Data-Warehouse-Architektur

Größe: px
Ab Seite anzeigen:

Download "Data-Warehouse-Architektur"

Transkript

1 Data-Warehouse-Architektur Anforderungen Referenzarchitektur Phasen des Data Warehousing Komponenten VL Data Warehouses, WS 2000/ Anforderungen des Data Warehousing Unabhängigkeit zwischen Datenquellen und Analysesystemen (bzgl. Verfügbarkeit, Belastung, laufender Änderungen) Dauerhafte Bereitstellung integrierter und abgeleiteter Daten (Persistenz) Mehrfachverwendbarkeit der bereitgestellten Daten Möglichkeit der Durchführung prinizipiell beliebiger Auswertungen VL Data Warehouses, WS 2000/

2 Anforderungen des Data Warehousing Unterstützung individueller Sichten (z.b. bzgl. Zeithorizont, Struktur) Erweiterbarkeit (z.b. Integration neuer Quelle) Automatisierung der Abläufe Eindeutigkeit hinsichtlich Datenstrukturen, Zugriffsberechtigungen und Prozesse Ausrichtung am Zweck: Analyse der Daten VL Data Warehouses, WS 2000/ Referenzarchitektur Datenbeschaffungsbereich Extraktion Laden Datenquelle Arbeitsbereich Basisdatenbank Laden Data Warehouse Analyse Monitor Transformation Data- Warehouse- Manager Metadaten- Manager Datenfluß Kontrollfluß Repository Data-Warehouse-System VL Data Warehouses, WS 2000/

3 Phasen des Data Warehousing 1. Überwachung der Quellen auf Änderungen durch Monitore 2. Kopieren der relevanten Daten mittels Extraktion in temporären Arbeitsbereich 3. Transformation der Daten im Arbeitsbereich (Bereinigung, Integration) 4. Kopieren der Daten in integrierte Basisdatenbank als Grundlage für verschiedene Analysen 5. Laden der Daten in das Data Warehouse (Datenbank für Analysezwecke) 6. Analyse: Operationen auf Daten des DW VL Data Warehouses, WS 2000/ Data-Warehouse-Manager Zentrale Komponente eines DW-Systems Initiierung, Steuerung und Überwachung der einzelnen Prozesse (Ablaufsteuerung) Initiierung des Datenbeschaffungsprozesses fi in regelmäßigen Zeitabständen (jede Nacht, am Wochenende etc.): Starten der Extraktion von Daten aus Quellen und Übertragung in Arbeitsbereich fi bei Änderung einer Quelle: Start der entsprechenden Extraktionskomponente fi auf explizites Verlangen des Administrators VL Data Warehouses, WS 2000/

4 Data-Warehouse-Manager Nach Auslösen des Ladeprozesses: fi Überwachung der weiteren Schritte (Bereinigung, Integration etc.) fi Koordination der Reihenfolge der Verarbeitung Fehlerfall fi Dokumentation von Fehlern fi Wiederanlaufmechanismen Zugriff auf Metadaten aus dem Repository fi Steuerung des Ablaufs fi Parameter der Komponenten VL Data Warehouses, WS 2000/ Datenquellen Lieferanten der Daten für das Data Warehouse fi gehören nicht direkt zum DW fi können intern (Unternehmen) oder extern (z.b. Internet) sein fi heterogen bzgl. Struktur, Inhalt und Schnittstellen (Datenbanken, Dateien) fi Auswahl der Quellen und Qualität der Daten von besonderer Bedeutung Faktoren für Auswahl fi Zweck des DW fi Qualität der Quelldaten fi Verfügbarkeit (rechtlich, sozial, technisch) fi Preis für Erwerb der Daten (speziell bei externen Quellen) VL Data Warehouses, WS 2000/

5 Datenquellen: Klassifikation Herkunft: intern, extern Zeit: aktuell, historisch Nutzungsebene: Primärdaten, Metadaten Inhalt: Zahl, Zeichenkette, Grafik, Referenz, Dokument Darstellung: numerisch, alphanumerisch, BLOB Sprache und Zeichensatz Vertraulichkeitsgrad VL Data Warehouses, WS 2000/ Datenquellen: Qualitätsforderungen Konsistenz (Widerspruchsfreiheit) Korrektheit (Übereinstimmung mit Realität), Vollständigkeit (z.b. keine fehlende Werte oder Attribute) Genauigkeit (z.b. Anzahl der Nachkommastellen) und Granularität (z.b. tagesgenaue Daten) VL Data Warehouses, WS 2000/

6 Datenquellen: Qualitätsforderungen Zuverlässigkeit und Glaubwürdigkeit (Nachvollziehbarkeit der Entstehung, Vertrauenswürdigkeit des Lieferanten) Verständlichkeit (inhaltlich und technisch / strukturell für jeweilige Zielgruppe) Verwendbarkeit und Relevanz (geeignetes Format, Zweckdienlichkeit) VL Data Warehouses, WS 2000/ Monitore Aufgabe: fi Entdeckung von Datenmanipulationen in einer Datenquelle Strategien: fi Trigger-basiert aktive Datenbankmechanismen Auslösen von Triggern bei Datenänderungen Kopieren der geänderten Tupel in anderen Bereich fi replikationsbasiert Nutzung von Replikationsmechanismen zur Übertragung geänderter Daten VL Data Warehouses, WS 2000/

7 Monitore Strategien (fortg.): fi Log-basiert Analyse von Transaktions-Log-Dateien der DBMS zur Erkennung von Änderungen fi zeitstempelbasiert Zuordnung von Zeitstempeln zu Tupeln Aktualisierung bei Änderungen Identifizierung von Änderungen seit der letzten Extraktion durch Zeitvergleich fi Snapshot-basiert Periodisches Kopieren des Datenbestandes in Datei (Snapshot) Vergleich von Snapshots zur Identifizierung von Änderungen VL Data Warehouses, WS 2000/ Arbeitsbereich Aufgabe: fi Zentrale Datenhaltungskomponente des Datenbeschaffungsbereichs (engl. staging area) fi Temporärer Zwischenspeicher zur Integration Nutzung: fi Ausführung der Transformationen (Bereinigung, Integration etc.) direkt auf Zwischenspeicher fi Laden der transformierten Daten in DW bzw. Basisdatenbank erst nach erfolgreichem Abschluß der Transformation Vorteile: fi Keine Beeinflussung der Quellen oder des DW fi Keine Übernahme fehlerbehafteter Daten VL Data Warehouses, WS 2000/

8 Extraktionskomponente Aufgabe: Übertragung von Daten aus Quellen in Arbeitsbereich Funktion: abhängig von Monitoring-Strategie fi periodisch fi auf Anfrage fi ereignisgesteuert (z.b. bei Erreichen einer definierten Anzahl von Änderungen) fi sofortige Extraktion Realisierung: fi Nutzung von Standardschnittstellen (z.b. ODBC) fi Ausnahmebehandlung zur Fortsetzung im Fehlerfall VL Data Warehouses, WS 2000/ Transformationskomponente Vorbereitung und Anpassung der Daten für das Laden fi Inhaltlich: Daten-/Instanzintegration und Bereinigung fi Strukturell: Schemaintegration Überführung aller Daten in ein einheitliches Format fi Datentypen, Datumsangaben, Maßeinheiten, Kodierungen etc. Beseitigung von Verunreinigungen (engl. Data Cleaning bzw. Data Cleansing) fi Fehlerhafte oder fehlende Werte, Redundanzen, veraltete Werte VL Data Warehouses, WS 2000/

