Punkte hoher Symmetrie des fcc-gitters

Größe: px
Ab Seite anzeigen:

Download "Punkte hoher Symmetrie des fcc-gitters"

Transkript

1 Punkte hoher Symmetrie des fcc-gitters Thoms Mcher 9.6. Dieses Studentenprojekt, erstellt im Rhmen der Vorlesung 53. Moleculr nd Solid Stte Physics, soll eine möglichst nschuliche Herleitung der sogennnten Punkte hoher Symmetrie der ersten Brillouin-Zone des kubisch ächenzentrierten (fcc) Gitters feilbieten. Als wesentliches Werkzeug hierzu diente ds Brillouin zone pplet. Um die intuitivste ller Frgen - Wozu eigentlich? - gleich vorweg zu bentworten, seien im Folgenden zwei wesentliche Anwendungen ngeführt:. Beugungsbedingung. Die Brillouin-Konstruktion ergibt lle Wellenvektoren k, die vom Kristll reektiert werden können. Berücksichtigt mn, dss der Betrg von k = k gegeben ist durch: k = λ, so knn mn ein Gefühl für den Zusmmenhng zwischen Gitterkonstnte des Kristlls (geht in die Enwicklung der Brillouin-Zone mit ein) und möglicher Wellenlänge λ und Einstrhlrichtung k des zu brechenden Strhls bekommen.. Erstellung und Interprettion von Bndstrukturen.Um die Dispersionsreltion in bestimmten Rumrichtungen zu bestimmen, knn es hilfreich sein, besgte Richtungen und den Betrg des Wellenvektors näher zu kennen.

2 Zusmmenfssung Ein fcc-gitter mit Gitterkonstnte im Direktrum wird uf ein bcc-gitter mit Gitterkonstnte 4 im k-rum bgebildet. Abbildung : Erste Brillouin-Zone des fcc-gitters. Brillouin zone pplet = b = ΓL = ΓX = ΓK = ΓU = ΓW = = b = ΓL = 3 ΓX = 3 = ΓK = 3 ΓU = 3 ΓW = 5 b3 =.87 =..6.6.

3 Einheitszelle und primitive Elementrzelle des fcc-gitters Abbildung : Konventionelle Einheitszelle und rhomboedrische primitive Elementrzelle des fcc- Gitters. Kubisch ächenzentriert Gitterkonstnte = b = c. Quelle: Kittel. Die konventionelle Einheitszelle des fcc-gitters wird von einem Würfel mit Gitterpunkten n den Würfeleckpunkten, sowie Gitterpunkten n den Flächenmittelpunkten gebildet. Ds Volumen eines Würfels mit Kntenlänge beträgt beknntlich 3. Die Einheitszelle beinhltet 4 Gitterpunkte. Die Gitterpunkte n den Würfel-Ecken werden jeweils von 8 neinnder ngrenzenden Würfeln geteilt. Die ächenzentrierten Gitterpunkte werden zwischen je zwei benchbrten Würfeln geteilt. Mcht zusmmen = 4. Die primitive Elementrzelle des fcc-gitters erhält mn, indem mn usgehend von einem Würfeleckpunkt (m frei wählbren Koordinten-Ursprung) diesen mit den Gitterpunkten in den Flächenmittelpunkten verbindet. Ds von den so gewonnenen primitiven Gittervektoren ufgespnnte Rhomboeder heiÿt primitive Elementrzelle. Die Whl, welchen der Vektoren,, 3 mn in welche Ebene legt ist ntürlich frei - mn muss sie nur konsequent beibehlten. = ( y + z) ˆ= = ( z + x) ˆ= 3 = ( x + y) ˆ= Skeptiker mögen sich des Sptproduktes bedienen. V = = 3 = 3 Hier wird versucht die Whl in Anlehnung n die LV-Unterlgen zu treen, um unnötige Verwirrung zu vermeiden.

4 Ds Volumen der primitiven Einheitszelle erhält mn über ds Sptprodukt 3 : V EZ = 3 ( ) = = 3 8 } {{ } = Der Vergleich beider Volumin zeigt, dss die primitive Elementrzelle genu ein Viertel des Volumens der konventionellen Einheitszelle einnimmt. Die primitive Elementrzelle enthält per Denition / Konstruktion genu einen Gitterpunkt. Die primitiven Gittervektoren schlieÿen untereinnder jeweils einen Winkel 4 von 6 ein. = Die reziproken Gittervektoren Aus der Fourierreihenentwicklung einer Funktion f(r), die die Periodizität ( R = n + n + n 3 3 ) des Brvisgitters besitzt, folgt unmittelbr 5 k = G und e ig R = oder nders usgedrückt: G R = n, mit n N. Reziproke Gittervektoren G, die diese Bedingung erfüllen, sind: b = 3 V EZ b = 3 V EZ b 3 = V EZ = = = = = = ˆ= ˆ= ˆ= ( x + y + z) (+ x y + z) (+ x + y z) Durch den Vergleich mit den primitiven Trnsltionsvektoren nderer Rumgitter erkennt mn, dss es sich hierbei um ein kubisch rumzentriertes (bcc) Gitter mit Gitterkonstnte 4 hndelt. Abbildung 3: Reziprokes Gitter eines fcc-brvis-gitters. Quelle 3 Anlog könnte mn ntürlich uch ( 3) wählen.[ 3] i = ɛ ijk j 3k 4 cos α = = 4 = 4 5 siehe LV oder z.b. R. GROSS UND A. MARX und drus folgt: α = 6

5 So entsprechen zum Beispiel die Rumdigonlen des betrchteten Würfels den reziproken Gittervektoren doppelter Länge. Die Konstruktion des reziproken Gittervektors, der z.b. zwei Gitterpunkte entlng in der [,, ] Richtung verbindet, erhält mn gemäÿ Abbildung 3. ky = b + b 3 = Abbildung 4: Konstruktion der Gitterkonstnte des reziproken fcc-gitters. + = = 4 und dmit k y = 4 entspricht der Gitterkonstnten des reziproken Gitters 6. Anloges Vorgehen für k x und k z ergibt: ( k x = b3 + b ) = 4 ( ky = b3 + b ) = 4 ( kz = b + b ) = 4. Dies Fzit: Ein fcc-gitter mit Gitterkonstnte im Direktrum wird uf ein bcc-gitter mit Gitterkonstnte 4 im k-rum bgebildet. 4 Erste Brillouin-Zone Die Konstruktion der ersten Brillouin-Zone entspricht der Konstruktion der ersten Wigner-Seitz-Zelle im reziproken Gitter. Wie bereits festgestellt, ist ds reziproke Gitter des fcc-gitters ein bcc-gitter. Ausgehend vom rumzentrierten Gitterpunkt - den mn der Einfchheit hlber in den (frei wählbren) Koordintenursprung legt - werden die Ortsvektoren zu den nächstgelegenen Gitterpunkten eingezeichnet. An den hlbierten Ortsvektoren werden Flächen senkrecht druf ufgespnnt und miteinnder geschnitten. 6 Ein Würfel im Ortsrum wird in einen Würfel im k-rum bgebildet.

