Kapitel 4: Data Warehouse Architektur

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Kapitel 4: Data Warehouse Architektur"

Transkript

1 Data Warehousing, Motivation Zugriff auf und Kombination von Daten aus mehreren unterschiedlichen Quellen, Kapitel 4: Data Warehousing und Mining 1 komplexe Datenanalyse über mehrere Quellen, multidimensionale Sichten auf die Daten, unterschiedliche Sichten, die die jeweilige Perspektive reflektieren, Beispiel: Stab Vertrieb: Umsatz, aufgeschlüsselt nach Verkäufer, Stab Produktentwicklung: Umsatz aufgeschlüsselt nach Produkten, Analyse der zeitlichen Entwicklung, auch wenn Datenquellen sich auf aktuellen Datenbank-Zustand beschränken. Data Warehousing und Mining 2 Data Warehousing, Motivation, Beispiele Data Warehousing - Materialisierung von Sichten Beispiel, warum Integration lokaler Datenbanken für Datenanalyse vorteilhaft; ein Unternehmen habe die folgenden Datenbanken, die den Aktivitäten einzelner Unternehmensbereiche entsprechen: Detaillierte Produktinformation, Kundenprofile, Reklamationen, Information zu Vertriebsbüros, Vertriebsbeauftragten. Alle Kombinationen von zwei oder mehr Datenbank-Inhalten sind sinnvoll für Datenanalyse, z.b. Kundenprofile - Reklamationen, Reklamationen - Vertriebsbeauftragte. Beispiel, warum zeitliche Betrachtung vorteilhaft; man beachte die Aussagekraft der folgenden Aussagen:,1400 Berufsunfähigkeitsversicherungen seit Jahresbeginn verkauft.,1400 Berufsunfähigkeitsversicherungen seit Jahresbeginn verkauft, in den letzten drei Jahren waren es zwischen 2100 und 2300 zum Vergleichszeitpunkt. (Erste) Verfeinerung der Architektur: Warehouse Virtual Data Warehouse/virtuelle Integrationsplattform := Menge von Sichten (ohne Materialisierung) Data Warehousing und Mining 3 Data Warehousing und Mining 4

2 Data Warehousing - Materialisierung von Sichten Besonderheit von Data Warehouses, unter Betrachtung der allgemeinen Problematik des integrierten Zugriffs auf heterogene Informationssysteme: Sichten sind materialisiert. Motivation für Materialisierung: Performance Man erspart sich das Holen der Daten aus den Quellen, man kann die materialisierten Sichten indexieren (kann man i.a. nicht, ohne die Daten zu holen, da keine Kontrolle über die n), man konkurriert u.u. mit weniger anderen Usern um Ressourcen (Argument auch aus Sicht der Betreiber der n), u.u. keine kontinuierlichen Updates, die Zugriff verlangsamen, Qualität des Datenbestands, Man ist besser gefeit gegen nachträgliche implizite Umdeutungen von Attributen, Data Cleansing ist i.a. aufwendig; es ist daher sinnvoll, das Ergebnis zu materialisieren, Erfassen historischer Entwicklungen des Datenbestands. Data Warehousing und Mining 5 Data Warehousing, um was geht es also? Mehrere Aspekte: Verwaltung materialisierter Sichten, hauptsächlich Aggregate, Primitive für Datenanalyse und ihre effiziente Implementierung. Data Warehousing und Mining 6 OLTP vs. OLAP Vier Stufen der Datenanalyse (1) OLTP ( online transaction processing ): Transaktionsorientierte Datenzugriffe, typischerweise Erfassen von Daten und Lesezugriffe auf diesen. Tagesgeschäft bedienen Beispiel aus dem Bankbereich: Wie hoch ist mein Kontostand? Beispiele für OLTP-Systeme: Buchungssysteme, Point-of-Sale, Lagerverwaltung, Tracking-Systeme, Aktien-/Wertpapierhandel, Regel- und Steuerungssysteme. OLAP ( online analytical processing ): Konsolidierung, Viewing und Analyse der Daten gemäß mehrerer Dimensionen. Entscheidungen unterstützen Gemeint sind strategische Unterscheidungen. Beispiel: Was ist der Zusammenhang zwischen Kontostand und Häufigkeit von Buchungen? Einfache Anfragen Beispiele: Wieviele Studenten hören Datenbanken I?, Was kosten mich meine Mitarbeiter?, Welches Produkt ist das beste? Anfragen beinhalten alle Aggregation. What-if Analyse Beispiel: Wenn die Arbeitskosten nächstes Jahr um 5% zunehmen, und der Absatz gleich bleibt, wie wird sich dann der Profit entwickeln?, Was hätte ich für ein Geschäft gemacht, wenn in Dollar? Sysadmin sagt: They (the users) don t even know what they want! How can we provide it? keine eng beschränkten Sichten und Analysemöglichkeiten; keine Konsolidierung der Daten, bei der wichtige Information verlorengeht. Data Warehousing und Mining 7 Data Warehousing und Mining 8

