Übungsrunde 6, Gruppe 2 LVA , Übungsrunde 5, Gruppe 2, Markus Nemetz, TU Wien, 11/2006

Größe: px
Ab Seite anzeigen:

Download "Übungsrunde 6, Gruppe 2 LVA , Übungsrunde 5, Gruppe 2, Markus Nemetz, TU Wien, 11/2006"

Transkript

1 Angabe Übungsrunde 6, Gruppe 2 LVA , Übungsrunde 5, Gruppe 2, Markus Nemetz, markus.nemetz@tuwien.ac.at, TU Wien, 11/2006 Ein Los aus elektronischen Bauteilen des Umfangs N = 400 wird nach folgendem zweistufigen Plan geprüft: 1. Stufe: Zunächst wird eine Stichprobe (ohne Zurücklegen) des Umfangs 32 gezogen. Gibt es höchstens ein unbrauchbares Stück, wird das Los sofort angenommen; gibt es 4 oder mehr unbrauchbare Stücke, wird das Los sofort zurückgewiesen. Gibt es in der Stichprobe 2 oder 3 unbrauchbare Stücke, geht man zur 2. Stufe. 2. Stufe: Eine weitere Stichprobe (ohne Zurücklegen) des Umfangs 32 wird gezogen. Ist die Zahl der unbrauchbaren Stücke insgesamt ( Stichprobe) nicht größer als 4, wird das Los akzeptiert, ansonsten (endgültig) zurückgewiesen. Berechnen Sie die Wahrscheinlichkeit mit der bei diesem Plan ein Los mit einem Ausschußanteil von 2,5angenommen wird. Rechnen Sie dabei exakt (hypergeometrische Verteilung) sowie auf Basis einer passenden Binomialapproximation. 1.2 Theoretische Grundlagen: Hypergeometrische Verteilung Die Hypergeometrische Verteilung ist eine diskrete Wahrscheinlichkeitsverteilung. Umgangssprachlich werden Fragestellungen, die von der hypergeometrischen Verteilung erfasst werden auch als Ziehen ohne Zurücklegen bezeichnet. Sie wird verwendet, um Vorgänge zu modellieren, bei denen aus einer dichotomen Grundgesamtheit zufällig eine Stichprobe entnommen und auf eine bestimmte Eigenschaft geprüft wird. Die hypergeometrische Verteilung gibt dann Auskunft darüber, mit welcher Wahrscheinlichkeit in der Stichprobe eine bestimmte Anzahl von Elementen vorkommt, die die gewünschte Eigenschaft haben. Bedeutung kommt dieser Verteilung daher etwa bei Qualitätskontrollen zu. Ein beispielhaftes Problem: In einer Urne befinden sich 45 Kugeln, 20 davon sind gelb. Wie hoch ist die Wahrscheinlichkeit in einer 10-elementigen Stichprobe 4 gelbe Kugeln zu ziehen? Definition: Die hypergeometrische Verteilung ist abhängig von drei Parametern: 1. der Anzahl N der Elemente einer Grundgesamtheit. 2. der Anzahl M N der Elemente mit einer bestimmten Eigenschaft in dieser Grundmenge. 3. ser Anzahl n N der Elemente in einer Stichprobe. 1

2 Die Verteilung gibt nun Auskunft darüber, wie wahrscheinlich es ist, dass sich k Elemente mit der zu prüfenden Eigenschaft in der Stichprobe befinden. Der Ergebnisraum Ω ist daher {0, 1,...,n}. Eine diskrete Zufallsgröße X unterliegt der hypergeometrischen Verteilung mit den Parametern M,N und k, wenn sie die Wahrscheinlichkeiten h(k N; M; n) := P(X = k) = ( )( ) M N M k n k ( ) N n für x Ω besitzt. Dabei bezeichnet ( N n) den Binomialkoeffizienten N über n. Die Verteilungsfunktion H(x N; M; n) gibt dann die Wahrscheinlichkeit an, dass höchstens k viele Kugeln erster Sorte in der Stichprobe sind. Diese kumulierte Wahrscheinlichkeit ist die Summe H(k N; M; n) := P(X k) = k h(y N; M; n) = y=0 y<k y=0 ( M y Binomialapproximation der hypergeometrischen Verteilung )( ) N M n y ( ). N n Für eine Folge von hypergeometrischen Verteilungen mit den Paramtern M,N und n mit gilt: 1.3 Lösung des Beispiels N, M und M N p für N lim H N,M,n(k) = B n,p (k) N Man benötigt insgesamt 3 hypergeometrische Verteilungen: 400 OK 0,1 W 1 32 >3 Ausschuss 2 3 W 2 W ,1,2 OK Ausschuss OK 2

3 1. Stufe 1: Eine - W 1 (x), N = 400, A = 10, n = Stufe 2: Eine (falls zuvor zwei unbrauchbare gezogen wurden) - W 2 (x), N = 368, A = 8, n = Stufe 3: Eine (falls zuvor drei unbrauchbare gezogen wurden) - W 3 (x), N = 368, A = 7, n = 32 Für die Gesamtwahrscheinlichkeit rechnen wir: W 1 (0) + W 1 (1) + W 1 (2) (W 2 (0) + W 2 (1) + W 2 (2)) + W 1 (3) (W 3 (0) + W 3 (1)) Konkretes Beispiel: W 3 {1} = ( ) ( ) ( ) Man benötigt insgesamt 3 solche Verteilungen, da sich nach dem ersten Ziehen nicht mehr 400 Stück sondern 32 weniger im Pool befinden. Das Ergebnis nach o.g. Formel ist , für die Binomialapproximation Die Abweichung ist sehr gering - die Binomialverteilung kann sehr gut zur Annäherung verwendet werden. In der ISO-Norm sind bis zu 7-stufige Prüfungsmodelle definiert Angabe Bestimmen Sie die Modalwerte einer Poissonverteilung, d.h. jene x-werte, für die W {X = x} maximal ist. (Hinweis: Betrachten Sie den Quotienten zweier aufeinanderfolgender Wahrscheinlichkeiten.) 2.2 Theoretische Grundlagen: Poisson-Verteilung Approximation für die Binomialverteilung für kleines p und großes n (tritt bei seltenen Ereignissen auf) - Bsp.: Rosinen pro Brötchen; Druckfehler pro Seite; gleichzeitig geführte Telefonate innerhalb einer Firma. Sei X = N 0 = {0, 1, 2, 3,... }, B = P(X). Das durch P(B) := k B µ k k! e µ, B X, definierte Maß heißt Poisson-Verteilung mit Parameter µ > 0. 3

4 2.3 Lösung des Beispiels Zu betrachten ist der Quotient aus den Wahrscheintlichkeiten P(k + 1) bzw. P(k 1) und P(k), unterschieden durch: 1. P(x 1) P(x) 2. P(x + 1) P(x) Betrachten ersten Fall: P(x) µxe µ P(x 1) = x! µ x 1 e µ (x 1)! x µ = µ x 1 Betrachten zweiten Fall: P(x) µxe µ P(x + 1) = x! µ x+1 e µ (x+1)! x [µ 1, µ] = x + 1 µ 1 Das kleinste k mit k + 1 > µ ist der Modalwert; ist µ ganzzahlig, gibt es 2 Modalwerte, µ 1 und µ: Modalwert = µ, falls µ / N; Modalwert = µ 1 und µ, falls µ N Angabe Bei der Herstellung von Glasscheiben kommt es immer wieder zur Bildung von kleinen Bläschen, die eine optische Beeinträchtigung darstellen. Ein Abnehmer bezieht 400 Scheiben dieser Art und prüft nach folgendem Schema: 50 Scheiben werden geprüft; gibt es insgesamt nicht mehr als 14 Bläschen wird die Lieferung angenommen, ansonsten zurückgewiesen. Wie groß ist die Wahrscheinlichkeit der Annahme, wenn (im Mittel) jede vierte (jede zweite) Scheibe einen derartigen Fehler aufweist? 3.2 Theoretische Grundlagen: Poisson-Verteilung Siehe Beispiel 3.22! 3.3 Lösung des Beispiels Einzusetzen ist Wahrscheinlichkeit einer einzelnen defekten Scheibe Anzahl der entnommenen Scheiben, z.b. fürs erste: λ = 25. Beispielresultate sind dann: jede zweite Scheibe: P(14) = , jede vierte Scheibe: P(14) = Am Ende alle Wahrscheinlichkeiten addieren. 4

