Risiko und Versicherung - Übung

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Risiko und Versicherung - Übung"

Transkript

1 Sommer 2009 Risiko und Versicherung - Übung Entscheidungstheoretische Grundlagen Renate Bodenstaff Vera Brinkmann April 2009 Risiko und Versicherung 1

2 Das Grundmodell der Entscheidungstheorie Komponenten Aktionsraum (A: die Menge aller zur Verfügung stehenden Handlungsalternativen (a i Zustandsraum (S: die Menge aller vom Entscheidungsträger für möglich gehaltenen und für die Entscheidung relevanten Umweltzustände (s j Ergebnisraum (E: die Menge aller für möglich erachteten Ergebnisse (e ij Ergebnisfunktion f ordnet jedem Paar (a i, s j mit a i A, s j S ein Ergebnis e ij Ezu (vollständige, transitive Präferenzrelation 28. April 2009 Risiko und Versicherung 2

3 Das Grundmodell der Entscheidungstheorie S s 1 s 2... s j... s n a 1 e 11 e e 1j... e 1n a 2 e 21 e e 2j... e 2n A a i e i1 e i2... e ij... e in a m e m1 e m2... e mj... e mn E 28. April 2009 Risiko und Versicherung 3

4 Einige Aussagen über Wahrscheinlichkeiten Eine Wahrscheinlichkeit (meist p ist eine Zahl zwischen 0 und 1. Schließen sich die einzelnen Ereignisse gegenseitig aus (es kann entweder Ereignis 1 oder Ereignis 2 oder... eintreten, so ist die Summe der Wahrscheinlichkeiten über alle möglichen Ereignisse immer =1. Schließen sich die einzelnen Ereignisse gegenseitig aus, so ergibt sich die Wahrscheinlichkeit für ein kombiniertes Ereignis aus der Summe der einzelnen Wahrscheinlichkeiten (Additionssatz. Beispiel Würfeln: 28. April 2009 Risiko und Versicherung 4

5 Einige Aussagen über Wahrscheinlichkeiten Bei unabhängiger Wiederholung eines Zufallsexperiments ergibt sich die Wahrscheinlichkeit für ein Ereignis der Form erste Durchführung des Experiments führt zu Ergebnis 1, zweite Durchführung führt zu Ergebnis 2 durch Multiplikation der Einzelwahrscheinlichkeiten. Beispiel Würfeln: P( 1.Wurf=1 und 2.Wurf=2 =? 28. April 2009 Risiko und Versicherung 5

6 Definition Wahrscheinlichkeits-Maß (Axiome Eine Funktion P, die jedem Ereignis Z S eine reelle Zahl zuordnet, heißt Wahrscheinlichkeits- Maß, und P(Z heißt Wahrscheinlichkeit von Z, wenn gilt: 0 P( Z 1 1. für jedes Z S 2. P( S 1 3. Für abzählbar viele Ereignisse Z 1, Z 2,... mit gilt: Z i Z j = i j P( i1 Z i i1 P(Z i 28. April 2009 Risiko und Versicherung 6

7 Rechenregeln und grundlegende Definitionen Es gilt: P( = 0, P(S =1 P(Z+ P(Z c =1 mit Z c = S \ Z (Komplement von Z P(Z1 Z2 =P(Z1 + P(Z2 - P(Z1 Z2 Zwei Ereignisse Z 1 und Z 2 heißen stochastisch unabhängig, wenn gilt: P(Z1 Z2 = P(Z1 P(Z2 Die bedingte Wahrscheinlichkeit P(Z1 Z2 wird definiert als: P(Z 1 Z 2 : P(Z 1 P(Z 2 Z April 2009 Risiko und Versicherung 7

8 Rechenregeln und grundlegende Definitionen Für stochastisch unabhängige Ereignisse Z 1 und Z 2 gilt: P(Z1 Z2 P(Z1 P(Z2 P(Z1 Z2 : P(Z1 P(Z P(Z 2 2 Satz von der totalen Wahrscheinlichkeit: Z i mit i = 1, 2,... seien abzählbar viele paarweise disjunkte Ereignisse. Für ein Ereignis A i1 Z i gilt: P(A i 1 P(Z i P(A Z i 28. April 2009 Risiko und Versicherung 8

9 Entscheidungsproblem des Versicherungsnehmers a 1 s 1 s 2 p(s 1 p(s 2... p(s j... w 1 w 2... w j... a 2 w w... w x 2 s j j x j w s n p(s n n w n x n s 1,s 2,... s n = Umweltzustände (s 1 = ungestörte Situation a 1 = Handlungsmöglichkeit nicht versichern a 2 = Handlungsmöglichkeit Versicherungsvertrag mit der Prämie und den Versicherungsleistungen x 2,... x n abschließen. w 1,w 2,... w n = Endvermögen des Versicherungsnehmers in Abhängigkeit von möglichen Realisationen des zu versichernden Risikos = Preis für Versicherungsschutz (Prämie x 2,x 3,... x n = Schadenzahlungen des Versicherers 28. April 2009 Risiko und Versicherung 9

10 Entscheidungsproblem des Versicherers a 1 a 2 s 2 p*(s 2... p*(s j k x... s 1 p*(s 1 k k x 2 s j j s n p*(s n 0 k xn p*(s j = a 1 = a 2 = k = (subjektive Wahrscheinlichkeitseinschätzung des Versicherers für den Eintritt des Umweltzustandes j Handlungsmöglichkeit nicht versichern Handlungsmöglichkeit versichern Betriebskosten, die für den Versicherungsvertrag anfallen 28. April 2009 Risiko und Versicherung 10

11 Beispiel Simulation : Aus einer Urne, die 10 Kugeln enthält (1 davon rot, die restlichen schwarz, wird dreimal jeweils eine Kugel gezogen, die anschließend wieder zurückgelegt wird. Die Ziehung einer roten Kugel bedeutet jeweils einen Schaden in Höhe von ,-. Wie sieht die (Gesamt- Schadenverteilung (x i, p i aus? Schadenzahl verteilung: Schadenverteilung : z i p i x i p i Angemessene Prämie/Mindestprämie? 28. April 2009 Risiko und Versicherung 11

12 Stichworte zum Bernoulli-Prinzip Bernoulli-Prinzip: Ein Entscheidungsträger besitzt eine auf dem Ergebnisraum definierte beschränkte, streng monoton wachsende, reellwertige Nutzenfunktion u (Bernoulli-Nutzenfunktion. Der Präferenzwert einer jeden Wahrscheinlichkeitsverteilung über dem Ergebnisraum errechnet sich als Erwartungswert der mit ihrem Nutzen bewerteten Ergebnisse (Erwartungsnutzen. 28. April 2009 Risiko und Versicherung 12

