Risiko und Versicherung - Übung

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Risiko und Versicherung - Übung"

Transkript

1 Sommer 2009 Risiko und Versicherung - Übung Entscheidungstheoretische Grundlagen Renate Bodenstaff Vera Brinkmann https://insurance.uni-hohenheim.de 28. April 2009 Risiko und Versicherung 1

2 Das Grundmodell der Entscheidungstheorie Komponenten Aktionsraum (A: die Menge aller zur Verfügung stehenden Handlungsalternativen (a i Zustandsraum (S: die Menge aller vom Entscheidungsträger für möglich gehaltenen und für die Entscheidung relevanten Umweltzustände (s j Ergebnisraum (E: die Menge aller für möglich erachteten Ergebnisse (e ij Ergebnisfunktion f ordnet jedem Paar (a i, s j mit a i A, s j S ein Ergebnis e ij Ezu (vollständige, transitive Präferenzrelation 28. April 2009 Risiko und Versicherung 2

3 Das Grundmodell der Entscheidungstheorie S s 1 s 2... s j... s n a 1 e 11 e e 1j... e 1n a 2 e 21 e e 2j... e 2n A a i e i1 e i2... e ij... e in a m e m1 e m2... e mj... e mn E 28. April 2009 Risiko und Versicherung 3

4 Einige Aussagen über Wahrscheinlichkeiten Eine Wahrscheinlichkeit (meist p ist eine Zahl zwischen 0 und 1. Schließen sich die einzelnen Ereignisse gegenseitig aus (es kann entweder Ereignis 1 oder Ereignis 2 oder... eintreten, so ist die Summe der Wahrscheinlichkeiten über alle möglichen Ereignisse immer =1. Schließen sich die einzelnen Ereignisse gegenseitig aus, so ergibt sich die Wahrscheinlichkeit für ein kombiniertes Ereignis aus der Summe der einzelnen Wahrscheinlichkeiten (Additionssatz. Beispiel Würfeln: 28. April 2009 Risiko und Versicherung 4

5 Einige Aussagen über Wahrscheinlichkeiten Bei unabhängiger Wiederholung eines Zufallsexperiments ergibt sich die Wahrscheinlichkeit für ein Ereignis der Form erste Durchführung des Experiments führt zu Ergebnis 1, zweite Durchführung führt zu Ergebnis 2 durch Multiplikation der Einzelwahrscheinlichkeiten. Beispiel Würfeln: P( 1.Wurf=1 und 2.Wurf=2 =? 28. April 2009 Risiko und Versicherung 5

6 Definition Wahrscheinlichkeits-Maß (Axiome Eine Funktion P, die jedem Ereignis Z S eine reelle Zahl zuordnet, heißt Wahrscheinlichkeits- Maß, und P(Z heißt Wahrscheinlichkeit von Z, wenn gilt: 0 P( Z 1 1. für jedes Z S 2. P( S 1 3. Für abzählbar viele Ereignisse Z 1, Z 2,... mit gilt: Z i Z j = i j P( i1 Z i i1 P(Z i 28. April 2009 Risiko und Versicherung 6

7 Rechenregeln und grundlegende Definitionen Es gilt: P( = 0, P(S =1 P(Z+ P(Z c =1 mit Z c = S \ Z (Komplement von Z P(Z1 Z2 =P(Z1 + P(Z2 - P(Z1 Z2 Zwei Ereignisse Z 1 und Z 2 heißen stochastisch unabhängig, wenn gilt: P(Z1 Z2 = P(Z1 P(Z2 Die bedingte Wahrscheinlichkeit P(Z1 Z2 wird definiert als: P(Z 1 Z 2 : P(Z 1 P(Z 2 Z April 2009 Risiko und Versicherung 7

8 Rechenregeln und grundlegende Definitionen Für stochastisch unabhängige Ereignisse Z 1 und Z 2 gilt: P(Z1 Z2 P(Z1 P(Z2 P(Z1 Z2 : P(Z1 P(Z P(Z 2 2 Satz von der totalen Wahrscheinlichkeit: Z i mit i = 1, 2,... seien abzählbar viele paarweise disjunkte Ereignisse. Für ein Ereignis A i1 Z i gilt: P(A i 1 P(Z i P(A Z i 28. April 2009 Risiko und Versicherung 8

9 Entscheidungsproblem des Versicherungsnehmers a 1 s 1 s 2 p(s 1 p(s 2... p(s j... w 1 w 2... w j... a 2 w w... w x 2 s j j x j w s n p(s n n w n x n s 1,s 2,... s n = Umweltzustände (s 1 = ungestörte Situation a 1 = Handlungsmöglichkeit nicht versichern a 2 = Handlungsmöglichkeit Versicherungsvertrag mit der Prämie und den Versicherungsleistungen x 2,... x n abschließen. w 1,w 2,... w n = Endvermögen des Versicherungsnehmers in Abhängigkeit von möglichen Realisationen des zu versichernden Risikos = Preis für Versicherungsschutz (Prämie x 2,x 3,... x n = Schadenzahlungen des Versicherers 28. April 2009 Risiko und Versicherung 9

10 Entscheidungsproblem des Versicherers a 1 a 2 s 2 p*(s 2... p*(s j k x... s 1 p*(s 1 k k x 2 s j j s n p*(s n 0 k xn p*(s j = a 1 = a 2 = k = (subjektive Wahrscheinlichkeitseinschätzung des Versicherers für den Eintritt des Umweltzustandes j Handlungsmöglichkeit nicht versichern Handlungsmöglichkeit versichern Betriebskosten, die für den Versicherungsvertrag anfallen 28. April 2009 Risiko und Versicherung 10

11 Beispiel Simulation : Aus einer Urne, die 10 Kugeln enthält (1 davon rot, die restlichen schwarz, wird dreimal jeweils eine Kugel gezogen, die anschließend wieder zurückgelegt wird. Die Ziehung einer roten Kugel bedeutet jeweils einen Schaden in Höhe von ,-. Wie sieht die (Gesamt- Schadenverteilung (x i, p i aus? Schadenzahl verteilung: Schadenverteilung : z i p i x i p i Angemessene Prämie/Mindestprämie? 28. April 2009 Risiko und Versicherung 11

12 Stichworte zum Bernoulli-Prinzip Bernoulli-Prinzip: Ein Entscheidungsträger besitzt eine auf dem Ergebnisraum definierte beschränkte, streng monoton wachsende, reellwertige Nutzenfunktion u (Bernoulli-Nutzenfunktion. Der Präferenzwert einer jeden Wahrscheinlichkeitsverteilung über dem Ergebnisraum errechnet sich als Erwartungswert der mit ihrem Nutzen bewerteten Ergebnisse (Erwartungsnutzen. 28. April 2009 Risiko und Versicherung 12

