Verteilungsfunktion und Quantile

Save this PDF as:

Größe: px
Ab Seite anzeigen:

Download "Verteilungsfunktion und Quantile"

Transkript

1 Statistik 1 für SoziologInnen Verteilungsfunktion und Quantile Univ.Prof. Dr. Marcus Hudec

2 Kumulierte Häufigkeiten Hinweis: Damit das Kumulieren inhaltlich sinnvoll ist, muss das auszuwertende Merkmal zumindest ordinal skaliert sein! Oft ist man dann nicht an der Häufigkeit einzelner Merkmalsausprägungen interessiert, sondern an der Häufigkeit des Vorkommens von Bereichen. Typische Fragestellung: Wie groß ist der Anteil aller Merkmalsträger mit einem Merkmalswert größer (bzw. kleiner) als ein bestimmter Wert x? Zur einfachen Beantwortung summiert man die Häufigkeitstabelle schrittweise auf und stellt sie in der Ergebnistabelle dar. 2 Statistik 1 - Verteilungsfunktion und Quantile

3 Kumulierte Häufigkeiten bei diskreten Merkmalen Beispiel: "Produktives Denken" i x i n i N i h i h i in % H i H i in % ,00 0,00% 0,00 0,00% ,00 0,00% 0,00 0,00% ,00 0,00% 0,00 0,00% ,06 5,83% 0,06 5,83% ,10 10,00% 0,16 15,83% ,32 31,67% 0,48 47,50% ,24 24,17% 0,72 71,67% ,23 22,50% 0,94 94,17% ,05 5,00% 0,99 99,17% ,01 0,83% 1,00 100,00% Gesamt 120 1,00 100,00% i laufender Index n i absolute Häufigkeiten N i kumulierte absolute Häufigkeiten x i Ausprägungen h i relative Häufigkeiten H i kumulierte relative Häufigkeiten 3 Statistik 1 - Verteilungsfunktion und Quantile

4 Kumulierte Häufigkeiten Die absoluten kumulierten Häufigkeiten geben die Anzahl der Beobachtungen an, die einen bestimmten Wert x nicht übertreffen. N(X x) z.b. 19 Personen haben einen Score-Wert kleiner gleich 4 Die entsprechenden relativen kumulierten Häufigkeiten bezeichnen wir mit H(X x) = N(X x)/n z.b. 15,8% der Personen haben einen Score-Wert kleiner gleich 4 Sie geben uns den Anteil der Beobachtungen mit einem Wert kleiner gleich x an. Die empirische Verteilungsfunktion F(x) ist definiert durch F(x) = H(X x) 4 Statistik 1 - Verteilungsfunktion und Quantile

5 Empirische Verteilungsfunktion F(x) Leseprobe: 72% aller Testteilnehmer haben einen Wert kleiner gleich 6 erzielt 5 Statistik 1 - Verteilungsfunktion und Quantile

6 Interpolation macht keinen Sinn Beachte: Bei diskreten Merkmalen ist eine lineare Interpolation nicht sinnvoll und daher streng genommen nicht zulässig! 6 Statistik 1 - Verteilungsfunktion und Quantile

7 72% aller Testteilnehmer haben einen Wert kleiner gleich 6 erzielt Falls ein Linienzug gewünscht wird, gibt nur eine Treppenkurve ein korrektes Bild der Verteilung, da ja zwischen den Merkmalsausprägungen keine Werte vorkommen können 7 Statistik 1 - Verteilungsfunktion und Quantile

8 Kumulierte Häufigkeiten (Einzeldaten) Größe (X) absolute Häufigkeit n i rel. Häufigkeit h i kumul. rel. Häufigkeit H i Größe (X) absolute Häufigkeit n i rel. Häufigkeit h i kumul. rel. Häufigkeit H i ,00 0, ,04 0, ,00 0, ,05 0, ,00 0, ,03 0, ,01 0, ,03 0, ,01 0, ,05 0, ,01 0, ,01 0, ,00 0, ,04 0, ,01 0, ,02 0, ,00 0, ,02 0, ,00 0, ,02 0, ,03 0, ,02 0, ,01 0, ,04 0, ,02 0, ,03 0, ,01 0, ,00 0, ,03 0, ,01 0, ,03 0, ,00 0, ,04 0, ,00 0, ,03 0, ,00 0, ,02 0, ,00 0, ,02 0, ,01 0, ,05 0, ,01 0, ,03 0, ,01 1, ,04 0, ,00 1, ,07 0, ,00 1, ,05 0, ,00 1, ,04 0,56 Kumulierte relative Häufigkeiten ~ Empirische Verteilungsfunktion 8 Statistik 1 - Verteilungsfunktion und Quantile

9 Empirische Verteilungsfunktion 1,00 0,80 0,60 0,40 Beachte: Körpergröße ist an sich ein stetiges Merkmal und man könnte daher die Punkte auch linear interpolieren. In der Praxis verwendet man aber für eine konkrete Stichprobe meist die Darstellung mit der Treppenfunktion! 0,20 Graphische Darstellung ~ Treppenfunktion 0, Körpergröße 9 Statistik 1 - Verteilungsfunktion und Quantile

10 Empirische Verteilungsfunktion (Leseprobe) % der Studenten sind 60% < 176 kleiner gleich 176 cm Statistik 1 - Verteilungsfunktion und Quantile

11 Eigenschaften der empirischen Verteilungsfunktion Treppenfunktion Die empirische Verteilungsfunktion ist monoton steigend Bei jedem beobachteten Wert findet sich ein vertikaler Anstieg Die Höhe des Anstiegs beim Wert x i ist n(x=x i )/n = h(x i ) Hohe Sprünge ~ häufiger Wert Steiler Verlauf ~ hohe Wertedichte Treten in einem Wertebereich keine Werte auf, so verläuft die empir. Verteilungsfunktion in diesem Bereich horizontal Die Funktionswerte liegen zwischen 0 und 1 11 Statistik 1 - Verteilungsfunktion und Quantile

12 Unterschiedliche Sprunghöhen 1,00 0,80 0,60 0,40 h(x=174)=0.05 0,20 h(x=163)= , Statistik 1 - Verteilungsfunktion und Quantile

13 Konstante Bereiche ~ keine Werte Empirische Verteilungsfunktion keine Werte 158 bzw kg 13 Statistik 1 - Verteilungsfunktion und Quantile

14 Kumulierte Häufigkeiten (klassierte Daten) Bereich n i h i N i H i 150+ bis ,03 3 0, bis ,04 7 0, bis , , bis , , bis , , bis , , bis , , bis , , bis , , bis , Gesamt Statistik 1 - Verteilungsfunktion und Quantile

15 Verteilungsfunktion bei klassierten Daten 1 0,9 0,8 0,7 0,6 0,5 0,4 Beachte: Bei einem stetigen Merkmal, das klassiert wurde, ist eine lineare Interpolation sinnvoll und daher zulässig! Hier würde die Treppenfunktion suggerieren, dass alle Beobachtungen an der Klassenobergrenze liegen! H(175)=0,56 0,3 0,2 H(170)=0,33 0,1 0 Punkte sind die kumulierten Häufigkeiten an den Klassenobergrenzen Statistik 1 - Verteilungsfunktion und Quantile

16 Verteilungsfunktion bei klassierten Daten Bei klassierten Daten können exakte Werte nur an den oberen Klassengrenzen bestimmt werden Eine näherungsweise Bestimmung der Werte der Verteilungsfunktion kann unter der Annahme der Gleichverteilung innerhalb der Klassen mittels linearer Interpolation erfolgen In der Graphik bedeutet dies, dass wir die Punkte durch Geradenstücke zu einer durchgezogenen Linie verbinden Die Steigung dieser Geradenstücke entspricht der Dichte innerhalb der Klasse Man nennt diese Approximation der empirischen Verteilungsfunktion bei klassierten Daten auch die Summenkurve 16 Statistik 1 - Verteilungsfunktion und Quantile

17 Summenkurve 1 0,9 0,8 0,7 0,6 0,5 0,4 H(175)=0,56 0,3 0,2 H(170)=0,33 0, Statistik 1 - Verteilungsfunktion und Quantile