13 Das Sicherheitsäquivalent und die Risikoprämie Das Sicherheitsäquivalent (S(X einer zufälligen Größe ist dasjenige sichere Einkommen, das der Zufallsgröße als gleichwertig erachtet wird. U(S(X = EU(X u( := Nutzenfunktion S(X := Sicherheitsäquivalent EU(... := Erwartungsnutzen X := Lotterie Die Risikoprämie für eine Lotterie, ist das erwartete Einkommen, das ein Individuum aufzugeben bereit ist, um statt der Lotterie die sichere Auszahlung des Erwartungswertes der Lotterie zu erhalten: r X EX SX 28. April 2009 Risiko und Versicherung 13

14 Sicherheitsäquivalent (S(X Nutzen u(x u(x U[E(X] EU(X r(x W1 S(X E[X] W2 Vermögen W 28. April 2009 Risiko und Versicherung 14

15 Einsatz Der Einsatz für eine zufällige Größe ist dasjenige sichere Einkommen, für das ein Entscheidungsträger ein Risiko gerade noch übernehmen würde. U(w = E(U(w-E+ u( := Nutzenfunktion w := Anfangsvermögen E(... := Erwartungswert E := Einsatz := Risiko (Ergebnis der Lotterie Das Sicherheitsäquivalent entspricht im Allgemeinen nicht dem Einsatz. 28. April 2009 Risiko und Versicherung 15

16 Sicherheitsäquivalent Einfache Lotterie (25.000; 0,75; U(w U(w U[E(w+] E[U(w+] U(w U(w S(X r(x E[w+] E[] w w S(X+w E[w+] w w 28. April 2009 Risiko und Versicherung 16

17 Risikoaversion versus Risikoneutralität Ein Entscheidungsträger verhält sich risikoavers (risikoscheu, wenn er stets eine sichere Zahlung einer zufälligen Zahlung mit identischem Erwartungswert vorzieht. Risikoaversion kann als das zentrale Motiv für die Nachfrage nach Versicherungsschutz angesehen werden und ist deshalb in der Versicherungsökonomie von besonderer Bedeutung. Ein Entscheidungsträger heißt risikoneutral, wenn er stets eine zufällige Zahlung genauso beurteilt wie eine sichere Zahlung in Höhe des Erwartungswertes. 28. April 2009 Risiko und Versicherung 17

18 Risikoprospekt im μ-σ-diagramm April 2009 Risiko und Versicherung 18

19 Risikoprospekt im μ-σ-diagramm σ (µ 1, 1 σ 1 Indifferenzkurve VN1 S(X 1 μ1 =E [ 1 ] μ 28. April 2009 Risiko und Versicherung 19

Übung zu Risiko und Versicherung Entscheidungstheoretische Grundlagen

Übung zu Risiko und Versicherung Entscheidungstheoretische Grundlagen Übung zu Risiko Entscheidungstheoretische Grundlagen Stefan Neuß Sebastian Soika http://www.inriver.bwl.lmu.de Newsletter Auf der Homepage unter http://www.inriver.bwl.uni-muenchen.de/studium/sommer_203/bachelorveranstaltungen/risiko_und_versicherungen/index.html

Mehr

Übung zu Risiko und Versicherung Entscheidungstheoretische Grundlagen

Übung zu Risiko und Versicherung Entscheidungstheoretische Grundlagen Übung zu Risiko Entscheidungstheoretische Grundlagen Christoph Lex Dominik Lohmaier http://www.inriver.bwl.lmu.de Newsletter Auf der Homepage unter http://www.inriver.bwl.uni-muenchen.de/studium/sommer_04/bachelorveranstaltungen/risiko_und_versicherungen/index.html

Mehr

16 Risiko und Versicherungsmärkte

16 Risiko und Versicherungsmärkte 16 Risiko und Versicherungsmärkte Entscheidungen bei Unsicherheit sind Entscheidungen, die mehrere mögliche Auswirkungen haben. Kauf eines Lotterieloses Kauf einer Aktie Mitnahme eines Regenschirms Abschluss

Mehr

Vorlesung 2: Risikopräferenzen im Zustandsraum

Vorlesung 2: Risikopräferenzen im Zustandsraum Vorlesung 2: Risikopräferenzen im Zustandsraum Georg Nöldeke Wirtschaftswissenschaftliche Fakultät, Universität Basel Versicherungsökonomie VL 2, FS 12 Risikopräferenzen im Zustandsraum 1/29 2.1 Motivation

Mehr

Grundzüge der. Kapitel 5 Mikroökonomie (Mikro I) Entscheidungen unter Unsicherheit

Grundzüge der. Kapitel 5 Mikroökonomie (Mikro I) Entscheidungen unter Unsicherheit Grundzüge der Kapitel 5 Mikroökonomie (Mikro I) Entscheidungen unter Unsicherheit 1 BESCHREIBUNG VON RISIKO 2 Entscheidung unter Risiko Annahme: Wir kennen alle möglichen (sich gegenseitig ausschliessenden)

Mehr

2. Gesundheitsfinanzierung

2. Gesundheitsfinanzierung 2. Gesundheitsfinanzierung Inhalte dieses Abschnitts 2.1 Grundmodell der Versicherung Versicherungsmotiv Optimale Versicherungsnachfrage Aktuarisch faire und unfaire Prämien 145 2.1 Grundmodell der Versicherung

Mehr

I. Grundlagen. I. Grundlagen 1. Entscheidungen unter Unsicherheit. 1. Entscheidungen unter Unsicherheit

I. Grundlagen. I. Grundlagen 1. Entscheidungen unter Unsicherheit. 1. Entscheidungen unter Unsicherheit . Entscheidungen unter Unsicherheit I. Grundlagen. Entscheidungen unter Unsicherheit Elemente des Entscheidungsproblems eines Wirtschaftssubekts: Der Entscheidungsträger kann zwischen verschiedenen Aktionen

Mehr

KAPITEL 5. Erwartungswert

KAPITEL 5. Erwartungswert KAPITEL 5 Erwartungswert Wir betrachten einen diskreten Wahrscheinlichkeitsraum (Ω, P) und eine Zufallsvariable X : Ω R auf diesem Wahrscheinlichkeitsraum. Die Grundmenge Ω hat also nur endlich oder abzählbar

Mehr

Thema Nr. 4: Versicherungsentscheidungen der Nachfrager aus Sicht der Erwartungsnutzentheorie

Thema Nr. 4: Versicherungsentscheidungen der Nachfrager aus Sicht der Erwartungsnutzentheorie Thema Nr. 4: Versicherungsentscheidungen der Nachfrager aus Sicht der Erwartungsnutzentheorie Rosa Lee Annette Weiß Miriam Hussein Mirco Lomb Inhalt 1. Einleitung 2. Entscheidungstheorie 3. Erwartungsnutzentheorie

Mehr

Überblick: Entscheidungstheoretische Konzepte Seminar Online-Optimierung Diana Balbus

Überblick: Entscheidungstheoretische Konzepte Seminar Online-Optimierung Diana Balbus Überblick: Entscheidungstheoretische Konzepte Seminar Online-Optimierung Diana Balbus Einleitung Ein Online-Algorithmus muss Ausgaben berechnen, ohne zukünftige Eingaben zu kennen. Für die Bewertung von