3 Vier Stufen der Datenanalyse (2) Analyse der Entwicklungen, die zum aktuellen Datenbank-Zustand geführt haben. Beispiel: Warum hat der Hustensaft-Absatz im Saarland im November (im Gegensatz zu anderen Bundesländern) stark zugenommen? Funktioniert, wenn nicht externe Faktoren ausschlaggebend sind. Planung Was muß in der Zukunft getan werden, damit sich ein bestimmter Effekt einstellt? Beispiel: Was muß geschehen, damit der Umsatz nächstes Jahr um 5% steigt? Unterschied zu What-if -Analyse: Zeitliche Dimension ist hier explizit, die Bedingungen sind viel vager, falls überhaupt vorhanden. Data Warehouse, Data Warehouse Technologie (Analogie zum Unterschied Datenbank - DBMS ) Data Warehouse Technologie - Menge von Methoden, Techniken und Werkzeugen, die kombiniert werden können, um eine Plattform zu schaffen, die dem Endbenutzer Daten in integrierter Form liefert. Data Warehouse - Repository, das die für Decision Support Anwendungen einer Organisation notwendigen Daten in konsolidierter Form enthält, können auch zugekaufte Daten sein. Data Warehousing und Mining 9 Data Warehousing und Mining 10 Anforderungen an die Daten im Data Warehouse Wohldefiniert, konsistent, dauerhaft, d.h. Bedeutung der Daten ändert sich nicht; Daten sind auch in der Zukunft sinnvoll, Daten sollen historische Entwicklungen reflektieren, Datenvolumen soll ausreichen für aussagekräftige Analysen. Data Warehousing und Mining 11 Operationale Datenbanken vs. Data Warehouses Tuning Entstehung Anforderungen Bedeutung Datenzugriff Datenvolumen Operationale Datenbanken jeweils für eine Applikation oder aus einer bestimmten Perspektive heraus Bekannt alltägliche Geschäftsabläufe Ein Aufruf liefert wenige Zeilen zurück. Getuned für häufige Zugriffe auf kleine Datenmengen Datenbestand wird für operationales Geschäft gebraucht. Data Warehouses mehrere Perspektiven gleichzeitig vage Entscheidungen des Managements, die sich auf Profitabilität auswirken Grosse Datenmengen werden zugegriffen, um das Ergebnis zu ermitteln. Getuned für eher seltene Zugriffe auf grosse Datenmengen Grosser Datenbestand wird für statist. Analysen, Vorhersagen, ad hoc Reports gebraucht. Data Warehousing und Mining 12

4 Operationale Datenbanken vs. Data Warehouses (2) Datenaufbewahrung Aktualität Verfügbarkeit Entwurfs ziel Operationale Datenbanken Data Warehouses solange es das Tagesgeschäft erfordert auf die Minute Hohe Verfügbarkeit erforderlich. Hohe Performance Langfristig, um Reporting über Zeiträume oder Vergleiche zu ermöglichen. Üblicherweise wird ein bestimmter Zeitpunkt in der Vergangenheit beschrieben Nicht ganz so hoch wie in Produktionsumgebungen, abhängig davon, ob weltweiter Zugriff. Flexibilität Data Mart Data Mart Data Warehouse für bestimmte Zielgruppe, Einschränkungen bezüglich Attribute, Daten, d.h. es handelt sich um eine Selektion der Warehouse-Daten, Update-Häufigkeit. Unterscheidung zwischen dependent und independent Data Marts: dependent := unternehmensweites Data Warehouse ist die Quelle. Achtung: Heterogenität unterschiedlicher Data Marts führt ursprüngliches Problem auf höherer Ebene wieder ein. Data Warehousing und Mining 13 Data Warehousing und Mining 14 source Entwurf Komponente f. Datenakquisition Datenverwaltung warehouse Directory warehouse Management Data Delivery Middleware external Datenzugriff external meta Metadaten, importiert von anderen Komponenten, z.b. n oder anderen externen Systemen, die Teil der Gesamtarch. sind. Komponenten der : Entwurfskomponente (zum Entwurf des Data Warehouse), Komponente für Datenakquisition: Data Pumps Abgreifen von Daten aus Files und Datenbanken, Data Cleaning, Übermitteln der Daten ans Data Warehouse und Einfügen, Datenverwaltung : Erzeugung, Verwaltung und Zugriff auf Data Warehouse Daten, Management : Data Warehouse Administration, Information Directory : Bereitstellung von Information über Inhalt und Bedeutung der Data Warehouse Daten für Administratoren und Anwender, Datenzugriff : Bereitstellung von Werkzeugen für Datenanalyse und -zugriff für Endbenutzer, Middleware - ermöglicht den Analysewerkzeugen den Zugriff auf die Data Warehouse Datenbanken, Data Delivery : Verteilen von Data Warehouse Daten an Data Marts oder externe Systeme. Data Warehousing und Mining 15 Data Warehousing und Mining 16

5 Datenakquisition Ist üblicherweise deklarativ, z.b. regelbasiert. Data Cleanup: Restrukturierung, Ausblenden von Daten, Einfügen fehlender Feldinhalte, Überprüfen von Integritätsbedingungen. Data Enhancement: Decodieren/Übersetzen von Feldinhalten, Hinzufügen von Timestamps, Zusammenfassungen, Berechnungen abgeleiteter Werte. Information Directory Information Directory enthält Metadaten. Technische Metadaten, d. h. Informationen der folgenden Art: Warehouse Entwurf und Management, z. B. Regeln für Datenakquisition, Vorschriften für Data Delivery an externe Systeme oder Benutzer, Information über Datenquellen, Datenmengen und Information, wann Daten abgelegt wurden, Zugriffsmuster (Benutzerzugriffe), Business Meta: Abbildung Geschäftsbereiche technische Metadaten, Welche Abteilung liefert welche Daten, welche Abteilung benötigt welche Sicht? Information zu vordefinierten Queries, Business Terms und technische Bezeichnungen, personelle Zuständigkeiten. Data Warehousing und Mining 17 Data Warehousing und Mining 18 Literatur Data Warehouse Practical Advice from the Experts Joyce Bischoff, Ted Alexander Prentice Hall, 1997 Data Warehousing und Mining 19

Kap. 6 Data Warehouse

Kap. 6 Data Warehouse 1 Kap. 6 Data Warehouse 6.1 Was ist ein Data Warehouse, Motivation? 6.2 Data Cube und Cube-Operationen 6.3 Workshop: MS SQL Server, Cube Operationen 6.4 Physischer Entwurf, Implementierung von Cubes 6.5