13 Das Sicherheitsäquivalent und die Risikoprämie Das Sicherheitsäquivalent (S(X einer zufälligen Größe ist dasjenige sichere Einkommen, das der Zufallsgröße als gleichwertig erachtet wird. U(S(X = EU(X u( := Nutzenfunktion S(X := Sicherheitsäquivalent EU(... := Erwartungsnutzen X := Lotterie Die Risikoprämie für eine Lotterie, ist das erwartete Einkommen, das ein Individuum aufzugeben bereit ist, um statt der Lotterie die sichere Auszahlung des Erwartungswertes der Lotterie zu erhalten: r X EX SX 28. April 2009 Risiko und Versicherung 13

14 Sicherheitsäquivalent (S(X Nutzen u(x u(x U[E(X] EU(X r(x W1 S(X E[X] W2 Vermögen W 28. April 2009 Risiko und Versicherung 14

15 Einsatz Der Einsatz für eine zufällige Größe ist dasjenige sichere Einkommen, für das ein Entscheidungsträger ein Risiko gerade noch übernehmen würde. U(w = E(U(w-E+ u( := Nutzenfunktion w := Anfangsvermögen E(... := Erwartungswert E := Einsatz := Risiko (Ergebnis der Lotterie Das Sicherheitsäquivalent entspricht im Allgemeinen nicht dem Einsatz. 28. April 2009 Risiko und Versicherung 15

16 Sicherheitsäquivalent Einfache Lotterie (25.000; 0,75; U(w U(w U[E(w+] E[U(w+] U(w U(w S(X r(x E[w+] E[] w w S(X+w E[w+] w w 28. April 2009 Risiko und Versicherung 16

17 Risikoaversion versus Risikoneutralität Ein Entscheidungsträger verhält sich risikoavers (risikoscheu, wenn er stets eine sichere Zahlung einer zufälligen Zahlung mit identischem Erwartungswert vorzieht. Risikoaversion kann als das zentrale Motiv für die Nachfrage nach Versicherungsschutz angesehen werden und ist deshalb in der Versicherungsökonomie von besonderer Bedeutung. Ein Entscheidungsträger heißt risikoneutral, wenn er stets eine zufällige Zahlung genauso beurteilt wie eine sichere Zahlung in Höhe des Erwartungswertes. 28. April 2009 Risiko und Versicherung 17

18 Risikoprospekt im μ-σ-diagramm April 2009 Risiko und Versicherung 18

19 Risikoprospekt im μ-σ-diagramm σ (µ 1, 1 σ 1 Indifferenzkurve VN1 S(X 1 μ1 =E [ 1 ] μ 28. April 2009 Risiko und Versicherung 19

16 Risiko und Versicherungsmärkte

16 Risiko und Versicherungsmärkte 16 Risiko und Versicherungsmärkte Entscheidungen bei Unsicherheit sind Entscheidungen, die mehrere mögliche Auswirkungen haben. Kauf eines Lotterieloses Kauf einer Aktie Mitnahme eines Regenschirms Abschluss

Mehr

2. Gesundheitsfinanzierung

2. Gesundheitsfinanzierung 2. Gesundheitsfinanzierung Inhalte dieses Abschnitts 2.1 Grundmodell der Versicherung Versicherungsmotiv Optimale Versicherungsnachfrage Aktuarisch faire und unfaire Prämien 145 2.1 Grundmodell der Versicherung

Mehr

Thema Nr. 4: Versicherungsentscheidungen der Nachfrager aus Sicht der Erwartungsnutzentheorie

Thema Nr. 4: Versicherungsentscheidungen der Nachfrager aus Sicht der Erwartungsnutzentheorie Thema Nr. 4: Versicherungsentscheidungen der Nachfrager aus Sicht der Erwartungsnutzentheorie Rosa Lee Annette Weiß Miriam Hussein Mirco Lomb Inhalt 1. Einleitung 2. Entscheidungstheorie 3. Erwartungsnutzentheorie

Mehr

Statistik I für Betriebswirte Vorlesung 5

Statistik I für Betriebswirte Vorlesung 5 Statistik I für Betriebswirte Vorlesung 5 PD Dr. Frank Heyde TU Bergakademie Freiberg Institut für Stochastik 07. Mai 2015 PD Dr. Frank Heyde Statistik I für Betriebswirte Vorlesung 5 1 Klassische Wahrscheinlichkeitsdefinition

Mehr

Überblick: Entscheidungstheoretische Konzepte Seminar Online-Optimierung Diana Balbus

Überblick: Entscheidungstheoretische Konzepte Seminar Online-Optimierung Diana Balbus Überblick: Entscheidungstheoretische Konzepte Seminar Online-Optimierung Diana Balbus Einleitung Ein Online-Algorithmus muss Ausgaben berechnen, ohne zukünftige Eingaben zu kennen. Für die Bewertung von

Mehr

Prof. Dr. H. Rommelfanger: Entscheidungstheorie, Kapitel 3 38

Prof. Dr. H. Rommelfanger: Entscheidungstheorie, Kapitel 3 38 Prof. Dr. H. Rommelfanger: Entscheidungstheorie, Kapitel 3 38 Offene Fragen Warum ist ein ET bereit, für eine Feuerversicherung mit einer Versicherungshöhe von 1 Million und einer Jahreseintrittswahrscheinlichkeit

Mehr

Repetitorium zum Staatsexamen für Lehramtsstudenten. Informationswirtschaft & Planung und Entscheidung 30.05.2014 NB-201. Sommersemester 2014

Repetitorium zum Staatsexamen für Lehramtsstudenten. Informationswirtschaft & Planung und Entscheidung 30.05.2014 NB-201. Sommersemester 2014 Sommersemester 2014 Repetitorium zum Staatsexamen für Lehramtsstudenten Informationswirtschaft & Planung und Entscheidung 30.05.2014 NB-201 Lehrstuhl für ABWL und Wirtschaftsinformatik Prof. Dr. Alexandros

Mehr

Mikroökonomie 1. Prof. Dr. Dennis A. V. Dittrich. Universität Erfurt. Wintersemester 08/09

Mikroökonomie 1. Prof. Dr. Dennis A. V. Dittrich. Universität Erfurt. Wintersemester 08/09 Mikroökonomie 1 Prof. Dr. Dennis A. V. Dittrich Universität Erfurt Wintersemester 08/09 Prof. Dittrich (Universität Erfurt) 1. Vorlesung 2008 Winter 1 / 41 Informationen zur Lehrveranstaltung Webseite

Mehr

4. Versicherungsangebot

4. Versicherungsangebot 4. Versicherungsangebot Georg Nöldeke Wirtschaftswissenschaftliche Fakultät, Universität Basel Versicherungsökonomie (FS 11) Versicherungsangebot 1 / 13 1. Einleitung 1.1 Hintergrund In einem grossen Teil