5 Konkretes Beispiel für µ = = 12.5: Mit R berechnet: 1 > sum(dpois(seq(0,14,by=1), 12.5)) 2 [1] > sum(dpois(seq(0,14,by=1), 25)) 4 [1] W({0} = e ! Listing 1: Poisson-Verteilung mit R berechnen Angabe [R-Aufgabe] In der Vorlesung werden Bedingungen angegeben unter denen eine Binomialverteilung gut durch eine Poissonverteilung approximiert werden kann. Überprüfen Sie dies graphisch an mehreren Beispielen (mit und ohne erfüllten Bedingungen), etwa durch leicht versetzt nebeneinander gezeichnete Stabdiagramme. 4.2 Theoretische Grundlagen: Poisson-Verteilung Siehe Beispiel 3.22! 4.3 Lösung des Beispiels Ist die Anzahl der Experimente sehr groß und die Erfolgswahrscheinlichkeit klein, so kann man die Binomialverteilung durch eine Poissonverteilung approximieren. Wir gehen dabei von der Approximation der Binomialverteilung aus. Sei X b(n, π). Wenn π klein ist und n gross ist, dann gilt asymtotisch X Poisson(λ) Veranschaulichung durch folgende Abbildung, in der die Wahrscheinlichkeitsfunktionen der Po(5)-Verteilung und einiger Binomialverteilungen, für die λ = nπ = 5 mit wachsendem n und fallendem π gilt, dargestellt ist. 5

6 Ein typisches Beispiel für die Anwendung dieses Satzes findet man in der Versicherungswirtschaft. Die Anzahl n der Versicherten ist groß, die Wahrscheinlichkeit π eines Schadenfalles ist klein. Sei X die Anzahl der Versicherten, die in einem bestimmten Zeitraum (z.b. ein Jahr) einen Schaden anmelden. Wenn man annimmt, dass die Wahrscheinlichkeit eines Schadensfalles für jeden Versicherten gleich groß ist, so gilt X b(n, π). Als Approximation kann unter den obigen Voraussetzungen die Poissonverteilung verwendet werden: X Poisson(λ), λ = nπ R-Befehle zur Poissonverteilung: dpois(x, lambda) berechnet die Wahrscheinlichkeitsfunktion der Poissonverteilung mit dem Parameter λ =lambda an der Stelle x. Dabei kann x ein Vektor sein. ppois(q, lambda) berechnet die Verteilungsfunktion der Poissonverteilung mit dem Parameter λ =lambda an der Stelle q. Dabei kann q ein Vektor sein. qpois(p, lambda) berechnet die Umkehrfunktion der Verteilungsfunktion der Poissonverteilung mit dem Parameter λ =lambda an der Stelle p. Dabei muss pein Vektor von Wahrscheinlichkeiten, d.h. von Zahlen zwischen 0 und 1 sein. rpois(n, lambda) erzeugt n poissonverteilte Zufallszahlen mit dem Parameter λ =lambda Konkrete Ausführung: 6

7 Listing 2: Binom/Poisson mit R visualisieren 1 n=100; 2 p=0.5; 3 x=seq(0,n,by=2); 4 binom.pois<-data.frame(binom=dbinom(x,n,p), pois=dpois(x,n,p)) 5 binom.pois<-as.matrix(binom.pois) 6 barplot(binom.pois, beside=true) Es gilt das Poisson-Paradigma: lim b n,p(k) = P µ (k) n,p 0,np µ Anmerkung: War nicht in Gruppe 2 auf, wurde aber von Prof. Gurker vorgerechnet. 6 Angabe Zeigen Sie die Gedächtnislosigkeit der geometrischen Verteilung, d.h. zeigen Sie für X G p : W {X > a + b X > a} = W {X > b}, a, b N Wie läßt sich diese Beziehung interpretieren? (Hinweis: X sei die diskrete Wartezeit auf den Eintritt eines bestimmten Ereignisses, etwa der Ausfall einer Komponente, der Gewinn beim Joker, etc.) 6.1 Theoretische Grundlagen: Geometrische Verteilung Siehe Beispiel 3.29! 7

8 6.2 Lösung des Beispiels X G P G P Geometrische Wahrscheinlichkeit p(x) = W {X = x} = (1 p) x 1 p, qquadx = 1, 2,... W {X > a + b X > a} = W {X > b} Joker ist ein erwartetes erstmaliges Ereignis mit p = Der Erwartungswert für G P mit x als Nr. der Runde des ersten Gewinnes ist E(x) = 1 p = 100 Nach jeder Runde startet das Spiel neu - darunter versteht man die Gedächtnislosigkeit (Geometrische Verteilung hat als einzige diese Eigenschaft). Vgl. hierzu Komponenten mit gleicher Wahrscheinlichkeit für Lebensdauer - wenn funktionierend ist eine Komponente so gut wie neu. Wir brechnen weiter: W {X > k} = }{{} =(1 p) k i=k+1 (1 p) i 1 p = (1 p) k F(k) = W {X k} = 1 W {X > k} = 1 (1 p) k W {X > a + b, x > a} W {X > a} = W {X > a + b} W {X > a} (1 p) a+b (1 p) a = (1.p) b = W{X > b} Eine geometrische Verteilung ist selbstähnlich (eine Poisson-Verteilung z.b. nicht). Selbstähnlichkeit ist die Eigenschaft von Gegenständen, Körpern, Mengen oder geometrischen Objekten, in größeren Maßstäben, d.h. bei Vergrößerung dieselben oder ähnliche Strukturen aufzuweisen wie im Anfangszustand Angabe Bestimmen Sie die Ausfallrate (vgl. Beispiel 3.12) der geometrischen Verteilung. Interpretieren Sie das Ergebnis an Hand eines konkreten Beispiels. (Hinweis: Vgl. Sie das vorhergehende Beispiel (3.28).) 7.2 Theoretische Grundlagen: Geometrische Verteilung Eine diskrete Zufallsgröße X n mit dem Parameter p (Wahrscheinlichkeit für einen Erfolg), q = 1 p (Wahrscheinlichkeit für einen Misserfolg) genügt der geometrischen Verteilung G(p), wenn: = 8