Mehr

Vergleich von Entscheidungsträgern bzgl. ihrer Risikoaversion:

Vergleich von Entscheidungsträgern bzgl. ihrer Risikoaversion: Ist das Arrow-Pratt-Maß der absoluten Risikoaversion bekannt, so lässt sich daraus die Nutzenfunktion bestimmen: Mithilfe der Substitution y := U (w) dy = U (w)dw gilt: und daher U (w) U (w) dw = A a (w)dw

Mehr

Teil II. Wahrscheinlichkeitsrechnung

Teil II. Wahrscheinlichkeitsrechnung Teil II Wahrscheinlichkeitsrechnung Deskriptive Statistik und Wahrscheinlichkeitsrechnung (SS 2014) Folie 129 5 Zufallsexperimente Inhaltsverzeichnis (Ausschnitt) 5 Zufallsexperimente Ergebnisse Ereignisse

Mehr

Teil II. Wahrscheinlichkeitsrechnung. Inhaltsverzeichnis (Ausschnitt) Zufallsexperimente (Zufallsvorgänge) Ergebnisse

Teil II. Wahrscheinlichkeitsrechnung. Inhaltsverzeichnis (Ausschnitt) Zufallsexperimente (Zufallsvorgänge) Ergebnisse 5 Zufallsexperimente Inhaltsverzeichnis (Ausschnitt) Teil II Wahrscheinlichkeitsrechnung 5 Zufallsexperimente Ergebnisse Ereignisse Wahrscheinlichkeiten Deskriptive Statistik und Wahrscheinlichkeitsrechnung

Mehr

Prof. Dr. H. Rommelfanger: Entscheidungstheorie, Kapitel 3 38

Prof. Dr. H. Rommelfanger: Entscheidungstheorie, Kapitel 3 38 Prof. Dr. H. Rommelfanger: Entscheidungstheorie, Kapitel 3 38 Offene Fragen Warum ist ein ET bereit, für eine Feuerversicherung mit einer Versicherungshöhe von 1 Million und einer Jahreseintrittswahrscheinlichkeit

Mehr

Repetitorium zum Staatsexamen für Lehramtsstudenten. Informationswirtschaft & Planung und Entscheidung 30.05.2014 NB-201. Sommersemester 2014

Repetitorium zum Staatsexamen für Lehramtsstudenten. Informationswirtschaft & Planung und Entscheidung 30.05.2014 NB-201. Sommersemester 2014 Sommersemester 2014 Repetitorium zum Staatsexamen für Lehramtsstudenten Informationswirtschaft & Planung und Entscheidung 30.05.2014 NB-201 Lehrstuhl für ABWL und Wirtschaftsinformatik Prof. Dr. Alexandros

Mehr

Statistik I für Betriebswirte Vorlesung 5

Statistik I für Betriebswirte Vorlesung 5 Statistik I für Betriebswirte Vorlesung 5 PD Dr. Frank Heyde TU Bergakademie Freiberg Institut für Stochastik 07. Mai 2015 PD Dr. Frank Heyde Statistik I für Betriebswirte Vorlesung 5 1 Klassische Wahrscheinlichkeitsdefinition

Mehr

Vorlesung 3: Risikoaversion

Vorlesung 3: Risikoaversion Vorlesung 3: Risikoaversion Georg Nöldeke Wirtschaftswissenschaftliche Fakultät, Universität Basel Entscheidung VL 3 (FS 11) Risikoaversion 1 / 21 1. Modellrahmen In diesem Kapitel betrachten wir nur monetäre

Mehr

Einführung in die Wahrscheinlichkeitsrechnung

Einführung in die Wahrscheinlichkeitsrechnung Marco Cattaneo Institut für Statistik Ludwig-Maximilians-Universität München Sommersemester 2011 1. Wahrscheinlichkeitsrechnung 2. Diskrete Zufallsvariable 3. Stetige Zufallsvariable 4. Grenzwertsätze

Mehr

Mikroökonomie 1. Prof. Dr. Dennis A. V. Dittrich. Universität Erfurt. Wintersemester 08/09

Mikroökonomie 1. Prof. Dr. Dennis A. V. Dittrich. Universität Erfurt. Wintersemester 08/09 Mikroökonomie 1 Prof. Dr. Dennis A. V. Dittrich Universität Erfurt Wintersemester 08/09 Prof. Dittrich (Universität Erfurt) 1. Vorlesung 2008 Winter 1 / 41 Informationen zur Lehrveranstaltung Webseite

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 9. Übung SS 16: Woche vom

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 9. Übung SS 16: Woche vom Übungsaufgaben 9. Übung SS 16: Woche vom 5. 6. 10. 6. 2016 Stochastik III: Totale Wkt., S.v.Bayes, Diskrete ZG Aufgaben: s. pdf auf der homepage von Dr. Vanselow http://www.math.tu-dresden.de/ vanselow/...

Mehr

Adverse Selektion. Thushyanthan Baskaran thushyanthan.baskaran@awi.uni-heidelberg.de

Adverse Selektion. Thushyanthan Baskaran thushyanthan.baskaran@awi.uni-heidelberg.de Adverse Selektion Thushyanthan Baskaran thushyanthan.baskaran@awi.uni-heidelberg.de Fachbereich Finanzwissenschaft Alfred Weber Institut für Wirtschaftswissenschaften Ruprecht-Karls- Universität Heidelberg

Mehr

Kapitel 3. Zufallsvariable. Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion. Erwartungswert, Varianz und Standardabweichung

Kapitel 3. Zufallsvariable. Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion. Erwartungswert, Varianz und Standardabweichung Kapitel 3 Zufallsvariable Josef Leydold c 2006 Mathematische Methoden III Zufallsvariable 1 / 43 Lernziele Diskrete und stetige Zufallsvariable Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion

Mehr

1. Aufgabe: Entscheidungen bei Ungewissheit

1. Aufgabe: Entscheidungen bei Ungewissheit ( WS 2012/13) 1. Aufgabe: Entscheidungen bei Ungewissheit Ein Entscheider steht vor dem Problem aus einer Menge von Investitionsalternativen (a 1, a 2,..., a 5 ) die beste Alternative auszuwählen. Zu welchem

Mehr

Wahrscheinlichkeitsrechnung und Statistik

Wahrscheinlichkeitsrechnung und Statistik 3. Vorlesung - 21.10.2016 Bedingte Wahrscheinlichkeit In einer Urne sind 2 grüne und 3 blaue Kugeln. 2 Kugeln werden ohne Zürücklegen gezogen. Welches ist die Wahrscheinlichkeit, dass : a) man eine grüne

Mehr

STOCHASTISCHE UNABHÄNGIGKEIT. Annika Pohlmann Philipp Oel Wilhelm Dück

STOCHASTISCHE UNABHÄNGIGKEIT. Annika Pohlmann Philipp Oel Wilhelm Dück STOCHASTISCHE UNABHÄNGIGKEIT Annika Pohlmann Philipp Oel Wilhelm Dück 1 GLIEDERUNG 1) Bedingte Wahrscheinlichkeiten 2) Unabhängigkeit für mehr als zwei Ereignisse 3) Unabhängigkeit für Zufallsvariable

