder chemisch noch physikalisch zerlegt werden. 1. Welches der folgenden Gemische ist ein Gemenge? Kalkmilch Granit Rauch 2. Wodurch sind chemische Elemente charakterisiert? In reiner Form bestehen sie aus 6,022 10 23 Atomen. Sie sind unteilbar. Sie

Mehr

Fällungsreaktion. Flammenfärbung. Fällungsreaktion:

Fällungsreaktion. Flammenfärbung. Fällungsreaktion: 2 Fällungsreaktion: 2 Fällungsreaktion Entsteht beim Zusammengießen zweier Salzlösungen ein Niederschlag eines schwer löslichen Salzes, so spricht man von einer Fällungsreaktion. Bsp: Na + (aq) + Cl -

Mehr

Experimentalphysik IV

Experimentalphysik IV Experimentalphysik IV Bernd von Issendorff 3. Juli 215 1 Atomphysik 1.1 Bemerkungen zur Quantenmechanik Postulat: Materie hat Welleneigenschaften. Der Zustand eines Systems wird durch eine komplexwertige

Mehr

Wärme, Arbeit, Innere Energie, Enthalpie und der erste Hauptsatz der Thermodynamik 19

Wärme, Arbeit, Innere Energie, Enthalpie und der erste Hauptsatz der Thermodynamik 19 Vorwort XIX Kapitel 1 Grundbegriffe der Thermodynamik 1 1.1 Was ist Thermodynamik und wozu ist sie gut?... 2 1.2 Grundlegende Definitionen zur Beschreibung von thermodynamischen Systemen... 3 1.3 Temperaturmessung...

Mehr

Grundlagen der physikalischen Chemie 1 - Aufbau der Materie

Grundlagen der physikalischen Chemie 1 - Aufbau der Materie Grundlagen der physikalischen Chemie 1 - Aufbau der Materie Michael Schlapa Phillippe Laurentiu 17. April 2012 Semester Thema Dozent Klausurzulassung Klausur Übung Literatur 2012 SS Michael Schmitt mschmitt@uni-duesseldorf.de

Mehr

4. Chemische Bindung

4. Chemische Bindung 4. Chemische Bindung 4... Vlenzindungs-Modell: Oktettegel Die Bildung enegetisch egünstigte Elektonenkonfigutionen (die esondes stil sind) wid ngestet Eine esondes stile Konfigution ist die Edelgskonfigution

Mehr

Der Zeeman - Eekt. Matthias Lütgens und Christoph Mahnke. 16. November 2005. betreut von Herrn Toral Ziems. Versuch durchgeführt am 10./11.11.

Der Zeeman - Eekt. Matthias Lütgens und Christoph Mahnke. 16. November 2005. betreut von Herrn Toral Ziems. Versuch durchgeführt am 10./11.11. Der Zeeman - Eekt Matthias Lütgens und Christoph Mahnke 16. November 2005 betreut von Herrn Toral Ziems Versuch durchgeführt am 10./11.11.2005 1 Inhaltsverzeichnis 1 Einleitung 3 2 Grundlagen 3 2.1 Das

Mehr

1. Stoffe und Eigenschaften

1. Stoffe und Eigenschaften 1. Stoffe und Eigenschaften Chemischer Vorgang Stoffänderung, keine Zustandsänderung Physikalischer Vorgang Lösung Zustandsänderung, keine Stoffänderung (z.b. Lösen, Aggregatzustände,...) Homogenes Gemisch

Mehr

Allotrope Kohlenstoffmodifikationen. Ein Vortrag von Patrick Knicknie. Datum: 04.05.06 Raum:112

Allotrope Kohlenstoffmodifikationen. Ein Vortrag von Patrick Knicknie. Datum: 04.05.06 Raum:112 Allotrope Kohlenstoffmodifikationen Ein Vortrag von Patrick Knicknie Datum: 04.05.06 Raum:112 Themen: 1. Was ist Allotrop? 2. Unterschiedliche Kohlenstoffmodifikationen 3. Der Graphit 4. Der Diamant 5.

Mehr

Elektrostatik. Elektrische Ladung. Reiben von verschiedenen Materialien: Kräfte treten auf, die auf Umgebung wirken

Elektrostatik. Elektrische Ladung. Reiben von verschiedenen Materialien: Kräfte treten auf, die auf Umgebung wirken Elektrostatik 1. Ladungen Phänomenologie 2. Eigenschaften von Ladungen i. Arten ii. Quantisierung iii. Ladungserhaltung iv.ladungstrennung v. Ladungstransport 3. Kräfte zwischen Ladungen, quantitativ 4.

Mehr

Grundwissen 9. Klasse Chemie (WSG+SG) Stoffebene. Teilchenebene. Reinstoffe. Kenneigenschaften von Reinstoffen

Grundwissen 9. Klasse Chemie (WSG+SG) Stoffebene. Teilchenebene. Reinstoffe. Kenneigenschaften von Reinstoffen Grundwissen 9. Klasse Chemie (WSG+SG) Stoffebene Teilchenebene = Makroskopische (sichtbare) Ebene Betrachtung einer Stoffportion mit den erkennbaren und messbaren Eigenschaften Sie ermöglicht Aussagen

Mehr

Annette-Kolb-Gymnasium Traunstein Grundwissen der 9. Klasse für das Fach Chemie Aufgaben und Antworten

Annette-Kolb-Gymnasium Traunstein Grundwissen der 9. Klasse für das Fach Chemie Aufgaben und Antworten 1 Erkläre den Aufbau von Atomen und Ionen aus den Elementarteilchen: (Bsp. 23 Na, 1 H, 35 Cl - ). 2 Erläutere den Beriff Edelaskonfiuration und beschreibe, welche verschiedenen Mölichkeiten die Elemente

Mehr

Vorkurs Chemie 19. Oktober 2015 Dr. Helmut Sitzmann, Apl.-Professor für Anorganische Chemie

Vorkurs Chemie 19. Oktober 2015 Dr. Helmut Sitzmann, Apl.-Professor für Anorganische Chemie Vorkurs Chemie 19. Oktober 2015 Dr. Helmut Sitzmann, Apl.-Professor für Anorganische Chemie Titelfoto wurde entfernt, dafür wurden Links eingefügt: Materialien zur Vorlesung: https://www.chemie.uni-kl.de/sitzmann/lehre/allgemeine-chemie-fuer-maschinenbauer-und-bauingenieure-ch-v1/

Mehr

Farbigkeit und Theorien

Farbigkeit und Theorien Farbigkeit und Theorien Farbigkeit von Dinah Shafry Licht ist elektromagnetische Strahlung, bei der jede Farbe eine einzelne Wellenlänge besitzt, die als unterschiedliche Farben vom Menschen wahrgenommen

Mehr

Jahrgänge 9 und 10 Basiskonzept Stoff-Teilchen. Basiskonzept Energie. Basiskonzept Chemische Reaktion. Basiskonzept Struktur- Eigenschaft

Jahrgänge 9 und 10 Basiskonzept Stoff-Teilchen. Basiskonzept Energie. Basiskonzept Chemische Reaktion. Basiskonzept Struktur- Eigenschaft Jahrgänge 9 und 10 Stoff-Teilchen - Satz von Avogadro - Stoffmengeneinheit Mol, molare Masse, Stoffmengenkonzentration - unterscheiden zwischen Stoffportion und Stoffmenge - wenden den Zusammenhang zwischen

Mehr