Mehr

Zufallsgrößen. Vorlesung Statistik für KW 29.04.2008 Helmut Küchenhoff

Zufallsgrößen. Vorlesung Statistik für KW 29.04.2008 Helmut Küchenhoff Zufallsgrößen 2.5 Zufallsgrößen 2.5.1 Verteilungsfunktion einer Zufallsgröße 2.5.2 Wahrscheinlichkeits- und Dichtefunktion Wahrscheinlichkeitsfunktion einer diskreten Zufallsgröße Dichtefunktion einer

Mehr

Kapitel 3. Zufallsvariable. Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion. Erwartungswert, Varianz und Standardabweichung

Kapitel 3. Zufallsvariable. Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion. Erwartungswert, Varianz und Standardabweichung Kapitel 3 Zufallsvariable Josef Leydold c 2006 Mathematische Methoden III Zufallsvariable 1 / 43 Lernziele Diskrete und stetige Zufallsvariable Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion

Mehr

Grundlagen. Wozu Wahrscheinlichkeitsrechnung? Definition und Begriff der Wahrscheinlichkeit. Berechnung von Laplace-Wahrscheinlichkeiten

Grundlagen. Wozu Wahrscheinlichkeitsrechnung? Definition und Begriff der Wahrscheinlichkeit. Berechnung von Laplace-Wahrscheinlichkeiten Teil 2: Wahrscheinlichkeitsrechnung 326 Grundlagen Wozu Wahrscheinlichkeitsrechnung? Definition und egriff der Wahrscheinlichkeit erechnung von Laplace-Wahrscheinlichkeiten Rechnen mit einfachem Mengenkalkül

Mehr

6 Mehrstufige zufällige Vorgänge Lösungshinweise

6 Mehrstufige zufällige Vorgänge Lösungshinweise 6 Mehrstufige zufällige Vorgänge Lösungshinweise Aufgabe 6.: Begründen Sie, warum die stochastische Unabhängigkeit zweier Ereignisse bzw. zufälliger Vorgänge nur ein Modell der Realität darstellen kann.

Mehr

Übungen zur Mathematik für Pharmazeuten

Übungen zur Mathematik für Pharmazeuten Blatt 1 Aufgabe 1. Wir betrachten den Ereignisraum Ω = {(i,j) 1 i,j 6} zum Zufallsexperiment des zweimaligem Würfelns. Sei A Ω das Ereignis Pasch, und B Ω das Ereignis, daß der erste Wurf eine gerade Augenzahl

Mehr

Bei vielen Zufallsexperimenten interessiert man sich lediglich für das Eintreten bzw. das Nichteintreten eines bestimmten Ereignisses.

Bei vielen Zufallsexperimenten interessiert man sich lediglich für das Eintreten bzw. das Nichteintreten eines bestimmten Ereignisses. XI. Binomialverteilung ================================================================== 11.1 Definitionen -----------------------------------------------------------------------------------------------------------------

Mehr

Einführung in die Stochastik

Einführung in die Stochastik Einführung in die Stochastik Josef G. Steinebach Köln, WS 2009/10 I Wahrscheinlichkeitsrechnung 1 Wahrscheinlichkeitsräume, Urnenmodelle Stochastik : Lehre von den Gesetzmäßigkeiten des Zufalls, Analyse

Mehr

2. Rechnen mit Wahrscheinlichkeiten

2. Rechnen mit Wahrscheinlichkeiten 2. Rechnen mit Wahrscheinlichkeiten 2.1 Axiome der Wahrscheinlichkeitsrechnung Die Wahrscheinlichkeitsrechnung ist ein Teilgebiet der Mathematik. Es ist üblich, an den Anfang einer mathematischen Theorie

Mehr

Adverse Selektion. Thushyanthan Baskaran thushyanthan.baskaran@awi.uni-heidelberg.de

Adverse Selektion. Thushyanthan Baskaran thushyanthan.baskaran@awi.uni-heidelberg.de Adverse Selektion Thushyanthan Baskaran thushyanthan.baskaran@awi.uni-heidelberg.de Fachbereich Finanzwissenschaft Alfred Weber Institut für Wirtschaftswissenschaften Ruprecht-Karls- Universität Heidelberg

Mehr

1.5 Folgerungen aus dem Kolmogoroff- Axiomensystem P( ) = 0.

1.5 Folgerungen aus dem Kolmogoroff- Axiomensystem P( ) = 0. 1.5 Folgerungen aus dem Kolmogoroff- Axiomensystem Folg. 2 Sei (Ω, E, P) W.-raum. Seien A, B,A 1,...,A n Ereignisse. Es gelten die folgenden Aussagen: 1. P(A) = 1 P(A). 2. Für das unmögliche Ereignis gilt:

Mehr

Grundlagen der Volkswirtschaftslehre Übungsblatt 11

Grundlagen der Volkswirtschaftslehre Übungsblatt 11 Grundlagen der Volkswirtschaftslehre Übungsblatt 11 Robert Poppe robert.poppe@uni-mannheim.de Universität Mannheim 25. November 2010 Überblick 1 Produktion und Wachstum 2 Kreditmarkt 3 Risikoeinstellung

Mehr

Wahrscheinlichkeitstheorie. Zapper und

Wahrscheinlichkeitstheorie. Zapper und Diskrete Wahrscheinlichkeitsräume Slide 1 Wahrscheinlichkeitstheorie die Wissenschaft der Zapper und Zocker Diskrete Wahrscheinlichkeitsräume Slide 2 Münzwürfe, Zufallsbits Elementarereignisse mit Wahrscheinlichkeiten

Mehr

Variationen Permutationen Kombinationen

Variationen Permutationen Kombinationen Variationen Permutationen Kombinationen Mit diesen Rechenregeln lässt sich die Wahrscheinlichkeit bestimmter Ereigniskombinationen von gleichwahrscheinlichen Elementarereignissen ermitteln, und erleichtert

Mehr

Betriebswirtschaftliche Entscheidungstheorie und Anwendung

Betriebswirtschaftliche Entscheidungstheorie und Anwendung Betriebswirtschaftliche Entscheidungstheorie und Anwendung Kapitel 5: Entscheidungen unter Risiko Prof. Dr. Thorsten Poddig Lehrstuhl für Allgemeine Betriebswirtschaftslehre, insbes. Finanzwirtschaft Universität

Mehr

Entscheidungsbaum und Rollback-Verfahren

Entscheidungsbaum und Rollback-Verfahren Entscheidungen unter Unsicherheit 1 Sequentielle (Investitions-)Entscheidungen Normative Entscheidungstheorie und Rollback-Verfahren Entscheidungen unter Unsicherheit 2 Normative Entscheidungstheorie Ein