18 Verteilungsfunktion bei klassierten Daten (Beispiel) Aus der Tabelle könne wir folgende Informationen ablesen 56% der Studenten sind kleiner gleich 175 cm 33% der Studenten sind kleiner gleich 170 cm Frage: Wieviel % der Studenten sind kleiner gleich 172 cm? Exakte Antwort aus klassierten Daten nicht mehr möglich Wenn kein Zugriff auf die Urliste möglich ist, erfordert die Lösung modellhaftes Denken Typischer Lösungsansatz: Lineare Interpolation 18 Statistik 1 - Verteilungsfunktion und Quantile

19 Summenkurve 1 0,9 0,8 0,7 0,6 0,5 0,4??? H(175)=0,56 0,3 0,2 0,1 H(170)=0, Statistik 1 - Verteilungsfunktion und Quantile

20 Interpolation Gesucht ist der Funktionswert der Summenkurve an der Stelle x: F(x)=F(u i )+y F(o i ) F(u i ) x y=? F(u i ) u i u i Untergrenze der Klasse o i Obergrenze der Klasse b i Klassenbreite F(u i ), F(o i ) kumulierte Häufigkeit an der Klassenunter- bzw. Obergrenze h i relative Häufigkeit der Klasse x ist der Wert für den wir die kumulierte Häufigkeit F(x) suchen 20 Statistik 1 - Verteilungsfunktion und Quantile o i

21 Strahlensatz in Worten Das kurze vertikale Stück a verhält sich zum langen vertikalen Stück b genauso wie das kurze horizontale Stück c zum langen horizontalen Stück d. a/b = c/d b c a d 21 Statistik 1 - Verteilungsfunktion und Quantile

22 Anwendung des Strahlensatzes y : h i = (x-u i ) : b i F(o i ) F(x) =F(u i ) + y h i =F(o i )-F(u i ) (x-u i ) x y=? F(u i ) b i = (o i -u i ) u i F(x) =F(u i ) + (x-u i )/ b i *h i 22 Statistik 1 - Verteilungsfunktion und Quantile o i

23 Im Beispiel F(x) =F(u i ) + (x-u i )/ b i *h i F(172) = 0,33 + 2/5*0,23 = 0,33+0,092=0,422 F(o i )=0,56 F(u i )=0,33 y=? x=172 b i = (o i -u i ) =5 h i = F(o i ) - F(u i )=0,23 u i =170 o i = Statistik 1 - Verteilungsfunktion und Quantile

24 Summary Die Interpolation auf der Basis der Summenkurve (klassierte Daten) hat ergeben, dass 42,2% der Studenten kleiner gleich 1,72m sind. Auf Basis der Einzeldaten aus der Urliste (siehe Folie 8) ergab sich jedoch ein Wert von 40%. Die Abweichung begründet sich aus dem Informationsverlust, der sich durch die Klassierung ergeben hat. Solche Interpolationstechniken sind für die Analyse von Sekundärdaten sehr bedeutsam. Beachte aber dabei immer, die implizite Unschärfe. 24 Statistik 1 - Verteilungsfunktion und Quantile

25 Konzept der Quantile Das Teilen eines geordneten Datensatz in q gleich große Teilmengen ist die Motivation für Quantile Die Quantile markieren die Grenzen zwischen aufeinanderfolgende Teilmengen Quartiles of a Distribution q(25%)=103,5 q(50%)=136,8 q(75%)=182,4 3rd Quartile (Upper Quartile) 2nd Quartile (Median) 1st Quartile (Lower Quartile) Statistik 1 - Verteilungsfunktion und Quantile

26 Wichtige Quantile Unscharf formuliert ist ein Quantil zu einem bestimmten Prozentsatz jener Wert für den gilt, dass % der Beobachtungen kleiner sind. Einige wichtige Quantile, die häufig kommuniziert werden tragen einen eigenen Namen: Terzile x 0,33 x 0,66 erstes, zweites Terzil Quartile x 0,25 x 0,5 x 0,75 erstes, zweites, drittes Quartil Dezile x 0,1... x 0,9 Perzentile x 0,01, x 0,02... x 0,99 Man kann auch jeweils x 0 (Minimum) als ein entsprechendes null-tes (Terzil, Quartil,usw.) bzw. x 1 (Maximum) als drittes Terzil, viertes Quartil usw. bezeichnen. 26 Statistik 1 - Verteilungsfunktion und Quantile

27 Beispielshafte Bezeichnungen 0.Quartil = x 0 ~ Minimum 1.Quartil = x Quartil = x Quartil = x Quartil = x 1.00 ~ Maximum 0.Dezil = x 0 ~ Minimum 1.Dezil = x Dezil = x Dezil = x Dezil = x 1.00 ~ Maximum 27 Statistik 1 - Verteilungsfunktion und Quantile

28 Berechnung von Quantilen Es gibt 2 Konzepte um Quantile zu bestimmen Empirische Quantile es wird immer ein real beobachteter Wert als Quantil angegeben -Quantile die Berechnung des Quantils kann auch mittels Interpolation erfolgen 28 Statistik 1 - Verteilungsfunktion und Quantile

29 Empirisches Quantil Ausgehend von einem Anteilswert p (y-achse) wird der zugehörige Wert aus der Stichprobe bestimmt, für den F(x) zum ersten mal größer als oder zumindest gleich groß wie p ist. Das bedeutet, ein empirisches p-quantil ist jener möglichst kleine Merkmalswert, für den gerade noch gilt, dass p-prozent der Beobachtungen kleiner gleich als eben dieser Merkmalswert sind. 1 0,9 0,8 0,7 0,6 0,5 0,4 0,3 Merke: Empirische Quantile sind immer nur real beobachtete Werte. 0,2 0, Statistik 1 - Verteilungsfunktion und Quantile

30 Bestimmung: Empirisches Quantil 0 < p < 1 Datensatz: x 1,..., x n Das Empirische p-quantil x p ist definiert als der kleinste beobachtete Wert x für den gilt: F(x) p Das Empirische p-quantil x p ist also jener Wert, so dass p% der Merkmalsträger einen Wert kleiner gleich x p haben. 30 Statistik 1 - Verteilungsfunktion und Quantile

31 Definition: Empirisches Quantil Seien x (1),... x (n) die geordneten Stichprobenwerte: X p ist dann der k-te Wert in der geordneten Stichprobe, wobei k wie folgt bestimmt wird: Wir suchen also ein ganzzahliges k das größer oder gleich ist 31 Statistik 1 - Verteilungsfunktion und Quantile

32 Beispiel zu empirischen Quantilen (1) Stichprobe: 3, 6, 2, 8, 7, 5, 9, 4 n=8 Geordnete Stichprobe: 2, 3, 4, 5, 6, 7, 8, 9 Wir wollen das empirische p-quantil für p=0,25 bestimmen x 0,25 =? k=2 x 0,25 = x (2) = 3 x 0,75 =? k=6 x 0,75 = x (6) = 7 32 Statistik 1 - Verteilungsfunktion und Quantile

33 Beispiel zu empirischen Quantilen (2) Stichprobe: 3, 6, 2, 8, 7, 5, 9, 4, 10 n=9 Geordnete Stichprobe: 2, 3, 4, 5, 6, 7, 8, 9, 10 Wir wollen das empirische p-quantil für p=0,25 bestimmen x 0,25 =? k=3 x 0,25 = x (3) = 4 x 0,75 =? k=7 x 0,75 = x (7) = 8 33 Statistik 1 - Verteilungsfunktion und Quantile

34 Weitere Beispiele zu empirischen Quantilen Gesucht ist ein Wert, so dass 95% der Studenten kleiner gleich diesem Wert sind Datensatz Körpergröße n=100 p=0,95 x 0,95 =? k=95 x 0,95 = 188 (siehe Folie 8) Gesucht ist ein Wert, so dass 50% der Probanden einen Wert kleiner gleich diesem Wert haben Datensatz produktives Denken n=120 p=0,50 x 0,50 =? k=60 x 0,50 = 7 (siehe Folie 3) 34 Statistik 1 - Verteilungsfunktion und Quantile

35 -Quantile Wenn wir uns nicht auf reale Beobachtungen beschränken, sondern auch Interpolationen zwischen beobachteten Werten zulassen, kommen wir zu den sog. -Quantilen Seien x (1),, x (n) die geordneten Beobachtungen einer Urliste, so ist das -Quantil wie folgt definiert: x x( k ) k n 1 ( x( k) x( k 1) ) k n 2 Kleinste ganze Zahl größer gleich Falls n. schon eine ganze Zahl ist Kleinste ganze Zahl größer gleich bedeutet Kommazahlen immer aufrunden 2,1 3 2,0 2 2, Statistik 1 - Verteilungsfunktion und Quantile