Mehr

Data Warehousing: Anwendungsbeispiel

Data Warehousing: Anwendungsbeispiel Frühjahrsemester 2012 cs242 Data Warehousing / cs243 Datenbanken Kapitel 1: Einführung H. Schuldt Data Warehousing: Anwendungsbeispiel Tresgros Tresgros Tresgros Filiale Muttenz Filiale Allschwil Filiale

Mehr

Online Analytical Processing

Online Analytical Processing Online Analytical Processing Online Analytical Processing Online Analytical Processing (OLAP) ermöglicht die multidimensionale Betrachtung von Daten zwecks E rmittlung eines entscheidungsunterstützenden

Mehr

Data Warehouse Definition (1) http://de.wikipedia.org/wiki/data-warehouse

Data Warehouse Definition (1) http://de.wikipedia.org/wiki/data-warehouse Data Warehouse Definition (1) http://de.wikipedia.org/wiki/data-warehouse Ein Data-Warehouse bzw. Datenlager ist eine zentrale Datensammlung (meist eine Datenbank), deren Inhalt sich aus Daten unterschiedlicher

Mehr

Data Warehouse ??? Ein Data Warehouse ist keine von der Stange zu kaufende Standardsoftware, sondern immer eine unternehmensindividuelle

Data Warehouse ??? Ein Data Warehouse ist keine von der Stange zu kaufende Standardsoftware, sondern immer eine unternehmensindividuelle ??? Zusammenfassung, Ergänzung, Querverbindungen, Beispiele A.Kaiser; WU-Wien MIS 188 Data Warehouse Ein Data Warehouse ist keine von der Stange zu kaufende Standardsoftware, sondern immer eine unternehmensindividuelle

Mehr

Einführung relationale Datenbanken. Themenblock: Erstellung eines Cube. Schlüssel. Relationenmodell Relationenname Attribut. Problem.

Einführung relationale Datenbanken. Themenblock: Erstellung eines Cube. Schlüssel. Relationenmodell Relationenname Attribut. Problem. Themenblock: Erstellung eines Cube Einführung relationale Datenbanken Problem Verwaltung großer Mengen von Daten Praktikum: Data Warehousing und Data Mining Idee Speicherung der Daten in Form von Tabellen

Mehr

Themenblock: Erstellung eines Cube

Themenblock: Erstellung eines Cube Themenblock: Erstellung eines Cube Praktikum: Data Warehousing und Data Mining Einführung relationale Datenbanken Problem Verwaltung großer Mengen von Daten Idee Speicherung der Daten in Form von Tabellen

Mehr

OLAP und Data Warehouses

OLAP und Data Warehouses OLP und Data Warehouses Überblick Monitoring & dministration Externe Quellen Operative Datenbanken Extraktion Transformation Laden Metadaten- Repository Data Warehouse OLP-Server nalyse Query/Reporting

Mehr

Frühjahrsemester cs243 Datenbanken Kapitel 1: Einführung. H. Schuldt. Anwendungsbeispiel. Filiale Allschwil

Frühjahrsemester cs243 Datenbanken Kapitel 1: Einführung. H. Schuldt. Anwendungsbeispiel. Filiale Allschwil Frühjahrsemester 2013 cs243 Datenbanken Kapitel 1: Einführung H. Schuldt Anwendungsbeispiel Filiale Muttenz Filiale Allschwil Filiale Liestal Anfragen: Welches Produkt hat sich am 26.02.2013 in der Filiale

Mehr

tdwi E U R D P E OPEN SOURCE BUSINESS INTELLIGENCE HANSER MÖGLICHKEITEN, CHANCEN UND RISIKEN QUELLOFFENER BI-LÖSUNGEN

tdwi E U R D P E OPEN SOURCE BUSINESS INTELLIGENCE HANSER MÖGLICHKEITEN, CHANCEN UND RISIKEN QUELLOFFENER BI-LÖSUNGEN OPEN SOURCE BUSINESS INTELLIGENCE MÖGLICHKEITEN, CHANCEN UND RISIKEN QUELLOFFENER BI-LÖSUNGEN uwehaneke Stephan TRAHASCH tobias HAGEN tobias LAUER (Hrsg.)' tdwi E U R D P E HANSER Vorwort 9 Einführung

Mehr

Infor PM 10 auf SAP. Bernhard Rummich Presales Manager PM. 9.30 10.15 Uhr

Infor PM 10 auf SAP. Bernhard Rummich Presales Manager PM. 9.30 10.15 Uhr Infor PM 10 auf SAP 9.30 10.15 Uhr Bernhard Rummich Presales Manager PM Schalten Sie bitte während der Präsentation die Mikrofone Ihrer Telefone aus, um störende Nebengeräusche zu vermeiden. Sie können

Mehr

BI Konsolidierung: Anspruch & Wirklichkeit. Jacqueline Bloemen. in Kooperation mit

BI Konsolidierung: Anspruch & Wirklichkeit. Jacqueline Bloemen. in Kooperation mit BI Konsolidierung: Anspruch & Wirklichkeit Jacqueline Bloemen in Kooperation mit Agenda: Anspruch BI Konsolidierung Treiber Was sind die aktuellen Treiber für ein Konsolidierungsvorhaben? Kimball vs. Inmon

Mehr

Seminar im Sommersemester 2004 an der Universität Karlsruhe (TH)

Seminar im Sommersemester 2004 an der Universität Karlsruhe (TH) Seminar im Sommersemester 2004 an der Universität Karlsruhe (TH) Verteilung und Integration von Informationen im Verkehrsbereich Thema: OLAP in verteilten Data-Warehouse- Umgebungen Vortrag: Christian