9 Transformationskomponente Data Scrubbing: fi Ausnutzung von domänenspezifischen Wissen (z.b. Geschäftsregeln) zum Erkennen von Verunreinigungen fi Beispiel: Erkennen von Redundanzen Data Auditing: fi Anwendung von Data-Mining-Verfahren zum Aufdecken von Regeln fi Aufspüren von Abweichungen VL Data Warehouses, WS 2000/ Ladekomponente Aufgabe: fi Übertragung der bereinigten und aufbereiteten (z.b. aggregierten) Daten in die Basisdatenbank bzw. das DW Besonderheiten: fi Nutzung spezieller Ladewerkzeuge (z.b. SQL*Loader von Oracle) Bulk-Loading fi Historisierung: Änderungen in Quellen dürfen DW-Daten nicht überschreiben, statt dessen zusätzliches Abspeichern Ladevorgang: fi Online: Basisdatenbank bzw. DW steht weiterhin zur Verfügung fi Offline: stehen nicht zur Verfügung (Zeitfenster: nachts, Wochenende) VL Data Warehouses, WS 2000/

10 Basisdatenbank Aufgabe: fi Integrierte Datenbasis für verschiedene Analysen unabhängig von konkreten Analysen, d.h. noch keine Aggregationen fi Versorgung des DW mit bereinigten Daten (u.u. durch Verdichtung) Anmerkungen: fi wird in der Praxis oft weggelassen fi entspricht Operational Data Store (ODS) nach Inmon VL Data Warehouses, WS 2000/ Data Warehouse Aufgabe: Datenbank für Analysezwecke; orientiert sich in Struktur an Analysebedürfnissen Basis: DBMS Besonderheiten: fi Unterstützung des Ladeprozesses Schnelles Laden großer Datenmengen Massenlader (engl. bulk loader) unter Umgehung von Mehrbenutzerkoordination und Konsistenzprüfung fi Unterstützung des Analyseprozesses Effiziente Anfrageverarbeitung (Indexstrukturen, Caching) Multidimensionales Datenmodell (z.b. über OLE DB for OLAP) VL Data Warehouses, WS 2000/

11 Data Marts Aufgabe: fi Bereitstellung einer inhaltlich beschränkten Sicht auf das DW (z.b. für Abteilung) Gründe: fi Eigenständigkeit, Datenschutz, Lastverteilung, Datenvolumen, etc. Realisierung: fi Verteilung der DW-Daten Formen: fi Abhängige Data Marts fi Unabhängige Data Marts VL Data Warehouses, WS 2000/ Abhängige Data Marts Verteilung des Datenbestandes nach fi Integration und Bereinigung (Basisdatenbank) fi und Organisation entsprechend der Analysebedürfnisse (Data Warehouse) Nabe- und Speiche -Architektur (engl. hub and spoke) Data Mart: fi nur Extrakt (inkl. Aggregation) des Data Warehouse fi Keine Bereinigung oder Normierung Analysen auf Data Mart konsistent zu Analysen auf DW Einfache Realisierung: fi Replikations- oder Sichtmechanismen von DBMS VL Data Warehouses, WS 2000/

12 Nabe- und Speiche"-Architektur Analyse Analyse Analyse Analyse Data Marts Data Warehouse Laden VL Data Warehouses, WS 2000/ Abhängige Data Marts: Extraktbildung Strukturelle Extrakte fi Beschränkung auf Teile des Schemas fi Bsp.: nur bestimmte Kennzahlen oder Dimensionen Inhaltliche Extrakte fi inhaltliche Beschränkung fi Bsp.: nur bestimmte Filialen oder das letzte Jahresergebnis Aggregierte Extrakte fi Verringerung der Granularität fi Bsp.: Beschränkung auf Monatsergebnisse VL Data Warehouses, WS 2000/

13 Unabhängige Data Marts unabhängig voneinander entstandene kleine Data Warehouses (z.b. von einzelnen Organisationen) nachträgliche Integration und Transformation Probleme: fi unterschiedliche Analysesichten (Data Mart, globales Data Warehouse) fi Konsistenz der Analysen aufgrund zusätzlicher Transformation VL Data Warehouses, WS 2000/ Unabhängige Data Marts Analyse Analyse Analyse Analyse Data Warehouse Transformation Data Marts Laden Laden Laden Laden VL Data Warehouses, WS 2000/

14 Analysewerkzeuge engl. Business Intelligence Tools Aufgabe: fi Präsentation der gesammelten Daten mit interaktiven Navigations- und Analysemöglichkeiten Analyse: fi einfache arithm. Operationen (z.b. Aggregation)... komplexe statistische Untersuchungen (z.b. Data Mining) fi Aufbereitung der Ergebnisse für Weiterverarbeitung bzw. Weitergabe VL Data Warehouses, WS 2000/ Analysewerkzeuge: Darstellung Tabellen fi Pivot-Tabellen := Kreuztabellen fi Analyse durch Vertauschen von Zeilen und Spalten fi Veränderung von Tabellendimensionen fi Schachtelung von Tabellendimensionen (Integration weiterer Dimensionen) Graphiken fi Bildliche Darstellung großer Datenmengen fi Netz-, Punkt-, Oberflächengraphen Text und Multimedia-Elemente fi Ergänzung um Audio- oder Videodaten fi Einbeziehung von Dokumentenmanagementsystemen VL Data Warehouses, WS 2000/

15 Analysewerkzeuge: Funktionalität Data Access fi Reporting Werkzeuge fi Lesen von Daten, Veränderung/Anreicherung durch einfache arithmetische Operationen fi Präsentation in Berichten fi Ampelfunktionen : regelgebundene Formatierung fi Basis: SQL VL Data Warehouses, WS 2000/ Analysewerkzeuge: Funktionalität OLAP fi Interaktive Datenanalyse, Klassifikationsnavigation fi Berichte mit verdichteten Werten (Kennzahlen) fi Navigationsoperationen (Drill Down, Roll Up, Drill Across) fi Gruppierungs- und Berechnungsfunktionen (statistisch, betriebswirtschaftlich) fi Validierung von Hypothesen, Plausibilitätsprüfung VL Data Warehouses, WS 2000/

16 Analysewerkzeuge: Funktionalität Data Mining fi Aufdeckung bisher unbekannter Zusammenhänge (Muster, Regeln) fi Verfahren (u.a.): Klassifikation: Zuordnung der Daten zu vorgegebenen Klassen Assoziationsregeln Clusterbildung: Segmentierung, d.h. Daten bzgl. Ihrer Merkmalsausprägungen zu Gruppen zusammenfassen VL Data Warehouses, WS 2000/ Analysewerkzeuge: Realisierung Standard Reporting: fi Reporting-Werkzeuge des klassischen Berichtswesens Berichtshefte: fi Graphische Entwicklungsumgebungen zur Erstellung von Präsentationen von Tabellen, Graphiken, etc. Ad-hoc Query & Reporting: fi Werkzeuge zur Erstellung und Präsentation von Berichten fi Verbergen von Datenbankanbindung und Anfragesprachen VL Data Warehouses, WS 2000/