Mehr

Allgemeine diskrete Wahrscheinlichkeitsräume II. Beispiel II. Beispiel I. Definition 6.3 (Diskreter Wahrscheinlichkeitsraum)

Allgemeine diskrete Wahrscheinlichkeitsräume II. Beispiel II. Beispiel I. Definition 6.3 (Diskreter Wahrscheinlichkeitsraum) Allgemeine diskrete Wahrscheinlichkeitsräume I Allgemeine diskrete Wahrscheinlichkeitsräume II Verallgemeinerung von Laplaceschen Wahrscheinlichkeitsräumen: Diskrete Wahrscheinlichkeitsräume Ω endlich

Mehr

Allgemeine diskrete Wahrscheinlichkeitsräume I

Allgemeine diskrete Wahrscheinlichkeitsräume I 6 Diskrete Wahrscheinlichkeitsräume Allgemeine diskrete Wahrscheinlichkeitsräume 6.3 Allgemeine diskrete Wahrscheinlichkeitsräume I Verallgemeinerung von Laplaceschen Wahrscheinlichkeitsräumen: Diskrete

Mehr

Zufallsgrößen. Vorlesung Statistik für KW 29.04.2008 Helmut Küchenhoff

Zufallsgrößen. Vorlesung Statistik für KW 29.04.2008 Helmut Küchenhoff Zufallsgrößen 2.5 Zufallsgrößen 2.5.1 Verteilungsfunktion einer Zufallsgröße 2.5.2 Wahrscheinlichkeits- und Dichtefunktion Wahrscheinlichkeitsfunktion einer diskreten Zufallsgröße Dichtefunktion einer

Mehr

Statistik für Ingenieure Vorlesung 2

Statistik für Ingenieure Vorlesung 2 Statistik für Ingenieure Vorlesung 2 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 24. Oktober 2016 2.4 Bedingte Wahrscheinlichkeiten Häufig ist es nützlich, Bedingungen

Mehr

Mikroökonomik. Unsicherheit. Harald Wiese. Universität Leipzig. Harald Wiese (Universität Leipzig) Unsicherheit 1 / 46

Mikroökonomik. Unsicherheit. Harald Wiese. Universität Leipzig. Harald Wiese (Universität Leipzig) Unsicherheit 1 / 46 Mikroökonomik Unsicherheit Harald Wiese Universität Leipzig Harald Wiese (Universität Leipzig) Unsicherheit 1 / 46 Gliederung Einführung Haushaltstheorie Das Budget Präferenzen, Indi erenzkurven und Nutzenfunktionen

Mehr

Übungen zur Mathematik für Pharmazeuten

Übungen zur Mathematik für Pharmazeuten Blatt 1 Aufgabe 1. Wir betrachten den Ereignisraum Ω = {(i,j) 1 i,j 6} zum Zufallsexperiment des zweimaligem Würfelns. Sei A Ω das Ereignis Pasch, und B Ω das Ereignis, daß der erste Wurf eine gerade Augenzahl

Mehr

2.4 Entscheidung bei Risiko

2.4 Entscheidung bei Risiko 2.4 Entscheidung bei Risiko Entscheidung bei Risiko nimmt an, dass für jeden Zustand S j seine Eintrittswahrscheinlichkeit P(S j ) bekannt ist Eintrittswahrscheinlichkeiten bestimmbar als statistische

Mehr

4. Versicherungsangebot

4. Versicherungsangebot 4. Versicherungsangebot Georg Nöldeke Wirtschaftswissenschaftliche Fakultät, Universität Basel Versicherungsökonomie (FS 11) Versicherungsangebot 1 / 13 1. Einleitung 1.1 Hintergrund In einem grossen Teil

Mehr

Welche Gründe liefert die ökonomische Theorie für die Pflichtversicherung und die Versicherungspflicht?

Welche Gründe liefert die ökonomische Theorie für die Pflichtversicherung und die Versicherungspflicht? Welche Gründe liefert die ökonomische Theorie für die Pflichtversicherung und die Versicherungspflicht? Christoph Ziems 1. Einleitung... 3 2. Versicherung und Versicherungsmarkt... 4 2.1. Definition Versicherung...

Mehr

Lösungshinweise zu Übungsblatt 2

Lösungshinweise zu Übungsblatt 2 Lösungshinweise zu Übungsblatt 2 Aufgabe 1: Unsicherheit Gegeben sei ein Individuum mit streng monoton steigender und konkaver von Neumann- Morgenstern Nutzenfunktion. a) Erklären Sie anhand einer geeigneten

Mehr

1 Vorbemerkungen 1. 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2. 3 Wahrscheinlichkeitsaxiome 4. 4 Laplace-Experimente 6

1 Vorbemerkungen 1. 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2. 3 Wahrscheinlichkeitsaxiome 4. 4 Laplace-Experimente 6 Inhaltsverzeichnis 1 Vorbemerkungen 1 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2 3 Wahrscheinlichkeitsaxiome 4 4 Laplace-Experimente 6 5 Hilfsmittel aus der Kombinatorik 7 1 Vorbemerkungen

Mehr

6 Mehrstufige zufällige Vorgänge Lösungshinweise

6 Mehrstufige zufällige Vorgänge Lösungshinweise 6 Mehrstufige zufällige Vorgänge Lösungshinweise Aufgabe 6.: Begründen Sie, warum die stochastische Unabhängigkeit zweier Ereignisse bzw. zufälliger Vorgänge nur ein Modell der Realität darstellen kann.

Mehr

Wahrscheinlichkeitstheorie. Zapper und

Wahrscheinlichkeitstheorie. Zapper und Diskrete Wahrscheinlichkeitsräume Slide 1 Wahrscheinlichkeitstheorie die Wissenschaft der Zapper und Zocker Diskrete Wahrscheinlichkeitsräume Slide 2 Münzwürfe, Zufallsbits Elementarereignisse mit Wahrscheinlichkeiten

Mehr

Wichtige Informationen vorab

Wichtige Informationen vorab Wichtige Informationen vorab Wir haben eine Mailing Liste "Vorles- UebSS09Kapitalmarkt" eingerichtet. Über diese Mailingliste erhalten Sie in Zukunft die Vorlesungsunterlagen und die Übungsunterlagen.

Mehr

Wahrscheinlichkeitsrechnung und Statistik

Wahrscheinlichkeitsrechnung und Statistik 1. und 2. Vorlesung - 2017 Im Alltag... Laut den meteorologischen Vorhersagen wird es morgen regnen. Ob ich riskiere und die Wette verlieren werde? Ich werde mit Sicherheit gewinnen! Ist das wirklich unmöglich?