6 Abbildung 5: Este Brillouin-Zone des fcc-gitters bildet ein stumpfes Okteder. Quelle: R. GROSS UND A. MARX Die durch ± ± ± drgestellten Gittervektoren sind Flächennormlen der 8 Sechseckächen. Die Flächennormlen uf die 6 Vierecke entsprechen 5 Punkte hoher Symmetrie ±, ±, sowie ±. Abbildung 6: Erste Brillouin-Zone des fcc-gitters mit den Punkten hoher Symmetrie. Quelle: Brillouin zone pplet ˆ Γ... Koordintenursprung

7 ˆ K... Mittelpunkt der Schnittgerden zweier Sechseck-Flächen ˆ ˆ ˆ ˆ U... Mittelpunkt der Schnittgerden einer Sechseckäche mit einer Viereck-Fläche W... Schnittpunkt zweier Sechseck-Flächen mit einer Viereck-Fläche X... Mittelpunkt der Viereck-Flächen, entspricht Koordintenchsen des Orts- oder Direktrumes L... Mittelpunkt der Sechseck-Fläche Es gibt ntürlich mehrere Strtegien, um frgliche Punkte zu benennen. Eine Möglichkeit wäre es, streng der Brillouin-Zonen-Konstruktion zu folgen:. Drstellen der Ortsvektoren zu den nächstliegenden Gitterpunkten (in primitiven Trnsltionsvektoren des reziproken Gitters).. Hlbieren der Länge dieser Vektoren. Die somit erhltenen Vektoren bezeichnen X und L in den jeweiligen Rumrichtungen. 3. Anschliesendes Aufspnnen von Flächen senkrecht zu den zuvor gewonnenen (hlbierten) Vektoren. 4. Schneiden dieser Flächen miteinnder. Die Mittelpunkte der Schnittgerden liefern K und U. 5. Schnittpunkt zweier Sechseck-Flächen mit einer Viereck-Fläche ergibt W. X und L werden nch genu diesem Rezept beschrieben. Die Konstruktion von K, U und W wird etws nschulicher drgestellt. 5. L Wie in Kpitel3 bereits erläutert, hndelt es sich beim reziproken Gitter des fcc-gitters mit Gitterkonstnte um ein bcc-gitter mit der Gitterkonstnten 4. Der Vektor vom Rumzentrierten Gitterpunkt zu einem der Eckpunkte entspricht lso einer hlben Rumdigonle eines Würfels mit Kntenlänge. Hlbieren selbigen Vektors im Zuge der Brillouin-Zonen-Konstruktion liefert: 4 ΓL = 4 4 = () ΓL = 3 () 5. X Selbige Überlegung führt zu der Erkenntniss, dss der Ortsvektor von einem Rumzentrierten Gitterpunkt zum nächsten in Richtung der Koordintenchsen des Direktrum-Gitters verläuft, und genu beträgt.7 Hlbieren selbigen Vektors im Zuge der Brillouin-Zonen-Konstruktion liefert: 4 ΓX = 4 = (3) ΓX = (4) 7 siehe uch Kpitel 3

8 Abbildung 7: Bestimmung von K in mit Hilfe der( ) Ebene der Brillouin-Zone 5.3 K Für ds Aunden von K wird eine geeignete Projektion des stumpfen Okteders uf eine Ebene gewählt, derrt, dss möglichst viele beknnte Punkte in dieser Ebene liegen 8. Die Ebene ( ) erweist sich ls zweckmäÿig. Für den Beweis, dss der Abstnd zwischen zwei Sechseck-Mittelpunkten genu beträgt, sei zugunsten des Textusses uf Kpitel 6 verwiesen. ΓL = 3 Somit ergibt sich in dieser Ebene ein rechtwinkliges Dreieck ΓLH 9 mit den Seitenlängen 3 3 ist bereits beknnt.,, und c. Pythgors liefert c = =. Ein Vergleich der beiden ähnlichen Dreiecke ΓLH und LKH liefert: LK 3 = 3 LK =. Pythgors ngewndt uf ds ll umschlieÿende Dreieck ΓLK liefert ΓK = = 3. Die normierte Richtung von ΓK lutet, us einfcher Überlegung:. Richtung ml Betrg liefert den gesuchten Vektor: 5.4 W ΓK = 3 ΓK = 3 (5) Nun sei ds Sechseck in der Ebene () betrchtet. Zur Betrchtung wird ds Dreieck LKW herngezogen. ( LK ist bereits beknnt.) Der Winkel zwischen LK und LW beträgt gemäÿ Allgemeinwissen (6) 8 Um zu vermeiden, dss mn mit Projektionen eines Vektors uf eine Ebene rechnen muss. Ntürlich uch möglich, ber ufwendiger. ;) 9 H sei ein Hilfspunkt um die Zuordnung zu den Dreiecken zu vereinfchen.

9 Abbildung 8: Bestimmung von W mit Hilfe des Dreiecks LKW in der Ebene (). über Sechsecke 3. KW LK = tn 3 = 3 KW = LK 3 = Sei l die Seitenlänge der Sechs und Vierecke, so knn diese nun gemäÿ l = KW = = ngegeben werden. Die normierte Richtung von KW ergibt sich durch kurze Überlegung zu KW = = KW = Um nun den gesuchten Vektor ΓW zu erhlten, ist ΓK mit KW zu ddieren. 5.5 U ΓW = ΓK + KW = 3 + ΓW = 5. (7) = (8) (9) Betrchtet wird ds stumpfe Okteder in der Ebene (). Zunächst betrchtet mn ds Oensichtliche. Die normierte Richtung von XU ergibt sich zu. Der Betrg entspricht der hlben Seitenlänge l, und somit: ()

10 Abbildung 9: Ansicht der Ebene () zur Bestimmung von U. XU = XU = Um nun den gesuchten Vektor ΓU zu erhlten, ist ΓX mit XU zu ddieren. ΓU = ΓX + XU = + () () ΓU = = 3 = (3) (4)

11 6 Anhng Nun sei noch der Beweis erbrcht, dss der Abstnd zwischen zwei ngrenzenden Sechseck-Flächenmittelpunkten genu beträgt, so wie es in Kpitel 5.3 stillschweigend kzeptiert wurde. Abbildung : Ausgehend von der Flächennormlen zu den ngrenzenden Sechs und Vierecken zu bestimmen. Ausgehend von dem durch (roter Ortsvektor) denierten Flächenmittelpunkt zu den Mittelpunkten der 3 ngrenzenden Sechsecke (grün) erhält mn: = (roter Ortsvektor) sind die Vektoren = = Mn knn sich leicht dvon überzeugen, dss dies den Flächennormlen der nicht n ds durch denierte Sechseck ngrenzenden Vierecke entspricht. Der Betrg dieser Vektoren ist w.z.b.w.