9 Variante A sei die Wahrscheinlichkeit, dass man genau n Versuche benötigt, um zum ersten Erfolg zu kommen, zu P(X = n) = p(1 p) n 1 = pq n 1 (n = 1, 2,...) Variante B sei die Wahrscheinlichkeit, n Fehlversuche vor dem ersten Erfolg zu haben, zu P(Y = n) = p(1 p) n = pq n (n = 0, 1, 2,...) besitzt. In beiden Fällen bilden die Werte für die Wahrscheinlichkeiten eine geometrische Folge. Damit besitzt die geometrische Verteilung die folgenden Verteilungsfunktionen: Variante A F(k) = P(X k) = p k i=1 k 1 q i 1 = p q i = p qk 1 q 1 = 1 qk = 1 (1 p) k i=0 Variante B F(n) = P(Y < n) = p n i=0 q i = p qn+1 1 q 1 = 1 q n+1 = 1 (1 p) n Lösung des Beispiels Angabe h(x) = W {X = x X > x} W(A B) = W(A B) W(B) = W(X = x) p(1 p)x 1 = W(X x) p(1 p) x 1 = 1 Ermitteln Sie zu jeder der folgenden stetigen Verteilungsfunktionen die zugehörige Dichtefunktion; stellen Sie beide Funktionen (zum einfacheren Vergleich untereinander) graphisch dar. (a) F(x) = (1 + e x ) 1, < x < (b) F(x) = exp( e x ), < x < (c) F(x) = arctan(x), < x < 9

10 8.2 Theoretische Grundlagen: Kontinuierliche eindimensionale Verteilungen - Definition und Satz In kontinuierlichen eindimensionalen Verteilungen nehmen stochastische Grössen X alle Werte eines Intervalls an (Kontinuum). Ihre Wahrscheinlichkeitsverteilung ist durch eine integrierbare Funktion (Dichtefunktion) bestimmt: f : R [0, ), mit W([a, b]) = W {a X B} = b f(x) x = 1 a f(x) x Für kontinierliche Verteilungen bzw. kontinuierlich verteilten stochastischen Grössen X mit Dichte f( ) gilt: 1. Verteilungsfunktion F(x) = x f(ξ) ξ 2. x F(x) f(x) = F (x) 3. W {X = x} = 0 x R x R Die Dichtefunktion dient zur Beschreibung von Wahrscheinlichkeitsverteilungen, daher wie sich die Wahrscheinlichkeit auf mögliche Zufallsergebnisse verteilt. Im Gegensatz zu stetigen Zufallsvariablen können die einzelnen Wahrscheinlichkeiten der einzelnen Ausprägungen nicht angegeben werden, denn sie müssten streng genommen 0 gesetzt werden. Es lassen sich nur Wahrscheinlichkeiten f(x)dx dafür angeben, dass die Werte innerhalb eines Intervalls dx um x liegen. Die Funktion f(x) heißt dann Dichtefunktion. Damit es sich um eine Dichtefunktion handelt muss die Fläche unter Kurve 1 sein. Man erhält sie wenn man die Verteilungsfunktionen differenziert. 8.3 Lösung des Beispiels Wir benötigen die Ableitungen: e (a) x - logistiche Verteilung (1+e x ) 2 (b) e ( (e x ) x) (c) 1 π 1 - Cauchy/t-Verteilung 1+x 2 10

11 11

Übungsrunde 5, Gruppe 2 LVA , Übungsrunde 5, Gruppe 2, Markus Nemetz, TU Wien, 11/2006

Übungsrunde 5, Gruppe 2 LVA , Übungsrunde 5, Gruppe 2, Markus Nemetz, TU Wien, 11/2006 3.. Angabe Übungsrunde 5, Gruppe 2 LVA 07.369, Übungsrunde 5, Gruppe 2, 4.. Markus Nemetz, markus.nemetz@tuwien.ac.at, TU Wien, /2006 Betrachten Sie einen Behälter, der Karten mit jeweils einer aufgedruckten

Mehr

Definition 4.1 Die Wahrscheinlichkeitsfunktion der Bernoulli-Verteilung ist gegeben durch

Definition 4.1 Die Wahrscheinlichkeitsfunktion der Bernoulli-Verteilung ist gegeben durch Kapitel 4 Diskrete Verteilungen 4.1 Bernoulli-Verteilung Definition 4.1 Die Wahrscheinlichkeitsfunktion der Bernoulli-Verteilung ist gegeben durch È Üµ ½ für Ü ¼ für Ü ½ ¼ sonst Die Bernoulli-Verteilung

Mehr

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential Zufallsvariablen Diskret Binomial Hypergeometrisch Poisson Stetig Normal Lognormal Exponential Verteilung der Stichprobenkennzahlen Zufallsvariable Erinnerung: Merkmal, Merkmalsausprägung Deskriptive Statistik:

Mehr

7.7 Spezielle diskrete Wahrscheinlichkeitsverteilungen

7.7 Spezielle diskrete Wahrscheinlichkeitsverteilungen 7.7 Spezielle diskrete Wahrscheinlichkeitsverteilungen 7.7.1 Die Laplace-Verteilung Sei X eine gleich verteilte Zufallsvariable mit den Werten in der Menge Ω X = {x i R : i = 1,...,n}, d.h. f (x i = 1

Mehr

Ausgewählte spezielle Verteilungen

Ausgewählte spezielle Verteilungen Ausgewählte spezielle Verteilungen In Anwendungen werden oft Zufallsvariablen betrachtet, deren Verteilung einem Standardmodell entspricht. Zu den wichtigsten dieser Modelle gehören: diskrete Verteilungen:

Mehr

Fit for Abi & Study Stochastik

Fit for Abi & Study Stochastik Fit for Abi & Study Stochastik Prof. Dr. Tilla Schade Hochschule Harz 15. und 16. April 2014 No. 1 Stochastik besteht aus: Wahrscheinlichkeitsrechnung Statistik No. 2 Gliederung Grundlagen Zufallsgrößen

Mehr

Einführung in Quantitative Methoden

Einführung in Quantitative Methoden Einführung in Quantitative Methoden Karin Waldherr & Pantelis Christodoulides 11. Mai 2011 Waldherr / Christodoulides Einführung in Quantitative Methoden- 8.VO 1/40 Poisson-Verteilung Diese Verteilung

Mehr

A: Beispiele Beispiel 1: Zwei Zufallsvariablen X und Y besitzen die beiden folgenden Wahrscheinlichkeitsfunktionen:

A: Beispiele Beispiel 1: Zwei Zufallsvariablen X und Y besitzen die beiden folgenden Wahrscheinlichkeitsfunktionen: 5 Diskrete Verteilungen 1 Kapitel 5: Diskrete Verteilungen A: Beispiele Beispiel 1: Zwei Zufallsvariablen X und Y besitzen die beiden folgenden Wahrscheinlichkeitsfunktionen: 5 0.6 x 0.4 5 x (i) P x (x)

Mehr

Stochastik und Statistik für Ingenieure Vorlesung 4

Stochastik und Statistik für Ingenieure Vorlesung 4 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik Stochastik und Statistik für Ingenieure Vorlesung 4 30. Oktober 2012 Quantile einer stetigen Zufallsgröße Die reelle Zahl

Mehr

Zusammenfassung Mathe II. Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen

Zusammenfassung Mathe II. Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen Zusammenfassung Mathe II Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen Zufallsexperiment: Ein Vorgang, bei dem mindestens zwei Ereignisse möglich sind

Mehr

STATISTIK Teil 2 Wahrscheinlichkeitsrechnung und schließende Statistik

STATISTIK Teil 2 Wahrscheinlichkeitsrechnung und schließende Statistik Kapitel 11 Diskrete Zufallsvariablen 11.1. Wahrscheinlichkeits- und diskret Wahrscheinlichkeitsverteilungen Wahrscheinlichkeitsfunktion von X Nimmt abzählbare Anzahl von Ausprägungen an (z.b. Zählvariablen)