Mehr

Einführung. Wahrscheinlichkeit. 1 Wahrscheinlichkeit: Definition und Interpretation. 2 Elementare Wahrscheinlichkeitsrechnung, bedingte

Einführung. Wahrscheinlichkeit. 1 Wahrscheinlichkeit: Definition und Interpretation. 2 Elementare Wahrscheinlichkeitsrechnung, bedingte Einführung 1 Wahrscheinlichkeit: Definition und Interpretation 2 Elementare Wahrscheinlichkeitsrechnung, bedingte Wahrscheinlichkeit Axiome nach Kolmogorov Gegeben sei ein Zufallsexperiment mit Ergebnisraum

Mehr

Übungsklausur zur Vorlesung Wahrscheinlichkeit und Regression Thema: Wahrscheinlichkeit. Übungsklausur Wahrscheinlichkeit und Regression

Übungsklausur zur Vorlesung Wahrscheinlichkeit und Regression Thema: Wahrscheinlichkeit. Übungsklausur Wahrscheinlichkeit und Regression Übungsklausur Wahrscheinlichkeit und Regression 1. Welche der folgenden Aussagen treffen auf ein Zufallsexperiment zu? a) Ein Zufallsexperiment ist ein empirisches Phänomen, das in stochastischen Modellen

Mehr

3. Betriebswirtschaftliche Entscheidungslehre 3.6 Entscheidung unter Risiko

3. Betriebswirtschaftliche Entscheidungslehre 3.6 Entscheidung unter Risiko Dominanzprinzipien : Absolute Dominanz: Eine Alternative A i dominiert eine Alternative A j absolut, wenn das geringstmögliche Ergebnis von A i nicht kleiner ist als das grösstmögliche Ergebnis von A j,

Mehr

Grundlagen. Wozu Wahrscheinlichkeitsrechnung? Definition und Begriff der Wahrscheinlichkeit. Berechnung von Laplace-Wahrscheinlichkeiten

Grundlagen. Wozu Wahrscheinlichkeitsrechnung? Definition und Begriff der Wahrscheinlichkeit. Berechnung von Laplace-Wahrscheinlichkeiten Teil 2: Wahrscheinlichkeitsrechnung 326 Grundlagen Wozu Wahrscheinlichkeitsrechnung? Definition und egriff der Wahrscheinlichkeit erechnung von Laplace-Wahrscheinlichkeiten Rechnen mit einfachem Mengenkalkül

Mehr

Kapitel 5 Stochastische Unabhängigkeit

Kapitel 5 Stochastische Unabhängigkeit Kapitel 5 Stochastische Unabhängigkeit Vorlesung Wahrscheinlichkeitsrechnung I vom SoSe 2009 Lehrstuhl für Angewandte Mathematik 1 FAU 5.1 Das Konzept der stochastischen Unabhängigkeit. 1 Herleitung anhand

Mehr

1 Vorbemerkungen 1. 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2. 3 Wahrscheinlichkeitsaxiome 4. 4 Laplace-Experimente 6

1 Vorbemerkungen 1. 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2. 3 Wahrscheinlichkeitsaxiome 4. 4 Laplace-Experimente 6 Inhaltsverzeichnis 1 Vorbemerkungen 1 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2 3 Wahrscheinlichkeitsaxiome 4 4 Laplace-Experimente 5 Hilfsmittel aus der Kombinatorik 7 Bedingte

Mehr

Der Entscheidungsträger wählt aus einer Menge von Alternativen, dem Aktionenraum A = {a 1, a 2, a m }.

Der Entscheidungsträger wählt aus einer Menge von Alternativen, dem Aktionenraum A = {a 1, a 2, a m }. 1 Grundlagen Entscheidungstheorie: Der Entscheidungsträger wählt aus einer Menge von Alternativen, dem Aktionenraum A = {a 1, a 2, a m }. Annahmen: Der Entscheidungsträger ist gezwungen, eine der betrachteten

Mehr

Informatik II Grundbegriffe der Wahrscheinlichkeitsrechnung

Informatik II Grundbegriffe der Wahrscheinlichkeitsrechnung lausthal Begriffe Informatik II rundbegriffe der Wahrscheinlichkeitsrechnung. Zachmann lausthal University, ermany zach@in.tu-clausthal.de Definition: Unter einem Zufallsexperiment versteht man einen,

Mehr

Kapitel 6. Kapitel 6 Mehrstufige Zufallsexperimente

Kapitel 6. Kapitel 6 Mehrstufige Zufallsexperimente Mehrstufige Zufallsexperimente Inhalt 6.1 6.1 Mehrstufige Experimente 6.2 6.2 Bedingte Wahrscheinlichkeiten Seite 2 6.1 Mehrstufige Experimente Grundvorstellung: Viele Viele Experimente werden der der

Mehr

Variationen Permutationen Kombinationen

Variationen Permutationen Kombinationen Variationen Permutationen Kombinationen Mit diesen Rechenregeln lässt sich die Wahrscheinlichkeit bestimmter Ereigniskombinationen von gleichwahrscheinlichen Elementarereignissen ermitteln, und erleichtert

Mehr

Satz 18 (Satz von der totalen Wahrscheinlichkeit)

Satz 18 (Satz von der totalen Wahrscheinlichkeit) Ausgehend von der Darstellung der bedingten Wahrscheinlichkeit in Gleichung 1 zeigen wir: Satz 18 (Satz von der totalen Wahrscheinlichkeit) Die Ereignisse A 1,..., A n seien paarweise disjunkt und es gelte

Mehr

Rumpfskript. Elementare Wahrscheinlichkeitsrechnung. Prof. Dr. Ralf Runde Statistik und Ökonometrie, Universität Siegen

Rumpfskript. Elementare Wahrscheinlichkeitsrechnung. Prof. Dr. Ralf Runde Statistik und Ökonometrie, Universität Siegen Rumpfskript Elementare Wahrscheinlichkeitsrechnung Prof. Dr. Ralf Runde Statistik und Ökonometrie, Universität Siegen Vorbemerkung Vorbemerkung Das vorliegende Skript heißt nicht nur Rumpf skript, sondern

Mehr

WAHRSCHEINLICHKEITSRECHNUNG

WAHRSCHEINLICHKEITSRECHNUNG WAHRSCHEINLICHKEITSRECHNUNG Mathematischer Teil In der Wahrscheinlichkeitsrechnung haben wir es mit Zufallsexperimenten zu tun, d.h. Ausgang nicht vorhersagbar. Grundbegriffe Zufallsexperiment und Ergebnisse

Mehr

Entscheidungsbaum und Rollback-Verfahren

Entscheidungsbaum und Rollback-Verfahren Entscheidungen unter Unsicherheit 1 Sequentielle (Investitions-)Entscheidungen Normative Entscheidungstheorie und Rollback-Verfahren Entscheidungen unter Unsicherheit 2 Normative Entscheidungstheorie Ein

Mehr

Kapitel II - Wahrscheinlichkeitsraum

Kapitel II - Wahrscheinlichkeitsraum Institut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökonometrie und Statistik Kapitel II - Wahrscheinlichkeitsraum Wahrscheinlichkeitstheorie Prof. Dr. W.-D. Heller Hartwig Senska Carlo Siebenschuh