17 Analysewerkzeuge: Realisierung Analyse-Clients: fi Werkzeuge zur mehrdimensionalen Analyse fi beinhalten Navigation, Manipulation (Berechnung), erweiterte Analysefunktionen und Präsentation Spreadsheet Add-Ins: fi Erweiterung von Tabellenkalkulationen für Daten(bank)anbindung und Navigation Entwicklungsumgebungen: fi Unterstützung der Entwicklung eigener Analyseanwendungen fi Bereitstellung von Operationen auf multidimensionalen Daten VL Data Warehouses, WS 2000/ Repository Aufgabe: fi Speicherung der Metadaten des DW-Systems Metadaten: fi Informationen, die Aufbau, Wartung und Administration des DW-Systems vereinfachen und Informationsgewinnung ermöglichen fi Beispiele: Datenbankschemata, Zugriffsrechte, Prozeßinformationen (Verarbeitungsschritte und Parameter), etc. VL Data Warehouses, WS 2000/

18 Metadaten-Manager Aufgaben: fi Steuerung der Metadatenverwaltung fi Zugriff, Anfrage, Navigation fi Versions- und Konfigurationsverwaltung Formen: fi allgemein einsetzbar: erweiterbares Basisschema fi werkzeugspezifisch: fester Teil von Werkzeugen häufig Integration von bzw. Austausch zwischen dezentralen Metadaten-Managementsystemen notwendig VL Data Warehouses, WS 2000/

Anforderungen des Data Warehousing. 2. Data-Warehouse-Architektur. Anforderungen des Data Warehousing. Referenzarchitektur. Data-Warehouse-Manager

Anforderungen des Data Warehousing. 2. Data-Warehouse-Architektur. Anforderungen des Data Warehousing. Referenzarchitektur. Data-Warehouse-Manager 2. Data-Warehouse-Architektur Anforderungen Referenzarchitektur Phasen des Data Warehousing Komponenten Anforderungen des Data Warehousing Unabhängigkeit zwischen Datenquellen und Analysesystemen (bzgl.

Mehr

Data-Warehouse-Architektur

Data-Warehouse-Architektur Data-Warehouse-Architektur ƒ Anforderungen ƒ Referenzarchitektur ƒ Phasen des Data Warehousing ƒ Komponenten Vorlesung Data-Warehouse-Technologien 2-1 Anforderungen des Data Warehousing ƒ Unabhängigkeit

Mehr

Teil II Data-Warehouse-Architektur

Teil II Data-Warehouse-Architektur Teil II Data-Warehouse-Architektur Data-Warehouse-Architektur 1 Anforderungen 2 Referenzarchitektur 3 Phasen des Data Warehousing 4 c Sattler / Saake / Köppen Data-Warehouse-Technologien Letzte Änderung:

Mehr

Architektur eines Data Warehouse Systems. Mario Jandeck

Architektur eines Data Warehouse Systems. Mario Jandeck Architektur eines Data Warehouse Systems Mario Jandeck Agenda Folie 2 von 24 1. Die Referenzarchitektur 2. Komponenten des Data Warehouse Systems 3. Datenbeschaffung und Qualität 4. Analyse im Data Warehouse

Mehr

Data Warehouse Technologien

Data Warehouse Technologien Veit Köppen Gunter Saake Kai-Uwe Sattler Data Warehouse Technologien Inhaltsverzeichnis Inhaltsverzeichnis vii 1 Einführung in Data-Warehouse-Systeme 1 1.1 Anwendungsszenario Getränkemarkt...............

Mehr

Data Warehousing. Kapitel 1: Data-Warehousing-Architektur. Folien teilweise übernommen von Matthias Gimbel

Data Warehousing. Kapitel 1: Data-Warehousing-Architektur. Folien teilweise übernommen von Matthias Gimbel Data Warehousing Kapitel 1: Data-Warehousing-Architektur Folien teilweise übernommen von Matthias Gimbel 2 Analyse von Geschäftsprozessen Mögliche Fragestellungen Wie entwickelt sich unser Umsatz im Vergleich

Mehr

Veit Köppen Gunter Saake Kai-Uwe Sattler. 2. Auflage. Data Warehouse Technologien

Veit Köppen Gunter Saake Kai-Uwe Sattler. 2. Auflage. Data Warehouse Technologien Veit Köppen Gunter Saake Kai-Uwe Sattler 2. Auflage Data Warehouse Technologien Inhaltsverzeichnis Inhaltsverzeichnis ix 1 Einführung in Data-Warehouse-Systeme 1 1.1 Anwendungsszenario Getränkemarkt...

Mehr

Data Warehouses. Alexander Fehr. 23. Dezember 2002

Data Warehouses. Alexander Fehr. 23. Dezember 2002 Data Warehouses Alexander Fehr 23. Dezember 2002 Inhaltsverzeichnis 1 Einführung 1 1.1 Motivation.............................. 1 1.2 Definitionen.............................. 1 1.3 Abgrenzung von operativen

Mehr

Datenbanksysteme SS 2007

Datenbanksysteme SS 2007 Datenbanksysteme SS 2007 Frank Köster (Oliver Vornberger) Institut für Informatik Universität Osnabrück 1 Kapitel 16: Data Warehousing und Knowledge Discovery in Databases DEFINITIONEN & BEGRIFFE Klassische

Mehr

Seminararbeit zum Thema. Referenzarchitektur von. Data-Warehouse-Systemen

Seminararbeit zum Thema. Referenzarchitektur von. Data-Warehouse-Systemen Friedrich-Schiller-Universität Jena Fakultät für Mathematik und Informatik Institut für Informatik Prof. Dr. Klaus Küspert, Dipl.-Math. Katharina Büchse Seminararbeit zum Thema Referenzarchitektur von

Mehr

Data Warehouse Technologien

Data Warehouse Technologien mitp Professional Data Warehouse Technologien von Veit Köppen, Gunter Saake, Kai-Uwe Sattler 2. Auflage 2014 Data Warehouse Technologien Köppen / Saake / Sattler schnell und portofrei erhältlich bei beck-shop.de

Mehr

Data Warehousing und Data Mining

Data Warehousing und Data Mining 2 Data Warehousing und Data Mining Kapitel 1: Data-Warehousing-Architektur von Geschäftsprozessen Mögliche Fragestellungen Wie entwickelt sich unser Umsatz im Vergleich zum letzten Jahr? In welchen Regionen

Mehr

Business Intelligence Data Warehouse. Jan Weinschenker

Business Intelligence Data Warehouse. Jan Weinschenker Business Intelligence Data Warehouse Jan Weinschenker 28.06.2005 Inhaltsverzeichnis Einleitung eines Data Warehouse Data Warehouse im Zusammenfassung Fragen 3 Einleitung Definition: Data Warehouse A data

Mehr

Data Warehouse Grundlagen

Data Warehouse Grundlagen Seminarunterlage Version: 2.10 Version 2.10 vom 24. Juli 2015 Dieses Dokument wird durch die veröffentlicht.. Alle Rechte vorbehalten. Alle Produkt- und Dienstleistungs-Bezeichnungen sind Warenzeichen

Mehr

Business Intelligence. Data Warehouse / Analyse Sven Elvers 2005-07-06

Business Intelligence. Data Warehouse / Analyse Sven Elvers 2005-07-06 Business Intelligence Data Warehouse / Analyse Sven Elvers 2005-07-06 Einleitung Dieses Dokument beschreibt einen für das Verständnis relevanten Teil der Präsentation. Business Intelligence Motivation