Mehr

Data Warehouse schnell gemacht Performanceaspekte im Oracle DWH

Data Warehouse schnell gemacht Performanceaspekte im Oracle DWH Data Warehouse schnell gemacht Performanceaspekte im Oracle DWH Dani Schnider Principal Consultant Business Intelligence BI Trilogie, Zürich/Basel 25./26. November 2009 Basel Baden Bern Lausanne Zürich

Mehr

10. Vorlesung: Datenorganisation SS 2007

10. Vorlesung: Datenorganisation SS 2007 10. Vorlesung: Datenorganisation SS 2007 8 Parallele Transaktionen 9 9.1 Drei-Ebenen Ebenen-Architektur 9.2 Verteilte Datenbanken 9.3 Client-Server Server-Datenbanken 9.4 Föderierte Datenbanken 9.5 Das

Mehr

Was ist Analyse? Hannover, CeBIT 2014 Patrick Keller

Was ist Analyse? Hannover, CeBIT 2014 Patrick Keller Was ist? Hannover, CeBIT 2014 Patrick Keller Business Application Research Center Historie 1994: Beginn der Untersuchung von Business-Intelligence-Software am Lehrstuhl Wirtschaftsinformatik der Universität

Mehr

Data Warehouse und Data Mining

Data Warehouse und Data Mining Einführungsseminar Data Mining Seminarvortrag zum Thema: Data Warehouse und Data Mining Von gehalten am Betreuer: Dr. M. Grabert Einführung Problemstellung Seite 2 Einführung Unternehmen bekommen eine

Mehr

Integration mit Service Repositories zur SOA Governance

Integration mit Service Repositories zur SOA Governance Integration mit Service Repositories zur SOA Governance Nürnberg, 10.11.2009 I N H A L T 1. SOA Governance 2. Service Repository 3. Modelle und Service Repository 4. Modell-Driven SOA I N H A L T 1. SOA

Mehr

Kapitel II. Datenbereitstellung 2004 AIFB / FZI 1. Vorlesung Knowledge Discovery

Kapitel II. Datenbereitstellung 2004 AIFB / FZI 1. Vorlesung Knowledge Discovery Kapitel II Datenbereitstellung 2004 AIFB / FZI 1 II. Datenbereitstellung 2004 AIFB / FZI 2 II. Datenbereitstellung Collect Initial Data identify relevant attributes identify inconsistencies between sources

Mehr

Data Mining-Projekte

Data Mining-Projekte Data Mining-Projekte Data Mining-Projekte Data Mining stellt normalerweise kein ei nmaliges Projekt dar, welches Erkenntnisse liefert, die dann nur einmal verwendet werden, sondern es soll gewöhnlich ein

Mehr

Vorwort zur 5. Auflage... 15 Über den Autor... 16

Vorwort zur 5. Auflage... 15 Über den Autor... 16 Vorwort zur 5. Auflage...................................... 15 Über den Autor............................................ 16 Teil I Grundlagen.............................................. 17 1 Einführung

Mehr

Self Service BI der Anwender im Fokus

Self Service BI der Anwender im Fokus Self Service BI der Anwender im Fokus Frankfurt, 25.03.2014 Dr. Carsten Bange, Gründer und Geschäftsführer BARC 1 Kernanforderung Agilität = Geschwindigkeit sich anpassen zu können Quelle: Statistisches

Mehr

Vorwort zur zweiten Auflage...V. Vorwort zur ersten Auflage... VIII

Vorwort zur zweiten Auflage...V. Vorwort zur ersten Auflage... VIII Vorwort zur zweiten Auflage...V Vorwort zur ersten Auflage... VIII 1 Management Support Systeme und Business Intelligence Anwendungssysteme zur Unterstützung von Managementaufgaben...1 1.1 Computergestützte

Mehr

BIW - Überblick. Präsentation und Discoverer Demonstration - Teil 1 - Humboldt Universität zu Berlin am 10. Juni 2004

BIW - Überblick. Präsentation und Discoverer Demonstration - Teil 1 - Humboldt Universität zu Berlin am 10. Juni 2004 BIW - Überblick Präsentation und Discoverer Demonstration - Teil 1 - Humboldt Universität zu Berlin am 10. Juni 2004 Annegret Warnecke Senior Sales Consultant Oracle Deutschland GmbH Berlin Agenda Überblick

Mehr

1 Einleitung. 1.1 Caching von Webanwendungen. 1.1.1 Clientseites Caching

1 Einleitung. 1.1 Caching von Webanwendungen. 1.1.1 Clientseites Caching 1.1 Caching von Webanwendungen In den vergangenen Jahren hat sich das Webumfeld sehr verändert. Nicht nur eine zunehmend größere Zahl an Benutzern sondern auch die Anforderungen in Bezug auf dynamischere

Mehr

Kapitel II. Datenbereitstellung. II. Datenbereitstellung. II.1 Grundlagen. II. Datenbereitstellung. Collect Initial Data. II.

Kapitel II. Datenbereitstellung. II. Datenbereitstellung. II.1 Grundlagen. II. Datenbereitstellung. Collect Initial Data. II. II. bereitstellung Kapitel II bereitstellung 1 2 II. bereitstellung II.1 Grundlagen Collect Initial Data identify relevant attributes identify inconsistencies between sources Describe Data characterize

Mehr

Strategisches Informationsmanagement auf Basis von Data Warehouse-Systemen

Strategisches Informationsmanagement auf Basis von Data Warehouse-Systemen Strategisches Informationsmanagement auf Basis von Data Warehouse-Systemen SAS PharmaHealth & Academia Gabriele Smith KIS-Tagung 2005 in Hamburg: 3. März 2005 Copyright 2003, SAS Institute Inc. All rights

Mehr

Objektorientierte Datenbanken

Objektorientierte Datenbanken OODB 11 Slide 1 Objektorientierte Datenbanken Vorlesung 11 vom 01.07.2004 Dr. Sebastian Iwanowski FH Wedel OODB 11 Slide 2 Inhalt heute: Datenbanken in betriebswirtschaftlichen Anwendungen OTLP (SAP) Data

Mehr

Business Intelligence

Business Intelligence Business Intelligence Anwendung 1 MInf1 HAW Hamburg Betreuender Professor: Prof. Dr. Zukunft by Jason Hung Vuong [12] Gliederung 1. Hamburg Energie Kooperation 2. Motivation 3. Business Intelligence 4.