12 Der Gude hlber sei noch selbige Überlegung im Bezug uf die ngrenzenden Vierecke (blu) geliefert: = = = Abermls knn mn sich leicht dvon überzeugen, dss dies den Flächennormlen, der nicht n ds durch denierte Sechseck ngrenzenden Sechsecke entspricht

Lösungsblatt zur Testklausur Festkörperphysik WS2010/11

Lösungsblatt zur Testklausur Festkörperphysik WS2010/11 Lösungsbltt zur Testklusur Festkörperphysik WS/ Aufgbe : ) Wie groß sind die Energien der drei niedrigsten Zustände in einem zweidimensionlen und einem dreidimensionlen Kstenpotentil? (Kntenlängen jeweils

Mehr

Es soll der Betrag eines Vektors berechnet werden, wenn dieser in Komponenten oder Koordinatenschreibweise gegeben ist. a 3. x 2

Es soll der Betrag eines Vektors berechnet werden, wenn dieser in Komponenten oder Koordinatenschreibweise gegeben ist. a 3. x 2 R. Brinkmnn http://brinkmnn-du.de Seite 8.. Vektoren im krtesischen Koordintensystem Betrg eines Vektors Es soll der Betrg eines Vektors berechnet werden, wenn dieser in Komponenten oder Koordintenschreibweise

Mehr

Einführung in die Festkörperphysik I Prof. Peter Böni, E21

Einführung in die Festkörperphysik I Prof. Peter Böni, E21 Einführung in die Festkörperphsik I Prof. Peter Böni, E21 Lösung zum 2. Übungsbltt (Besprechung: 0. - 1. Oktober 2006) P. Niklowitz, E21 Aufgbe 2.1: Zweidimensionle Wigner-Seitz-Zellen Vernschulichen Sie,

Mehr

2 Blatt - Festkörperphysik 2-2D Gitter

2 Blatt - Festkörperphysik 2-2D Gitter Heiko Dumlich April 9, Bltt - Festkörperphysik - D Gitter. (Oberflächen kubisch rumzentrierter Kristlle) ) In Abbildung () befinden sich die drei Drufsichten der (), () und () Ebenen des kubisch-rumzentrierten

Mehr

Abitur 2018 Mathematik Geometrie VI

Abitur 2018 Mathematik Geometrie VI Seite http://www.biturloesung.de/ Seite Abitur 8 Mthemtik Geometrie VI Die Punkte A( ), B( ) und C( ) liegen in der Ebene E. Teilufgbe Teil A (4 BE) Die Abbildung zeigt modellhft wesentliche Elemente einer

Mehr

Mathematische Probleme, SS 2018 Donnerstag 7.6. $Id: dreieck.tex,v /06/07 14:52:59 hk Exp $

Mathematische Probleme, SS 2018 Donnerstag 7.6. $Id: dreieck.tex,v /06/07 14:52:59 hk Exp $ $Id: dreieck.tex,v 1.45 2018/06/07 14:52:59 hk Exp $ 2 Dreiecke 2.2 Ähnliche Dreiecke Wir htten zwei Dreiecke kongruent gennnt wenn sie sich durch eine ewegung der Ebene ineinnder überführen lssen und

Mehr

2 Trigonometrische Formeln

2 Trigonometrische Formeln Mthemtische Probleme, SS 015 Donnerstg 7.5 $Id: trig.tex,v 1.11 015/05/19 17:1:13 hk Exp $ $Id: convex.tex,v 1.17 015/05/18 11:15:36 hk Exp $ Trigonometrische Formeln.3 Spezielle Werte der trigonometrischen

Mehr

R := {((a, b), (c, d)) a + d = c + b}. Die Element des Quotienten M/R sind die Klassen

R := {((a, b), (c, d)) a + d = c + b}. Die Element des Quotienten M/R sind die Klassen Die ntürlichen Zhlen (zusmmen mit der Addition und der Multipliktion) wurden in Kpitel 3 xiomtisch eingeführt. Aus den ntürlichen Zhlen knn mn nun die gnzen Zhlen Z = {..., 2, 1, 0, 1, 2,...} die rtionlen

Mehr

Freie Valenzelektronen im idealen Kristallgitter; reduzierte Energieschemata

Freie Valenzelektronen im idealen Kristallgitter; reduzierte Energieschemata Kpitel Freie Vlenzelektronen im idelen Kristllgitter; reduzierte Energieschemt. Einleitung Der Titel dieses Abschnittes klingt etws merkwürdig. Wenn nämlich die Vlenzelektronen bsolut frei, lso keinem

Mehr

Einige Formeln zum Goldenen Schnitt

Einige Formeln zum Goldenen Schnitt Einige Formeln zum Goldenen Schnitt Eine Strecke wird im Verhältnis geteilt, wenn ds Verhältnis der Gesmtstrecke m+m zur längeren Teilstrecke M gleich dem Verhältnis der längeren Teilstrecke M zur kürzeren

Mehr

8 Längenberechnungen Winkelberechnungen - Skalarprodukt

8 Längenberechnungen Winkelberechnungen - Skalarprodukt 8 Längenberechnungen Winkelberechnungen - Sklrprodukt 8 Längenberechnungen Winkelberechnungen - Sklrprodukt Wir wissen, wie mn zwei Vektoren und b ddiert b b. Mn knn zwei Vektoren ber uch miteinnder multiplizieren!

Mehr

7. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 9 Saison 1967/1968 Aufgaben und Lösungen

7. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 9 Saison 1967/1968 Aufgaben und Lösungen 7. Mthemtik Olympide. Stufe (Kreisolympide) Klsse 9 Sison 1967/1968 Aufgben und Lösungen 1 OJM 7. Mthemtik-Olympide. Stufe (Kreisolympide) Klsse 9 Aufgben Hinweis: Der Lösungsweg mit Begründungen und Nebenrechnungen

Mehr

Analytischen Geometrie in vektorieller Darstellung

Analytischen Geometrie in vektorieller Darstellung Anltische Geometrie Anltischen Geometrie in vektorieller Drstellung Anltische Geometrie Gerden Punkt-Richtungs-Form () Mit Hilfe von Vektoren lssen sich geometrische Ojekte wie Gerden und Eenen eschreien

Mehr

Theorie der Kondensierten Materie I WS 2016/2017

Theorie der Kondensierten Materie I WS 2016/2017 Krlsruher Institut für Technologie Institut für Theorie der Kondensierten Mterie Theorie der Kondensierten Mterie I WS 06/07 Prof. Dr. A. Shnirmn Bltt PD Dr. B. Nrozhny, M.Sc. T. Ludwig Lösungsvorschlg.

Mehr

3 Trigonometrische Formeln

3 Trigonometrische Formeln Mthemtische Probleme, SS 07 Montg 6.6 $Id: trig.tex,v.8 07/06/3 6:0:00 hk Exp $ $Id: convex.tex,v.40 07/06/3 6::43 hk Exp $ 3 Trigonometrische Formeln 3. Verdoppelungs- und Hlbierungsformeln m Ende der

Mehr

Wir wählen einen Punkt O des zwei- bzw. dreidimensionalen euklidischen Raums als Ursprung oder Nullpunkt. b 3 c. b 2

Wir wählen einen Punkt O des zwei- bzw. dreidimensionalen euklidischen Raums als Ursprung oder Nullpunkt. b 3 c. b 2 IV. Teilung und Teilverhältnis im Punktrum ================================================================ 4.1 Der Punktrum Wir wählen einen Punkt O des zwei- zw. dreidimensionlen euklidischen Rums ls

Mehr

AnKa Hyp. , tan α= Weil die Ankathete des einen Winkels der Gegenkathete des anderen entspricht, gilt auch: sin α = cos β und sinβ = cosα.