Mehr

Informationssysteme: Neuere Konzepte Teil II

Informationssysteme: Neuere Konzepte Teil II Informationssysteme: Neuere Konzepte Kapitel 1: Data-Warehousing-Architektur Folien teilweise übernommen von Matthias Gimbel 2 von Geschäftsprozessen Mögliche Fragestellungen Wie entwickelt sich unser

Mehr

OLAP und Data Warehouses

OLAP und Data Warehouses OLP und Data Warehouses Überblick Monitoring & dministration Externe Quellen Operative Datenbanken Extraktion Transformation Laden Metadaten- Repository Data Warehouse OLP-Server nalyse Query/Reporting

Mehr

Online Analytical Processing

Online Analytical Processing Online Analytical Processing Online Analytical Processing Online Analytical Processing (OLAP) ermöglicht die multidimensionale Betrachtung von Daten zwecks E rmittlung eines entscheidungsunterstützenden

Mehr

Seminar. Data Warehousing im Verkehrsbereich. Grundlagen und Architektur

Seminar. Data Warehousing im Verkehrsbereich. Grundlagen und Architektur Stärkung der SelbstOrganisationsfähigkeit im Verkehr durch I+K-gestützte Dienste Seminar Data Warehousing im Verkehrsbereich Sommersemester 2003 Grundlagen und Architektur Bearbeiter: Ting Zheng Betreuer:

Mehr

Data Warehouse Definition (1) http://de.wikipedia.org/wiki/data-warehouse

Data Warehouse Definition (1) http://de.wikipedia.org/wiki/data-warehouse Data Warehouse Definition (1) http://de.wikipedia.org/wiki/data-warehouse Ein Data-Warehouse bzw. Datenlager ist eine zentrale Datensammlung (meist eine Datenbank), deren Inhalt sich aus Daten unterschiedlicher

Mehr

Zusammenspiel von Business Intelligence mit betrieblicher Anwendungssoftware Falk Neubert, Universität Osnabrück

Zusammenspiel von Business Intelligence mit betrieblicher Anwendungssoftware Falk Neubert, Universität Osnabrück Zusammenspiel von Business Intelligence mit betrieblicher Anwendungssoftware 14. März 2013, IHK Osnabrück-Emsland-Grafschaft Bentheim Geschichte Kassenbuch des Liederkranz, 1886 Hutmachergesangvereins

Mehr

Einführungsveranstaltung: Data Warehouse

Einführungsveranstaltung: Data Warehouse Einführungsveranstaltung: 1 Anwendungsbeispiele Berichtswesen Analyse Planung Forecasting/Prognose Darstellung/Analyse von Zeitreihen Performancevergleiche (z.b. zwischen Organisationseinheiten) Monitoring

Mehr

DATA-WAREHOUSE-TECHNOLOGIEN

DATA-WAREHOUSE-TECHNOLOGIEN Vorlesung DATA-WAREHOUSE-TECHNOLOGIEN Wintersemester 2007/2008 Vorlesender: Eike Schallehn Vorlesung und Skript von: Prof. Dr.-Ing. habil. Kai-Uwe Sattler TU Ilmenau, FG Datenbanken und Informationssysteme

Mehr

BI Konsolidierung: Anspruch & Wirklichkeit. Jacqueline Bloemen. in Kooperation mit

BI Konsolidierung: Anspruch & Wirklichkeit. Jacqueline Bloemen. in Kooperation mit BI Konsolidierung: Anspruch & Wirklichkeit Jacqueline Bloemen in Kooperation mit Agenda: Anspruch BI Konsolidierung Treiber Was sind die aktuellen Treiber für ein Konsolidierungsvorhaben? Kimball vs. Inmon

Mehr

Datenbanktechnologie für Data-Warehouse-Systeme

Datenbanktechnologie für Data-Warehouse-Systeme Wolfgang Lehner Datenbanktechnologie für Data-Warehouse-Systeme Konzepte und Methoden dpunkt.verlag 1 1.1 1.2 1.3 1.4 1. 5 2 2.1 2.2 2.3 Einleitung 1 Betriebswirtschaftlicher Ursprung des Data Warehousing...

Mehr

10. Vorlesung: Datenorganisation SS 2007

10. Vorlesung: Datenorganisation SS 2007 10. Vorlesung: Datenorganisation SS 2007 8 Parallele Transaktionen 9 9.1 Drei-Ebenen Ebenen-Architektur 9.2 Verteilte Datenbanken 9.3 Client-Server Server-Datenbanken 9.4 Föderierte Datenbanken 9.5 Das

Mehr

Data Warehouse ??? Ein Data Warehouse ist keine von der Stange zu kaufende Standardsoftware, sondern immer eine unternehmensindividuelle

Data Warehouse ??? Ein Data Warehouse ist keine von der Stange zu kaufende Standardsoftware, sondern immer eine unternehmensindividuelle ??? Zusammenfassung, Ergänzung, Querverbindungen, Beispiele A.Kaiser; WU-Wien MIS 188 Data Warehouse Ein Data Warehouse ist keine von der Stange zu kaufende Standardsoftware, sondern immer eine unternehmensindividuelle

Mehr

Ausarbeitung Projekt. Sven Elvers. Business Intelligence: Analyse. Betreuender Prüfer: Prof. Dr. Olaf Zukunft

Ausarbeitung Projekt. Sven Elvers. Business Intelligence: Analyse. Betreuender Prüfer: Prof. Dr. Olaf Zukunft Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences Ausarbeitung Projekt Sven Elvers Business Intelligence: Analyse Betreuender Prüfer: Prof. Dr. Olaf Zukunft Fakultät

Mehr

Seminar in der Seminarreihe Business Intelligence 1. OLAP und Datawarehousing

Seminar in der Seminarreihe Business Intelligence 1. OLAP und Datawarehousing Seminar in der Seminarreihe Business Intelligence 1 OLAP und Datawarehousing OLAP & Warehousing Die wichtigsten Produkte Die Gliederung Produkt Bewertung & Vergleiche Die Marktentwicklung Der aktuelle

Mehr

Data Warehouse und Data Mining

Data Warehouse und Data Mining Einführungsseminar Data Mining Seminarvortrag zum Thema: Data Warehouse und Data Mining Von gehalten am Betreuer: Dr. M. Grabert Einführung Problemstellung Seite 2 Einführung Unternehmen bekommen eine

Mehr

Marketing Intelligence Architektur und Konzepte. Josef Kolbitsch Manuela Reinisch

Marketing Intelligence Architektur und Konzepte. Josef Kolbitsch Manuela Reinisch Marketing Intelligence Architektur und Konzepte Josef Kolbitsch Manuela Reinisch Übersicht Mehrstufiges BI-System Architektur eines Data Warehouses Architektur eines Reporting-Systems Benutzerrollen in

Mehr

Oracle 10g und SQL Server 2005 ein Vergleich. Thomas Wächtler 39221

Oracle 10g und SQL Server 2005 ein Vergleich. Thomas Wächtler 39221 Oracle 10g und SQL Server 2005 ein Vergleich Thomas Wächtler 39221 Inhalt 1. Einführung 2. Architektur SQL Server 2005 1. SQLOS 2. Relational Engine 3. Protocol Layer 3. Services 1. Replication 2. Reporting