Mehr

Modellierungskonzepte 2

Modellierungskonzepte 2 Modellierungskonzepte 2 Elke Warmuth Humboldt-Universität Berlin WS 2008/09 1 / 50 1 Pfadregeln 2 Begriff Umbewertung von Chancen Bayessche Formel 3 Verwechslungsgefahr Implizite Lotterien 2 / 50 mehrstufige

Mehr

Rechnen mit einfachem Mengenkalkül

Rechnen mit einfachem Mengenkalkül edingte ahrscheinlichkeiten llgemeine Frage: Rechnen mit einfachem Mengenkalkül ie groß ist die ahrscheinlichkeit für ein Ereignis falls bereits ein Ereignis eingetreten ist (und der etrachter über diese

Mehr

Klausur zu Vorlesung und. Versicherungsmärkte am 19.02.2002

Klausur zu Vorlesung und. Versicherungsmärkte am 19.02.2002 Ludwig-Maximilians-Universität München Seminar für Versicherungswissenschaft Prof. Ray Rees / Prof. Achim Wambach, D.Phil. Versicherungsmärkte WS 2001 / 2002 Diplomprüfung für Volkswirte Klausur zu Vorlesung

Mehr

R. Brinkmann http://brinkmann-du.de Seite 1 30.11.2013 Schriftliche Übung Mathematik Stochastik II (Nachschreiber) Jan. 2007

R. Brinkmann http://brinkmann-du.de Seite 1 30.11.2013 Schriftliche Übung Mathematik Stochastik II (Nachschreiber) Jan. 2007 R. Brinkmann http://brinkmann-du.de Seite 1 30.11.2013 Schriftliche Übung Mathematik Stochastik II (Nachschreiber) Jan. 2007 SG15/25D NAME: Lösungen 1. In einer Packung sind Glühbirnen, davon sind zwei

Mehr

2 Grundbegriffe der Stochastik

2 Grundbegriffe der Stochastik 2.0 Grundbegriffe der Stochastik 76 2 Grundbegriffe der Stochastik In der beschreibenden Statistik (Kapitel 1) haben wir die zu analysierenden Daten als gegeben hingenommen und nicht genauer hinterfragt,

Mehr

Statistik 1: Einführung

Statistik 1: Einführung Seite Stat- Statistik : Einführung Die mathematische Disziplin der Stochastik, die die Teilgebiete Wahrscheinlichkeitstheorie und mathematische Statistik umfaßt, beschäftigt sich mit der Beobachtung, Aufzeichnung

Mehr

Betriebswirtschaft 1. 1. Entscheidungstheorie

Betriebswirtschaft 1. 1. Entscheidungstheorie Betriebswirtschaft 1 Betriebswirtschaft 1 1. Entscheidungstheorie Lars Schmidt-Thieme Wirtschaftsinformatik und Maschinelles Lernen (ISMLL) Institut für Betriebswirtschaft und Wirtschaftsinformatik & Institut

Mehr

BONUS MALUS SYSTEME UND MARKOV KETTEN

BONUS MALUS SYSTEME UND MARKOV KETTEN Fakultät Mathematik und Naturwissenschaften, Fachrichtung Mathematik, Institut für Mathematische Stochastik BONUS MALUS SYSTEME UND MARKOV KETTEN Klaus D. Schmidt Ringvorlesung TU Dresden Fakultät MN,

Mehr

Welche Gründe liefert die ökonomische Theorie für die Pflichtversicherung und die Versicherungspflicht?

Welche Gründe liefert die ökonomische Theorie für die Pflichtversicherung und die Versicherungspflicht? Welche Gründe liefert die ökonomische Theorie für die Pflichtversicherung und die Versicherungspflicht? Christoph Ziems 1. Einleitung... 3 2. Versicherung und Versicherungsmarkt... 4 2.1. Definition Versicherung...

Mehr

Risiko und Versicherung

Risiko und Versicherung Sommer 2015 Risiko Prof. Dr. Andreas Richter richter@bwl.lmu.de Weitere Informationen auf unserer Instituts-Homepage http://www.inriver.bwl.lmu.de im Bereich Lehre/Sommer 2015/Bachelor Wer sind wir? Wo

Mehr

Schleswig-Holsteinische Ergänzung der Musteraufgaben für den hilfsmittelfreien Teil der schriftlichen Abiturprüfung im Fach Mathematik ab 2015

Schleswig-Holsteinische Ergänzung der Musteraufgaben für den hilfsmittelfreien Teil der schriftlichen Abiturprüfung im Fach Mathematik ab 2015 ische Ergänzung der für den hilfsmittelfreien Teil der schriftlichen Abiturprüfung im Fach Mathematik ab 2015 Ministerium für ildung und Wissenschaft des Landes Juni 2013 1 für Aufgabenpool 1 Analysis

Mehr

Allgemeine Definition von statistischer Abhängigkeit (1)

Allgemeine Definition von statistischer Abhängigkeit (1) Allgemeine Definition von statistischer Abhängigkeit (1) Bisher haben wir die statistische Abhängigkeit zwischen Ereignissen nicht besonders beachtet, auch wenn wir sie wie im Fall zweier disjunkter Mengen

Mehr

3.7 Wahrscheinlichkeitsrechnung II

3.7 Wahrscheinlichkeitsrechnung II 3.7 Wahrscheinlichkeitsrechnung II Inhaltsverzeichnis 1 bedingte Wahrscheinlichkeiten 2 2 unabhängige Ereignisse 5 3 mehrstufige Zufallsversuche 7 1 Wahrscheinlichkeitsrechnung II 28.02.2010 Theorie und

Mehr

Mikroökonomik B 2. Entscheidung bei Unsicherheit

Mikroökonomik B 2. Entscheidung bei Unsicherheit Mikroökonomik B 2. Entscheidung bei Unsicherheit Dennis L. Gärtner 14. April 2011 Entscheidung bei Unsicherheit Literaturangaben: Varian (2007), Kapitel 12, 13 Jehle und Reny (2001), Kapitel 2.4 Kreps

Mehr

6.1 Grundlagen der Wahrscheinlichkeitsrechnung 6.1.1 Definitionen und Beispiele Beispiel 1 Zufallsexperiment 1,2,3,4,5,6 Elementarereignis

6.1 Grundlagen der Wahrscheinlichkeitsrechnung 6.1.1 Definitionen und Beispiele Beispiel 1 Zufallsexperiment 1,2,3,4,5,6 Elementarereignis 1 6.1 Grundlagen der Wahrscheinlichkeitsrechnung 6.1.1 Definitionen und Beispiele Spiele aus dem Alltagsleben: Würfel, Münzen, Karten,... u.s.w. sind gut geeignet die Grundlagen der Wahrscheinlichkeitsrechnung