AnKa Hyp. , tan α= Weil die Ankathete des einen Winkels der Gegenkathete des anderen entspricht, gilt auch: sin α = cos β und sinβ = cosα. Trigonometrie Wenn mn die Trigonometrischen Funktionen Sinus, Kosinus und Tngens berechnen will, ist es wichtig, uf welchen Winkel sie sich beziehen. Die Kthete, die direkt m Winkel nliegt, heißt Ankthete

Mehr

BINOMISCHE FORMELN FRANZ LEMMERMEYER

BINOMISCHE FORMELN FRANZ LEMMERMEYER BINOMISCHE FORMELN FRANZ LEMMERMEYER Ds Distributivgesetz. Die binomischen Formeln sind im wesentlichen Vrinten des Distributivgesetzes. Dieses kennen wir schon; es besgt, dss () (b + = b + c und ( + b)c

Mehr

Vektoren. Definition. Der Betrag eines Vektors. Spezielle Vektoren

Vektoren. Definition. Der Betrag eines Vektors. Spezielle Vektoren Vektoren In nderen Bereichen der Nturwissenschften treten Größen uf, die nicht nur durch eine Zhlenngbe drgestellt werden können, wie Krft, die Geschwindigkeit. Zur vollständigen Beschreibung z.b. der

Mehr

Kapitel IV Euklidische Vektorräume. γ b

Kapitel IV Euklidische Vektorräume. γ b Kpitel IV Euklidische Vektorräume 1 Elementrgeometrie in der Eene Sei E die Zeicheneene In der Schule lernt mn: (11) Stz des Pythgors: Sei E ein Dreieck mit den Seiten, und c, und sei γ der c gegenüerliegende

Mehr

F A = 2F, F B = F, F C = 2F. Dabei verläuft F A entlang der vorderen Flächendiagonalen, F B und F C verlaufen entlang der Kanten.

F A = 2F, F B = F, F C = 2F. Dabei verläuft F A entlang der vorderen Flächendiagonalen, F B und F C verlaufen entlang der Kanten. Wintersemester / ZÜ. Aufgbe. z C Die Eckpunkte A, B, C eines Würfels (Kntenlänge ) sind die Anfngspunkte der Vektoren F A, F B, F C mit folgenden Beträgen: F C F A F, F B F, F C F. A x F A O B F B y Dbei

Mehr

Mathematik: Mag Schmid Wolfgang Arbeitsblatt 5 5. Semester ARBEITSBLATT 5 VEKTORRECHNUNG IM RAUM

Mathematik: Mag Schmid Wolfgang Arbeitsblatt 5 5. Semester ARBEITSBLATT 5 VEKTORRECHNUNG IM RAUM Mthemtik: Mg Schmid Wolfgng Arbeitsbltt 5 5. Semester ARBEITSBLATT 5 VEKTORRECHNUNG IM RAUM Bisher hben wir die Lge von Punkten und Gerden lediglich in der Ebene betrchtet. Nun wollen wir die Lge dieser

Mehr

II.3. Primitive Elementarzellen und Basisvektoren

II.3. Primitive Elementarzellen und Basisvektoren II.3. Primitive Elementarzellen und Basisvektoren Elementarzelle (EZ): lückenlose Überdeckung des Raumes, Beispiel: Würfel für kubische Gitter, Primitive EZ: enthält 1 Gitterpunkt Beispiel: kubische bcc-struktur

Mehr

Präsenz-Aufgaben = i. (a) i 15 = i 14 i = (i 2 ) 7 i = ( 1) 7 i = i i 15 = 0 + ( 1)i, i (i i) = i 1 = i i 15 = 0 + 1i,

Präsenz-Aufgaben = i. (a) i 15 = i 14 i = (i 2 ) 7 i = ( 1) 7 i = i i 15 = 0 + ( 1)i, i (i i) = i 1 = i i 15 = 0 + 1i, Präsenz-Aufgben 1. 1. Schreiben Sie z in der Form z α + βi mit α,β R. Aus der Vorlesung ist beknnt: i i i 1, i 1 1 i i i i i 1 i. () i 15 i 1 i (i ) 7 i ( 1) 7 i i i 15 + ( 1)i, (b) i 15 1 i 15 () 1 i

Mehr

Aufgabensammlung der höheren Mathematik

Aufgabensammlung der höheren Mathematik Aufgbensmmlung der höheren Mthemtik von Vsili P. Minorski 5., ktulisierte Auflge Hnser München 2008 Verlg C.H. Beck im Internet: www.beck.de ISBN 978 3 446 466 Zu Inhltsverzeichnis schnell und portofrei

Mehr

Tag der Mathematik 2011

Tag der Mathematik 2011 Zentrum für Mthemtik Tg der Mthemtik 0 Gruppenwettbewerb Einzelwettbewerb Mthemtische Hürden Lösungen Allgemeine Hinweise: Als Hilfsmittel dürfen nur Schreibzeug, Geodreieck und Zirkel benutzt werden.

Mehr

14. INTEGRATION VON VEKTORFUNKTIONEN

14. INTEGRATION VON VEKTORFUNKTIONEN 120 Dieses Skript ist ein Auszug mit Lücken us Einführung in die mthemtische Behndlung der Nturwissenschften I von Hns Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie ds Buch uch kufen und

Mehr

Algebra - Lineare Abbildungen

Algebra - Lineare Abbildungen Algebr - Linere Abbildungen oger Burkhrdt (roger.burkhrdt@fhnw.ch) 8 Hochschule für Technik . Der Vektorrum Hochschule für Technik Hochschule für Technik 4 Vektorrum Definition: Ein Vektorrum über einen

Mehr

Ich kann den SdP anwenden, um Seitenlängen in rechtwinkligen Dreiecken zu berechnen.

Ich kann den SdP anwenden, um Seitenlängen in rechtwinkligen Dreiecken zu berechnen. Klsse 9c Mthemtik Vorbereitung zur Klssenrbeit Nr. m.5.018 Themen: Stz des Pythgors, Qudrtische Gleichungen Checkliste Ws ich lles können soll Ich knn den Stz des Pythgors (SdP) in Worten formulieren.

Mehr

Tag der Mathematik 2016

Tag der Mathematik 2016 Aufgbe G mit Der römische Brunnen Aufsteigt der Strhl und fllend gießt Er voll der Mrmorschle Rund, Die, sich verschleiernd, überfließt In einer zweiten Schle Grund; Die zweite gibt, sie wird zu reich,

Mehr

Tag der Mathematik 2016

Tag der Mathematik 2016 Gruppenwettbewerb Einzelwettbewerb Mthemtische Hürden Aufgben mit en Aufgbe G mit Der römische Brunnen Aufsteigt der Strhl und fllend gießt Er voll der Mrmorschle Rund, Die, sich verschleiernd, überfließt

Mehr

2 Trigonometrische Formeln

2 Trigonometrische Formeln Mthemtische Probleme, SS 013 Donnerstg.5 $Id: trig.tex,v 1.3 013/05/03 10:50:31 hk Exp hk $ Trigonometrische Formeln.1 Die Additionstheoreme In der letzten Sitzung htten wir geometrische Herleitungen der

Mehr

3 Trigonometrische Formeln

3 Trigonometrische Formeln Mthemtische Proleme, SS 018 Donnerstg 1.6 $Id: trig.tex,v 1. 018/06/1 14:08:44 hk Exp $ 3 Trigonometrische Formeln 3. Verdoppelungs- und Hlierungsformeln Als Verdoppelungsformeln ezeichnet mn die Formeln