Mehr

Kapitel 2 Terminologie und Definition

Kapitel 2 Terminologie und Definition Kapitel 2 Terminologie und Definition In zahlreichen Publikationen und Fachzeitschriften tauchen die Begriffe Data Warehouse, Data Warehousing, Data-Warehouse-System, Metadaten, Dimension, multidimensionale

Mehr

Asklepius-DA Die intelligente Technologie für die umfassende Analyse medizinischer Daten Leistungsbeschreibung

Asklepius-DA Die intelligente Technologie für die umfassende Analyse medizinischer Daten Leistungsbeschreibung Asklepius-DA Die intelligente Technologie für die umfassende Analyse medizinischer Daten Leistungsbeschreibung Datei: Asklepius DA Flyer_Leistung_2 Seite: 1 von:5 1 Umfassende Datenanalyse Mit Asklepius-DA

Mehr

Einführung relationale Datenbanken. Themenblock: Erstellung eines Cube. Schlüssel. Relationenmodell Relationenname Attribut. Problem.

Einführung relationale Datenbanken. Themenblock: Erstellung eines Cube. Schlüssel. Relationenmodell Relationenname Attribut. Problem. Themenblock: Erstellung eines Cube Einführung relationale Datenbanken Problem Verwaltung großer Mengen von Daten Praktikum: Data Warehousing und Data Mining Idee Speicherung der Daten in Form von Tabellen

Mehr

Themenblock: Erstellung eines Cube

Themenblock: Erstellung eines Cube Themenblock: Erstellung eines Cube Praktikum: Data Warehousing und Data Mining Einführung relationale Datenbanken Problem Verwaltung großer Mengen von Daten Idee Speicherung der Daten in Form von Tabellen

Mehr

BIW - Überblick. Präsentation und Discoverer Demonstration - Teil 1 - Humboldt Universität zu Berlin am 10. Juni 2004

BIW - Überblick. Präsentation und Discoverer Demonstration - Teil 1 - Humboldt Universität zu Berlin am 10. Juni 2004 BIW - Überblick Präsentation und Discoverer Demonstration - Teil 1 - Humboldt Universität zu Berlin am 10. Juni 2004 Annegret Warnecke Senior Sales Consultant Oracle Deutschland GmbH Berlin Agenda Überblick

Mehr

Kapitel 4: Data Warehouse Architektur

Kapitel 4: Data Warehouse Architektur Data Warehousing, Motivation Zugriff auf und Kombination von Daten aus mehreren unterschiedlichen Quellen, Kapitel 4: Data Warehousing und Mining 1 komplexe Datenanalyse über mehrere Quellen, multidimensionale

Mehr

Informationsintegration und Webportale

Informationsintegration und Webportale Informationsintegration und Webportale 02.12.2013 : Data-Warehouse-Systeme, Markus Ewald (FZI) INSTITUTS-, FAKULTÄTS-, ABTEILUNGSNAME (in der Masteransicht ändern) KIT Universität des Landes Baden-Württemberg

Mehr

INVEST projects. Besseres Investitionscontrolling mit INVESTprojects

INVEST projects. Besseres Investitionscontrolling mit INVESTprojects Besseres Investitionscontrolling mit Der Investitionsprozess Singuläres Projekt Idee, Planung Bewertung Genehmigung Realisierung Kontrolle 0 Zeit Monate, Jahre Perioden Der Investitionsprozess Singuläres

Mehr

Contents. Ebenen. Data Warehouse - ETL Prozess Version: July 10, 2007. 1 Ebenen. Andreas Geyer-Schulz und Anke Thede. 2 Problemquelle Quellsysteme 4

Contents. Ebenen. Data Warehouse - ETL Prozess Version: July 10, 2007. 1 Ebenen. Andreas Geyer-Schulz und Anke Thede. 2 Problemquelle Quellsysteme 4 Contents Data Warehouse - ETL Prozess Version: July 10, 2007 Andreas Geyer-Schulz und Anke Thede Schroff-Stiftungslehrstuhl Informationsdienste und Elektronische Märkte Fakultät für Wirtschaftswissenschaften

Mehr

Data Warehousing. 2. Architektur von Data Warehouse-Systemen

Data Warehousing. 2. Architektur von Data Warehouse-Systemen Data Warehousing Kapitel 2: Architektur von DWH-Systemen Dr. Andreas Thor Wintersemester 2009/10 Universität Leipzig Institut für Informatik y y y http://dbs.uni-leipzig.de WS09/10, Prof. Dr. E. Rahm 2-1

Mehr

RE.one. Self Service Information Management für die Fachabteilung

RE.one. Self Service Information Management für die Fachabteilung RE.one Self Service Information Management für die Fachabteilung Das Ziel Verwertbare Informationen aus Daten gewinnen Unsere Vision Daten Info Data Warehousing radikal vereinfachen in einem Tool Die Aufgabe

Mehr

DW2004. XML-Datenimport in das SAP Business Information Warehouse bei Bayer Material Science. 3. November 2004. Dr. Michael Hahne, cundus AG

DW2004. XML-Datenimport in das SAP Business Information Warehouse bei Bayer Material Science. 3. November 2004. Dr. Michael Hahne, cundus AG DW2004 XML-Datenimport in das SAP Business Information Warehouse bei Bayer Material Science Dr. Michael Hahne, cundus AG 3. November 2004 cundus AG 2004 Gliederung Motivation SAP Business Information Warehouse

Mehr

Business Intelligence

Business Intelligence Business Intelligence Anwendungssysteme (BIAS) Lösung Aufgabe 1 Übung WS 2012/13 Business Intelligence Erläutern Sie den Begriff Business Intelligence. Gehen Sie bei der Definition von Business Intelligence

Mehr

Extraktion, Transformation, Laden (ETL)

Extraktion, Transformation, Laden (ETL) Extraktion, Transformation, Laden (ETL) ETL-Prozeß Integrationsschritte Integrationsprobleme fi Konflikte und deren Klassifikation fi Behebung von Konflikten Data Cleaning VL Data Warehouses, WS 2000/2001

Mehr

Informationssysteme. Prof. Dr. Hans Czap. Lehrstuhl für Wirtschaftsinformatik I. Lehrstuhl für Wirtschaftsinformatik I - II - 1 -

Informationssysteme. Prof. Dr. Hans Czap. Lehrstuhl für Wirtschaftsinformatik I. Lehrstuhl für Wirtschaftsinformatik I - II - 1 - Vorlesung Grundlagen betrieblicher Informationssysteme Prof. Dr. Hans Czap Email: Hans.Czap@uni-trier.de - II - 1 - Inhalt Kap. 1 Ziele der Datenbanktheorie Kap. 2 Datenmodellierung und Datenbankentwurf

Mehr

Integration Services - Dienstarchitektur

Integration Services - Dienstarchitektur Integration Services - Dienstarchitektur Integration Services - Dienstarchitektur Dieser Artikel solle dabei unterstützen, Integration Services in Microsoft SQL Server be sser zu verstehen und damit die

Mehr

Controlling leicht gemacht!