36 -Quantile -Quantile sind so definiert, dass Beobachtungs-werte kleiner und 1 Beobachtungswerte größer als das jeweilige - Quantil sind. Für nicht ganzzahlig ändert sich die Berechnung nicht gegenüber dem empirischen Quantilen, wir nehmen den Wert mit dem nächsthöheren Index aus der geordneten Stichprobe Falls eine ganze Zahl ist, würde im Prinzip jeder beliebige Wert zwischen x (n. und x (n. die obige Bedingung erfüllen. Die von uns angegebene Formel nimmt einfach die Mitte zwischen x (n. und x (n. Beachte: Unterschiedliche Softwaresysteme verwenden leicht unterschiedliche Definitionen von -Quantilen, was insbesondere bei kleinen Stichproben deutliche Unterschiede ausmachen kann 36 Statistik 1 - Verteilungsfunktion und Quantile

37 Beispiel -Quantile: Quartile Urliste (n=10): x 1, x 2, x 3, x 4,, x 10 8, 5, 7, 14, 27 12, 24, 17, 3, 21 Geordnete Urliste: x (1), x (2), x (3), x (4),, x (10) 3, 5, 7, 8, 12, 14, 17, 21, 24, 27 1.Quartil; 25%-Quantil; Q(25%) =0,25 =2.5 Index=3 Kleinste ganze Zahl größer gleich aufrunden Q(25%)=7 x (1) x (2) x (3) x (4) x (5) x (6) x (7) x (8) x (9) x (10) Quartil; 75%-Quantil; Q(75%) =0,75 =7.5 Index=8 Q(75%)=21 Kleinste ganze Zahl größer gleich aufrunden x (1) x (2) x (3) x (4) x (5) x (6) x (7) x (8) x (9) x (10) Statistik 1 - Verteilungsfunktion und Quantile

38 Beispiel -Quantile: Dezile Urliste (n=10): x 1, x 2, x 3, x 4,, x 10 8, 5, 7, 14, 27 12, 24, 17, 3, 21 Geordnete Urliste: x (1), x (2), x (3), x (4),, x (10) 3, 5, 7, 8, 12, 14, 17, 21, 24, 27 3.Dezil; 30%-Quantil; Q(30%) =0,30 = 3 Unsere Formel: Q(30%)=(7+8)/2=7.5 n. ist eine ganze Zahl jeder Wert zwischen dem 3. und 4. Element der geordneten Stichprobe erfüllt die Bedingung x (1) x (2) x (3) x (4) x (5) x (6) x (7) x (8) x (9) x (10) Excel-Funktion Quantil liefert 7,7 SPSS-Funktion Frequencies liefert 7,3 38 Statistik 1 - Verteilungsfunktion und Quantile

39 Anwendung von Quantilen in Einkommensstatistik 39 Statistik 1 - Verteilungsfunktion und Quantile

40 Anwendung von Dezilen Quelle: 40 Statistik 1 - Verteilungsfunktion und Quantile

41 Quantile bei klassierten Daten Bei klassierten Daten ergibt sich das p-quantil durch Interpolation Ausgangspunkt ist jene Klasse, in der die kumulierten Häufigkeiten den p-wert übersteigen Zur Berechnung verwenden wir wie zuvor den Strahlensatz, allerding sind wir nun an der Bestimmung des kurzen horizontalen Stücks interessiert (invertierte Fragestellung) Zunächst muss immer die relevante Klasse gefunden werden 41 Statistik 1 - Verteilungsfunktion und Quantile

42 Bestimmung des 0,5 Quantils Bereich n i h i N i H i 150+ bis ,03 3 0, bis ,04 7 0, bis , , bis , , bis , , bis , , bis , , bis , , bis , , bis , Gesamt Relevante Klasse 170+ bis 175 Wo überschreiten die kumulierten Häufigkeiten den vorgegebenen Prozentwert? 42 Statistik 1 - Verteilungsfunktion und Quantile

43 Quantile bei klassierten Daten y : b i = (p-f(u i )) : h i F(o i ) x p = u i + (p-f(u i ))/ h i *b i p y p-f(u i ) b i = (o i -u i ) h i = F(o i )-F(u i ) F(u i ) u i Untergrenze der Klasse o i Obergrenze der Klasse b i Klassenbreite u i F(u i ), F(o i ) kumulierte Häufigkeit an der Klassenunter- bzw. Obergrenze o h i i relative Häufigkeit der Klasse x ist der Wert für den wir die kumulierte Häufigkeit F(x) suchen 43 Statistik 1 - Verteilungsfunktion und Quantile

44 Quantile bei klassierten Daten y : 5= (0,5-0,33): 0,23 X 0,5 = ,17/0,23*5=173,7 F(o i )=0,56 p=0,5 h i = F(o i )-F(u i ) =0,23 F(u i )=0,33 y b i = ( ) = Statistik 1 - Verteilungsfunktion und Quantile

45 Übungsbeispiel (siehe auch XLS) 45 Statistik 1 - Verteilungsfunktion und Quantile

46 Quantile als Startpunkt für Verteilungs-Plots Beispiel: Körpergröße (Originalwerte) 0.Quartil = x 0 ~ Minimum 1.Quartil = x Quartil = x Quartil = x Quartil = x 1.00 ~ Maximum Five Number Summary Min. 1st Qu. 2nd Qu. 3rd Qu. Max x (1) x (25) x (50) x (75) x (100) 46 Statistik 1 - Verteilungsfunktion und Quantile

47 Box-Plots Basierend auf den 5 zusammenfassenden Werten einer Verteilung: Minimum, 1.Quartil, 2.Quartil, 3.Quartil und Maximum lassen sich instruktive Graphiken zur Darstellung einer Verteilung entwickeln, die insbesondere zum Vergleich mehrerer Gruppen gut geeignet sind. Häufig werden die horizontal begrenzenden Linien nicht bis zum Minimum und Maximum der Daten gezogen. Die Balkenlänge wird mit der 1,5-fachen Boxhöhe begrenzt und extreme Datenwerte werden extra markiert. 47 Statistik 1 - Verteilungsfunktion und Quantile

48 Boxplot (Box-Whisker-Plot) Maximum bzw. Obergrenze maximal 1,5-fache Boxlänge Punkte ober- bzw. unterhalb der Whisker- Grenzen bezeichnet man als Ausreißer (outlier) und stellt sie explizit dar 75% Quantil Median 25% Quantil Minimum bzw. Untergrenze 48 Statistik 1 - Verteilungsfunktion und Quantile

49 Beispiel einer rechtsschiefen Verteilung x.r 49 Statistik 1 - Verteilungsfunktion und Quantile

50 Beispiel einer linksschiefen Verteilung x.l 50 Statistik 1 - Verteilungsfunktion und Quantile

51 Vergleich von Verteilungen g g g Density Density Density Statistik 1 - Verteilungsfunktion und Quantile

52 Vergleich von Verteilungen Statistik 1 - Verteilungsfunktion und Quantile

53 Vorteil von Boxplots Boxplots geben im Vergleich zum Histogramm zwar nur ein gröberes Bild von der Verteilung, aber sie sind viel besser zum Vergleich der Verteilung verschiedener Gruppen geeignet. 53 Statistik 1 - Verteilungsfunktion und Quantile

54 Pisa Studie 2000 Darstellung von E. Neuwirth 54 Statistik 1 - Verteilungsfunktion und Quantile

55 4 alternative Darstellungen eines Datensatzes Histogramm Histogram Boxplot Boxplot Frequency Kern-Dichteschätzung Kernel Estimate Empirische Verteilungsfunktion Distribution Function Statistik 1 - Verteilungsfunktion und Quantile

56 4 alternative Darstellungen eines Datensatzes Histogramm Boxplot Frequency Kern-Dichteschätzung Kernel Estimate Empirische Verteilungsfunktion Distribution Function Statistik 1 - Verteilungsfunktion und Quantile

Willkommen zur Vorlesung Statistik

Willkommen zur Vorlesung Statistik Willkommen zur Vorlesung Statistik Thema dieser Vorlesung: Maßzahlen für zentrale Tendenz, Streuung und andere Eigenschaften von Verteilungen Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische

Mehr

4. Auswertung eindimensionaler Daten

4. Auswertung eindimensionaler Daten 4. Auswertung eindimensionaler Daten Ziel dieses Kapitels: Präsentation von Methoden zur statistischen Auswertung eines einzelnen Merkmals 64 Bezeichnungen (Wiederholung): Merkmalsträger: e 1,..., e n

Mehr

Deskriptive Statistik

Deskriptive Statistik Deskriptive Statistik [descriptive statistics] Ziel der deskriptiven (beschreibenden) Statistik einschließlich der explorativen Datenanalyse [exploratory data analysis] ist zunächst die übersichtliche

Mehr

2. Eindimensionale (univariate) Datenanalyse

2. Eindimensionale (univariate) Datenanalyse 2. Eindimensionale (univariate) Datenanalyse Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Kennzahlen, Statistiken In der Regel interessieren uns nicht so sehr die beobachteten Einzeldaten

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung Übung 2 28.02.2008 1 Inhalt der heutigen Übung Beschreibende Statistik Gemeinsames Lösen der Übungsaufgaben 2.1: Häufigkeitsverteilung 2.2: Tukey Boxplot 25:Korrelation

Mehr

2. Deskriptive Statistik 2.1. Häufigkeitstabellen, Histogramme, empirische Verteilungsfunktionen

2. Deskriptive Statistik 2.1. Häufigkeitstabellen, Histogramme, empirische Verteilungsfunktionen 4. Datenanalyse und Modellbildung Deskriptive Statistik 2-1 2. Deskriptive Statistik 2.1. Häufigkeitstabellen, Histogramme, empirische Verteilungsfunktionen Für die Auswertung einer Messreihe, die in Form

Mehr

1 Verteilungen und ihre Darstellung

1 Verteilungen und ihre Darstellung GKC Statistische Grundlagen für die Korpuslinguistik Kapitel 2: Univariate Deskription von Daten 8.11.2004 Univariate (= eindimensionale) Daten bestehen aus Beobachtungen eines einzelnen Merkmals. 1 Verteilungen

Mehr

Statistik I für Betriebswirte Vorlesung 2

Statistik I für Betriebswirte Vorlesung 2 Statistik I für Betriebswirte Vorlesung 2 PD Dr. Frank Heyde TU Bergakademie Freiberg Institut für Stochastik 16. April 2015 PD Dr. Frank Heyde Statistik I für Betriebswirte Vorlesung 2 1 ii) empirische

Mehr

1,11 1,12 1,13 1,14 1,15 1,16 1,17 1,17 1,17 1,18

1,11 1,12 1,13 1,14 1,15 1,16 1,17 1,17 1,17 1,18 3. Deskriptive Statistik Ziel der deskriptiven (beschreibenden) Statistik (explorativen Datenanalyse) ist die übersichtliche Darstellung der wesentlichen in den erhobenen Daten enthaltene Informationen

Mehr

Deskriptive Statistik

Deskriptive Statistik Deskriptive Statistik In der beschreibenden Statistik werden Methoden behandelt, mit deren Hilfe man Daten übersichtlich darstellen und kennzeichnen kann. Die Urliste (=Daten in der Reihenfolge ihrer Erhebung)

Mehr

Analyse klassierter Daten: Vor der Analyse fasst man jeweils mehrere Merkmalsausprägungen in (Merkmalswerte-)Klassen zusammen.

Analyse klassierter Daten: Vor der Analyse fasst man jeweils mehrere Merkmalsausprägungen in (Merkmalswerte-)Klassen zusammen. 4. Analyse univariater Daten: Übersicht Mathematik ist die Wissenschaft der reinen Zahl, Statistik die der empirischen Zahl Von univariaten Daten spricht man, wenn bei der Datenerhebung nur ein Merkmal

Mehr

Datenanalyse und Statistik

Datenanalyse und Statistik Datenanalyse und Statistik p. 1/44 Datenanalyse und Statistik Vorlesung 2 (Graphik I) K.Gerald van den Boogaart http://www.stat.boogaart.de Datenanalyse und Statistik p. 2/44 Daten Schätzung Test Mathe

Mehr

Datenanalyse aus einer Urliste

Datenanalyse aus einer Urliste Datenanalyse aus einer Urliste Worum geht es in diesem Modul? Geordneter Datensatz und Extremwerte Empirische Verteilungsfunktion Bestimmung von Quantilen Spezielle Quantile Median und Angeln Fünf-Zahlen-Zusammenfassung

Mehr

4. Erstellen von Klassen

4. Erstellen von Klassen Statistik mit Tabellenkalkulation 4. Erstellen von Klassen Mit einem einfachen Befehl lässt sich eine Liste von Zahlen auf die Häufigkeit der einzelnen Werte untersuchen. Verwenden Sie dazu den Befehl

Mehr

1. Einführung und statistische Grundbegriffe. Grundsätzlich unterscheidet man zwei Bedeutungen des Begriffs Statistik:

1. Einführung und statistische Grundbegriffe. Grundsätzlich unterscheidet man zwei Bedeutungen des Begriffs Statistik: . Einführung und statistische Grundbegriffe Grundsätzlich unterscheidet man zwei Bedeutungen des Begriffs Statistik: Quantitative Information Graphische oder tabellarische Darstellung von Datenmaterial

Mehr

Teil II: Einführung in die Statistik

Teil II: Einführung in die Statistik Teil II: Einführung in die Statistik (50 Punkte) Bitte beantworten Sie ALLE Fragen. Es handelt sich um multiple choice Fragen. Sie müssen die exakte Antwortmöglichkeit angeben, um die volle Punktzahl zu

Mehr

Klausur zu Methoden der Statistik I (mit Kurzlösung) Wintersemester 2007/2008. Aufgabe 1

Klausur zu Methoden der Statistik I (mit Kurzlösung) Wintersemester 2007/2008. Aufgabe 1 Lehrstuhl für Statistik und Ökonometrie der Otto-Friedrich-Universität Bamberg Prof. Dr. Susanne Rässler Klausur zu Methoden der Statistik I (mit Kurzlösung) Wintersemester 2007/2008 Aufgabe 1 Ihnen liegt

Mehr

Medizinische Biometrie (L5)

Medizinische Biometrie (L5) Medizinische Biometrie (L5) Vorlesung II Daten Deskription Prof. Dr. Ulrich Mansmann Institut für Medizinische Informationsverarbeitung, Biometrie und Epidemiologie mansmann@ibe.med.uni-muenchen.de IBE,

Mehr

Unterlagen zum Tutorium der Lehrveranstaltung. MATHEMATIK für NATURWISSENSCHAFTEN (STATISTIK) Christoph Huber FB Mathematik der Universität Salzburg

Unterlagen zum Tutorium der Lehrveranstaltung. MATHEMATIK für NATURWISSENSCHAFTEN (STATISTIK) Christoph Huber FB Mathematik der Universität Salzburg Unterlagen zum Tutorium der Lehrveranstaltung MATHEMATIK für NATURWISSENSCHAFTEN (STATISTIK) Christoph Huber FB Mathematik der Universität Salzburg Stand: 30. April 2008 INHALTSVERZEICHNIS I Inhaltsverzeichnis

Mehr

Fachhochschule Düsseldorf Wintersemester 2008/09

Fachhochschule Düsseldorf Wintersemester 2008/09 Fachhochschule Düsseldorf Wintersemester 2008/09 Teilfachprüfung Statistik im Studiengang Wirtschaft Prüfungsdatum: 26.01.2009 Prüfer: Prof. Dr. H. Peters, Diplom-Vw. Lothar Schmeink Prüfungsform: 2-stündige

Mehr

Dokumentation. estat Version 2.0

Dokumentation. estat Version 2.0 Dokumentation estat Version 2.0 Installation Die Datei estat.xla in beliebiges Verzeichnis speichern. Im Menü Extras AddIns... Durchsuchen die Datei estat.xla auswählen. Danach das Auswahlhäkchen beim

Mehr

Häufigkeitstabellen. Balken- oder Kreisdiagramme. kritischer Wert für χ2-test. Kontingenztafeln

Häufigkeitstabellen. Balken- oder Kreisdiagramme. kritischer Wert für χ2-test. Kontingenztafeln Häufigkeitstabellen Menüpunkt Data PivotTable Report (bzw. entsprechendes Icon): wähle Data Range (Zellen, die die Daten enthalten + Zelle mit Variablenname) wähle kategoriale Variable für Spalten- oder