Mehr

P X =3 = 2 36 P X =5 = 4 P X =6 = 5 36 P X =8 = 5 36 P X =9 = 4 P X =10 = 3 36 P X =11 = 2 36 P X =12 = 1

P X =3 = 2 36 P X =5 = 4 P X =6 = 5 36 P X =8 = 5 36 P X =9 = 4 P X =10 = 3 36 P X =11 = 2 36 P X =12 = 1 Übungen zur Stochastik - Lösungen 1. Ein Glücksrad ist in 3 kongruente Segmente aufgeteilt. Jedes Segment wird mit genau einer Zahl beschriftet, zwei Segmente mit der Zahl 0 und ein Segment mit der Zahl

Mehr

Effizienzgründe für die Existenz einer Sozialversicherung

Effizienzgründe für die Existenz einer Sozialversicherung Soziale Sicherung A.3.1 Effizienzgründe für die Existenz einer Sozialversicherung Erster Hauptsatz der Wohlfahrtsökonomik: In einer Ökonomie mit rein privaten Gütern und einer perfekten Eigentumsordnung

Mehr

Finanzierung und Investition

Finanzierung und Investition Kruschwitz/Husmann (2012) Finanzierung und Investition 1/40 Finanzierung und Investition Kruschwitz/Husmann (2012) Oldenbourg Verlag München 7. Auflage, Kapitel 2 Kruschwitz/Husmann (2012) Finanzierung

Mehr

Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt!

Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt! Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt! 1 Einführung 2 Wahrscheinlichkeiten kurz gefasst 3 Zufallsvariablen und Verteilungen 4 Theoretische Verteilungen (Wahrscheinlichkeitsfunktion)

Mehr

Übungsaufgaben zur Vorlesung Risikotransformationstheorie

Übungsaufgaben zur Vorlesung Risikotransformationstheorie Übungsaufgaben zur Vorlesung Risikotransformationstheorie 2 Unsicherheit 2.1 Stochastische Größen (1) Berechnen Sie Erwartungswert und Varianz für folgende Zufallsvariable: X = 0 100 400 04, 05, 01,! (2)

Mehr

Präsenzübungsaufgaben zur Vorlesung Elementare Sachversicherungsmathematik

Präsenzübungsaufgaben zur Vorlesung Elementare Sachversicherungsmathematik Präsenzübungsaufgaben zur Vorlesung Elementare Sachversicherungsmathematik Dozent: Volker Krätschmer Fakultät für Mathematik, Universität Duisburg-Essen, WS 2012/13 1. Präsenzübung Aufgabe T 1 Sei (Z 1,...,

Mehr

Thema Nr. 4: Versicherungsentscheidungen der Nachfrager aus Sicht der Erwartungsnutzentheorie

Thema Nr. 4: Versicherungsentscheidungen der Nachfrager aus Sicht der Erwartungsnutzentheorie Thema Nr. 4: Versicherungsentscheidungen der Nachfrager aus Sicht der Erwartungsnutzentheorie Seminararbeit eingereicht bei Prof. Dr. Klaus Peter Kaas Lehrstuhl für Marketing I, Fachbereich Wirtschaftswissenschaften

Mehr

$ % + 0 sonst. " p für X =1 $

$ % + 0 sonst.  p für X =1 $ 31 617 Spezielle Verteilungen 6171 Bernoulli Verteilung Wir beschreiben zunächst drei diskrete Verteilungen und beginnen mit einem Zufallsexperiment, indem wir uns für das Eintreffen eines bestimmten Ereignisses

Mehr

Regelmäßigkeit (Erkennen von Mustern und Zusammenhängen) versus Zufall

Regelmäßigkeit (Erkennen von Mustern und Zusammenhängen) versus Zufall Wahrscheinlichkeitstheorie Was will die Sozialwissenschaft damit? Regelmäßigkeit (Erkennen von Mustern und Zusammenhängen) versus Zufall Auch im Alltagsleben arbeiten wir mit Wahrscheinlichkeiten, besteigen

Mehr

Risiko-Management I. Was ist Risiko? Summe aller Möglichkeiten, sodass sich die Erwartungen eines Systems aufgrund von

Risiko-Management I. Was ist Risiko? Summe aller Möglichkeiten, sodass sich die Erwartungen eines Systems aufgrund von Risiko-Management I Was ist Risiko? Summe aller Möglichkeiten, sodass sich die Erwartungen eines Systems aufgrund von Störfällen nicht erfüllen. eine Unsicherheit; alles, das nicht 100% vorhergesagt werden

Mehr

Aufgabe 1: Asset Allocation

Aufgabe 1: Asset Allocation Aufgabe 1: Asset Allocation (40 Punkte) 2 1 2 Ein nutzenmaximierender Akteur mit der Präferenzfunktion (, ) a verfügt in 2 einer Zwei-Zeitpunkt-Welt über Eigenkapital in Höhe von 500 Yuan (Y), das er für

Mehr

Schleswig-Holsteinische Ergänzung der Musteraufgaben für den hilfsmittelfreien Teil der schriftlichen Abiturprüfung im Fach Mathematik ab 2015

Schleswig-Holsteinische Ergänzung der Musteraufgaben für den hilfsmittelfreien Teil der schriftlichen Abiturprüfung im Fach Mathematik ab 2015 ische Ergänzung der für den hilfsmittelfreien Teil der schriftlichen Abiturprüfung im Fach Mathematik ab 2015 Ministerium für ildung und Wissenschaft des Landes Juni 2013 1 Inhaltsverzeichnis Vorbemerkungen

Mehr

Kugel-Fächer-Modell. 1fach. 3fach. Für die Einzelkugel gibt es 3 Möglichkeiten. 6fach. 3! Möglichkeiten

Kugel-Fächer-Modell. 1fach. 3fach. Für die Einzelkugel gibt es 3 Möglichkeiten. 6fach. 3! Möglichkeiten Kugel-Fächer-Modell n Kugeln (Rosinen) sollen auf m Fächer (Brötchen) verteilt werden, zunächst 3 Kugeln auf 3 Fächer. 1fach 3fach Für die Einzelkugel gibt es 3 Möglichkeiten } 6fach 3! Möglichkeiten Es

Mehr

Name:... Matrikel-Nr.:... 3 Aufgabe Handyklingeln in der Vorlesung (9 Punkte) Angenommen, ein Student führt ein Handy mit sich, das mit einer Wahrscheinlichkeit von p während einer Vorlesung zumindest

Mehr

Data Mining: Einige Grundlagen aus der Stochastik

Data Mining: Einige Grundlagen aus der Stochastik Data Mining: Einige Grundlagen aus der Stochastik Hagen Knaf Studiengang Angewandte Mathematik Hochschule RheinMain 21. Oktober 2015 Vorwort Das vorliegende Skript enthält eine Zusammenfassung verschiedener

Mehr

Einführung in die Stochastik

Einführung in die Stochastik Vorlesungsnotizen Einführung in die Stochastik Hanspeter Schmidli Mathematisches Institut der Universität zu Köln INHALTSVERZEICHNIS iii Inhaltsverzeichnis 1. Diskrete Wahrscheinlichkeitsräume 1 1.1.