Mehr

G2 Grundlagen der Vektorrechnung

G2 Grundlagen der Vektorrechnung G Grundlgen der Vektorrechnung G Grundlgen der Vektorrechnung G. Die Vektorräume R und R Vektoren Beispiel: Physiklische Größen wie Krft und Geschwindigkeit werden nicht nur durch ihre Mßzhl und ihre Einheit,

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 14 MULTIPLIKATION EINES VEKTORS MIT EINEM SKALAR

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 14 MULTIPLIKATION EINES VEKTORS MIT EINEM SKALAR Mthemtik: Mg. Schmid Wolfgng Areitsltt. Semester ARBEITSBLATT MULTIPLIKATION EINES VEKTORS MIT EINEM SKALAR Zunächst einml müssen wir den Begriff Sklr klären. Definition: Unter einem Sklr ersteht mn eine

Mehr

Heinz Klaus Strick: Mathematik ist schön, Springer-Verlag, ISBN:

Heinz Klaus Strick: Mathematik ist schön, Springer-Verlag, ISBN: Heinz Klus Strick: Mthemtik ist schön, Springer-Verlg, ISBN: 978--66-79-9 Hinweise zu den nregungen zum Nchdenken und für eigene Untersuchungen zu 8.: zu 8.: Wenn die Dreiteilung des weißen Rechtecks durch

Mehr

Aufgaben zur Vertiefung der Geometrie. WS 2005/06 5./6. Dezember 2005 Blatt 3

Aufgaben zur Vertiefung der Geometrie. WS 2005/06 5./6. Dezember 2005 Blatt 3 ufgben zur Vertiefung der Geometrie WS 2005/06 5./6. ezember 2005 ltt 3 1. Umkugel und Innenkugel eines Tetreders Leiten Sie die Formel für ds Volumen, die Oberfläche, den Rdius der umbeschriebenen und

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3 5. Semester ARBEITSBLATT 3 PARAMETERDARSTELLUNG EINER GERADEN

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3 5. Semester ARBEITSBLATT 3 PARAMETERDARSTELLUNG EINER GERADEN Mthemtik: Mg. Schmid Wolfgng Areitsltt 3 5. Semester ARBEITSBLATT 3 PARAMETERDARSTELLUNG EINER GERADEN Wir wollen eine Gerde drstellen, welche durch die Punkte A(/) und B(5/) verläuft. Die Idee ist folgende:

Mehr

Brückenkurs Lineare Gleichungssysteme und Vektoren

Brückenkurs Lineare Gleichungssysteme und Vektoren Brückenkurs Linere Gleichungssysteme und Vektoren Dr Alessndro Cobbe 30 September 06 Linere Gleichungssyteme Ws ist eine linere Gleichung? Es ist eine lgebrische Gleichung, in der lle Vriblen nur mit dem

Mehr

a 2π a) Der Ebenenabstand ist gegeben durch

a 2π a) Der Ebenenabstand ist gegeben durch Aufgbe 1 Ein bcc Kristll it einer Kntenlänge 6Å der kubischen Einheitszelle wird it Röntgenlicht der Wellenlänge λ3å bestrhlt. ) Welches sind die Millerindizes (h,k,l) (bzw. die Indizes des entsprechenden

Mehr

Tutorium zur Vorlesung Grundlagen der Mathematik II Bearbeitungsvorschlag

Tutorium zur Vorlesung Grundlagen der Mathematik II Bearbeitungsvorschlag MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Dr. E. Schörner SS 017 Bltt 8 0.06.017 Tutorium zur Vorlesung Grundlgen der Mthemtik II Berbeitungsvorschlg 9. Zu betrchten ist ein gleichseitiges Dreieck

Mehr

1. Beispiel für die Vereinbarung eines Verschiebungsvektors im Zylinderkoordinatensystem. Quellpunkt: ( 0,0, Aufpunkt: ( r,0,0)

1. Beispiel für die Vereinbarung eines Verschiebungsvektors im Zylinderkoordinatensystem. Quellpunkt: ( 0,0, Aufpunkt: ( r,0,0) . Beispiel für die Vereinbrung eines Verschiebungsvektors im Zlinderkoordintensstem ( 0,0, ' ) Quellpunkt: ( 0,0, ') Aufpunkt: ( r,0,0) R r ' r r,0,0 ( ) Vektor um Quellpunkt: 0 r ' 0 ' Vektor um Aufpunkt:

Mehr

2.6. Prüfungsaufgaben zu Kongruenzabbildungen

2.6. Prüfungsaufgaben zu Kongruenzabbildungen 2.6. Prüfungsufgben zu Kongruenzbbildungen Aufgbe 1: Kongruenzsätze Konstruiere die Dreiecke us den gegebenen Größen und ergänze die fehlenden Größen: Teil b c α β γ A ) 5 cm 7 cm 9 cm b) 5 cm 7 cm 30

Mehr

26. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 7 Saison 1986/1987 Aufgaben und Lösungen

26. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 7 Saison 1986/1987 Aufgaben und Lösungen 26. Mthemtik Olympide 2. Stufe (Kreisolympide) Klsse 7 Sison 986/987 Aufgben und Lösungen OJM 26. Mthemtik-Olympide 2. Stufe (Kreisolympide) Klsse 7 Aufgben Hinweis: Der Lösungsweg mit Begründungen und

Mehr

1.2. Orthogonale Basen und Schmistsche Orthogonalisierungsverfahren.

1.2. Orthogonale Basen und Schmistsche Orthogonalisierungsverfahren. .. Orthogonle Bsen und Schmistsche Orthogonlisierungsverfhren. Definition.. Eine Bsis B = { b, b,..., b n } heit orthogonl, wenn die Vektoren b i, i =,,..., n, prweise orthogonl sind, d.h. bi b j = fur

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 15 ORTHOGONALITÄT

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 15 ORTHOGONALITÄT Mthemtik: Mg. Schmid Wolfgng Areitsltt 5. Semester ARBEITSBLATT 5 ORTHOGONALITÄT Ws versteht mn zunächst einml unter orthogonl? Dies ist nur ein nderes Wort für norml oder im rechten Winkel. Ws uns hier

Mehr

Zum Satz von Taylor. Klaus-R. Loeffler. 2 Der Satz von Taylor 2

Zum Satz von Taylor. Klaus-R. Loeffler. 2 Der Satz von Taylor 2 Zum Stz von Tylor Klus-R. Loeffler Inhltsverzeichnis 1 Der verllgemeinerte Stz von Rolle 1 2 Der Stz von Tylor 2 3 Folgerungen, Anwendungen und Gegenbeispiele 4 3.1 Jede gnzrtionle Funktion ist ihr eigenes

Mehr

Zu Aufgabe 1: Widerlegen Sie die folgenden falschen Behauptungen durch Angabe eines möglichst einfachen Gegenbeispiels:

Zu Aufgabe 1: Widerlegen Sie die folgenden falschen Behauptungen durch Angabe eines möglichst einfachen Gegenbeispiels: Westfälische Wilhelms-Universität Münster Mthemtisches Institut pl. Prof. Dr. Lutz Hille Dr. Krin Hlupczok Übungen zur Vorlesung Elementre Geometrie Sommersemester 1 Musterlösung zu Bltt 1 vom 5. Juli