Controlling leicht gemacht! Controlling leicht gemacht! Was ist Controlling? Definition Controlling von engl. to control für steuern, regeln, ist ein umfassendes Steuerungs- und Koordinationskonzept zur Unterstützung der Geschäftsleitung

Mehr

Datenbanken. Prof. Dr. Bernhard Schiefer. bernhard.schiefer@fh-kl.de http://www.fh-kl.de/~schiefer

Datenbanken. Prof. Dr. Bernhard Schiefer. bernhard.schiefer@fh-kl.de http://www.fh-kl.de/~schiefer Datenbanken Prof. Dr. Bernhard Schiefer bernhard.schiefer@fh-kl.de http://www.fh-kl.de/~schiefer Wesentliche Inhalte Begriff DBS Datenbankmodelle Datenbankentwurf konzeptionell, logisch und relational

Mehr

Data-Wa re house-systeme

Data-Wa re house-systeme P Andreas Bauer + Holger Günzel (Hrsg.) Data-Wa re house-systeme Architektur Entwicklung Anwendung 2., überarbeitete und aktualisierte Auflage dpun kt.verlag I n ha I t sve rzeic h n is Teil I 1 1.1 1.2

Mehr

Agile Analytics Neue Anforderungen an die Systemarchitektur

Agile Analytics Neue Anforderungen an die Systemarchitektur www.immobilienscout24.de Agile Analytics Neue Anforderungen an die Systemarchitektur Kassel 20.03.2013 Thorsten Becker & Bianca Stolz ImmobilienScout24 Teil einer starken Gruppe Scout24 ist der führende

Mehr

Survival Guide für Ihr Business Intelligence-Projekt

Survival Guide für Ihr Business Intelligence-Projekt Survival Guide für Ihr Business Intelligence-Projekt Sven Bosinger Solution Architect BI Survival Guide für Ihr BI-Projekt 1 Agenda Was ist Business Intelligence? Leistungsumfang Prozesse Erfolgsfaktoren

Mehr

Data-Warehouse-Systeme

Data-Warehouse-Systeme Vorlesung im Wintersemester 2008/09 Data-Warehouse-Systeme Dr. Stefanie Rinderle-Ma Institut für Datenbanken und Informationssysteme Universität Ulm stefanie.rinderle@uni-ulm.de Übersicht 1) Einführung

Mehr

Einführung in OLAP und Business Analysis. Gunther Popp dc soft GmbH

Einführung in OLAP und Business Analysis. Gunther Popp dc soft GmbH Einführung in OLAP und Business Analysis Gunther Popp dc soft GmbH Überblick Wozu Business Analysis mit OLAP? OLAP Grundlagen Endlich... Technischer Background Microsoft SQL 7 & OLAP Services Folie 2 -

Mehr

Merkblatt DWH. Mittwoch, 6. Januar 2016 13:55. Info Seite 1

Merkblatt DWH. Mittwoch, 6. Januar 2016 13:55. Info Seite 1 Info Seite 1 Merkblatt DWH Mittwoch, 6. Januar 2016 13:55 Version: 1.0.0 Study: 3. Semester, Bachelor in Business and Computer Science School: Hochschule Luzern - Wirtschaft Author: Janik von Rotz (http://janikvonrotz.ch)

Mehr

Datawarehouse Architekturen. Einheitliche Unternehmenssicht

Datawarehouse Architekturen. Einheitliche Unternehmenssicht Datawarehouse Architekturen Einheitliche Unternehmenssicht Was ist Datawarehousing? Welches sind die Key Words? Was bedeuten sie? DATA PROFILING STAGING AREA OWB ETL OMB*PLUS SAS DI DATA WAREHOUSE DATA

Mehr

Business Intelligence. Business Intelligence Seminar, WS 2007/08

Business Intelligence. Business Intelligence Seminar, WS 2007/08 Business Intelligence Seminar, WS 2007/08 Prof. Dr. Knut Hinkelmann Fachhochschule Nordwestschweiz knut.hinkelmann@fhnw.ch Business Intelligence Entscheidungsorientierte Sammlung, Aufbereitung und Darstellung

Mehr

Datenmanagement. Simone Unfried, Passau Vitaly Aleev, Passau Claus Schönleber, Passau. Strategisches Informationsmanagement 1 (01/2006)

Datenmanagement. Simone Unfried, Passau Vitaly Aleev, Passau Claus Schönleber, Passau. Strategisches Informationsmanagement 1 (01/2006) Simone Unfried, Passau Vitaly Aleev, Passau Claus Schönleber, Passau (01/2006) Strategisches Informationsmanagement 1 Definition Notwendige Vermaischung der Daten in der Vorstufe zur Destillation von hochprozentiger

Mehr

1Ralph Schock RM NEO REPORTING

1Ralph Schock RM NEO REPORTING 1Ralph Schock RM NEO REPORTING Bereit für den Erfolg Business Intelligence Lösungen Bessere Entscheidungen Wir wollen alle Mitarbeiter in die Lage versetzen, bessere Entscheidungen schneller zu treffen

Mehr

Software-Engineering und Datenbanken

Software-Engineering und Datenbanken Software-Engineering und Datenbanken Prof. Dr. Bernhard Schiefer bernhard.schiefer@fh-kl.de http://www.fh-kl.de/~schiefer Prof. Dr. Bernhard Schiefer 1-1 Wesentliche Inhalte Begriff DBS Datenbankmodelle

Mehr

2. Architektur von Data Warehouse-Systemen

2. Architektur von Data Warehouse-Systemen 2. Architektur von Data Warehouse-Systemen Referenzarchitektur Scheduler Datenquellen Datenextraktion Transformation und Laden Abhängige vs. unabhängige Data Marts Architekturvarianten / Echtzeit-DWH Operational

Mehr

Datenbanken. Produkte Dienstleistungen Referenzen

Datenbanken. Produkte Dienstleistungen Referenzen Datenbanken Produkte Dienstleistungen Referenzen Produkte: MS SQL Server MS SQL Server 2005 Datenbankmodul Berichtssysteme mit Reporting Services Data Warehousing/Data Mining mit Analysis Services Schnittstellen

Mehr

Data-Warehouse-Systeme

Data-Warehouse-Systeme Data-Warehouse-Systeme Architektur, Entwicklung, Anwendung von Andreas Bauer, Holger Günzel 3., überarb. u. aktualis. Aufl. Data-Warehouse-Systeme Bauer / Günzel schnell und portofrei erhältlich bei beck-shop.de

Mehr

Objektorientierte Datenbanken

Objektorientierte Datenbanken OODB 11 Slide 1 Objektorientierte Datenbanken Vorlesung 11 vom 01.07.2004 Dr. Sebastian Iwanowski FH Wedel OODB 11 Slide 2 Inhalt heute: Datenbanken in betriebswirtschaftlichen Anwendungen OTLP (SAP) Data

Mehr

tdwi E U R D P E OPEN SOURCE BUSINESS INTELLIGENCE HANSER MÖGLICHKEITEN, CHANCEN UND RISIKEN QUELLOFFENER BI-LÖSUNGEN

tdwi E U R D P E OPEN SOURCE BUSINESS INTELLIGENCE HANSER MÖGLICHKEITEN, CHANCEN UND RISIKEN QUELLOFFENER BI-LÖSUNGEN OPEN SOURCE BUSINESS INTELLIGENCE MÖGLICHKEITEN, CHANCEN UND RISIKEN QUELLOFFENER BI-LÖSUNGEN uwehaneke Stephan TRAHASCH tobias HAGEN tobias LAUER (Hrsg.)' tdwi E U R D P E HANSER Vorwort 9 Einführung

Mehr

Data Mining-Projekte

Data Mining-Projekte Data Mining-Projekte Data Mining-Projekte Data Mining stellt normalerweise kein ei nmaliges Projekt dar, welches Erkenntnisse liefert, die dann nur einmal verwendet werden, sondern es soll gewöhnlich ein

Mehr

Business Intelligence Data Warehouse für den Ferienclub

Business Intelligence Data Warehouse für den Ferienclub Business Intelligence Data Warehouse für den Ferienclub Jan Weinschenker 8. Juli 2005 Im Rahmen der Vortragsreihe im Fach Anwendungen I beschäftigt sich diese Ausarbeitung mit dem Thema Data Warehousing.