Mehr

Seminar Versicherungsrisiko und Ruin Prof. Hanspeter Schmidli 21,04,2009. Nutzentheorie

Seminar Versicherungsrisiko und Ruin Prof. Hanspeter Schmidli 21,04,2009. Nutzentheorie Seminar Versicherungsrisiko und Ruin Prof. Hanspeter Schmidli 21042009 Xin Wang Nutzentheorie 2.1 Einführung Die Nutzentheorie hat viele Anwendungen inbesondere in den Wirtschaftswissenschaften.In diesem

Mehr

1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage:

1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage: Zählen und Zahlbereiche Übungsblatt 1 1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage: Für alle m, n N gilt m + n = n + m. in den Satz umschreiben:

Mehr

Markovketten. Bsp. Page Ranking für Suchmaschinen. Wahlfach Entscheidung unter Risiko und stat. Datenanalyse 07.01.2015

Markovketten. Bsp. Page Ranking für Suchmaschinen. Wahlfach Entscheidung unter Risiko und stat. Datenanalyse 07.01.2015 Markovketten Markovketten sind ein häufig verwendetes Modell zur Beschreibung von Systemen, deren Verhalten durch einen zufälligen Übergang von einem Systemzustand zu einem anderen Systemzustand gekennzeichnet

Mehr

Skript zur Statistik II (Wahrscheinlickeitsrechnung und induktive Statistik)

Skript zur Statistik II (Wahrscheinlickeitsrechnung und induktive Statistik) Prof. Dr. Reinhold Kosfeld Fachbereich Wirtschaftswissenschaften Skript zur Statistik II (Wahrscheinlickeitsrechnung und induktive Statistik) 1. Einleitung Deskriptive Statistik: Allgemeine und spezielle

Mehr

Klassische Risikomodelle

Klassische Risikomodelle Klassische Risikomodelle Kathrin Sachernegg 15. Jänner 2008 1 Inhaltsverzeichnis 1 Einführung 3 1.1 Begriffserklärung.................................. 3 2 Individuelles Risikomodell 3 2.1 Geschlossenes

Mehr

Aufgabe 2.1. Ergebnis, Ergebnismenge, Ereignis

Aufgabe 2.1. Ergebnis, Ergebnismenge, Ereignis Aufgabe 2. Ergebnis, Ergebnismenge, Ereignis Ergebnis und Ergebnismenge Vorgänge mit zufälligem Ergebnis, oft Zufallsexperiment genannt Bei der Beschreibung der Ergebnisse wird stets ein bestimmtes Merkmal

Mehr

Grundbegriffe der Wahrscheinlichkeitstheorie

Grundbegriffe der Wahrscheinlichkeitstheorie KAPITEL 1 Grundbegriffe der Wahrscheinlichkeitstheorie 1. Zufallsexperimente, Ausgänge, Grundmenge In der Stochastik betrachten wir Zufallsexperimente. Die Ausgänge eines Zufallsexperiments fassen wir

Mehr

Zufallsgrößen und Wahrscheinlichkeitsverteilungen

Zufallsgrößen und Wahrscheinlichkeitsverteilungen RS 24.2.2005 Zufallsgroessen_i.mcd 1) Zufallsgröße Zufallsgrößen und Wahrscheinlichkeitsverteilungen Zu jedem Zufallsexeriment gehört ein Ergebnisraum Ω. Die einzelnen Ergebnisse ω i können Buchstaben,

Mehr

Ökonomische Analyse des Unternehmensverhaltens

Ökonomische Analyse des Unternehmensverhaltens Ökonomische Analyse des Unternehmensverhaltens M. Sc. Kernfeld Modul fld d l Unternehmensstrategie und Markterfolg Univ. Prof. Dr. Karl Morasch Volkswirtschaftslehre, insbesondere Mikroökonomie und Wettbewerbspolitik

Mehr

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Universität Duisburg-Essen Essen, den 0.0.009 Fachbereich Mathematik Prof. Dr. M. Winkler C. Stinner Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Lösung Die Klausur gilt als bestanden,

Mehr

3.2. Aufgaben zu mehrstufigen Zufallsexperimenten

3.2. Aufgaben zu mehrstufigen Zufallsexperimenten .. Aufgaben zu mehrstufigen Zufallsexperimenten Aufgabe : Baumdiagramm mit Erwartungswert beim zweimaligen Würfeln Ein ungezinkter sechsseitiger Würfel wird zweimal geworfen. a) Zeichne einen repräsentativen

Mehr

y 1 2 3 4 5 6 P (Y = y) 1/6 1/6 1/6 1/6 1/6 1/6

y 1 2 3 4 5 6 P (Y = y) 1/6 1/6 1/6 1/6 1/6 1/6 Fachhochschule Köln Fakultät für Wirtschaftswissenschaften Prof. Dr. Arrenberg Raum 221, Tel. 39 14 jutta.arrenberg@fh-koeln.de Übungen zur Statistik für Prüfungskandidaten und Prüfungskandidatinnen Unabhängigkeit

Mehr

Informationsökonomik: Anwendung Versicherungsmarkt

Informationsökonomik: Anwendung Versicherungsmarkt Informationsökonomik: Anwendung Versicherungsmarkt Tone Arnold Universität des Saarlandes 13. Dezember 2007 Tone Arnold (Universität des Saarlandes) Informationsökonomik: Anwendung Versicherungsmarkt 13.

Mehr

WAHRSCHEINLICHKEITSTHEORIE I und II. Vorlesungsskript

WAHRSCHEINLICHKEITSTHEORIE I und II. Vorlesungsskript WAHRSCHEINLICHKEITSTHEORIE I und II Wolfgang König TU Berlin und WIAS Berlin Vorlesungsskript SS 2005 und WS 2005/06 überarbeitet im WS 2008/09 kleine Korrekturen im März und Juli 2012 und im März 2013

Mehr

Betrachten Sie im folgenden einen Monopolmarkt. Die Preis-Absatz-Funktion verlaufe

Betrachten Sie im folgenden einen Monopolmarkt. Die Preis-Absatz-Funktion verlaufe Aufgabe 1 Betrachten Sie im folgenden einen Monopolmarkt. Die Preis-Absatz-Funktion verlaufe fallend. Wahr Falsch a) Die notwendige Bedingung für ein Gewinnmaximum des Monopolisten lautet Grenzerlös=Grenzkosten.