Mehr

Beziehungen zwischen Verteilungen

Beziehungen zwischen Verteilungen Kapitel 5 Beziehungen zwischen Verteilungen In diesem Kapitel wollen wir Beziehungen zwischen Verteilungen betrachten, die wir z.t. schon bei den einzelnen Verteilungen betrachtet haben. So wissen Sie

Mehr

Mathematische und statistische Methoden II

Mathematische und statistische Methoden II Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung Wallstr. 3, 6. Stock, Raum 06-206 Mathematische und statistische Methoden II Dr. Malte Persike persike@uni-mainz.de lordsofthebortz.de lordsofthebortz.de/g+

Mehr

Mathematische und statistische Methoden II

Mathematische und statistische Methoden II Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte Persike persike@uni-mainz.de

Mehr

Statistik für Ingenieure Vorlesung 2

Statistik für Ingenieure Vorlesung 2 Statistik für Ingenieure Vorlesung 2 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 24. Oktober 2016 2.4 Bedingte Wahrscheinlichkeiten Häufig ist es nützlich, Bedingungen

Mehr

Kapitel IV - Spezielle Verteilungen: Diskrete Verteilungen

Kapitel IV - Spezielle Verteilungen: Diskrete Verteilungen Universität Karlsruhe (TH) Institut für Statistik und Mathematische Wirtschaftstheorie Wahrscheinlichkeitstheorie Kapitel IV - Spezielle Verteilungen: Diskrete Verteilungen Markus Höchstötter Lehrstuhl

Mehr

Programm. Wiederholung. Gleichverteilung Diskrete Gleichverteilung Stetige Gleichverteilung. Binomialverteilung. Hypergeometrische Verteilung

Programm. Wiederholung. Gleichverteilung Diskrete Gleichverteilung Stetige Gleichverteilung. Binomialverteilung. Hypergeometrische Verteilung Programm Wiederholung Gleichverteilung Diskrete Gleichverteilung Stetige Gleichverteilung Binomialverteilung Hypergeometrische Verteilung Wiederholung verschiedene Mittelwerte für verschiedene Skalenniveaus

Mehr

Wahrscheinlichkeit und Statistik: Zusammenfassung

Wahrscheinlichkeit und Statistik: Zusammenfassung HSR Hochschule für Technik Rapperswil Wahrscheinlichkeit und Statistik: Zusammenfassung beinhaltet Teile des Skripts von Herrn Hardy von Lukas Wilhelm lwilhelm.net 12. Januar 2007 Inhaltsverzeichnis 1

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Verteilung diskreter Zufallsvariablen Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften

Mehr

Dr. Jürgen Senger INDUKTIVE STATISTIK. Wahrscheinlichkeitstheorie, Schätz- und Testverfahren

Dr. Jürgen Senger INDUKTIVE STATISTIK. Wahrscheinlichkeitstheorie, Schätz- und Testverfahren Dr. Jürgen Senger INDUKTIVE STATISTIK Wahrscheinlichkeitstheorie, Schätz- und Testverfahren ÜBUNG 7.2 - LÖSUNGEN POISSONVERTEILUNG. Fahrzeuge, die eine Brücke passieren Zufallsexperiment: Zeitpunkt des

Mehr

Stetige Verteilungen Rechteckverteilung

Stetige Verteilungen Rechteckverteilung Stetige Verteilungen Rechteckverteilung Die Längenabweichungen X produzierter Werkstücke von der Norm seien gleichmäßig verteilt zwischen a = mm und b = 4mm. Die Dichtefunktion lautet also f(x) = für a

Mehr

13 Mehrdimensionale Zufallsvariablen Zufallsvektoren

13 Mehrdimensionale Zufallsvariablen Zufallsvektoren 3 Mehrdimensionale Zufallsvariablen Zufallsvektoren Bisher haben wir uns ausschließlich mit Zufallsexperimenten beschäftigt, bei denen die Beobachtung eines einzigen Merkmals im Vordergrund stand. In diesem

Mehr

2.2 Binomialverteilung, Hypergeometrische Verteilung, Poissonverteilung

2.2 Binomialverteilung, Hypergeometrische Verteilung, Poissonverteilung 2.2 Binomialverteilung, Hypergeometrische Verteilung, Poissonverteilung Die einfachste Verteilung ist die Gleichverteilung, bei der P(X = x i ) = 1/N gilt, wenn N die Anzahl möglicher Realisierungen von

Mehr

7.5 Erwartungswert, Varianz

7.5 Erwartungswert, Varianz 7.5 Erwartungswert, Varianz Def. 7.5.: a) X sei eine diskrete ZV, die bei unendl. vielen Werten x k folgende Zusatzbedingung erfüllt: x k p k

Mehr

Kapitel 9. Verteilungsmodelle. 9.1 Diskrete Verteilungsmodelle Die Gleichverteilung

Kapitel 9. Verteilungsmodelle. 9.1 Diskrete Verteilungsmodelle Die Gleichverteilung Kapitel 9 Verteilungsmodelle Es gibt eine Reihe von Verteilungsmodellen für univariate diskrete und stetige Zufallsvariablen, die sich in der Praxis bewährt haben. Wir wollen uns von diesen einige anschauen.

Mehr

Anliegen: Beschreibung von Versuchsergebnissen mit Zahlen, um mit Zahlen bzw. bekannten Funktionen rechnen zu können.

Anliegen: Beschreibung von Versuchsergebnissen mit Zahlen, um mit Zahlen bzw. bekannten Funktionen rechnen zu können. 2 Zufallsvariable 2.1 Einführung Anliegen: Beschreibung von Versuchsergebnissen mit Zahlen, um mit Zahlen bzw. bekannten Funktionen rechnen zu können. Eine Zufallsvariable X ordnet jedem elementaren Versuchsausgang

Mehr

Prüfungsvorbereitungskurs Höhere Mathematik 3

Prüfungsvorbereitungskurs Höhere Mathematik 3 Prüfungsvorbereitungskurs Höhere Mathematik 3 Stochastik Marco Boßle Jörg Hörner Mathematik Online Frühjahr 2011 PV-Kurs HM 3 Stochastik 1-1 Zusammenfassung Wahrscheinlichkeitsraum (WR): Menge der Elementarereignisse

Mehr

Heute. Die Binomialverteilung. Poissonverteilung. Approximation der Binomialverteilung durch die Normalverteilung

Heute. Die Binomialverteilung. Poissonverteilung. Approximation der Binomialverteilung durch die Normalverteilung Heute Die Binomialverteilung Poissonverteilung Approximation der Binomialverteilung durch die Normalverteilung Arbeiten mit Wahrscheinlichkeitsverteilungen Die Binomialverteilung Man werfe eine Münze n

Mehr

2. Übung zur Vorlesung Statistik 2

2. Übung zur Vorlesung Statistik 2 2. Übung zur Vorlesung Statistik 2 Aufgabe 1 Welche der folgenden grafischen Darstellungen und Tabellen zeigen keine (Einzel-)Wahrscheinlichkeitsverteilung? Kreuzen Sie die richtigen Antworten an und begründen

Mehr

KATA LOGO Mathematik Statistik Wahrscheinlichkeitsverteilungen - Beispiele

KATA LOGO Mathematik Statistik Wahrscheinlichkeitsverteilungen - Beispiele KATA LOGO Mathematik Statistik Wahrscheinlichkeitsverteilungen - Beispiele Verteilungen Problemstellung Ergebnisraum Ω Stichprobe (n aus N) mehrfaches Auswählen = wiederholen Formel für P Erwartungswert

Mehr

falls rote Kugel im 1. Zug gezogen Die Ziehungen sind daher nicht unabhängig voneinander. Damit liegt kein Bernoulli-Prozess

falls rote Kugel im 1. Zug gezogen Die Ziehungen sind daher nicht unabhängig voneinander. Damit liegt kein Bernoulli-Prozess 6.4 Hypergeometrische Verteilung Gegeben ist eine Urne, die mit N Kugeln gefüllt ist. Es seien M dieser Kugeln rot und N-M Kugeln sind nicht rot. Wir entnehmen n Kugeln, d.h. Stichproben vom Umfang n.