Mehr

Oracle-Statistiken im Data Warehouse effizient nutzen

Oracle-Statistiken im Data Warehouse effizient nutzen Oracle-Statistiken im Data Warehouse effizient nutzen Reinhard Mense ARETO Consulting Köln Schlüsselworte: DWH, Data Warehouse, Statistiken, Optimizer, Performance, Laufzeiten Einleitung Für die performante

Mehr

Business Intelligence

Business Intelligence Business Intelligence Anwendungssysteme (BIAS) Lösung Aufgabe 1 Übung WS 2012/13 Business Intelligence Erläutern Sie den Begriff Business Intelligence. Gehen Sie bei der Definition von Business Intelligence

Mehr

Einführungsveranstaltung: Data Warehouse

Einführungsveranstaltung: Data Warehouse Einführungsveranstaltung: 1 Anwendungsbeispiele Berichtswesen Analyse Planung Forecasting/Prognose Darstellung/Analyse von Zeitreihen Performancevergleiche (z.b. zwischen Organisationseinheiten) Monitoring

Mehr

Lars Priebe Senior Systemberater. ORACLE Deutschland GmbH

Lars Priebe Senior Systemberater. ORACLE Deutschland GmbH Lars Priebe Senior Systemberater ORACLE Deutschland GmbH Data Mining als Anwendung des Data Warehouse Konzepte und Beispiele Agenda Data Warehouse Konzept und Data Mining Data Mining Prozesse Anwendungs-Beispiele

Mehr

Umsetzung der Anforderungen - analytisch

Umsetzung der Anforderungen - analytisch Umsetzung der Anforderungen - analytisch Titel des Lernmoduls: Umsetzung der Anforderungen - analytisch Themengebiet: New Economy Gliederungspunkt im Curriculum: 4.2.5.5 Zum Inhalt: In diesem Modul wird

Mehr

MIS by Franziska Täschler, Winformation GmbH ftaeschler@winformation-gmbh.ch Ausgabe 01/2001

MIS by Franziska Täschler, Winformation GmbH ftaeschler@winformation-gmbh.ch Ausgabe 01/2001 MIS Glossar by Franziska Täschler, Winformation GmbH ftaeschler@winformation-gmbh.ch Ausgabe 01/2001 Aggregat Data Cube Data Marts Data Mining Data Warehouse (DWH) Daten Decision Support Systeme (DSS)

Mehr

Business Intelligence Data Warehouse. Jan Weinschenker

Business Intelligence Data Warehouse. Jan Weinschenker Business Intelligence Data Warehouse Jan Weinschenker 28.06.2005 Inhaltsverzeichnis Einleitung eines Data Warehouse Data Warehouse im Zusammenfassung Fragen 3 Einleitung Definition: Data Warehouse A data

Mehr

Management Information System SuperX status quo and perspectives

Management Information System SuperX status quo and perspectives Management Information System SuperX status quo and perspectives 1 Agenda 1. Business Intelligence: Basics 2. SuperX: Data Warehouse for Universities 3. Joolap: OLAP for Universities 4. Cooperative reporting

Mehr

Data Cube. Aggregation in SQL. Beispiel: Autoverkäufe. On-line Analytical Processing (OLAP) 1. Einführung. 2. Aggregation in SQL, GROUP BY

Data Cube. Aggregation in SQL. Beispiel: Autoverkäufe. On-line Analytical Processing (OLAP) 1. Einführung. 2. Aggregation in SQL, GROUP BY Data Cube On-line Analytical Processing (OLAP). Einführung Ziel: Auffinden interessanter Muster in großen Datenmengen 2. Aggregation in SQL, GROUP BY 3. Probleme mit GROUP BY 4. Der Cube-Operator! Formulierung

Mehr

Data Warehouse Technologien

Data Warehouse Technologien Veit Köppen Gunter Saake Kai-Uwe Sattler Data Warehouse Technologien Inhaltsverzeichnis Inhaltsverzeichnis vii 1 Einführung in Data-Warehouse-Systeme 1 1.1 Anwendungsszenario Getränkemarkt...............

Mehr

SAP Support On Demand - IBMs kombiniertes Service-Angebot für SAP Hosting und SAP Application Management Services (AMS)

SAP Support On Demand - IBMs kombiniertes Service-Angebot für SAP Hosting und SAP Application Management Services (AMS) (IGS) SAP Support On Demand - IBMs kombiniertes Service-Angebot für SAP Hosting und SAP Application Services (AMS) Martin Kadner, Product Manager SAP Hosting, GTS Klaus F. Kriesinger, Client Services Executive,

Mehr

HP Service Virtualization. Bernd Schindelasch 19. Juni 2013

HP Service Virtualization. Bernd Schindelasch 19. Juni 2013 HP Service Virtualization Bernd Schindelasch 19. Juni 2013 Agenda EWE TEL GmbH Motivation Proof of Concept Ausblick und Zusammenfassung HP Software Performance Tour 2013: HP Service Virtualization 2 EWE

Mehr

Business Intelligence und Geovisualisierung in der Gesundheitswirtschaft

Business Intelligence und Geovisualisierung in der Gesundheitswirtschaft Business Intelligence und Geovisualisierung in der Gesundheitswirtschaft Prof. Dr. Anett Mehler-Bicher Fachhochschule Mainz, Fachbereich Wirtschaft Prof. Dr. Klaus Böhm health&media GmbH 2011 health&media