Mehr

5.Unsicherheit. 5.1WahrscheinlichkeitundRisiko

5.Unsicherheit. 5.1WahrscheinlichkeitundRisiko 1 5.Unsicherheit Bisher sind wir von vollständiger Planungssicherheit seitens der Entscheidungsträger ausgegangen. Dies trifft in vielen Fällen natürlich nicht den Kern eines Entscheidungsproblems.Wennz.B.eineEntscheidungfürdenKaufvonAktiengetroffen

Mehr

Übungsaufgaben Wahrscheinlichkeit

Übungsaufgaben Wahrscheinlichkeit Übungsaufgaben Wahrscheinlichkeit Aufgabe 1 (mdb500405): In einer Urne befinden sich gelbe (g), rote (r), blaue (b) und weiße (w) Kugel (s. Bild). Ohne Hinsehen sollen aus der Urne in einem Zug Kugeln

Mehr

Mathematik: Mag. Schmid Wolfgang & LehrerInnenteam Arbeitsblatt 7-9 7. Semester ARBEITSBLATT 7-9. Was ist Wahrscheinlichkeit

Mathematik: Mag. Schmid Wolfgang & LehrerInnenteam Arbeitsblatt 7-9 7. Semester ARBEITSBLATT 7-9. Was ist Wahrscheinlichkeit ARBEITSBLATT 7-9 Was ist Wahrscheinlichkeit "Ein guter Mathematiker kann berechnen, welche Zahl beim Roulette als nächstes kommt", ist eine Aussage, die einfach falsch ist. Zwar befassen sich Mathematiker

Mehr

Mathematik-Dossier 5 Wahrscheinlichkeit Regelmässigkeit des Zufalls (angepasst an das Lehrmittel Mathematik 1)

Mathematik-Dossier 5 Wahrscheinlichkeit Regelmässigkeit des Zufalls (angepasst an das Lehrmittel Mathematik 1) Name: Mathematik-Dossier 5 Wahrscheinlichkeit Regelmässigkeit des Zufalls (angepasst an das Lehrmittel Mathematik 1) Inhalt: Absolute und relative Häufigkeit Wahrscheinlichkeit Voraussagen mit Wahrscheinlichkeit

Mehr

Einführung in die Computerlinguistik Statistische Grundlagen

Einführung in die Computerlinguistik Statistische Grundlagen Statistik 1 Sommer 2015 Einführung in die Computerlinguistik Statistische Grundlagen Laura Heinrich-Heine-Universität Düsseldorf Sommersemester 2015 Statistik 2 Sommer 2015 Überblick 1. Diskrete Wahrscheinlichkeitsräume

Mehr

Beispiel 48. 4.3.2 Zusammengesetzte Zufallsvariablen

Beispiel 48. 4.3.2 Zusammengesetzte Zufallsvariablen 4.3.2 Zusammengesetzte Zufallsvariablen Beispiel 48 Ein Würfel werde zweimal geworfen. X bzw. Y bezeichne die Augenzahl im ersten bzw. zweiten Wurf. Sei Z := X + Y die Summe der gewürfelten Augenzahlen.

Mehr

Kurs 00091: Finanzierungs- und entscheidungstheoretische Grundlagen der Betriebswirtschaftslehre

Kurs 00091: Finanzierungs- und entscheidungstheoretische Grundlagen der Betriebswirtschaftslehre Grundlagen der Betriebswirtschaftslehre, Kurs 00091, KE 4, 5 und 6, WS 2009/2010 1 Kurs 00091: Finanzierungs- und entscheidungstheoretische Grundlagen der Betriebswirtschaftslehre Lösungshinweise zur Einsendearbeit

Mehr

Computational Finance

Computational Finance Computational Finance Kapitel 2.2: Monte Carlo Simulation Prof. Dr. Thorsten Poddig Lehrstuhl für Allgemeine Betriebswirtschaftslehre, insbes. Finanzwirtschaft Universität Bremen Hochschulring 4 / WiWi-Gebäude

Mehr

Wie aber soll die Rechnungslegung konkret gestaltet werden? Bilanzierungs- und Bewertungsmethoden, Umfang der geforderten Angaben und Informationen?

Wie aber soll die Rechnungslegung konkret gestaltet werden? Bilanzierungs- und Bewertungsmethoden, Umfang der geforderten Angaben und Informationen? Ziele.1 Modellierung und Analyse von Informationssystemen Darstellung grundsätzlicher Einflussfaktoren für die Vorteilhaftigkeit von Informationssystemen im Individualkontext Darstellung der Wirkungen

Mehr

Das St. Petersburg Paradox

Das St. Petersburg Paradox Das St. Petersburg Paradox Johannes Dewender 28. Juni 2006 Inhaltsverzeichnis 1 Das Spiel 2 2 Das Paradox 3 3 Lösungsvorschläge 4 3.1 Erwartungsnutzen............................... 4 3.2 Risikoaversion..................................

Mehr

Mikroökonomik B (Bachelor)

Mikroökonomik B (Bachelor) Bitte eintragen: Matrikel-Nr.: Mikroökonomik B (Bachelor) Prüfung vom 22.07.2014 Wichtige Hinweise: Sie haben 90 Minuten Zeit, um die folgenden drei Aufgaben zu insgesamt 90 Punkten zu bearbeiten. Teilen

Mehr

MATHEMATIK UND VERSICHERUNGEN EINE ALLIANZ FÜRS LEBEN. Mitglied im DFG-Forschungszentrum Mathematik für Schlüsseltechnologien

MATHEMATIK UND VERSICHERUNGEN EINE ALLIANZ FÜRS LEBEN. Mitglied im DFG-Forschungszentrum Mathematik für Schlüsseltechnologien MATHEMATIK UND VERSICHERUNGEN EINE ALLIANZ FÜRS LEBEN Teilnehmer: Thomas Benkert Sebastian Flach Wolfgang Schmidt Philip Wanninger Sebastian Schubert Gruppenleiter: Peggy Daume Graf-Münster-Gymnasium Graf-Münster-Gymnasium

Mehr

Kapitalversicherungen

Kapitalversicherungen Kapitalversicherungen Sanela Omerovic Proseminar Versicherungsmathematik TU Graz 11. Dezember 2007 Inhaltsverzeichnis 1 Einführung 1 2 Einfache Versicherungsformen 3 2.1 Todesfallversicherungen (Life Insurance)....................