Mehr

Expertenrunde Gruppe 1: Wiederholungsgruppe EXCEL (Datenerfassung, Darstellungsformen, Verwertung)

Expertenrunde Gruppe 1: Wiederholungsgruppe EXCEL (Datenerfassung, Darstellungsformen, Verwertung) Epertenrunde Gruppe 1: Wiederholungsgruppe EXCEL (Datenerfassung, Darstellungsformen, Verwertung) Im Folgenden wird mit Hilfe des Programms EXEL, Version 007, der Firma Microsoft gearbeitet. Die meisten

Mehr

Evaluation der Normalverteilungsannahme

Evaluation der Normalverteilungsannahme Evaluation der Normalverteilungsannahme. Überprüfung der Normalverteilungsannahme im SPSS P. Wilhelm; HS SPSS bietet verschiedene Möglichkeiten, um Verteilungsannahmen zu überprüfen. Angefordert werden

Mehr

a) Zeichnen Sie in das nebenstehende Streudiagramm mit Lineal eine Regressionsgerade ein, die Sie für passend halten.

a) Zeichnen Sie in das nebenstehende Streudiagramm mit Lineal eine Regressionsgerade ein, die Sie für passend halten. Statistik für Kommunikationswissenschaftler Wintersemester 2009/200 Vorlesung Prof. Dr. Helmut Küchenhoff Übung Cornelia Oberhauser, Monia Mahling, Juliane Manitz Thema 4 Homepage zur Veranstaltung: http://www.statistik.lmu.de/~helmut/kw09.html

Mehr

Kapitel 13 Häufigkeitstabellen

Kapitel 13 Häufigkeitstabellen Kapitel 13 Häufigkeitstabellen Die gesammelten und erfaßten Daten erscheinen in der Datendatei zunächst als unübersichtliche Liste von Werten. In dieser Form sind die Daten jedoch wenig aussagekräftig

Mehr

Anwendung von Statistik in Excel Deskriptive Statistik und Wirtschaftsstatistik

Anwendung von Statistik in Excel Deskriptive Statistik und Wirtschaftsstatistik Anwendung von Statistik in Excel Deskriptive Statistik und Wirtschaftsstatistik Wintersemester 08/09 Kai Schaal Universität zu Köln Organisatorisches und Einleitung (1) Was, wann, wo? Anwendung von Statistik

Mehr

2.3 Univariate Datenanalyse in R

2.3 Univariate Datenanalyse in R 2.3. UNIVARIATE DATENANALYSE IN R 47 2.3 Univariate Datenanalyse in R Wir wollen nun lernen, wie man in R Daten elementar analysiert. R bietet eine interaktive Umgebung, Befehlsmodus genannt, in der man

Mehr

Einführung in R. Kapitel 2 : Einfache Statistische Auswertungen

Einführung in R. Kapitel 2 : Einfache Statistische Auswertungen Einführung in R Kapitel 2 : Einfache Statistische Auswertungen Prof. Dr.B.Grabowski, HTW des Saarlandes, 12/2005 1 Inhaltsverzeichnis Einführung in R... 1 Kapitel 2 : Einfache Statistische Auswertungen...

Mehr

Felix Klug SS 2011. 2. Tutorium Deskriptive Statistik

Felix Klug SS 2011. 2. Tutorium Deskriptive Statistik 2. Tutorium Deskriptive Statistik Felix Klug SS 2011 Skalenniveus Weitere Beispiele für Skalenniveus (Entnommen aus Wiederholungsblatt 1.): Skalenniveu Nominalskala Ordinalskala Intervallskala Verhältnisskala

Mehr

Veranstaltung Statistik (BWL) an der FH Frankfurt/Main im WS 2004/05 (Dr. Faik) Klausur 09.02.2005 - GRUPPE A - BEARBEITER/IN (NAME, VORNAME):

Veranstaltung Statistik (BWL) an der FH Frankfurt/Main im WS 2004/05 (Dr. Faik) Klausur 09.02.2005 - GRUPPE A - BEARBEITER/IN (NAME, VORNAME): Veranstaltung Statistik (BWL) an der FH Frankfurt/Main im WS 2004/05 (Dr. Faik) Klausur 09.02.2005 - GRUPPE A - BEARBEITER/IN (NAME, VORNAME): MATRIKELNUMMER: Alte Prüfungsordnung/Neue Prüfungsordnung

Mehr

Nichtlineare Optimierung ohne Nebenbedingungen

Nichtlineare Optimierung ohne Nebenbedingungen Kapitel 2 Nichtlineare Optimierung ohne Nebenbedingungen In diesem Abschnitt sollen im wesentlichen Verfahren zur Bestimmung des Minimums von nichtglatten Funktionen in einer Variablen im Detail vorgestellt

Mehr

Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3

Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3 Lineare Funktionen Inhaltsverzeichnis 1 Proportionale Funktionen 3 1.1 Definition............................... 3 1.2 Eigenschaften............................. 3 2 Steigungsdreieck 3 3 Lineare Funktionen

Mehr

Kaplan-Meier-Schätzer

Kaplan-Meier-Schätzer Kaplan-Meier-Schätzer Ausgangssituation Zwei naive Ansätze zur Schätzung der Survivalfunktion Unverzerrte Schätzung der Survivalfunktion Der Kaplan-Meier-Schätzer Standardfehler und Konfidenzintervall

Mehr

- Eine typische Ausfallrate, wie sie bei vielen technischen Anwendungen zu sehen ist hat die Form einer Badewanne, deshalb nennt man diese Kurve auch

- Eine typische Ausfallrate, wie sie bei vielen technischen Anwendungen zu sehen ist hat die Form einer Badewanne, deshalb nennt man diese Kurve auch 1 2 - Eine typische Ausfallrate, wie sie bei vielen technischen Anwendungen zu sehen ist hat die Form einer Badewanne, deshalb nennt man diese Kurve auch Badewannenkurve. -mit der Badewannenkurve lässt

Mehr

Assoziation & Korrelation

Assoziation & Korrelation Statistik 1 für SoziologInnen Assoziation & Korrelation Univ.Prof. Dr. Marcus Hudec Einleitung Bei Beobachtung von 2 Merkmalen für jeden Merkmalsträger stellt sich die Frage, ob es systematische Zusammenhänge

Mehr

Korrelation - Regression. Berghold, IMI

Korrelation - Regression. Berghold, IMI Korrelation - Regression Zusammenhang zwischen Variablen Bivariate Datenanalyse - Zusammenhang zwischen 2 stetigen Variablen Korrelation Einfaches lineares Regressionsmodell 1. Schritt: Erstellung eines

Mehr

R-WORKSHOP II. Inferenzstatistik. Johannes Pfeffer

R-WORKSHOP II. Inferenzstatistik. Johannes Pfeffer R-WORKSHOP II Inferenzstatistik Johannes Pfeffer Dresden, 25.1.2011 01 Outline Lösung der Übungsaufgabe Selbstdefinierte Funktionen Inferenzstatistik t-test Kruskal-Wallis Test Übungsaufgabe TU Dresden,

Mehr

Genexpression. Expression eines einzelnen Gens. Expressionsmessung. Genexpressionsmessung. Transkription (Vorgang) Genexpression

Genexpression. Expression eines einzelnen Gens. Expressionsmessung. Genexpressionsmessung. Transkription (Vorgang) Genexpression Genexpressionsmessung Genexpression Transkription (Vorgang) Genexpression (quantitativ) Wieviele m-rna Moleküle eines bestimmten Gens sind in den Zellen? Genomische Datenanalyse 8. Kapitel Wie mißt man

Mehr

Datenanalyse aus einer unklassierten Häufigkeitstabelle

Datenanalyse aus einer unklassierten Häufigkeitstabelle Datenanalyse aus einer unklassierten Häufigkeitstabelle Worum geht es in diesem Modul? Häufigkeitstabelle Stabdiagramm Die empirische Verteilungsfunktion Quantile Worum geht es in diesem Modul? Nachdem

Mehr

Ein bisschen Statistik

Ein bisschen Statistik Prof. Dr. Beat Siebenhaar ein bisschen Statistik 1 Ein bisschen Statistik (orientiert an Hüsler/Zimmermann (006) mit Umsetzung auf die linguistische Fragen) 1. Datentypen und Grafik Grafische Darstellungen

Mehr

Abhängigkeiten zwischen Großschäden

Abhängigkeiten zwischen Großschäden Abhängigkeiten zwischen Großschäden Holger Drees, Universität Hamburg I. Typen von Abhängigkeiten II. Modelle für abhängige Großschäden III. Fallstudie: Dänische Feuerversicherung I. Typen von Abhängigkeiten

Mehr

Statistische Datenauswertung. Andreas Stoll Kantonsschule Olten

Statistische Datenauswertung. Andreas Stoll Kantonsschule Olten Statistische Datenauswertung Andreas Stoll Beschreibende vs. schliessende Statistik Wir unterscheiden grundsätzlich zwischen beschreibender (deskriptiver) und schliessender (induktiver) Statistik. Bei

Mehr

5. Schließende Statistik. 5.1. Einführung

5. Schließende Statistik. 5.1. Einführung 5. Schließende Statistik 5.1. Einführung Sollen auf der Basis von empirischen Untersuchungen (Daten) Erkenntnisse gewonnen und Entscheidungen gefällt werden, sind die Methoden der Statistik einzusetzen.