Mehr

5. Prinzip der Beugung

5. Prinzip der Beugung 5. Prinzip der Beugung Lue/Brgg sche Gleichung, reziprokes Gitter, wld-konstruktion M+K-Bsiskurs Kristllogrphie und Beugung, WS 2017/2018, C. Röhr Grundlgen Prinzip und nlogie zur Optik inteilung der Beugungsmethoden

Mehr

Eine interessante Eigenschaft unseres Schreibpapiers

Eine interessante Eigenschaft unseres Schreibpapiers www.mthegmi.de September 2011 Eine interessnte Eigenschft unseres Schreibppiers ichel Schmitz Zusmmenfssung ällt mn von einer Ecke eines I 4 lttes ds Lot uf die igonle durch die benchbrten Eckpunkte, so

Mehr

Fachhochschule Jena Fachbereich GW. Serie Nr.: 2 Semester: 1

Fachhochschule Jena Fachbereich GW. Serie Nr.: 2 Semester: 1 Fchhochschule Jen Fchbereich GW Tutorium Mthemtik I Studiengng: BT/MT - Bchelor Serie Nr.: 2 Semester: Them: Vektorrechnung und Geometrie Auf die Lehrmterilien im Internet ( Zum selbständigen Üben ) empfehle

Mehr

Einführung in die Vektorrechnung (GK)

Einführung in die Vektorrechnung (GK) Einführung in die Vektorrechnung (GK) Michel Spielmnn Inhltsverzeichnis Grundlegende Definitionen Geometrische Vernschulichung. Punkte..................................... Pfeile.....................................

Mehr

Aufgabe 30: Periheldrehung

Aufgabe 30: Periheldrehung Aufge 30: Periheldrehung Auf einen Plneten soll zusätzlich zum Grvittionspotentil ds folgende Potentil einwirken U z = η r. (1 Im Folgenden sollen eene Polrkoordinten verwendet werden. Ds können wir mchen,

Mehr

Proseminar über Multimediale Lineare Algebra und Analytische Geometrie

Proseminar über Multimediale Lineare Algebra und Analytische Geometrie Studiengng Diplom-Berufspädgogik Unterrichtsfch Mthemtik Proseminr über Multimedile Linere Algebr und Anlytische Geometrie Ausrbeitung einer Sttsexmensufgbe us der Lineren Algebr Aufgbe 5 usgerbeitet von:

Mehr

Abitur 2012 Mathematik Geometrie VI

Abitur 2012 Mathematik Geometrie VI Seite 1 http://www.biturloesung.de/ Seite Abitur 1 Mthemtik Geometrie VI In einem krtesischen Koordintensystem sind die Punkte A(1 ), B(1 8 ), C(1 ), R( ), S( 8 ) und T ( ) gegeben. Der Körper A B C R

Mehr

3 Hyperbolische Geometrie

3 Hyperbolische Geometrie Ausgewählte Kpitel der Geometrie 3 Hperbolische Geometrie [... ] Im Folgenden betrchten wir nun spezielle gebrochen-linere Abbildungen, nämlich solche, für die (mit den Bezeichnungen ϕ,b,c,d wie oben die

Mehr

9 Üben X Prismen und Zylinder 1401

9 Üben X Prismen und Zylinder 1401 9 Üben X Prismen und Zylinder 40. Entscheide begründend: ) Gibt es Prismen mit Ecken? b) Gibt es Prismen mit Knten? c) Knn es ein Prism mit 7 Flächen geben?. Bestimme je einen Term, der die Anzhl der Knten

Mehr

Notizen zur Vorlesung Analysis 3

Notizen zur Vorlesung Analysis 3 Notizen zur Vorlesung Anlysis 3 Henrik chumcher TUHH, 26. Jnur 207 2 Integrtion über Oberflächen 2. Oberflächenintegrl einer Funktion Definition 2.37 (Metrische Fundmentlform) ei R 2 ein reguläres Gebiet

Mehr

Vorlesung Festkörperphysik. WS 2014/2015 Vorlesungen Universität Rostock Heinrich Stolz

Vorlesung Festkörperphysik. WS 2014/2015 Vorlesungen Universität Rostock Heinrich Stolz Vorlesung Festkörperphysik WS 2014/2015 Vorlesungen 28.10.14 Universität Rostock Heinrich Stolz 1 2. Das Reziproke Gitter Wichtige mathematische Objekt in der Physik mit periodischer Struktur? ebene Welle

Mehr

2 Trigonometrische Formeln

2 Trigonometrische Formeln $Id: trig.tex,v 1.8 015/05/04 10:16:36 hk Exp $ Trigonometrische Formeln.1 Die Additionstheoreme In der letzten Sitzung htten wir begonnen die Additionstheoreme der trigonometrischen Funktionen zu besprechen.

Mehr

komplizierteren Funktionen versucht man, die Fläche durch mehrere Rechtecke anzunähern.

komplizierteren Funktionen versucht man, die Fläche durch mehrere Rechtecke anzunähern. Mthemtik für Nturwissenschftler I 4. 4 Integrlrechnung 4. Integrierbrkeit Die Grundidee der Integrlrechnung ist die Berechnung der Fläche zwischen dem Grphen einer Funktion und der x-achse. Recht einfch

Mehr

5 Ellipsen, Parabeln und Hyperbeln

5 Ellipsen, Parabeln und Hyperbeln 5 Ellipsen, Prbeln und Hperbeln Ellipsen: Seien b > reelle Zhlen und E = E,b := { + b = } Eine Qudrik Q R heißt Ellipse, wenn es reelle Zhlen b > gibt, so dss q E,b. Die Kurven E,b heißen Ellipsen in metrischer

Mehr

Eine Relation R in einer Menge M ist transitiv, wenn für alle x, y, z M gilt: (x R y y R z) x R z

Eine Relation R in einer Menge M ist transitiv, wenn für alle x, y, z M gilt: (x R y y R z) x R z Reltionen, 11 Reltionen Reltion ist einfch gesgt eine Beziehung zwischen Elementen von Mengen. In der Geometrie sind z.b. die Reltionen "ist gleich", "ist senkrecht zu", "ist prllel zu" eknnt. Die letzten

Mehr

Musterlösung zu Blatt 9, Aufgabe 2

Musterlösung zu Blatt 9, Aufgabe 2 Musterlösung zu Bltt 9, Aufgbe Anlysis II MIIA SoSe 7 Mrtin Schottenloher Musterlösung zu Bltt 9, Aufgbe I Aufgbenstellung Es sei J [, ] und f : J R deniert durch fx x 3. Finden Sie eine Folge f n n N

Mehr

6. Quadratische Gleichungen

6. Quadratische Gleichungen 6. Qudrtische Gleichungen 6. Vorbemerkungen Potenzieren und Wurzelziehen, somit uch Qudrieren und Ziehen der Qudrtwurzel, sind entgegengesetzte Opertionen. Sie heben sich gegenseitig uf. qudrieren Qudrtwurzel

Mehr

Tutorium zur Vorlesung Differential und Integralrechnung II Bearbeitungsvorschlag

Tutorium zur Vorlesung Differential und Integralrechnung II Bearbeitungsvorschlag MAHEMAISCHES INSIU DER UNIVERSIÄ MÜNCHEN Dr. E. Schörner SS 206 Bltt 2 06.07.206 utorium zur Vorlesung Differentil und Integrlrechnung II Berbeitungsvorschlg 45. ) Für die beiden Rechtecke R = [ 3, 3]