Mehr

Was ist Data Mining... in der Fundraising Praxis?

Was ist Data Mining... in der Fundraising Praxis? Was ist Data Mining...... in der Fundraising Praxis? Erkennen von unbekannten Mustern in sehr grossen Datenbanken (> 1000 GB) wenige und leistungsfähige Verfahren Automatisierung Erkennen von unbekannten

Mehr

BARC-Studie Data Warehousing und Datenintegration

BARC-Studie Data Warehousing und Datenintegration Ergebnisse der BARC-Studie Data Warehouse Plattformen Dr. Carsten Bange BARC-Studie Data Warehousing und Datenintegration Data-Warehouse -Plattformen und Datenintegrationswerkzeuge im direkten Vergleich

Mehr

MIS by Franziska Täschler, Winformation GmbH ftaeschler@winformation-gmbh.ch Ausgabe 01/2001

MIS by Franziska Täschler, Winformation GmbH ftaeschler@winformation-gmbh.ch Ausgabe 01/2001 MIS Glossar by Franziska Täschler, Winformation GmbH ftaeschler@winformation-gmbh.ch Ausgabe 01/2001 Aggregat Data Cube Data Marts Data Mining Data Warehouse (DWH) Daten Decision Support Systeme (DSS)

Mehr

Performanceoptimierung mit Exadata Verarbeitung extremer Datenmengen mit PL/SQL basierter Datenbewirtschaftung (Erfahrungsbericht)

Performanceoptimierung mit Exadata Verarbeitung extremer Datenmengen mit PL/SQL basierter Datenbewirtschaftung (Erfahrungsbericht) Performanceoptimierung mit Exadata Verarbeitung extremer Datenmengen mit PL/SQL basierter Datenbewirtschaftung (Erfahrungsbericht) Christian Haag, DATA MART Consulting Consulting Manager Oracle DWH Team

Mehr

Datawarehouse. Erfahrungsaustausch bezügeabrechnender Stellen vom 18. bis 21. September 2007 in Saarbrücken. Klaus Schimitzek

Datawarehouse. Erfahrungsaustausch bezügeabrechnender Stellen vom 18. bis 21. September 2007 in Saarbrücken. Klaus Schimitzek Datawarehouse Erfahrungsaustausch bezügeabrechnender Stellen vom 18. bis 21. September 2007 in Saarbrücken Klaus Schimitzek Berichtsprodukte gedruckt: zentraler Personalbericht (Struktur, Management) Blickpunkt

Mehr

1 Einleitung. Betriebswirtschaftlich administrative Systeme

1 Einleitung. Betriebswirtschaftlich administrative Systeme 1 1 Einleitung Data Warehousing hat sich in den letzten Jahren zu einem der zentralen Themen der Informationstechnologie entwickelt. Es wird als strategisches Werkzeug zur Bereitstellung von Informationen

Mehr

Teil VI. Datenbanken

Teil VI. Datenbanken Teil VI Datenbanken Überblick 1 Grundlegende Begriffe Motivation 2 Relationale Datenbanksysteme Das Relationale Datenmodell SQL 3 Entwurf von Datenbanken Das Enity Relationship (ER) Modell Abbildung von

Mehr

Data Preprocessing 1. Thema: Bussiness Intelligence Teil 1: OLAP & Data Warehousing. von Christian Merker

Data Preprocessing 1. Thema: Bussiness Intelligence Teil 1: OLAP & Data Warehousing. von Christian Merker 1 Data Preprocessing 1 Thema: Bussiness Intelligence Teil 1: OLAP & Data Warehousing von Christian Merker 2 Gliederung Motivation Monitore Datenextraktion Schema- und Datenintegration Datenbereinigung

Mehr

Kapitel II. Datenbereitstellung 2004 AIFB / FZI 1. Vorlesung Knowledge Discovery

Kapitel II. Datenbereitstellung 2004 AIFB / FZI 1. Vorlesung Knowledge Discovery Kapitel II Datenbereitstellung 2004 AIFB / FZI 1 II. Datenbereitstellung 2004 AIFB / FZI 2 II. Datenbereitstellung Collect Initial Data identify relevant attributes identify inconsistencies between sources

Mehr

Data Mining Anwendungen und Techniken

Data Mining Anwendungen und Techniken Data Mining Anwendungen und Techniken Knut Hinkelmann DFKI GmbH Entdecken von Wissen in banken Wissen Unternehmen sammeln ungeheure mengen enthalten wettbewerbsrelevantes Wissen Ziel: Entdecken dieses

Mehr

DWH Szenarien. www.syntegris.de

DWH Szenarien. www.syntegris.de DWH Szenarien www.syntegris.de Übersicht Syntegris Unser Synhaus. Alles unter einem Dach! Übersicht Data-Warehouse und BI Projekte und Kompetenzen für skalierbare BI-Systeme. Vom Reporting auf operativen

Mehr

Umsetzung der Anforderungen - analytisch

Umsetzung der Anforderungen - analytisch Umsetzung der Anforderungen - analytisch Titel des Lernmoduls: Umsetzung der Anforderungen - analytisch Themengebiet: New Economy Gliederungspunkt im Curriculum: 4.2.5.5 Zum Inhalt: In diesem Modul wird

Mehr

Agenda. Themenblock: Data Warehousing (I) Referenzarchitektur. Eigenschaften eines Data Warehouse. Einführung Data Warehouse Data Access mit SQL

Agenda. Themenblock: Data Warehousing (I) Referenzarchitektur. Eigenschaften eines Data Warehouse. Einführung Data Warehouse Data Access mit SQL Themenblock: Data Warehousing (I) Praktikum: Data Warehousing und Data Mining 2 Eigenschaften eines Data Warehouse Referenzarchitektur Integrierte Sicht auf beliebige Daten aus verschieden Datenbanken

Mehr

Enterprise Applikation Integration und Service-orientierte Architekturen. 01 Einführung

Enterprise Applikation Integration und Service-orientierte Architekturen. 01 Einführung Enterprise Applikation Integration und Service-orientierte Architekturen 01 Einführung Agenda Warum EAI Klassifikation von EAI-Ansätzen Ebenen der Integration Architekturen zur Datenintegration Prof. Dr.