Mehr

Boxplot (Liniendiagramm) mit einem (qualitativen) Unterscheidungsmerkmal erstellen, beschrieben an der Körpergröße für Männer und Frauen

Boxplot (Liniendiagramm) mit einem (qualitativen) Unterscheidungsmerkmal erstellen, beschrieben an der Körpergröße für Männer und Frauen Boxplot (Liniendiagramm) mit einem (qualitativen) Unterscheidungsmerkmal erstellen, beschrieben an der Körpergröße für Männer und Frauen 01) Berechnen Sie für jede Ihrer Vergleichsgruppen (im Beispiel

Mehr

h i Deskriptive Statistik 1-dimensionale Daten Daten und Häufigkeiten Seite 1 Nominal Ordinal Metrisch (Kardinal) Metrisch - klassiert

h i Deskriptive Statistik 1-dimensionale Daten Daten und Häufigkeiten Seite 1 Nominal Ordinal Metrisch (Kardinal) Metrisch - klassiert Deskriptive Statistik dimesioale Date Date ud Häufigkeite Seite Nomial Ordial Metrisch (Kardial Metrisch klassiert Beschreibug: Date habe keie atürliche Reihefolge. Bsp: Farbe, Religio, Geschlecht, Natioalität...

Mehr

Kontingenzkoeffizient (nach Pearson)

Kontingenzkoeffizient (nach Pearson) Assoziationsmaß für zwei nominale Merkmale misst die Unabhängigkeit zweier Merkmale gibt keine Richtung eines Zusammenhanges an 46 o jl beobachtete Häufigkeiten der Kombination von Merkmalsausprägungen

Mehr

Absolute Stetigkeit von Maßen

Absolute Stetigkeit von Maßen Absolute Stetigkeit von Maßen Definition. Seien µ und ν Maße auf (X, Ω). Dann heißt ν absolut stetig bezüglich µ (kurz ν µ ), wenn für alle A Ω mit µ(a) = 0 auch gilt dass ν(a) = 0. Lemma. Sei ν ein endliches

Mehr

Datenerfassung und Datenmanagement

Datenerfassung und Datenmanagement Datenerfassung und Datenmanagement Statistische Auswertungssysteme sind heute eine aus der angewandten Statistik nicht mehr wegzudenkende Hilfe. Dies gilt insbesondere für folgende Aufgabenbereiche: -

Mehr

Statistik II für Betriebswirte Vorlesung 3

Statistik II für Betriebswirte Vorlesung 3 PD Dr. Frank Heyde TU Bergakademie Freiberg Institut für Stochastik Statistik II für Betriebswirte Vorlesung 3 5. November 2013 Beispiel: Aktiensplit (Aczel & Sounderpandan, Aufg. 14-28) Ein Börsenanalyst

Mehr

Teil II. Nichtlineare Optimierung

Teil II. Nichtlineare Optimierung Teil II Nichtlineare Optimierung 60 Kapitel 1 Einleitung In diesem Abschnitt wird die Optimierung von Funktionen min {f(x)} x Ω betrachtet, wobei Ω R n eine abgeschlossene Menge und f : Ω R eine gegebene

Mehr

Analog zu Aufgabe 16.1 werden die Daten durch folgenden Befehl eingelesen: > kredit<-read.table("c:\\compaufg\\kredit.

Analog zu Aufgabe 16.1 werden die Daten durch folgenden Befehl eingelesen: > kredit<-read.table(c:\\compaufg\\kredit. Lösung 16.3 Analog zu Aufgabe 16.1 werden die Daten durch folgenden Befehl eingelesen: > kredit

Mehr

Methoden der empirischen Sozialforschung I

Methoden der empirischen Sozialforschung I Methoden der empirischen Sozialforschung I Annelies Blom, PhD TU Kaiserslautern Wintersemester 2011/12 Übersicht Quantitative Datenauswertung: deskriptive und induktive Statistik Wiederholung: Die wichtigsten

Mehr

2 Analyse statistischer Daten zu einem Merkmal Lösungshinweise

2 Analyse statistischer Daten zu einem Merkmal Lösungshinweise 6 2 Analyse statistischer Daten zu einem Merkmal Lösungshinweise 2 Analyse statistischer Daten zu einem Merkmal Lösungshinweise : In der folgenden Tabelle ist eine Teilstichprobe zu den Studierenden in

Mehr

Prof. Dr. P. von der Lippe Statistik I NK SS 2002 Seite 1

Prof. Dr. P. von der Lippe Statistik I NK SS 2002 Seite 1 Prof. Dr. P. von der Lippe Statistik I NK SS 2002 Seite 1 Aufgabe 1 a) BWL-Student S hat von seinem Lieblingsonkel 10.000 geschenkt bekommen mit der Auflage damit etwas Vernünftiges zu machen. Nachdem

Mehr

Verteilungsanalyse. Johannes Hain. Lehrstuhl für Mathematik VIII Statistik 1/35

Verteilungsanalyse. Johannes Hain. Lehrstuhl für Mathematik VIII Statistik 1/35 Verteilungsanalyse Johannes Hain Lehrstuhl für Mathematik VIII Statistik 1/35 Datentypen Als Sammeln von Daten bezeichnet man in der Statistik das Aufzeichnen von Fakten. Erhobene Daten klassifziert man

Mehr

Korrelation (II) Korrelation und Kausalität

Korrelation (II) Korrelation und Kausalität Korrelation (II) Korrelation und Kausalität Situation: Seien X, Y zwei metrisch skalierte Merkmale mit Ausprägungen (x 1, x 2,..., x n ) bzw. (y 1, y 2,..., y n ). D.h. für jede i = 1, 2,..., n bezeichnen

Mehr

Vorlesung. Funktionen/Abbildungen 1

Vorlesung. Funktionen/Abbildungen 1 Vorlesung Funktionen/Abbildungen 1 1 Grundlagen Hinweis: In dieser Vorlesung werden Funktionen und Abbildungen synonym verwendet. In der Schule wird eine Funktion häufig als eindeutige Zuordnung definiert.

Mehr

Realschulabschluss Schuljahr 2008/2009. Mathematik

Realschulabschluss Schuljahr 2008/2009. Mathematik Prüfungstag: Mittwoch, 20. Mai 2009 Prüfungsbeginn: 8.00 Uhr Realschulabschluss Schuljahr 2008/2009 Mathematik Hinweise für die Prüfungsteilnehmerinnen und -teilnehmer Die Arbeitszeit beträgt 150 Minuten.

Mehr

Einführung in die Statistik

Einführung in die Statistik Einführung in die Statistik Dr. C.J. Luchsinger 2 Zufallsgrössen Literatur Kapitel 2 * Statistik in Cartoons: Kapitel 4 * Krengel: 3.1 und 3.2 in 3 und (Honours Program) 10 sowie 11.1, 11.2 und 11.3 in

Mehr

Grundbegriffe (1) Grundbegriffe (2)

Grundbegriffe (1) Grundbegriffe (2) Grundbegriffe (1) S.1 Äquivalenzklasse Unter einer Äquivalenzklasse versteht man eine Klasse von Objekten, die man hinsichtlich bestimmter Merkmalsausprägungen als gleich (äquivalent) betrachtet. (z.b.