Mehr

OLAP und der MS SQL Server

OLAP und der MS SQL Server OLAP und der MS SQL Server OLAP und der MS SQL Server OLAP-Systeme werden wie umfangreiche Berichtssysteme heute nicht mehr von Grund auf neu entwickelt. Stattdessen konzentriert man sich auf die individuellen

Mehr

Leistungssteuerung beim BASPO

Leistungssteuerung beim BASPO Leistungssteuerung beim BASPO Organisationsstruktur Advellence die Gruppe. Advellence Consulting Advellence Solutions Advellence Products Advellence Services HR-Migrator & albislex powered byadvellence

Mehr

Veit Köppen Gunter Saake Kai-Uwe Sattler. 2. Auflage. Data Warehouse Technologien

Veit Köppen Gunter Saake Kai-Uwe Sattler. 2. Auflage. Data Warehouse Technologien Veit Köppen Gunter Saake Kai-Uwe Sattler 2. Auflage Data Warehouse Technologien Inhaltsverzeichnis Inhaltsverzeichnis ix 1 Einführung in Data-Warehouse-Systeme 1 1.1 Anwendungsszenario Getränkemarkt...

Mehr

2 Datenbanksysteme, Datenbankanwendungen und Middleware... 45

2 Datenbanksysteme, Datenbankanwendungen und Middleware... 45 Vorwort 15 Teil I Grundlagen 19 i Einführung In das Thema Datenbanken 21 I.I Warum ist Datenbankdesign wichtig? 26 i.2 Dateisystem und Datenbanken 28 1.2.1 Historische Wurzeln 29 1.2.2 Probleme bei der

Mehr

3.17 Zugriffskontrolle

3.17 Zugriffskontrolle 3. Der SQL-Standard 3.17. Zugriffskontrolle Seite 1 3.17 Zugriffskontrolle Datenbanken enthalten häufig vertrauliche Informationen, die nicht jedem Anwender zur Verfügung stehen dürfen. Außerdem wird man

Mehr

1. Übungsblatt. Besprechung: 27.10 (Gruppe A), 3.11 (Gruppe B)

1. Übungsblatt. Besprechung: 27.10 (Gruppe A), 3.11 (Gruppe B) DATENBANKEN IN DER PRAXIS: DATA WAREHOUSING Wintersemester 2015/2016 Prof. Dr. Jens Teubner DBIS Group Übung: Dr. Cornelia Tadros ISSI Group Allgemeine Hinweise 1. Übungsblatt Besprechung: 27.10 (Gruppe

Mehr

Data Warehousing. DWH Projekte. Ulf Leser Wissensmanagement in der Bioinformatik

Data Warehousing. DWH Projekte. Ulf Leser Wissensmanagement in der Bioinformatik Data Warehousing DWH Projekte Ulf Leser Wissensmanagement in der Bioinformatik Inhalt DWH Projekte Spezifika Die kritischen Punkte Warum scheitern DWH Projekte? Ulf Leser: Data Warehousing, Vorlesung,

Mehr

Performance by Design Wie werden performante ETL-Prozesse erstellt?

Performance by Design Wie werden performante ETL-Prozesse erstellt? Performance by Design Wie werden performante ETL-Prozesse erstellt? Reinhard Mense ARETO Consulting Bergisch Gladbach Schlüsselworte: DWH, Data Warehouse, ETL-Prozesse, Performance, Laufzeiten, Partitionierung,

Mehr

MOBILE ENTERPRISE APPLICATION PLATFORM (MEAP)

MOBILE ENTERPRISE APPLICATION PLATFORM (MEAP) MOBILE ENTERPRISE APPLICATION PLATFORM (MEAP) Oliver Steinhauer.mobile PROFI Mobile Business Agenda MOBILE ENTERPRISE APPLICATION PLATFORM AGENDA 01 Mobile Enterprise Application Platform 02 PROFI News

Mehr

Zeitgemäße Verfahren für ganzheitliche Auswertungen

Zeitgemäße Verfahren für ganzheitliche Auswertungen Intelligente Vernetzung von Unternehmensbereichen Zeitgemäße Verfahren für ganzheitliche Auswertungen Sächsische Industrie- und Technologiemesse Chemnitz, 27. Juni 2012, Markus Blum 2012 TIQ Solutions

Mehr

Mala Bachmann September 2000

Mala Bachmann September 2000 Mala Bachmann September 2000 Wein-Shop (1) Umsatz pro Zeit und Produkt Umsatz Jan Feb Mrz Q1 Apr 2000 Merlot 33 55 56 144 18 760 Cabernet-S. 72 136 117 325 74 1338 Shiraz 85 128 99 312 92 1662 Rotweine

Mehr

Business Rules Ansatz It s a long way... 14. März 2008

Business Rules Ansatz It s a long way... 14. März 2008 Business Rules Ansatz It s a long way... 14. März 2008 Patrice Witschi Berner Architekten Treffen (BAT) Nr. 09 Traktanden Einleitung Geschichte Projekte mit der Business Rules Engine Aufbau Kompetenzzentrum

Mehr

Von Big Data zu Executive Decision BI für den Fachanwender bis hin zu Advanced Analytics 10.45 11.15

Von Big Data zu Executive Decision BI für den Fachanwender bis hin zu Advanced Analytics 10.45 11.15 9.30 10.15 Kaffee & Registrierung 10.15 10.45 Begrüßung & aktuelle Entwicklungen bei QUNIS 10.45 11.15 11.15 11.45 Von Big Data zu Executive Decision BI für den Fachanwender bis hin zu Advanced Analytics

Mehr

Data Warehousing und anderetrends beim Einsatz der SAS Software in Unternehmen KSFE. 1. Konferenz der SAS Benutzer in Forschung und Entwicklung