Mehr

Informatik II Grundbegriffe der Wahrscheinlichkeitsrechnung

Informatik II Grundbegriffe der Wahrscheinlichkeitsrechnung lausthal Informatik II rundbegriffe der Wahrscheinlichkeitsrechnung. Zachmann lausthal University, ermany zach@in.tu-clausthal.de Begriffe Definition: Unter einem Zufallsexperiment versteht man einen,

Mehr

Soll ein Zufallsexperiment näher untersucht werden, so muss zuerst geklärt werden, was man als dessen mögliche Ausgänge ansieht:

Soll ein Zufallsexperiment näher untersucht werden, so muss zuerst geklärt werden, was man als dessen mögliche Ausgänge ansieht: 2 Zufallsexperimente Nachdem wir uns spielerisch mit dem Phänomen "Zufall" beschäftigt und den Begriff "Zufallsexperiment" bereits intuitiv erfasst haben, wollen wir in diesem Kapitel den Begriff "Zufallsexperiment"

Mehr

Bei vielen Zufallsexperimenten interessiert man sich lediglich für das Eintreten bzw. das Nichteintreten eines bestimmten Ereignisses.

Bei vielen Zufallsexperimenten interessiert man sich lediglich für das Eintreten bzw. das Nichteintreten eines bestimmten Ereignisses. XI. Binomialverteilung ================================================================== 11.1 Definitionen -----------------------------------------------------------------------------------------------------------------

Mehr

3.3 Bedingte Wahrscheinlichkeit

3.3 Bedingte Wahrscheinlichkeit 28 3.3 Bedingte Wahrscheinlichkeit Oft ist die Wahrscheinlichkeit eines Ereignisses B gesucht unter der Bedingung (bzw. dem Wissen), dass ein Ereignis A bereits eingetreten ist. Man bezeichnet diese Wahrscheinlichkeit

Mehr

Entscheidungstheorie (SBWL) SS08

Entscheidungstheorie (SBWL) SS08 Fach: Prüfer: Veranstaltung: CP anrechnen lassen für: ggfls. streichen und dann bitte Veranstaltung und Prüfungsnummer angeben Banken und Finanzierung Prof. Dr. Dr. A. Löffler Entscheidungstheorie (SBWL)

Mehr

Welche Axiome sind Grundlage der axiomatischen Wahrscheinlichkeitsdefinition von Kolmogoroff?

Welche Axiome sind Grundlage der axiomatischen Wahrscheinlichkeitsdefinition von Kolmogoroff? 2. Übung: Wahrscheinlichkeitsrechnung Aufgabe 1 Welche Axiome sind Grundlage der axiomatischen Wahrscheinlichkeitsdefinition von Kolmogoroff? a) P ist nichtnegativ. b) P ist additiv. c) P ist multiplikativ.

Mehr

3.7 Wahrscheinlichkeitsrechnung II

3.7 Wahrscheinlichkeitsrechnung II 3.7 Wahrscheinlichkeitsrechnung II Inhaltsverzeichnis 1 bedingte Wahrscheinlichkeiten 2 2 unabhängige Ereignisse 5 3 mehrstufige Zufallsversuche 7 1 Wahrscheinlichkeitsrechnung II 28.02.2010 Theorie und

Mehr

Wichtige Begriffe und Sätze aus der Wahrscheinlichkeitsrechnung

Wichtige Begriffe und Sätze aus der Wahrscheinlichkeitsrechnung Wichtige Begriffe und Sätze aus der Wahrscheinlichkeitsrechnung Version: 22. September 2015 Evelina Erlacher 1 Mengen Es sei Ω eine Menge (die Universalmenge ) und A, B seien Teilmengen von Ω. Dann schreiben

Mehr

Modellierungskonzepte 2

Modellierungskonzepte 2 Modellierungskonzepte 2 Elke Warmuth Humboldt-Universität Berlin WS 2008/09 1 / 50 1 Pfadregeln 2 Begriff Umbewertung von Chancen Bayessche Formel 3 Verwechslungsgefahr Implizite Lotterien 2 / 50 mehrstufige

Mehr

htw saar 1 KAPITEL 4 BEDINGTE WAHRSCHEINLICHKEIT UND STOCHASTISCHE UNABHÄNGIGKEIT Hans-Peter Hafner WS 2016/2017

htw saar 1 KAPITEL 4 BEDINGTE WAHRSCHEINLICHKEIT UND STOCHASTISCHE UNABHÄNGIGKEIT Hans-Peter Hafner WS 2016/2017 htw saar 1 KAPITEL 4 BEDINGTE WAHRSCHEINLICHKEIT UND STOCHASTISCHE UNABHÄNGIGKEIT htw saar 2 Gliederung 25.01. Bedingte Wahrscheinlichkeit: Motivation und Definition Multiplikationssatz Stochastische Unabhängigkeit:

Mehr

Kapitel 5: Entscheidung unter Unsicherheit

Kapitel 5: Entscheidung unter Unsicherheit Kapitel 5: Entscheidung unter Unsicherheit Hauptidee: Die Konsequenzen einer Entscheidung sind oft unsicher. Wenn jeder möglichen Konsequenz eine Wahrscheinlichkeit zugeordnet wird, dann kann eine rationale

Mehr

Wichtige Definitionen und Aussagen

Wichtige Definitionen und Aussagen Wichtige Definitionen und Aussagen Zufallsexperiment, Ergebnis, Ereignis: Unter einem Zufallsexperiment verstehen wir einen Vorgang, dessen Ausgänge sich nicht vorhersagen lassen Die möglichen Ausgänge

Mehr

Einführung in die Stochastik

Einführung in die Stochastik Einführung in die Stochastik Josef G. Steinebach Köln, WS 2009/10 I Wahrscheinlichkeitsrechnung 1 Wahrscheinlichkeitsräume, Urnenmodelle Stochastik : Lehre von den Gesetzmäßigkeiten des Zufalls, Analyse

Mehr

Universität Basel Wirtschaftswissenschaftliches Zentrum. Zufallsvariablen. Dr. Thomas Zehrt

Universität Basel Wirtschaftswissenschaftliches Zentrum. Zufallsvariablen. Dr. Thomas Zehrt Universität Basel Wirtschaftswissenschaftliches Zentrum Zufallsvariablen Dr. Thomas Zehrt Inhalt: 1. Einführung 2. Zufallsvariablen 3. Diskrete Zufallsvariablen 4. Stetige Zufallsvariablen 5. Erwartungswert

Mehr

Satz von der totalen Wahrscheinlichkeit

Satz von der totalen Wahrscheinlichkeit htw saar 1 Satz von der totalen Wahrscheinlichkeit Sei (Ω, P) ein Wahrscheinlichkeitsraum, und B 1,, B n seien paarweise disjunkte Ereignisse mit B i = Ω. Für jedes Ereignis A gilt dann: P(A) = P(A B 1

Mehr

UE Statistik 1, SS 2015, letztes Update am 5. März Übungsbeispiele

UE Statistik 1, SS 2015, letztes Update am 5. März Übungsbeispiele UE Statistik, SS 05, letztes Update am 5. März 05 Übungsbeispiele Beispiele mit Musterlösungen finden Sie auch in dem Buch Brannath, W., Futschik, A., Krall, C., (00) Statistik im Studium der Wirtschaftswissenschaften..