Mehr

Box-and-Whisker Plot -0,2 0,8 1,8 2,8 3,8 4,8

Box-and-Whisker Plot -0,2 0,8 1,8 2,8 3,8 4,8 . Aufgabe: Für zwei verschiedene Aktien wurde der relative Kurszuwachs (in % beobachtet. Aus den jeweils 20 Quartaldaten ergaben sich die folgenden Box-Plots. Box-and-Whisker Plot Aktie Aktie 2-0,2 0,8,8

Mehr

Klausur zu Methoden der Statistik I (mit Kurzlösung) Sommersemester 2008. Aufgabe 1

Klausur zu Methoden der Statistik I (mit Kurzlösung) Sommersemester 2008. Aufgabe 1 Lehrstuhl für Statistik und Ökonometrie der Otto-Friedrich-Universität Bamberg Prof. Dr. Susanne Rässler Klausur zu Methoden der Statistik I (mit Kurzlösung) Sommersemester 2008 Aufgabe 1 I) Einige Mitarbeiter

Mehr

Zusammenhänge zwischen metrischen Merkmalen

Zusammenhänge zwischen metrischen Merkmalen Zusammenhänge zwischen metrischen Merkmalen Darstellung des Zusammenhangs, Korrelation und Regression Daten liegen zu zwei metrischen Merkmalen vor: Datenpaare (x i, y i ), i = 1,..., n Beispiel: x: Anzahl

Mehr

Linearer Zusammenhang von Datenreihen

Linearer Zusammenhang von Datenreihen Linearer Zusammenhang von Datenreihen Vielen Problemen liegen (möglicherweise) lineare Zusammenhänge zugrunde: Mein Internetanbieter verlangt eine Grundgebühr und rechnet minutenweise ab Ich bestelle ein

Mehr

Einführung in die Statistik mit EXCEL und SPSS

Einführung in die Statistik mit EXCEL und SPSS Christine Duller Einführung in die Statistik mit EXCEL und SPSS Ein anwendungsorientiertes Lehr- und Arbeitsbuch Zweite, überarbeitete Auflage Mit 71 Abbildungen und 26 Tabellen Physica-Verlag Ein Unternehmen

Mehr

WEBINAR@LUNCHTIME THEMA: " SCHICKE BERICHTE SCHNELL ERSTELLT MIT DEM SAS ENTERPRISE GUIDE" HELENE SCHMITZ

WEBINAR@LUNCHTIME THEMA:  SCHICKE BERICHTE SCHNELL ERSTELLT MIT DEM SAS ENTERPRISE GUIDE HELENE SCHMITZ WEBINAR@LUNCHTIME THEMA: " SCHICKE BERICHTE SCHNELL ERSTELLT MIT DEM SAS ENTERPRISE GUIDE" HELENE SCHMITZ EBINAR@LUNCHTIME HERZLICH WILLKOMMEN BEI WEBINAR@LUNCHTIME Moderation Anne K. Bogner-Hamleh SAS

Mehr

Statistische Thermodynamik I Lösungen zur Serie 1

Statistische Thermodynamik I Lösungen zur Serie 1 Statistische Thermodynamik I Lösungen zur Serie Zufallsvariablen, Wahrscheinlichkeitsverteilungen 4. März 2. Zwei Lektoren lesen ein Buch. Lektor A findet 2 Druckfehler, Lektor B nur 5. Von den gefundenen

Mehr

Physica-Lehrbuch. Ein anwendungsorientiertes Lehr- und Arbeitsbuch. von Christine Duller

Physica-Lehrbuch. Ein anwendungsorientiertes Lehr- und Arbeitsbuch. von Christine Duller Physica-Lehrbuch Einführung in die Statistik mit EXCEL und SPSS Ein anwendungsorientiertes Lehr- und Arbeitsbuch von Christine Duller Neuausgabe Einführung in die Statistik mit EXCEL und SPSS Duller schnell

Mehr

Schätzer (vgl. Kapitel 1): Stichprobenmittel X N. Stichprobenmedian X N

Schätzer (vgl. Kapitel 1): Stichprobenmittel X N. Stichprobenmedian X N Prof. Dr. J. Franke Statistik II für Wirtschaftswissenschaftler 8.1 Schätzer für Lage- und Skalenparameter und Verteilungsmodellwahl Lageparameter (l(x + a) = l(x) + a): Erwartungswert EX Median von X

Mehr

Ideen zur Unterweisung in Statistik im Gewand von Tabellenkalkulation

Ideen zur Unterweisung in Statistik im Gewand von Tabellenkalkulation Manfred Borovcnik, Klagenfurt Ideen zur Unterweisung in Statistik im Gewand von Tabellenkalkulation Zusammenfassung: In der Beschreibenden Statistik werden viele Begriffe für die Wahrscheinlichkeitsrechnung

Mehr

Einfache Statistiken in Excel

Einfache Statistiken in Excel Einfache Statistiken in Excel Dipl.-Volkswirtin Anna Miller Bergische Universität Wuppertal Schumpeter School of Business and Economics Lehrstuhl für Internationale Wirtschaft und Regionalökonomik Raum

Mehr

Prüfung zu Modul 26 (BA Bw) bzw. 10 (BA IB) (Wirtschaftsstatistik)

Prüfung zu Modul 26 (BA Bw) bzw. 10 (BA IB) (Wirtschaftsstatistik) 2 Klausur-Nr = Sitzplatz-Nr Prüfung zu Modul 26 (BA Bw) bzw. 10 (BA IB) (Wirtschaftsstatistik) Klausurteil 1: Beschreibende Statistik Name, Vorname:... verteilung Teil 1: Beschreibende Statistik Aufgaben

Mehr

Beschreibende Statistik Daten darstellen und charakterisieren

Beschreibende Statistik Daten darstellen und charakterisieren Beschreibende Statistik Daten darstellen und charakterisieren Roland Heynkes 1. April 2006, Aachen Die beschreibende (descriptive) Statistik versucht, große und unübersichtliche, experimentell sowie durch

Mehr

Microsoft Excel 2013 Spezielle Diagrammtypen

Microsoft Excel 2013 Spezielle Diagrammtypen Hochschulrechenzentrum Justus-Liebig-Universität Gießen Microsoft Excel 2013 Spezielle Diagrammtypen Spezielle Diagrammtypen in Excel 2013 Seite 1 von 40 Inhaltsverzeichnis Einleitung... 4 Ganttdiagramme...

Mehr

Messwerte und deren Auswertungen

Messwerte und deren Auswertungen Thema: Messwerte und deren Auswertungen Vorlesung Qualitätsmanagement, Prof. Dr. Johann Neidl Seite 1 Stichproben vertrauen Die Genauigkeit von Voraussagen (Vertrauensniveau) einer Stichprobenprüfung hängt

Mehr

6. Auswertung mehrdimensionaler Daten

6. Auswertung mehrdimensionaler Daten 6. Auswertung mehrdimensionaler Daten Bisher: Auswertungsmethoden für Daten eines einzelnen Merkmals, z.b. Diskrete Klassierung Grafische Darstellungen (Verteilungsfunktion) Lagemaße Streungsmaße Schiefemaße

Mehr

1 Darstellen von Daten

1 Darstellen von Daten 1 Darstellen von Daten BesucherInnenzahlen der Bühnen Graz in der Spielzeit 2010/11 1 Opernhaus 156283 Hauptbühne 65055 Probebühne 7063 Ebene 3 2422 Next Liberty 26800 Säulen- bzw. Balkendiagramm erstellen

Mehr

Name: Klasse: Datum: Klassenarbeit Wachstumsvorgänge Kl10-Gruppe B

Name: Klasse: Datum: Klassenarbeit Wachstumsvorgänge Kl10-Gruppe B Name: Klasse: Datum: Teil B Klassenarbeit Wachstumsvorgänge Kl0-Gruppe B. Gegeben ist die Exponentialfunktion y=f x =0.8 2 x ; x R. (9P) a) Geben Sie die folgenden Eigenschaften dieser Funktion an! Wertebereich,

Mehr

, dt. $+ f(x) = , - + < x < +, " > 0. " 2# Für die zugehörige Verteilungsfunktion F(x) ergibt sich dann: F(x) =

, dt. $+ f(x) = , - + < x < +,  > 0.  2# Für die zugehörige Verteilungsfunktion F(x) ergibt sich dann: F(x) = 38 6..7.4 Normalverteilung Die Gauß-Verteilung oder Normal-Verteilung ist eine stetige Verteilung, d.h. ihre Zufallsvariablen können beliebige reelle Zahlenwerte annehmen. Wir definieren sie durch die

Mehr

Stetige Verteilungsmodelle

Stetige Verteilungsmodelle Stetige Verteilungsmodelle Worum geht es in diesem Modul? Stetige Verteilungsfunktionen Quantile Dichtefunktion Maßzahlen stetiger Verteilungen Stetige Gleichverteilung Exponentialverteilung Überprüfung

Mehr

Statistik I für Wirtschaftswissenschaftler Klausur am 06.07.2007, 14.00 16.00.