Mehr

Business Intelligence & professionelles Datenmanagement als Erfolgsfaktor

Business Intelligence & professionelles Datenmanagement als Erfolgsfaktor Yves-Deniz Obermeier Sales Manager Financial Services Ing. Thomas Heinzmann Division Management BI Mag. Martin Feith Senior Expert Business Intelligence & professionelles Datenmanagement als Erfolgsfaktor

Mehr

Anwendertage WDV2012

Anwendertage WDV2012 Anwendertage WDV2012 28.02.-01.03.2013 in Pferdingsleben Thema: Business Intelligence mit Excel 2010 Referent: Dipl. Wirtsch.-Inf. Torsten Kühn PRAXIS-Consultant Alles ist möglich! 1 Torsten Kühn Dipl.

Mehr

BI around the world - Globale Reporting Lösungen bei Continental Automotive

BI around the world - Globale Reporting Lösungen bei Continental Automotive BI around the world - Globale Reporting Lösungen bei Continental Automotive Stefan Hess Trivadis GmbH Stuttgart Herbert Muckenfuss Continental Nürnberg Schlüsselworte: Oracle BI EE, Business Intelligence,

Mehr

Einsatz des Microsoft SQL-Servers bei der KKH

Einsatz des Microsoft SQL-Servers bei der KKH Einsatz des Microsoft SQL-Servers bei der KKH Reporting Services und Analysis Services Kontaktdaten Detlef André Abteilungsleiter Data Warehouse E-Mail detlef.andre@kkh.de Telefon 0511 2802-5700 Dr. Reinhard

Mehr

Innovatives Reporting mit PM10: Analysen und Berichte mit Single Point of Truth 11.00 11.45 Uhr

Innovatives Reporting mit PM10: Analysen und Berichte mit Single Point of Truth 11.00 11.45 Uhr Copyright 2007 Infor. Alle Rechte vorbehalten. Innovatives Reporting mit PM10: Analysen und Berichte mit Single Point of Truth 11.00 11.45 Uhr Hubertus Thoma Presales Consultant PM Schalten Sie bitte während

Mehr

Profilbezogene informatische Bildung in den Klassenstufen 9 und 10. Schwerpunktthema Daten und Datenbanken

Profilbezogene informatische Bildung in den Klassenstufen 9 und 10. Schwerpunktthema Daten und Datenbanken Profilbezogene informatische Bildung in den Klassenstufen 9 und 10 Schwerpunktthema Robby Buttke Fachberater für Informatik RSA Chemnitz Fachliche Einordnung Phasen relationaler Modellierung Fachlichkeit

Mehr

Integration Services Übersicht

Integration Services Übersicht Integration Services Übersicht Integration Services Übersicht Integration Services stellt umfangreiche integrierte Tasks, Container, Transformationen und Datenadapter für die En t- wicklung von Geschäftsanwendungen

Mehr

Modellbasierte Business Intelligence in der Praxis. Nürnberg, 10.11.2009

Modellbasierte Business Intelligence in der Praxis. Nürnberg, 10.11.2009 Modellbasierte Business Intelligence in der Praxis Nürnberg, 10.11.2009 I N H A L T 1. Warum Modelle für Business Intelligence (BI)? 2. Inhalte von Datenmodellen für BI 3. Inhalte von Prozessmodellen 4.

Mehr

Configuration Management mit Verbosy 17.04.2013 OSDC 2013. Eric Lippmann www.netways.de

Configuration Management mit Verbosy 17.04.2013 OSDC 2013. Eric Lippmann www.netways.de Configuration Management mit Verbosy 17.04.2013 OSDC 2013 Eric Lippmann Kurzvorstellung NETWAYS Expertise OPEN SOURCE SYSTEMS MANAGEMENT OPEN SOURCE DATA CENTER Monitoring & Reporting Configuration Management

Mehr

Grundlagen von Datenbanken

Grundlagen von Datenbanken Grundlagen von Datenbanken Aufgabenzettel 1 Grundlagen Datenbanken: Kurzer historischer Überblick (1) Anwendung 1 Anwendung 2 Datei 1 Datei 2 Datei 3 Zugriff auf Dateien ohne spezielle Verwaltung 2 Exkurs:

Mehr

Data Warehouse. für den Microsoft SQL SERVER 2000/2005

Data Warehouse. für den Microsoft SQL SERVER 2000/2005 Warehouse für den Microsoft SQL SERVER 2000/2005 Begriffe 1 DWH ( Warehouse) ist eine fachübergreifende Zusammenfassung von Datentabellen. Mart ist die Gesamtheit aller Datentabellen für einen fachlich

Mehr

Mit Transbase Hypercube Data Warehouse Anwendungen effizient betreiben. Die Hypercube-Technologie

Mit Transbase Hypercube Data Warehouse Anwendungen effizient betreiben. Die Hypercube-Technologie Mit Transbase Hypercube Data Warehouse Anwendungen effizient betreiben Transbase Hypercube ist eine Transbase -Option, die die innovative Hypercube-Technologie für komplexe analytische Anwendungen (OLAP)

Mehr

Gliederung Datenbanksysteme

Gliederung Datenbanksysteme Gliederung Datenbanksysteme 5. Datenbanksprachen 1. Datendefinitionsbefehle 2. Datenmanipulationsbefehle 3. Grundlagen zu SQL 6. Metadatenverwaltung 7. DB-Architekturen 1. 3-Schema-Modell 2. Verteilte

Mehr

ENTERBRAIN Reporting & Business Intelligence

ENTERBRAIN Reporting & Business Intelligence Überblick Vorhandene Listen/Analysen in ENTERBRAIN Die Daten in ENTERBRAIN Das Fundament des BI - Hauses Details zur ENTERBRAIN Staging Area Reports und Cubes auf Basis der Staging Area Data Mining mit

Mehr

Projekt zur Lehrveranstaltung Informationssysteme

Projekt zur Lehrveranstaltung Informationssysteme Prof. Dr.-Ing. Thomas Kudraß Dipl.-Math. Dörte König HTWK Leipzig, F IMN Projekt zur Lehrveranstaltung Informationssysteme Das Projekt ist in drei Teile aufgeteilt, die den Phasen eines Data-Warehouse-Projekts

Mehr

Inhaltsverzeichnis. Teil I OLAP und der Microsoft SQL-Server 1. 1 Theoretische Grundlagen 3

Inhaltsverzeichnis. Teil I OLAP und der Microsoft SQL-Server 1. 1 Theoretische Grundlagen 3 vii Teil I OLAP und der Microsoft SQL-Server 1 1 Theoretische Grundlagen 3 1.1 Was ist OLAP?......................................... 3 1.1.1 Business Intelligence............................... 4 1.1.2

Mehr

Business Intelligence und Geovisualisierung in der Gesundheitswirtschaft

Business Intelligence und Geovisualisierung in der Gesundheitswirtschaft Business Intelligence und Geovisualisierung in der Gesundheitswirtschaft Prof. Dr. Anett Mehler-Bicher Fachhochschule Mainz, Fachbereich Wirtschaft Prof. Dr. Klaus Böhm health&media GmbH 2011 health&media

Mehr

Vorwort zur zweiten Auflage...V. Vorwort zur ersten Auflage... VIII

Vorwort zur zweiten Auflage...V. Vorwort zur ersten Auflage... VIII Vorwort zur zweiten Auflage...V Vorwort zur ersten Auflage... VIII 1 Management Support Systeme und Business Intelligence Anwendungssysteme zur Unterstützung von Managementaufgaben...1 1.1 Computergestützte

Mehr