Mehr

P A P( A B) Definition Wahrscheinlichkeit

P A P( A B) Definition Wahrscheinlichkeit Unabhaengige Ereignisse edingte Wahrscheinlichkeit Definition Wahrscheinlichkeit Die Wahrscheinlichkeit eines Ereignisses ist das Verhältnis der günstigen Ergebnisse zur Gesamtmenge der Ergebnisse nzahl

Mehr

1.5 Folgerungen aus dem Kolmogoroff- Axiomensystem P( ) = 0.

1.5 Folgerungen aus dem Kolmogoroff- Axiomensystem P( ) = 0. 1.5 Folgerungen aus dem Kolmogoroff- Axiomensystem Folg. 2 Sei (Ω, E, P) W.-raum. Seien A, B,A 1,...,A n Ereignisse. Es gelten die folgenden Aussagen: 1. P(A) = 1 P(A). 2. Für das unmögliche Ereignis gilt:

Mehr

Risiko und Versicherung

Risiko und Versicherung Sommer 2015 Risiko Prof. Dr. Andreas Richter richter@bwl.lmu.de Weitere Informationen auf unserer Instituts-Homepage http://www.inriver.bwl.lmu.de im Bereich Lehre/Sommer 2015/Bachelor Wer sind wir? Wo

Mehr

Wann ist diese Vorgehensweise berechtigt? Hierzu:

Wann ist diese Vorgehensweise berechtigt? Hierzu: IV. Risiko und Unsicherheit Risiko: Eine Entscheidung treffen, ohne den wahren Zustand der Welt zu kennen. Aber man kennt die Wahrscheinlichkeitsverteilung für die relevanten Zustände der Welt. z. B. {

Mehr

Kapitel 2. Wahrscheinlichkeit (wird heute behandelt) Kapitel 2. Wahrscheinlichkeit

Kapitel 2. Wahrscheinlichkeit (wird heute behandelt) Kapitel 2. Wahrscheinlichkeit Teil I: Wahrscheinlichkeitstheorie 1 Kapitel 2. Wahrscheinlichkeit (wird heute behandelt) Kapitel 3: Bedingte Wahrscheinlichkeit Kapitel 4: Zufallsvariablen Kapitel 5: Erwartungswerte, Varianz, Kovarianz

Mehr

Wahrscheinlichkeit (Teschl/Teschl 2, Kap. 26)

Wahrscheinlichkeit (Teschl/Teschl 2, Kap. 26) Wahrscheinlichkeit (Teschl/Teschl 2, Kap. 26) Gegeben Menge Ω (Wahscheinlichkeitsraum, Menge aller möglichen Ausgänge eines Zufallsexperiments), Abbildung P : P(Ω) [0, 1] (Wahrscheinlichkeit): Jeder Teilmenge

Mehr

Kapitel ML:IV. IV. Statistische Lernverfahren. Wahrscheinlichkeitsrechnung Bayes-Klassifikation Maximum-a-Posteriori-Hypothesen

Kapitel ML:IV. IV. Statistische Lernverfahren. Wahrscheinlichkeitsrechnung Bayes-Klassifikation Maximum-a-Posteriori-Hypothesen Kapitel ML:IV IV. Statistische Lernverfahren Wahrscheinlichkeitsrechnung Bayes-Klassifikation Maximum-a-Posteriori-Hypothesen ML:IV-1 Statistical Learning c STEIN 2005-2011 Definition 1 (Zufallsexperiment,

Mehr

Satz 16 (Multiplikationssatz)

Satz 16 (Multiplikationssatz) Häufig verwendet man die Definition der bedingten Wahrscheinlichkeit in der Form Damit: Pr[A B] = Pr[B A] Pr[A] = Pr[A B] Pr[B]. (1) Satz 16 (Multiplikationssatz) Seien die Ereignisse A 1,..., A n gegeben.

Mehr

1. Grundbegri e der Stochastik

1. Grundbegri e der Stochastik . Grundbegri e der Stochastik Raum der Ereignisse. Die einelementigen Teilmengen f!g heißen auch Elementarereignisse. Das Ereignis A tritt ein, wenn ein! A eintritt. A ist ein geeignetes System von Teilmengen

Mehr

2.Wichtige Begriffe für Entscheidungen bei Unsicherheit

2.Wichtige Begriffe für Entscheidungen bei Unsicherheit .Wichtige Begriffe für Entscheidungen bei Unsicherheit. Grundlagen Bisher: Rationales Individuum trifft Entscheidungen für Konsumpläne bei Sicherheit. Jetzt: Rationales Individuum trifft Entscheidungen

Mehr

Betriebswirtschaft 1. 1. Entscheidungstheorie

Betriebswirtschaft 1. 1. Entscheidungstheorie Betriebswirtschaft 1 Betriebswirtschaft 1 1. Entscheidungstheorie Lars Schmidt-Thieme Wirtschaftsinformatik und Maschinelles Lernen (ISMLL) Institut für Betriebswirtschaft und Wirtschaftsinformatik & Institut

Mehr

3 Bedingte Wahrscheinlichkeit, Unabhängigkeit

3 Bedingte Wahrscheinlichkeit, Unabhängigkeit 3 Bedingte Wahrscheinlichkeit, Unabhängigkeit Bisher : (Ω, A, P) zur Beschreibung eines Zufallsexperiments Jetzt : Zusatzinformation über den Ausgang des Experiments, etwa (das Ereignis) B ist eingetreten.

Mehr

Grundbegriffe der Wahrscheinlichkeitsrechnung

Grundbegriffe der Wahrscheinlichkeitsrechnung Algorithmen und Datenstrukturen 349 A Grundbegriffe der Wahrscheinlichkeitsrechnung Für Entwurf und Analyse randomisierter Algorithmen sind Hilfsmittel aus der Wahrscheinlichkeitsrechnung erforderlich.

Mehr

Grundlagen der Volkswirtschaftslehre Übungsblatt 11

Grundlagen der Volkswirtschaftslehre Übungsblatt 11 Grundlagen der Volkswirtschaftslehre Übungsblatt 11 Robert Poppe robert.poppe@uni-mannheim.de Universität Mannheim 25. November 2010 Überblick 1 Produktion und Wachstum 2 Kreditmarkt 3 Risikoeinstellung

Mehr

Wahrscheinlichkeitsrechnung

Wahrscheinlichkeitsrechnung Teil V Wahrscheinlichkeitsrechnung Inhaltsangabe 6 Einführung in die Wahrscheinlichkeitsrechnung 125 6.1 Kombinatorik......................... 125 6.2 Grundbegri e......................... 129 6.3 Wahrscheinlichkeiten.....................

Mehr

Es werden 120 Schüler befragt, ob sie ein Handy besitzen. Das Ergebnis der Umfrage lautet: Von 120 Schülern besitzen 99 ein Handy.