Mehr

SozialwissenschaftlerInnen II

SozialwissenschaftlerInnen II Statistik für SozialwissenschaftlerInnen II Henning Best best@wiso.uni-koeln.de Universität zu Köln Forschungsinstitut für Soziologie Statistik für SozialwissenschaftlerInnen II p.1 Wahrscheinlichkeitsfunktionen

Mehr

(8 + 2 Punkte) = = 0.75

(8 + 2 Punkte) = = 0.75 Aufgabe 1 (8 + 2 Punkte) Von 20 Teilnehmern einer Bergwanderung geben 8 Personen an Knieschmerzen zu haben. 6 Teilnehmer leiden an Sonnenbrand. 8 Teilnehmer blieben unversehrt. a) Wie groß ist die Wahrscheinlichkeit,

Mehr

Kapitel 10 VERTEILUNGEN

Kapitel 10 VERTEILUNGEN Kapitel 10 VERTEILUNGEN Fassung vom 18. Januar 2001 130 VERTEILUNGEN Zufallsvariable. 10.1 10.1 Zufallsvariable. HäuÞg wird statt des Ergebnisses ω Ω eines Zufalls-Experiments eine zugeordnete Zahl X(ω)

Mehr

Übungsrunde 9, Gruppe 2 LVA 107.369, Übungsrunde 8, Gruppe 2, 12.12. Markus Nemetz, TU Wien, 12/2006

Übungsrunde 9, Gruppe 2 LVA 107.369, Übungsrunde 8, Gruppe 2, 12.12. Markus Nemetz, TU Wien, 12/2006 3.75. Angabe Übungsrunde 9, Gruppe 2 LVA 07.369, Übungsrunde 8, Gruppe 2, 2.2. Markus Nemetz, markus.nemetz@tuwien.ac.at, TU Wien, 2/2006 X sei eine stetige sg mit Dichte f(x), x R. Ermitteln Sie einen

Mehr

6.6 Poisson-Verteilung

6.6 Poisson-Verteilung 6.6 Poisson-Verteilung Die Poisson-Verteilung ist eine Wahrscheinlichkeitsverteilung, die zur Modellierung der Anzahl von zufälligen Vorkommnissen in einem bestimmten räumlichen oder zeitlichen Abschnitt

Mehr

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen...

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen... Inhaltsverzeichnis I Grundbegriffe 1 1 Wahrscheinlichkeitsräume......................... 1 2 Bedingte Wahrscheinlichkeiten und Unabhängigkeit........... 7 3 Reellwertige Zufallsvariablen........................

Mehr

Wahrscheinlichkeitstheorie und Statistik für Studierende des Maschinenbaus vom

Wahrscheinlichkeitstheorie und Statistik für Studierende des Maschinenbaus vom Institut für Stochastik WS 009/10 Karlsruher Institut für Technologie (KIT) Dr. B. Klar Klausur Wahrscheinlichkeitstheorie und Statistik für Studierende des Maschinenbaus vom 08.0.010 Musterlösungen Aufgabe

Mehr

Stochastik. 1. Wahrscheinlichkeitsräume

Stochastik. 1. Wahrscheinlichkeitsräume Stochastik 1. Wahrscheinlichkeitsräume Ein Zufallsexperiment ist ein beliebig oft und gleichartig wiederholbarer Vorgang mit mindestens zwei verschiedenen Ergebnissen, bei dem der Ausgang ungewiß ist.

Mehr

Statistik für Informatiker, SS Verteilungen mit Dichte

Statistik für Informatiker, SS Verteilungen mit Dichte 1/39 Statistik für Informatiker, SS 2017 1.1.6 Verteilungen mit Dichte Matthias Birkner http://www.staff.uni-mainz.de/birkner/statinfo17/ 17.5.2017 Zufallsvariablen mit Dichten sind ein kontinuierliches

Mehr

2 Zufallsvariable, Verteilungen, Erwartungswert

2 Zufallsvariable, Verteilungen, Erwartungswert 2 Zufallsvariable, Verteilungen, Erwartungswert Bisher: Zufallsexperimente beschrieben durch W-Räume (Ω, A, P) Häufig interessiert nur eine zufällige Größe X = X(ω), die vom Ergebnis ω des Zufallsexperiments

Mehr

10 Transformation von Zufallsvariablen

10 Transformation von Zufallsvariablen 10 Transformation von Zufallsvariablen Sei X : Ω R eine Zufallsvariable mit Verteilungsfunktion F X (x) = P(X < x). Wir betrachten eine Funktion g: R R und sei Zufallsvariable Y : Ω R mit Y = g(x). Y :

Mehr

70 Wichtige kontinuierliche Verteilungen

70 Wichtige kontinuierliche Verteilungen 70 Wichtige kontinuierliche Verteilungen 70. Motivation Zufallsvariablen sind nicht immer diskret, sie können oft auch jede beliebige reelle Zahl in einem Intervall [c, d] einnehmen. Beispiele für solche

Mehr

4 Diskrete Zufallsvariablen

4 Diskrete Zufallsvariablen 25 4 Diskrete Zufallsvariablen 4.1 Einleitung Die Ergebnisse von Zufallsvorgängen sind nicht notwendigerweise Zahlen. Oft ist es aber hilfreich diese durch Zahlen zu repräsentieren. Beispiel 4.1 (4-maliger

Mehr

Biostatistik, Winter 2011/12

Biostatistik, Winter 2011/12 Biostatistik, Winter 2011/12 Wahrscheinlichkeitstheorie:, Unabhängigkeit Prof. Dr. Achim Klenke http://www.aklenke.de 6. Vorlesung: 02.12.2011 1/30 Inhalt 1 Wahrscheinlichkeit 2 2/30 Wahrscheinlichkeit

Mehr

0, t 0,5

0, t 0,5 XIII. Die Normalverteilung ==================================================================. Der lokale Grenzwertsatz --------------------------------------------------------------------------------------------------------------

Mehr

Definition Sei X eine stetige Z.V. mit Verteilungsfunktion F und Dichte f. Dann heißt E(X) :=

Definition Sei X eine stetige Z.V. mit Verteilungsfunktion F und Dichte f. Dann heißt E(X) := Definition 2.34. Sei X eine stetige Z.V. mit Verteilungsfunktion F und Dichte f. Dann heißt E(X) := x f(x)dx der Erwartungswert von X, sofern dieses Integral existiert. Entsprechend wird die Varianz V(X)

Mehr

Ist P(T) = p die Trefferwahrscheinlichkeit eines Bernoulli-Experiments,

Ist P(T) = p die Trefferwahrscheinlichkeit eines Bernoulli-Experiments, . Binomialverteilung ==================================================================.1 Bernoulli-Experimente und Bernoullikette -----------------------------------------------------------------------------------------------------------------