Data Warehousing und anderetrends beim Einsatz der SAS Software in Unternehmen KSFE. 1. Konferenz der SAS Benutzer in Forschung und Entwicklung Data Warehousing und anderetrends beim Einsatz der SAS Software in Unternehmen KSFE 1. Konferenz der SAS Benutzer in Forschung und Entwicklung Unterschiedliche Geschäftsprozesse Operativer Dispositve Geschäftsbetrieb

Mehr

1Ralph Schock RM NEO REPORTING

1Ralph Schock RM NEO REPORTING 1Ralph Schock RM NEO REPORTING Bereit für den Erfolg Business Intelligence Lösungen Bessere Entscheidungen Wir wollen alle Mitarbeiter in die Lage versetzen, bessere Entscheidungen schneller zu treffen

Mehr

Data Warehouses und Moderne Betriebliche Anwendungen von Datenbanksystemen

Data Warehouses und Moderne Betriebliche Anwendungen von Datenbanksystemen Data Warehouses und Moderne Betriebliche Anwendungen von Datenbanksystemen (Folien von A. Kemper zum Buch 'Datenbanksysteme') Online Transaction Processing Betriebswirtschaftliche Standard- Software (SAP

Mehr

protecting companies from the inside out

protecting companies from the inside out protecting companies from the inside out 1 Integriertes Berechtigungsmanagement Futuredat IT Forum 15. Mai 2014 80% der Daten liegen unstrukturiert als ppt, doc und excel vor Quelle: Meryll Lynch 80% der

Mehr

Mission. TARGIT macht es einfach und bezahlbar für Organisationen datengetrieben zu werden

Mission. TARGIT macht es einfach und bezahlbar für Organisationen datengetrieben zu werden Mission TARGIT macht es einfach und bezahlbar für Organisationen datengetrieben zu werden Der Weg zu einem datengesteuerten Unternehmen # Datenquellen x Größe der Daten Basic BI & Analytics Aufbau eines

Mehr

Technologischen Rahmenbedingungen und Werkzeuge für eine wertschöpfende Controller-Rolle

Technologischen Rahmenbedingungen und Werkzeuge für eine wertschöpfende Controller-Rolle Technologischen Rahmenbedingungen und Werkzeuge für eine wertschöpfende Controller-Rolle 40. Congress der Controller, Themenzentrum C, München Steffen Vierkorn, Geschäftsführer Qunis GmbH, Neubeuern Die

Mehr

Relationale Datenbanken Datenbankgrundlagen

Relationale Datenbanken Datenbankgrundlagen Datenbanksystem Ein Datenbanksystem (DBS) 1 ist ein System zur elektronischen Datenverwaltung. Die wesentliche Aufgabe eines DBS ist es, große Datenmengen effizient, widerspruchsfrei und dauerhaft zu speichern

Mehr

Zukunftsträchtige Potentiale: Predictive Analysis mit SAP HANA & SAP BO

Zukunftsträchtige Potentiale: Predictive Analysis mit SAP HANA & SAP BO innovation@work Zukunftsträchtige Potentiale: Predictive Analysis mit SAP HANA & SAP BO thinkbetter AG Florian Moosmann 8. Mai 2013 1 Agenda Prädiktive Analyse Begriffsdefinition Herausforderungen Schwerpunktbereiche

Mehr

Software-Engineering und Datenbanken

Software-Engineering und Datenbanken Software-Engineering und Datenbanken Prof. Dr. Bernhard Schiefer bernhard.schiefer@fh-kl.de http://www.fh-kl.de/~schiefer Prof. Dr. Bernhard Schiefer 1-1 Wesentliche Inhalte Begriff DBS Datenbankmodelle

Mehr

Business Intelligence. Data Warehouse / Analyse Sven Elvers 2005-07-06

Business Intelligence. Data Warehouse / Analyse Sven Elvers 2005-07-06 Business Intelligence Data Warehouse / Analyse Sven Elvers 2005-07-06 Einleitung Dieses Dokument beschreibt einen für das Verständnis relevanten Teil der Präsentation. Business Intelligence Motivation

Mehr

Survival Guide für Ihr Business Intelligence-Projekt

Survival Guide für Ihr Business Intelligence-Projekt Survival Guide für Ihr Business Intelligence-Projekt Sven Bosinger Solution Architect BI Survival Guide für Ihr BI-Projekt 1 Agenda Was ist Business Intelligence? Leistungsumfang Prozesse Erfolgsfaktoren

Mehr

Die Zukunft der Zukunftsforschung im Deutschen Management: eine Delphi Studie

Die Zukunft der Zukunftsforschung im Deutschen Management: eine Delphi Studie Die Zukunft der Zukunftsforschung im Deutschen Management: eine Delphi Studie Executive Summary Zukunftsforschung und ihre Methoden erfahren in der jüngsten Vergangenheit ein zunehmendes Interesse. So

Mehr

1 Einleitung. Betriebswirtschaftlich administrative Systeme

1 Einleitung. Betriebswirtschaftlich administrative Systeme 1 1 Einleitung Data Warehousing hat sich in den letzten Jahren zu einem der zentralen Themen der Informationstechnologie entwickelt. Es wird als strategisches Werkzeug zur Bereitstellung von Informationen

Mehr

Open Source BI 2009 Flexibilität und volle Excel-Integration von Palo machen OLAP für Endanwender beherrschbar. 24. September 2009

Open Source BI 2009 Flexibilität und volle Excel-Integration von Palo machen OLAP für Endanwender beherrschbar. 24. September 2009 Open Source BI 2009 Flexibilität und volle Excel-Integration von Palo machen OLAP für Endanwender beherrschbar 24. September 2009 Unternehmensdarstellung Burda Digital Systems ist eine eigenständige und