Es werden 120 Schüler befragt, ob sie ein Handy besitzen. Das Ergebnis der Umfrage lautet: Von 120 Schülern besitzen 99 ein Handy. R. Brinkmann http://brinkmann-du.de Seite 08..2009 Von der relativen Häufigkeit zur Wahrscheinlichkeit Es werden 20 Schüler befragt, ob sie ein Handy besitzen. Das Ergebnis der Umfrage lautet: Von 20 Schülern

Mehr

Kugel-Fächer-Modell. 1fach. 3fach. Für die Einzelkugel gibt es 3 Möglichkeiten. 6fach. 3! Möglichkeiten

Kugel-Fächer-Modell. 1fach. 3fach. Für die Einzelkugel gibt es 3 Möglichkeiten. 6fach. 3! Möglichkeiten Kugel-Fächer-Modell n Kugeln (Rosinen) sollen auf m Fächer (Brötchen) verteilt werden, zunächst 3 Kugeln auf 3 Fächer. 1fach 3fach Für die Einzelkugel gibt es 3 Möglichkeiten } 6fach 3! Möglichkeiten Es

Mehr

1 Grundbegriffe der Wahrscheinlichkeitsrechnung

1 Grundbegriffe der Wahrscheinlichkeitsrechnung 4 1 Grundbegriffe der Wahrscheinlichkeitsrechnung 1.1 Grundlegende Begriffe Der Begriff wahrscheinlich wird im Alltag in verschiedenen Situationen verwendet, hat dabei auch unterschiedliche Bedeutung.

Mehr

Zufallsprozesse, Ereignisse und Wahrscheinlichkeiten die Grundlagen

Zufallsprozesse, Ereignisse und Wahrscheinlichkeiten die Grundlagen Zufallsprozesse, Ereignisse und Wahrscheinlichkeiten die Grundlagen Wichtige Tatsachen und Formeln zur Vorlesung Mathematische Grundlagen für das Physikstudium 3 Franz Embacher http://homepage.univie.ac.at/franz.embacher/

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 8. Übung SS 16: Woche vom

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 8. Übung SS 16: Woche vom Übungsaufgaben 8. Übung SS 16: Woche vom 30. 5. 3.6. 2016 Stochastik II: Klassische Wkt.-Berechnung; Unabhängigkeit Aufgaben: s. pdf auf der homepage von Dr. Vanselow http://www.math.tu-dresden.de/ vanselow/...

Mehr

2. Rechnen mit Wahrscheinlichkeiten

2. Rechnen mit Wahrscheinlichkeiten 2. Rechnen mit Wahrscheinlichkeiten 2.1 Axiome der Wahrscheinlichkeitsrechnung Die Wahrscheinlichkeitsrechnung ist ein Teilgebiet der Mathematik. Es ist üblich, an den Anfang einer mathematischen Theorie

Mehr

Präsenzübungsaufgaben zur Vorlesung Elementare Sachversicherungsmathematik

Präsenzübungsaufgaben zur Vorlesung Elementare Sachversicherungsmathematik Präsenzübungsaufgaben zur Vorlesung Elementare Sachversicherungsmathematik Dozent: Volker Krätschmer Fakultät für Mathematik, Universität Duisburg-Essen, WS 2012/13 1. Präsenzübung Aufgabe T 1 Sei (Z 1,...,

Mehr

Aufgabe 1. Übung Wahrscheinlichkeitsrechnung Markus Kessler Seite 1 von 8. Die Ereignisse A, B und C erfüllen die Bedingungen

Aufgabe 1. Übung Wahrscheinlichkeitsrechnung Markus Kessler Seite 1 von 8. Die Ereignisse A, B und C erfüllen die Bedingungen Ü b u n g 1 Aufgabe 1 Die Ereignisse A, B und C erfüllen die Bedingungen P(A) = 0. 7, P(B) = 0. 6, P(C) = 0. 5 P(A B) = 0. 4, P(A C) = 0. 3, P(B C) = 0. 2, P(A B C) = 0. 1 Bestimmen Sie P(A B), P(A C),

Mehr

Einführung in die Wahrscheinlichkeitstheorie Lösungsvorschläge zu Übungsblatt 1

Einführung in die Wahrscheinlichkeitstheorie Lösungsvorschläge zu Übungsblatt 1 TUM, Zentrum Mathematik Lehrstuhl für Mathematische Physik WS 2013/ Prof. Dr. Silke Rolles Thomas Höfelsauer Felizitas Weidner Tutoraufgaben: Einführung in die Wahrscheinlichkeitstheorie svorschläge zu

Mehr

$ % + 0 sonst. " p für X =1 $

$ % + 0 sonst.  p für X =1 $ 31 617 Spezielle Verteilungen 6171 Bernoulli Verteilung Wir beschreiben zunächst drei diskrete Verteilungen und beginnen mit einem Zufallsexperiment, indem wir uns für das Eintreffen eines bestimmten Ereignisses

Mehr

Seminar Versicherungsrisiko und Ruin Prof. Hanspeter Schmidli 21,04,2009. Nutzentheorie

Seminar Versicherungsrisiko und Ruin Prof. Hanspeter Schmidli 21,04,2009. Nutzentheorie Seminar Versicherungsrisiko und Ruin Prof. Hanspeter Schmidli 21042009 Xin Wang Nutzentheorie 2.1 Einführung Die Nutzentheorie hat viele Anwendungen inbesondere in den Wirtschaftswissenschaften.In diesem

Mehr

Discrete Probability - Übungen (SS5) Wahrscheinlichkeitstheorie. 1. KR, Abschnitt 6.1, Aufgabe 5: 2. KR, Abschnitt 6.1, Aufgabe 7:

Discrete Probability - Übungen (SS5) Wahrscheinlichkeitstheorie. 1. KR, Abschnitt 6.1, Aufgabe 5: 2. KR, Abschnitt 6.1, Aufgabe 7: Discrete Probability - Übungen (SS5) Felix Rohrer Wahrscheinlichkeitstheorie 1. KR, Abschnitt 6.1, Aufgabe 5: Bestimmen Sie die Wahrscheinlichkeit dafür, dass die Augensumme von zwei geworfenen Würfeln

Mehr

Mikroökonomik B 2. Entscheidung bei Unsicherheit

Mikroökonomik B 2. Entscheidung bei Unsicherheit Mikroökonomik B 2. Entscheidung bei Unsicherheit Dennis L. Gärtner 14. April 2011 Entscheidung bei Unsicherheit Literaturangaben: Varian (2007), Kapitel 12, 13 Jehle und Reny (2001), Kapitel 2.4 Kreps

Mehr

Mikroökonomik B (Bachelor)

Mikroökonomik B (Bachelor) Bitte eintragen: Matrikel-Nr.: Mikroökonomik B (Bachelor) Prüfung vom 22.07.2014 Wichtige Hinweise: Sie haben 90 Minuten Zeit, um die folgenden drei Aufgaben zu insgesamt 90 Punkten zu bearbeiten. Teilen

Mehr