Mehr

1.3 Zufallsgrößen und Verteilungsfunktionen

1.3 Zufallsgrößen und Verteilungsfunktionen .3 Zufallsgrößen und Verteilungsfunktionen.3. Einführung Vielfach sind die Ergebnisse von Zufallsversuchen Zahlenwerte. Häufig möchte man aber auch in den Fällen, wo dies nicht so ist, Zahlenwerte zur

Mehr

7.5 Erwartungswert, Varianz

7.5 Erwartungswert, Varianz 7.5 Erwartungswert, Varianz Beispiel 7.5.1: Es werden drei ideale Münzen geworfen, und der Gewinn sei X := Anzahl von W. In Beispiel 7.4.1 hatten wir dazu eine Wahrscheinlichkeitverteilung ermittelt: X

Mehr

Lösungen ausgewählter Übungsaufgaben zum Buch. Elementare Stochastik (Springer Spektrum, 2012) Teil 3: Aufgaben zu den Kapiteln 5 und 6

Lösungen ausgewählter Übungsaufgaben zum Buch. Elementare Stochastik (Springer Spektrum, 2012) Teil 3: Aufgaben zu den Kapiteln 5 und 6 1 Lösungen ausgewählter Übungsaufgaben zum Buch Elementare Stochastik (Springer Spektrum, 2012) Teil 3: Aufgaben zu den Kapiteln 5 und 6 Aufgaben zu Kapitel 5 Zu Abschnitt 5.1 Ü5.1.1 Finden Sie eine maximum-likelihood-schätzung

Mehr

Hypergeometrische Verteilung

Hypergeometrische Verteilung Hypergeometrische Verteilung Typischer Anwendungsfall: Ziehen ohne Zurücklegen Durch den Ziehungsprozess wird die Wahrscheinlichkeit des auch hier zu Grunde liegenden Bernoulli-Experimentes verändert.

Mehr

Stetige Verteilungen. A: Beispiele Beispiel 1: a) In den folgenden Abbildungen sind die Dichtefunktionen von drei bekannten Verteilungen graphisch

Stetige Verteilungen. A: Beispiele Beispiel 1: a) In den folgenden Abbildungen sind die Dichtefunktionen von drei bekannten Verteilungen graphisch 6 Stetige Verteilungen 1 Kapitel 6: Stetige Verteilungen A: Beispiele Beispiel 1: a) In den folgenden Abbildungen sind die Dichtefunktionen von drei bekannten Verteilungen graphisch dargestellt. 0.2 6

Mehr

Kapitel VII - Funktion und Transformation von Zufallsvariablen

Kapitel VII - Funktion und Transformation von Zufallsvariablen Universität Karlsruhe (TH) Institut für Statistik und Mathematische Wirtschaftstheorie Wahrscheinlichkeitstheorie Kapitel VII - Funktion und Transformation von Zufallsvariablen Markus Höchstötter Lehrstuhl

Mehr

Hypergeometrische Verteilung

Hypergeometrische Verteilung Hypergeometrische Verteilung Aufgaben Aufgabe 1 Eine Firma produziert insgesamt 30 elektronische Bauteile des gleichen Typs. Aus langjähriger Erfahrung weiß man das davon jedes 70te defekt ist. Um die

Mehr

Psychologische Methodenlehre und Statistik I

Psychologische Methodenlehre und Statistik I Psychologische Methodenlehre und Statistik I Pantelis Christodoulides & Karin Waldherr SS 2013 Pantelis Christodoulides & Karin Waldherr Psychologische Methodenlehre und Statistik I 1/61 Zufallsexperiment

Mehr

Vorlesung 3a. Der Erwartungswert. von diskreten reellwertigen Zufallsvariablen

Vorlesung 3a. Der Erwartungswert. von diskreten reellwertigen Zufallsvariablen Vorlesung 3a Der Erwartungswert von diskreten reellwertigen Zufallsvariablen X sei eine Zufallsvariable, deren Zielbereich R (die Menge der reellen Zahlen) (oder eine Teilmenge davon) ist. Es existiere

Mehr

Mathematik 3 für Informatik

Mathematik 3 für Informatik Gunter Ochs Wintersemester 20/6 Mathematik 3 für Informatik Lösungen zum Hausaufgabenblatt 4 Lösungshinweise (ohne Ganantie auf Fehlerfreiheit. Wenn man beim Roulette auf Rot oder Schwarz setzt, erhält

Mehr

7.2 Moment und Varianz

7.2 Moment und Varianz 7.2 Moment und Varianz Def. 21 Es sei X eine zufällige Variable. Falls der Erwartungswert E( X p ) existiert, heißt der Erwartungswert EX p p tes Moment der zufälligen Variablen X. Es gilt dann: + x p

Mehr

Biostatistik, Winter 2011/12

Biostatistik, Winter 2011/12 Biostatistik, Winter 2011/12 Wahrscheinlichkeitstheorie:, Kenngrößen Prof. Dr. Achim Klenke http://www.aklenke.de 7. Vorlesung: 09.12.2011 1/58 Inhalt 1 2 Kenngrößen von Lagemaße 2/58 mit Dichte Normalverteilung

Mehr

Kapitel VII. Einige spezielle stetige Verteilungen

Kapitel VII. Einige spezielle stetige Verteilungen Kapitel VII Einige spezielle stetige Verteilungen D. 7.. (Normalverteilung) Eine stetige Zufallsgröße X sei als normalverteilt bezeichnet, wenn sie folgende Wahrscheinlichkeitsdichte besitzt: µ f ( ; µ,

Mehr

Der Erwartungswert E[g(X)] von g(x) ist definiert. g(x k )w(x = x k ),

Der Erwartungswert E[g(X)] von g(x) ist definiert. g(x k )w(x = x k ), 2.5 Parameter einer Verteilung 2.5. Erwartungswert X eine Zufallsvariable, g : R R stetig. Der Erwartungswert E[g(X)] von g(x) ist definiert durch: E[g(X)] := k g(x k )w(x = x k ), falls X diskret ist

Mehr

Universität Basel Wirtschaftswissenschaftliches Zentrum. Zufallsvariablen. Dr. Thomas Zehrt

Universität Basel Wirtschaftswissenschaftliches Zentrum. Zufallsvariablen. Dr. Thomas Zehrt Universität Basel Wirtschaftswissenschaftliches Zentrum Zufallsvariablen Dr. Thomas Zehrt Inhalt: 1. Einführung 2. Zufallsvariablen 3. Diskrete Zufallsvariablen 4. Stetige Zufallsvariablen 5. Erwartungswert

Mehr

Finanzmathematische Modelle und Simulation

Finanzmathematische Modelle und Simulation Finanzmathematische Modelle und Simulation WS 9/1 Rebecca Henkelmann In meiner Ausarbeitung Grundbegriffe der Stochastik I, geht es darum die folgenden Begriffe für die nächsten Kapitel einzuführen. Auf

Mehr

Eine Zufallsvariable wird als diskret bezeichnet, wenn sie nur endlich viele oder abzählbar unendlich viele Werte annimmt.