Statistik I für Wirtschaftswissenschaftler Klausur am 06.07.2007, 14.00 16.00. 1 Statistik I für Wirtschaftswissenschaftler Klausur am 06.07.2007, 14.00 16.00. Bitte unbedingt beachten: a) Gewertet werden alle 9 gestellten Aufgaben. b) Lösungswege sind anzugeben. Die Angabe des Endergebnisses

Mehr

Repetitionsaufgaben: Lineare Funktionen

Repetitionsaufgaben: Lineare Funktionen Kantonale Fachschaft Mathematik Repetitionsaufgaben: Lineare Funktionen Zusammengestellt von Irina Bayer-Krakvina, KSR Lernziele: - Wissen, was ein Steigungsdreieck einer Geraden ist und wie die Steigungszahl

Mehr

Wirtschaftsstatistik. Konzentrations- und Disparitätsmessung 16.10.2007

Wirtschaftsstatistik. Konzentrations- und Disparitätsmessung 16.10.2007 Wirtschaftsstatistik Konzentrations- und Disparitätsmessung 16.10.2007 Begriffe Konzentration und Disparität Laut Oxford Advanced Learner s Dictionary by OUP, bzw. WordNet by Princeton University concentration:

Mehr

Gefahrene km Anzahl der. eine Summenlinie beziehungsweise Summentreppe zur graphischen Darstellung einer Häufigkeitsverteilung geeignet? 3.

Gefahrene km Anzahl der. eine Summenlinie beziehungsweise Summentreppe zur graphischen Darstellung einer Häufigkeitsverteilung geeignet? 3. SEMINAR FÜR STATISTIK Stand 17. April 23 UNIVERSITÄT MANNHEIM Aufgabensammlung zur Veranstaltung Deskriptive Statistik 1. Aufgabe Geben Sie für die Merkmale Einkommen Haarfarbe soziale Stellung Körperlänge

Mehr

Statistik II für Betriebswirte Vorlesung 2

Statistik II für Betriebswirte Vorlesung 2 PD Dr. Frank Heyde TU Bergakademie Freiberg Institut für Stochastik Statistik II für Betriebswirte Vorlesung 2 21. Oktober 2014 Verbundene Stichproben Liegen zwei Stichproben vor, deren Werte einander

Mehr

Stichprobenauslegung. für stetige und binäre Datentypen

Stichprobenauslegung. für stetige und binäre Datentypen Stichprobenauslegung für stetige und binäre Datentypen Roadmap zu Stichproben Hypothese über das interessierende Merkmal aufstellen Stichprobe entnehmen Beobachtete Messwerte abbilden Schluss von der Beobachtung

Mehr

Einführung in die Statistik mir R

Einführung in die Statistik mir R Einführung in die Statistik mir R ww w. syn t egris.de Überblick GESCHÄFTSFÜHRUNG Andreas Baumgart, Business Processes and Service Gunar Hofmann, IT Solutions Sven-Uwe Weller, Design und Development Jens

Mehr

Vorlesung: Statistik für Kommunikationswissenschaftler

Vorlesung: Statistik für Kommunikationswissenschaftler Vorlesung: Statistik für Kommunikationswissenschaftler Prof. Dr. Helmut Küchenhoff Institut für Statistik, LMU München WiSe 2009/2010 Übungen zur Veranstaltung Mittwoch: 14.15-15.45 HG DZ007 Cornelia Oberhauser

Mehr

Regressionsanalysen. Zusammenhänge von Variablen. Ziel der Regression. ( Idealfall )

Regressionsanalysen. Zusammenhänge von Variablen. Ziel der Regression. ( Idealfall ) Zusammenhänge von Variablen Regressionsanalysen linearer Zusammenhang ( Idealfall ) kein Zusammenhang nichtlinearer monotoner Zusammenhang (i.d.regel berechenbar über Variablentransformationen mittels

Mehr

3.2 Bivariate Verteilungen

3.2 Bivariate Verteilungen 3.2 Bivariate Verteilungen zwei Variablen X, Y werden gemeinsam betrachtet (an jedem Objekt i, i = 1,..., n, werden gleichzeitig zwei Merkmale beobachtet) Beobachtungswerte sind Paare/Kombinationen von

Mehr

12. Bivariate Datenanalyse. In den Kapiteln 4-11 wurden univariate Daten betrachtet:

12. Bivariate Datenanalyse. In den Kapiteln 4-11 wurden univariate Daten betrachtet: 12. Bivariate Datenanalyse Während einer nur Zahlen im Kopf hat, kann er nicht auf den Kausalzusammenhang kommen Anonymus In den Kapiteln 4-11 wurden univariate Daten betrachtet: Von univariaten Daten

Mehr

Zusammenfassung - Mathematik

Zusammenfassung - Mathematik Mathematik Seite 1 Zusammenfassung - Mathematik 09 October 2014 08:29 Version: 1.0.0 Studium: 1. Semester, Bachelor in Wirtschaftsinformatik Schule: Hochschule Luzern - Wirtschaft Author: Janik von Rotz

Mehr

Datenaufbereitung, Grafische Datenanalyse

Datenaufbereitung, Grafische Datenanalyse Datenaufbereitung, Grafische Datenanalyse R-Übung 2 Statistik III für Nebenfachstudierende LMU WS 2013/14 David Rügamer 6. & 13. November 2013 Nach einer Vorlage von Toni Hilger (WS 11/12) und Arne Kaldhusdal

Mehr

DSR Daten, Statistik, Risikobewertung AUSWERTUNG GAHS. Intervention + BMI

DSR Daten, Statistik, Risikobewertung AUSWERTUNG GAHS. Intervention + BMI DSR Daten, Statistik, Risikobewertung AUSWERTUNG GAHS + BMI Sophie-Helene Narath Klemens Fuchs Günter Polt Bericht Nr.: B09_003_DSR Freigegeben im April 09 Österreichische Agentur für Gesundheit und Ernährungssicherheit

Mehr

Proteinsequenzen. Raumstruktur GPCR. G-Protein gekoppelte Rezeptoren

Proteinsequenzen. Raumstruktur GPCR. G-Protein gekoppelte Rezeptoren G-Protein gekoppelte Rezeptoren Proteinsequenzen MEEPGAQCAPPPPAGSETWVPQANL SSAPSQNCSAKDYIYQDSISLPWKV LLVMLLALITLATTLSNAFVIATVY RTRKLHTPANYLIASLAVTDLLVSI LVMPISTMYTVTGRWTLGQVVCDFW LSSDITCCTASILHLCVIALDRYWA

Mehr

Kapitel 34 Boxplots und Fehlerbalken

Kapitel 34 Boxplots und Fehlerbalken Kapitel 34 Boxplots und Fehlerbalken Boxplots und Fehlerbalken sind dazu geeignet, die Lage und Verteilung der Werte einer Stichprobe grafisch darzustellen. Die beiden Diagrammtypen sind auf die Darstellungen

Mehr

Lage- und Streuungsmaße

Lage- und Streuungsmaße Sommersemester 2009 Modus Median Arithmetisches Mittel Symmetrie/Schiefe Wölbung/Exzess 4 6 8 10 ALQ Tutorien Begleitend zur Vorlesung, inhaltlich identisch mit der Übung Mögliche Zeiten: Do 10-12, Do

Mehr

Extremwertverteilungen

Extremwertverteilungen Seminar Statistik Institut für Stochastik 12. Februar 2009 Gliederung 1 Grenzwertwahrscheinlichkeiten 2 3 MDA Fréchet MDA Weibull MDA Gumbel 4 5 6 Darstellung von multivariaten, max-stabilen Verteilungsfunktionen

Mehr