Mehr

Bestimmen der Wahrscheinlichkeiten mithilfe von Zählstrategien

Bestimmen der Wahrscheinlichkeiten mithilfe von Zählstrategien R. Brinmann http://brinmann-du.de Seite 4.0.2007 Bestimmen der Wahrscheinlicheiten mithilfe von Zählstrategien Die bisherigen Aufgaben zur Wahrscheinlicheitsrechnung onnten im Wesentlichen mit übersichtlichen

Mehr

Studienbuch Finanzierung und Investition

Studienbuch Finanzierung und Investition Dorothea Schäfer Lutz Kruschwitz Mike Schwake Studienbuch Finanzierung und Investition wde G Walter de Gmyter Berlin New York 1995 Inhalt 1 Sichere Zahlungen 1 1.1 Einmalige sichere Zahlungen 1 1.1.1 Budgetrestriktion

Mehr

Klausur und Unterlagen

Klausur und Unterlagen Entscheidungstheorie Wintersemester 2004/2005 Christian Klein Institut für Statistik und Mathematische Wirtschaftstheorie Universität Augsburg Klausur und Unterlagen Klausur: ABWL, 60-minütig, erlaubte

Mehr

Kolloquium zum Modul Finanzierungs- und entscheidungstheoretische Grundlagen der BWL SS 2011

Kolloquium zum Modul Finanzierungs- und entscheidungstheoretische Grundlagen der BWL SS 2011 Kolloquium zum Modul Finanzierungs- und entscheidungstheoretische Grundlagen der BWL SS 2011 Teil II: Investitionstheoretische Grundlagen (KE 3 und KE 4) 1 Überblick 2 Dominanzkriterien 3 Finanzmathematische

Mehr

Vorläufige Seminararbeit Wahrscheinlichkeit und andere Unsicherheitskonzepte Subjektive Intervallwahrscheinlichkeiten

Vorläufige Seminararbeit Wahrscheinlichkeit und andere Unsicherheitskonzepte Subjektive Intervallwahrscheinlichkeiten Vorläufige Seminararbeit Wahrscheinlichkeit und andere Unsicherheitskonzepte Subjektive Intervallwahrscheinlichkeiten Jonathan Gessendorfer 25.02.2014 1 Inhaltsverzeichnis 1 Subjektivistische Intervallwahrscheinlichkeiten

Mehr

Schätzen mit subjektiven Wahrscheinlichkeiten. Reimar Hofmann Hochschule Karlsruhe Technik und Wirtschaft

Schätzen mit subjektiven Wahrscheinlichkeiten. Reimar Hofmann Hochschule Karlsruhe Technik und Wirtschaft Schätzen mit subjektiven Wahrscheinlichkeiten Reimar Hofmann Hochschule Karlsruhe Technik und Wirtschaft Objektive Wahrscheinlichkeiten Voraussetzung: Beliebig oft wiederholbares Experiment, bei dem ein

Mehr

Wahrscheinlichkeitsrechnung 1. Was verstehen Sie unter einem Zufallsexperiment? Nennen Sie die wichtigsten Eigenschaften.

Wahrscheinlichkeitsrechnung 1. Was verstehen Sie unter einem Zufallsexperiment? Nennen Sie die wichtigsten Eigenschaften. Wahrscheinlichkeitsrechnung 1. Was verstehen Sie unter einem Zufallsexperiment? Nennen Sie die wichtigsten Eigenschaften. 2. Geben Sie vier Zufallsexperimente mit ihrer jeweiligen an. 3. In einer Obstkiste

Mehr

Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14. Auswahl vorausgesetzter Vorkenntnisse

Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14. Auswahl vorausgesetzter Vorkenntnisse UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 MATHEMATIK Dipl.-Math. Kevin Everard Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14 Auswahl vorausgesetzter Vorkenntnisse

Mehr

3.3. Aufgaben zur Binomialverteilung

3.3. Aufgaben zur Binomialverteilung .. Aufgaben zur Binomialverteilung Aufgabe 1: Ziehen mit Zurücklegen und Binomialverteilung Ein sechsseitiger Würfel wird zehnmal geworfen. a) Wie groß ist die Wahrscheinlichkeit, nur beim ersten Mal die

Mehr

Absolute Stetigkeit von Maßen

Absolute Stetigkeit von Maßen Absolute Stetigkeit von Maßen Definition. Seien µ und ν Maße auf (X, Ω). Dann heißt ν absolut stetig bezüglich µ (kurz ν µ ), wenn für alle A Ω mit µ(a) = 0 auch gilt dass ν(a) = 0. Lemma. Sei ν ein endliches

Mehr

Versicherungsnachfrage

Versicherungsnachfrage 1 Versicherungsnachfrage Modelle der Versicherungsnachfrage Modelle der Versicherungsnachfrage In der Literatur werden drei rten von Modellen bzw. Diagramme der Versicherungsnachfrage unterschieden: 2

Mehr

Stochastik Wahrscheinlichkeit

Stochastik Wahrscheinlichkeit Stochastik Wahrscheinlichkeit Dies ist ein Detail, das auf dem letzten 1 DM Schein abgebildet war. Es stellt die wichtigste Wahrscheinlichkeitsverteilung überhaut dar die Normalverteilung. Diese Verteilung

Mehr

Kapitalversicherungen

Kapitalversicherungen Kapitalversicherungen Birgit Scharwitzl 10. Dezember 2008 Inhaltsverzeichnis 1 Begriffe und wichtige Definitionen 2 1.1 Prämie................................................... 2 1.2 Gewinnbeteiligung............................................

Mehr

Musteraufgaben für das Fach Mathematik

Musteraufgaben für das Fach Mathematik Musteraufgaben für das Fach Mathematik zur Vorbereitung der Einführung länderübergreifender gemeinsamer Aufgabenteile in den Abiturprüfungen ab dem Schuljahr 013/14 Impressum Das vorliegende Material wurde

Mehr

Mengensysteme, Wahrscheinlichkeitsmaße

Mengensysteme, Wahrscheinlichkeitsmaße Kapitel 1 Mengensysteme, Wahrscheinlichkeitsmaße Der Großteil der folgenden fundamentalen Begriffe sind schon aus der Vorlesung Stochastische Modellbildung bekannt: Definition 1.1 Eine Familie A von Teilmengen

Mehr

13.5 Der zentrale Grenzwertsatz

13.5 Der zentrale Grenzwertsatz 13.5 Der zentrale Grenzwertsatz Satz 56 (Der Zentrale Grenzwertsatz Es seien X 1,...,X n (n N unabhängige, identisch verteilte zufällige Variablen mit µ := EX i ; σ 2 := VarX i. Wir definieren für alle

Mehr

w a is die Anzahl der Vorkommen von a in w Beispiel: abba a = 2

w a is die Anzahl der Vorkommen von a in w Beispiel: abba a = 2 1 2 Notation für Wörter Grundlagen der Theoretischen Informatik Till Mossakowski Fakultät für Informatik Otto-von-Guericke Universität Magdeburg w a is die Anzahl der Vorkommen von a in w Beispiel: abba

Mehr