Eine Zufallsvariable wird als diskret bezeichnet, wenn sie nur endlich viele oder abzählbar unendlich viele Werte annimmt. Statistik I Sommersemester 009 Aufgabenlösung Übung 4: Diskrete Zufallsvariablen Aufgabe 5.. (Blatt ) ine Zufallsvariable bildet den reignisraum eines Zufallsvorgangs ab. Dieser bestimmt den Definitionsbereich

Mehr

Kapitel VI - Lage- und Streuungsparameter

Kapitel VI - Lage- und Streuungsparameter Universität Karlsruhe (TH) Institut für Statistik und Mathematische Wirtschaftstheorie Wahrscheinlichkeitstheorie Kapitel VI - Lage- und Streuungsparameter Markus Höchstötter Lehrstuhl für Statistik, Ökonometrie

Mehr

0 für t < für 1 t < für 2 t < für 3 t < für 4 t < 5 1 für t 5

0 für t < für 1 t < für 2 t < für 3 t < für 4 t < 5 1 für t 5 4 Verteilungen und ihre Kennzahlen 1 Kapitel 4: Verteilungen und ihre Kennzahlen A: Beispiele Beispiel 1: Eine diskrete Zufallsvariable X, die nur die Werte 1,, 3, 4, 5 mit positiver Wahrscheinlichkeit

Mehr

Eine Zufallsvariable X sei stetig gleichverteilt im Intervall [0,5]. Die Wahrscheinlichkeit P(2< x <4) ist dann

Eine Zufallsvariable X sei stetig gleichverteilt im Intervall [0,5]. Die Wahrscheinlichkeit P(2< x <4) ist dann 4. Übung Themenkomplex: Zufallsvariablen und ihre Verteilung Aufgabe 1 Für eine stetige Zufallsvariable gilt: a) P (x = t) > 0 b) P (x 1) = F (1) c) P (x = 1) = 0 d) P (x 1) = 1 F(1) e) P (x 1) = 1 F(1)

Mehr

Beispiel 6 (Einige Aufgaben zur Gleichverteilung)

Beispiel 6 (Einige Aufgaben zur Gleichverteilung) Beispiel 6 (Einige Aufgaben zur Gleichverteilung) Aufgabe (Anwendung der Chebyshev-Ungleichung) Sei X eine Zufallsvariable mit E(X) = µ und var(x) = σ a) Schätzen Sie die Wahrscheinlichkeit dafür, daß

Mehr

Stochastik I. Vorlesungsmitschrift

Stochastik I. Vorlesungsmitschrift Stochastik I Vorlesungsmitschrift Ulrich Horst Institut für Mathematik Humboldt-Universität zu Berlin Inhaltsverzeichnis 1 Grundbegriffe 1 1.1 Wahrscheinlichkeitsräume..................................

Mehr

Mathematik: LehrerInnenteam Arbeitsblatt Semester ARBEITSBLATT 12. Erwartungswert, Varianz und Standardabweichung

Mathematik: LehrerInnenteam Arbeitsblatt Semester ARBEITSBLATT 12. Erwartungswert, Varianz und Standardabweichung Mathematik: LehrerInnenteam Arbeitsblatt 7-7. Semester ARBEITSBLATT Erwartungswert, Varianz und Standardabweichung Die Begriffe Varianz und Standardabweichung sind uns bereits aus der Statistik bekannt

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 11. November 2010 1 Erwartungswert und Varianz Erwartungswert Varianz und Streuung Rechenregeln Binomialverteilung

Mehr

Statistik im Versicherungs- und Finanzwesen

Statistik im Versicherungs- und Finanzwesen Springer Gabler PLUS Zusatzinformationen zu Medien von Springer Gabler Grimmer Statistik im Versicherungs- und Finanzwesen Eine anwendungsorientierte Einführung 2014 1. Auflage Übungsaufgaben zu Kapitel

Mehr

2. Übung zur Vorlesung Statistik 2

2. Übung zur Vorlesung Statistik 2 2. Übung zur Vorlesung Statistik 2 Aufgabe 1 Welche der folgenden grafischen Darstellungen und Tabellen zeigen keine (Einzel-)Wahrscheinlichkeitsverteilung? Kreuzen Sie die richtigen Antworten an und begründen

Mehr

Binomialverteilung. Statistik für SoziologInnen 1 Diskrete Verteilungsmodelle. Marcus Hudec

Binomialverteilung. Statistik für SoziologInnen 1 Diskrete Verteilungsmodelle. Marcus Hudec Binomialverteilung Jakob Bernoulli (1654-1705) Ars Conjectandi Klassisches Verteilungsmodell für die Berechnung der Wahrscheinlichkeit für die Häufigkeit des Eintretens von Ereignissen in bestimmten noch

Mehr

1 Stochastische Konvergenz 2. 2 Das Gesetz der grossen Zahlen 4. 3 Der Satz von Bernoulli 6

1 Stochastische Konvergenz 2. 2 Das Gesetz der grossen Zahlen 4. 3 Der Satz von Bernoulli 6 Wirtschaftswissenschaftliches Zentrum 0 Universität Basel Mathematik Dr. Thomas Zehrt Grenzwertsätze Benötigtes Vorwissen: Der Stoff der Vorlesung,,Statistik wird als bekannt vorausgesetzt, insbesondere

Mehr

Verteilungen eindimensionaler stetiger Zufallsvariablen Einführung Stetige Verteilungen

Verteilungen eindimensionaler stetiger Zufallsvariablen Einführung Stetige Verteilungen Verteilungen eindimensionaler stetiger Zufallsvariablen Einführung Stetige Verteilungen Stetige Gleichverteilung Exponentialverteilung Normalverteilung Bibliografie: Prof. Dr. Kück Universität Rostock

Mehr

4.4 Punktschätzung. E(X 1 )+ +E(X n ) Var(ˆµ) = 1 n 2 ( Var(X1 )+ +Var(X n ) ) = 1 n 2nσ2 = σ2

4.4 Punktschätzung. E(X 1 )+ +E(X n ) Var(ˆµ) = 1 n 2 ( Var(X1 )+ +Var(X n ) ) = 1 n 2nσ2 = σ2 4 4.4 Punktschätzung Wir betrachten eine endliche oder unendliche Grundgesamtheit, zum Beispiel alle Studierenden der Vorlesung Mathe II für Naturwissenschaften. Im endlichen Fall soll die Anzahl N ihrer

Mehr

Statistik III. Walter Zucchini Fred Böker Andreas Stadie

Statistik III. Walter Zucchini Fred Böker Andreas Stadie Statistik III Walter Zucchini Fred Böker Andreas Stadie Inhaltsverzeichnis 1 Zufallsvariablen und ihre Verteilung 1 1.1 Diskrete Zufallsvariablen........................... 1 1.2 Stetige Zufallsvariablen............................

Mehr

Modelle diskreter Zufallsvariablen

Modelle diskreter Zufallsvariablen Statistik 2 für SoziologInnen Modelle diskreter Zufallsvariablen Univ.Prof. Dr. Marcus Hudec Zufallsvariable Eine Variable (Merkmal) X, deren numerische Werte als Ergebnisse eines Zufallsvorgangs aufgefasst

Mehr

Wahrscheinlichkeitsfunktion. Binomialverteilung. Binomialverteilung. Wahrscheinlichkeitshistogramme

Wahrscheinlichkeitsfunktion. Binomialverteilung. Binomialverteilung. Wahrscheinlichkeitshistogramme Binomialverteilung Wahrscheinlichkeitsfunktion Konstruktionsprinzip: Ein Zufallsexperiment wird n mal unabhängig durchgeführt. Wir interessieren uns jeweils nur, ob ein bestimmtes Ereignis A eintritt oder

Mehr

Übungsblatt 9 (25. bis 29. Juni)

Übungsblatt 9 (25. bis 29. Juni) Statistik 2 Dr. Andrea Beccarini Dipl.-Vw. Dipl.-Kffr. Heike Bornewasser-Hermes Sommersemester 2012 Übungsblatt 9 (25. bis 29. Juni) Stetiges Verteilungsmodell und Gemeinsame Verteilung Stetiges Verteilungsmodell

Mehr

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen...