Mehr

ARBEITSBLATT 14 ARBEITSBLATT 14

ARBEITSBLATT 14 ARBEITSBLATT 14 Mthemtik: Mg. Schmid Wolfgng reitsltt. Semester RBEITSBLTT RBEITSBLTT RBEITSBLTT RBEITSBLTT DS VEKTORPRODUKT Definition: Ds vektorielle Produkt (oder Kreuprodukt) weier Vektoren und ist ein Vektor mit

Mehr

2 Trigonometrische Formeln

2 Trigonometrische Formeln Mthemtische Proleme, SS 016 Freitg 6.5 $Id: trig.tex,v 1.14 016/05/06 1:6:14 hk Exp $ Trigonometrische Formeln.1 Die dditionstheoreme In der letzten Sitzung htten wir geometrische Herleitungen der dditionstheoreme

Mehr

Die Dreiecke ADM A und BCM C sind kongruent aufgrund

Die Dreiecke ADM A und BCM C sind kongruent aufgrund Westfälische Wilhelms-Universität Münster Mthemtisches Institut pl. Prof. Dr. Lutz Hille Dr. Krin Hlupczok Üungen zur Vorlesung Elementre Geometrie Sommersemester 010 Musterlösung zu ltt 4 vom 3. Mi 010

Mehr

6. Landeswettbewerb Mathematik Bayern 2. Runde 2003/04 Aufgaben und Lösungsbeispiele

6. Landeswettbewerb Mathematik Bayern 2. Runde 2003/04 Aufgaben und Lösungsbeispiele 6. Lndeswettbewerb Mthemtik yern. Runde 00/04 ufgben und Lösungsbeispiele ufgbe 1 ie Seite [] eines reiecks wird über hinus bis zum Punkt so verlängert, dss = n gilt (n N n>1). ie Gerde durch und den Mittelpunkt

Mehr

Ähnlichkeit Welche der drei Behauptungen stimmen?

Ähnlichkeit Welche der drei Behauptungen stimmen? 1 7 401 Welche der drei Behuptungen stimmen? A Ein 5-Rppen-Stück verdeckt bei usgestrecktem Arm den Vollmond. B Ein 20-Rppen-Stück verdeckt bei usgestrecktem Arm den Vollmond. C Ein 2-Frnken-Stück verdeckt

Mehr

Vorkurs Mathematik für Ingenieure WS 2016/2017 Übung 3. (a) Berechnen Sie die fehlenden Strecken und Winkel im folgenden rechtwinkligen Dreieck: b h

Vorkurs Mathematik für Ingenieure WS 2016/2017 Übung 3. (a) Berechnen Sie die fehlenden Strecken und Winkel im folgenden rechtwinkligen Dreieck: b h Prof. Dr. J. Pnnek Dynmics in Logistics Vorkurs Mthemtik für Ingenieure WS 206/207 Übung 3 Aufgbe : Trigonometrie () Berechnen Sie die fehlenden Strecken und Winkel im folgenden rechtwinkligen Dreieck:

Mehr

Grundlagen der Integralrechnung

Grundlagen der Integralrechnung Grundlgen der Integrlrechnung W. Kippels 0. April 2014 Inhltsverzeichnis 1 Ds unbestimmte Integrl 2 2 Ds bestimmte Integrl 4 Beispielufgben 7.1 Beispielufgbe 1............................... 7.2 Beispielufgbe

Mehr

Grundlagen der Integralrechnung

Grundlagen der Integralrechnung Grundlgen der Integrlrechnung Wolfgng Kippels 8. April 018 Inhltsverzeichnis 1 Vorwort Ds unbestimmte Integrl Ds bestimmte Integrl 5 4 Beispielufgben 8 4.1 Beispielufgbe 1...............................

Mehr

Grundwissen Mathematik 9

Grundwissen Mathematik 9 Grundwissen Mthemtik 9 Die binomischen Formeln ( + b) + b + b ( - b) - b + b ( + b) ( - b) - b Insbesondere benutzt mn die binomischen Formeln um Summen und Differenzen in Produkte umzuwndeln Die Qudrtwurzel

Mehr

Copyright, Page 1 of 5 Der Faktorraum

Copyright, Page 1 of 5 Der Faktorraum www.mthemtik-netz.de Copright, Pge of 5 Der Fktorrum Ein sehr wichtiges Konstrukt, welches üerll in der Mthemtik Verwendung findet, ist der Fktorrum, oft uch Quotientenrum gennnt. Dieser ist selst ein

Mehr

4. Der Cauchysche Integralsatz

4. Der Cauchysche Integralsatz 22 Andres Gthmnn 4. Der Cuchysche Integrlstz Es seien D C offen und f : D C eine stetige Funktion. Ht f in D eine Stmmfunktion, so hben wir im letzten Kpitel gesehen, dss Kurvenintegrle über f in D nur

Mehr

Grundwissen Mathematik 8. Klasse. Eigenschaften Besonderheiten - Beispiele

Grundwissen Mathematik 8. Klasse. Eigenschaften Besonderheiten - Beispiele Themen Direkte Proportionlität Eigenschften Besonderheiten - Beispiele Zwei Größen und y heißen direkt proportionl, wenn gilt: Zum k-fchen Wert von gehört der k-fche Wert von y; Der Quotient q = y ht für

Mehr

7 Bewegung von Punkten

7 Bewegung von Punkten 81 7 Bewegung von Punkten 7.1 Übersicht Bewegung von Punkten Differenzierbrkeit. Wo liegt die Ableitung Tylorreihe, Vektordreieck Physiklische Bezeichnungen Abstnd zu einer Kurve Geschwindigkeit Bogenlänge

Mehr

Abiturprüfung Mathematik 2013 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1

Abiturprüfung Mathematik 2013 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1 www.mthe-ufgben.com Abiturprüfung Mthemtik 013 (Bden-Württemberg) Berufliche Gymnsien Anlysis, Aufgbe 1 1.1 Die Funktion f ist gegeben durch π f( x) = + sin x ; x. Ds Schubild von f ist K. 1.1.1 (8 Punkte)

Mehr

a) x 0, (Nichtnegativität) b) x = 0 x = 0, (Eindeutigkeit) c) αx = α x, (Skalierung)

a) x 0, (Nichtnegativität) b) x = 0 x = 0, (Eindeutigkeit) c) αx = α x, (Skalierung) Definition 1.20 Ein metrischer Rum besteht us einer Menge X und einer Abbildung d : X X R, die jedem geordneten Pr von Elementen us X eine reelle Zhl zuordnet, d.h. (x,y) X X d(x,y) R. Diese Abbildung

Mehr

Kurvenintegrale. 17. Juli 2006 (Korrigierte 2. Version) 1 Kurvenintegrale 1. Art (d.h. f ist Zahl, kein Vektor)

Kurvenintegrale. 17. Juli 2006 (Korrigierte 2. Version) 1 Kurvenintegrale 1. Art (d.h. f ist Zahl, kein Vektor) Kurvenintegrle Christin Mosch, Theoretische Chemie, Universität Ulm, christin.mosch@uni-ulm.de 7. Juli 26 (Korrigierte 2. Version Kurvenintegrle. Art (d.h. f ist Zhl, kein Vektor Bei Kurvenintegrlen. Art