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen... Inhaltsverzeichnis I Grundbegriffe 1 1 Wahrscheinlichkeitsräume......................... 1 2 Bedingte Wahrscheinlichkeiten und Unabhängigkeit........... 7 3 Reellwertige Zufallsvariablen........................

Mehr

1. Ziehg.: N M. falls nicht-rote K. in 1. Ziehg. gezogen

1. Ziehg.: N M. falls nicht-rote K. in 1. Ziehg. gezogen 6.4 Hyergeometrische Verteilung Gegeben ist eine Urne, die mit N Kugeln gefüllt ist. Es seien M dieser Kugeln rot und N-M Kugeln nicht rot. Wir entnehmen n Kugeln, d.h. eine Stichrobe des Umfangs n. Dabei

Mehr

Wie groß ist die Wahrscheinlichkeit Pr[X > y + x X > x]? Da bei den ersten x Versuchen kein Erfolg eintrat, stellen wir uns vor, dass das

Wie groß ist die Wahrscheinlichkeit Pr[X > y + x X > x]? Da bei den ersten x Versuchen kein Erfolg eintrat, stellen wir uns vor, dass das Sei X geometrisch verteilt mit Erfolgswahrscheinlichkeit p. Dann ist Pr[X = k] die Wahrscheinlichkeit, dass wir bei einem binären Experiment mit Erfolgswahrscheinlichkeit p genau in der k-ten unabhängigen

Mehr

Woche 2: Zufallsvariablen

Woche 2: Zufallsvariablen Woche 2: Zufallsvariablen Patric Müller ETHZ WBL 17/19, 24.04.2017 Wahrscheinlichkeit und Statistik Patric Müller WBL 2017 Teil III Zufallsvariablen Wahrscheinlichkeit

Mehr

Zuverlässigkeitstheorie

Zuverlässigkeitstheorie 3. Grundbegriffe der Wahrscheinlichkeitsrechnung Prof. Jochen Seitz Fachgebiet Kommunikationsnetze 20. November 2008 Übersicht Gesetz der großen Zahlen von Bernoulli 1 Gesetz der großen Zahlen von Bernoulli

Mehr

2 Zufallsvariable und Verteilungsfunktionen

2 Zufallsvariable und Verteilungsfunktionen 8 2 Zufallsvariable und Verteilungsfunktionen Häufig ist es so, dass den Ausgängen eines Zufallexperiments, d.h. den Elementen der Ereignisalgebra, eine Zahl zugeordnet wird. Das wollen wir etwas mathematischer

Mehr

6. Stochastische Modelle II: Stetige Wahrscheinlichkeitsverteilungen, insbesondere Normalverteilungen

6. Stochastische Modelle II: Stetige Wahrscheinlichkeitsverteilungen, insbesondere Normalverteilungen 6. Stochastische Modelle II: Stetige Wahrscheinlichkeitsverteilungen, insbesondere Normalverteilungen Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Bisher: Diskrete Zufallsvariablen,

Mehr

Erwartungswert, Umgebungswahrscheinlichkeiten und die Normalverteilung

Erwartungswert, Umgebungswahrscheinlichkeiten und die Normalverteilung R. Brinkmann http://brinkmann-du.de Seite 5.05.0 Erwartungswert, Umgebungswahrscheinlichkeiten und die Normalverteilung Erwartungswert binomialverteilter Zufallsgrößen Wird ein Bernoulli- Versuch, bei

Mehr

Wichtige Definitionen und Aussagen

Wichtige Definitionen und Aussagen Wichtige Definitionen und Aussagen Zufallsexperiment, Ergebnis, Ereignis: Unter einem Zufallsexperiment verstehen wir einen Vorgang, dessen Ausgänge sich nicht vorhersagen lassen Die möglichen Ausgänge

Mehr

Abiturvorbereitung Stochastik. neue friedländer gesamtschule Klasse 12 GB Holger Wuschke B.Sc.

Abiturvorbereitung Stochastik. neue friedländer gesamtschule Klasse 12 GB Holger Wuschke B.Sc. Abiturvorbereitung Stochastik neue friedländer gesamtschule Klasse 12 GB 24.02.2014 Holger Wuschke B.Sc. Siedler von Catan, Rühlow 2014 Organisatorisches 0. Begriffe in der Stochastik (1) Ein Zufallsexperiment

Mehr

Dieses Quiz soll Ihnen helfen, Kapitel besser zu verstehen.

Dieses Quiz soll Ihnen helfen, Kapitel besser zu verstehen. Dieses Quiz soll Ihnen helfen, Kapitel 2.5-2. besser zu verstehen. Frage Wir betrachten ein Würfelspiel. Man wirft einen fairen, sechsseitigen Würfel. Wenn eine oder eine 2 oben liegt, muss man 2 SFr zahlen.

Mehr

Chi-Quadrat-Verteilung

Chi-Quadrat-Verteilung Chi-Quadrat-Verteilung Wikipedia http://de.wikipedia.org/wiki/chi-quadrat-verteilung 1 von 7 6/18/2009 6:13 PM Chi-Quadrat-Verteilung aus Wikipedia, der freien Enzyklopädie Die Chi-Quadrat-Verteilung ist

Mehr

Grundwissen zur Stochastik

Grundwissen zur Stochastik Grundwissen zur Stochastik Inhalt: ABHÄNGIGE EREIGNISSE...2 ABHÄNGIGKEIT UND UNABHÄNGIGKEIT VON ERGEBNISSEN...2 ABHÄNGIGKEIT UND UNABHÄNGIGKEIT VON MERKMALEN IN VIERFELDERTAFELN...2 ABSOLUTE HÄUFIGKEIT...2

Mehr

Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management

Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management Sommersemester 2013 Hochschule Augsburg Unabhängigkeit von Ereignissen A, B unabhängig:

Mehr

Statistik II für Wirtschaftswissenschaftler

Statistik II für Wirtschaftswissenschaftler Fachbereich Mathematik 20.04.2017 Dr. Hefter & Dr. Herzwurm Übungsblatt 0 Keine Abgabe. Gegeben seien die Mengen A 1 =, A 2 = {1}, A 3 = {1, 1}, A 4 = {1, 3}, A 5 = {1, 2, 4}, A 6 = {1, 2, 3, 4}. a) Bestimmen

Mehr

Wahrscheinlichkeitsrechnung und Statistik

Wahrscheinlichkeitsrechnung und Statistik 8. Vorlesung Pseudozufallszahlen sind, wie der Name schon sagt, keine echten Zufallszahlen, sondern werden durch Generatoren erzeugt. Als Pseudozufallszahlen bezeichnet man Zahlenfolgen die durch einen

Mehr

Lösungen zu Übungsblatt 9 Höhere Mathematik2/Stochastik 2 Master KI/PI

Lösungen zu Übungsblatt 9 Höhere Mathematik2/Stochastik 2 Master KI/PI Lösungen zu Übungsblatt 9 Höhere Mathematik/Stochastik Anpassung von Verteilungen Zu Aufgabe ) a) Zeichnen des Histogranmmes: Um das Histogramm zu zeichnen, benötigen wir die Höhe der Balken. Die Höhe

Mehr

1 Stochastische Konvergenz 2

1 Stochastische Konvergenz 2 Wirtschaftswissenschaftliches Zentrum 0 Universität Basel Mathematik Dr. Thomas Zehrt Grenzwertsätze Benötigtes Vorwissen: Der Stoff der Vorlesung,,Statistik wird als bekannt vorausgesetzt, insbesondere

Mehr