Mehr

Mathematik K1, 2017 Lösungen Vorbereitung KA 1

Mathematik K1, 2017 Lösungen Vorbereitung KA 1 Mthemtik K, 07 Lösungen Vorbereitung KA Pflichtteil (etw 0..0 min) Ohne Tschenrechner und ohne Formelsmmlung (Dieser Teil muss mit den Lösungen bgegeben sein, ehe der GTR und die Formlsmmlung verwendet

Mehr

Mathematik Bruchrechnung Grundwissen und Übungen

Mathematik Bruchrechnung Grundwissen und Übungen Mthemtik Bruchrechnung Grundwissen und Übungen von Stefn Gärtner (Gr) Stefn Gärtner -00 Gr Mthemtik Bruchrechnung Seite Inhlt Inhltsverzeichnis Seite Grundwissen Ws ist ein Bruch? Rtionle Zhlen Q Erweitern

Mehr

1. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 12 Saison 1961/1962 Aufgaben und Lösungen

1. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 12 Saison 1961/1962 Aufgaben und Lösungen 1. Mthemtik Olympide 1. Stufe (Schulolympide) Klsse 12 Sison 1961/1962 Aufgben und Lösungen 1 OJM 1. Mthemtik-Olympide 1. Stufe (Schulolympide) Klsse 12 Aufgben Hinweis: Der Lösungsweg mit Begründungen

Mehr

Vorkurs Mathematik DIFFERENTIATION

Vorkurs Mathematik DIFFERENTIATION Vorkurs Mthemtik 6 DIFFERENTIATION Beispiel (Ableitung von sin( )). Es seien f() = sin g() = h() =f(g()) = sin. (f () =cos) (g () =) Also ist die Ableitung von h: h () =f (g())g () =cos = cos. Mn nennt

Mehr

1.2 Der goldene Schnitt

1.2 Der goldene Schnitt Goldener Schnitt Psclsches Dreieck 8. Der goldene Schnitt Beim Begriff Goldener Schnitt denken viele Menschen n Kunst oder künstlerische Gestltung. Ds künstlerische Problem ist, wie ein Bild wohlproportioniert

Mehr

Mathematik III - Blatt 3

Mathematik III - Blatt 3 Mthemtik III - Bltt 3 Christopher Bronner, Frnk Essenberger FU Berlin 7.November 6 Aufgbe Die Länge der Kurve, deren Bhn die Lösung der Gleichung ist, lutet x 3 + y 3 3 L( γ ds π γ γ(t dt. Abbildung :

Mehr

Zentrale schriftliche Abiturprüfung Mathematik. Leistungskurs

Zentrale schriftliche Abiturprüfung Mathematik. Leistungskurs Ministerium für Bildung, Jugend und Sport Zentrle schriftliche Abiturprüfung 005 Aufgbenstellungen A und A (Whl für Schülerinnen und Schüler) Mthemtik Aufgbenstellungen A3 (siehe Extrbltt) (wird durch

Mehr

Lineare Abbildung des Einheitskreises

Lineare Abbildung des Einheitskreises Linere Abbildung des Einheitskreises Peter Stender 27.06.2017 Peter Stender Linere Abbildung des Einheitskreises 27.06.2017 1 / 14 Mtrix und Dynmik m Kreis Fälle, bei denen B nicht uf der berechneten Prbel

Mehr

(1 ξ) f (k) (ξ) + k! z x n+1. (n + 1)! 2 f (n + 1)!

(1 ξ) f (k) (ξ) + k! z x n+1. (n + 1)! 2 f (n + 1)! 0.. Lösung der Aufgbe. Wir schreiben f = sup{ f : [0, ]}. Für ξ ]0, [ und n N gibt es nch dem Stz von Tlor ein c ]ξ, [ so, dss: f = fξ + n ξ k f k ξ + k! k= Aus der Ttsche, dss f k 0 für lle k N ist, folgt

Mehr

Quadratische Funktionen

Quadratische Funktionen Qudrtische Funktionen Die Scheitelpunktform ist eine spezielle Drstellungsform von qudrtischen Funktionen, nhnd der viele geometrische Eigenschften des Funktionsgrphen bgelesen werden können. Abbildung

Mehr

4. Das quadratische Reziprozitätsgesetz.

4. Das quadratische Reziprozitätsgesetz. 4-1 Elementre Zhlentheorie 4 Ds udrtische Rezirozitätsgesetz Sei eine ungerde Primzhl, sei Z mit, 1 Frge: Wnn gibt es x Z mit x mod? Gibt es ein derrtiges x, so nennt mn einen udrtischen Rest modulo Legendre

Mehr

Demo-Text für Geradenspiegelungen INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. FRIEDRICH W. BUCKEL.

Demo-Text für  Geradenspiegelungen INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK.  FRIEDRICH W. BUCKEL. bbildungen Gerdenspiegelungen Teil 1 Vor llem für die Klssenstufen 6 und 7 gedcht Dtei Nr. 11052 Stnd: 3. Oktober 2013 Demo-Text für FRIEDRIH W. UKEL INTERNETILIOTHEK FÜR SHULMTHEMTIK 11052 Gerdenspiegelungen

Mehr

Resultat: Hauptsatz der Differential- und Integralrechnung

Resultat: Hauptsatz der Differential- und Integralrechnung 17 Der Huptstz der Differentil- und Integrlrechnung Lernziele: Konzept: Stmmfunktion Resultt: Huptstz der Differentil- und Integrlrechnung Methoden: prtielle Integrtion, Substitutionsregel Kompetenzen:

Mehr

π 2 r 2 r 2 sin 2 (t)r cos(t) dt π 2 cos2 (t) cos(t) dt = r 2 π dt = cos(x) sin(x) u v = cos(x) sin(x) + = cos(x) sin(x) + x

π 2 r 2 r 2 sin 2 (t)r cos(t) dt π 2 cos2 (t) cos(t) dt = r 2 π dt = cos(x) sin(x) u v = cos(x) sin(x) + = cos(x) sin(x) + x Wir substituieren x x(t) r sin(t), t [ π, π ]. Dnn ist x (t) r cos(t), lso r x dx π π r π r r sin (t)r cos(t) dt π cos (t) cos(t) dt r π π cos (t) dt Wir integrieren cos mittels prtieller Integrtion: Sei

Mehr

10: Lineare Abbildungen

10: Lineare Abbildungen Chr.Nelius: Linere Alger SS 2008 1 10: Linere Aildungen 10.1 BEISPIEL: Die Vektorräume V 2 und Ê 2 hen diegleiche Struktur. Es git eine ijektive Aildung f : V 2 Ê 2, die durch die Vorschrift definiert

Mehr

Vorkurs Mathematik für Ingenieur Innen WS 2017/2018 Übung 3. (a) Berechnen Sie die fehlenden Strecken und Winkel im folgenden rechtwinkligen Dreieck:

Vorkurs Mathematik für Ingenieur Innen WS 2017/2018 Übung 3. (a) Berechnen Sie die fehlenden Strecken und Winkel im folgenden rechtwinkligen Dreieck: Prof. Dr. J. Pnnek Dynmics in Logistics Vorkurs Mthemtik für Ingenieur Innen WS 207/208 Übung 3 Aufgbe : Trigonometrie () Berechnen Sie die fehlenden Strecken und Winkel im folgenden rechtwinkligen Dreieck:

Mehr