Mehr

Kapitel 6. Vorlesung: PD Dr. Peer Kröger

Kapitel 6. Vorlesung: PD Dr. Peer Kröger Kapitel 6 Einführung in Data Warehouses Vorlesung: PD Dr. Peer Kröger Dieses Skript basiert auf den Skripten zur Vorlesung Datenbanksysteme II an der LMU München Dieses Skript basiert auf den Skripten

Mehr

Anwendung des Prinzips der Doppik beim Aufbau eines Data Warehouses

Anwendung des Prinzips der Doppik beim Aufbau eines Data Warehouses Anwendung des Prinzips der Doppik beim Aufbau eines Data Warehouses Einführung Einer der Nachteile der Data Warehouse Technologie besteht daran, dass in einem Data Warehouse (DWH ) nur Momentaufnahmen

Mehr

Stammdaten Auftragserfassung Produktionsbearbeitung Bestellwesen Cloud Computing

Stammdaten Auftragserfassung Produktionsbearbeitung Bestellwesen Cloud Computing Stammdaten Auftragserfassung Produktionsbearbeitung Bestellwesen Cloud Computing Finanzbuchhaltung Wenn Sie Fragen haben, dann rufen Sie uns an, wir helfen Ihnen gerne weiter - mit Ihrem Wartungsvertrag

Mehr

Produktinformation eevolution OLAP

Produktinformation eevolution OLAP Produktinformation eevolution OLAP Was ist OLAP? Der Begriff OLAP steht für Kurz gesagt: eevolution -OLAP ist die Data Warehouse Lösung für eevolution. Auf Basis verschiedener

Mehr

Grundlagen des Grid Computing

Grundlagen des Grid Computing Grundlagen des Grid Computing Grid Middleware Toolkits: glite ICA Joh.. Kepler Universität t Linz glite Grid Middleware für das LHC Grid Wurde im Rahmen des EGEE Projekts entwickelt Basiert auf dem Globus

Mehr

Star-Schema-Modellierung mit ERwin - eine kritische Reflexion der Leistungspotentiale und Anwendungsmöglichkeiten

Star-Schema-Modellierung mit ERwin - eine kritische Reflexion der Leistungspotentiale und Anwendungsmöglichkeiten Star-Schema-Modellierung mit ERwin - eine kritische Reflexion der Leistungspotentiale und Anwendungsmöglichkeiten Michael Hahne T&I GmbH Workshop MSS-2000 Bochum, 24. März 2000 Folie 1 Worum es geht...

Mehr

Virtual Roundtable: Business Intelligence - Trends

Virtual Roundtable: Business Intelligence - Trends Virtueller Roundtable Aktuelle Trends im Business Intelligence in Kooperation mit BARC und dem Institut für Business Intelligence (IBI) Teilnehmer: Prof. Dr. Rainer Bischoff Organisation: Fachbereich Wirtschaftsinformatik,

Mehr

Von BI zu Analytik. bessere Entscheidungen basiert auf Fakten. Dr. Wolfgang Martin Analyst, ibond Partner und Ventana Research Advisor

Von BI zu Analytik. bessere Entscheidungen basiert auf Fakten. Dr. Wolfgang Martin Analyst, ibond Partner und Ventana Research Advisor Von BI zu Analytik bessere Entscheidungen basiert auf Fakten Webinar Mai 2010 Dr. Wolfgang Martin Analyst, ibond Partner und Ventana Research Advisor Von Business Intelligence zu Analytik Die Bedeutung

Mehr

GOLDMINE PREMIUM EDITION DIE VIELSEITIGE KOMPLETTLÖSUNG ZUM KLEINEN PREIS

GOLDMINE PREMIUM EDITION DIE VIELSEITIGE KOMPLETTLÖSUNG ZUM KLEINEN PREIS GOLDMINE PREMIUM EDITION DIE VIELSEITIGE KOMPLETTLÖSUNG ZUM KLEINEN PREIS GoldMine schließt die Lücke zwischen einfachen Kontakt-Management-System und komplexer - aufgrund des hohen Anpassungsbedarfes

Mehr

Basis Community und Übersicht der verfügbaren Whitepapers

Basis Community und Übersicht der verfügbaren Whitepapers Business Community Basis Community und Übersicht der verfügbaren Whitepapers Zusammenfassung Dieses Dokument erklärt, wozu die Basis Community notwendig ist und welche Whitepapers verfügbar sind. Die Whitepapers

Mehr

Zusammenspiel von Business Intelligence mit betrieblicher Anwendungssoftware Falk Neubert, Universität Osnabrück

Zusammenspiel von Business Intelligence mit betrieblicher Anwendungssoftware Falk Neubert, Universität Osnabrück Zusammenspiel von Business Intelligence mit betrieblicher Anwendungssoftware 14. März 2013, IHK Osnabrück-Emsland-Grafschaft Bentheim Geschichte Kassenbuch des Liederkranz, 1886 Hutmachergesangvereins

Mehr

Titel. System Center Service Manager 2012 R2 Anleitung zur Installation

Titel. System Center Service Manager 2012 R2 Anleitung zur Installation Autor: Thomas Hanrath Microsoft Certified Trainer Titel System Center Service Manager 2012 R2 Anleitung zur Installation Eine beispielhafte Installationsanleitung zur Verwendung im Testlab Quelle: System

Mehr

So erstellen Sie wichtige Berichte mit Microsoft Technologie Tipps für PMO und IT

So erstellen Sie wichtige Berichte mit Microsoft Technologie Tipps für PMO und IT TPG Webinar-Serie 2016 zum PPM Paradise Thema 2.2 So erstellen Sie wichtige Berichte mit Microsoft Technologie Tipps für PMO und IT Mit Peter Huemayer Agenda Welche Berichte machen Sinn? Welche Daten haben

Mehr

e-business - Patterns Stefan Brauch (sb058) -- Julian Stoltmann (js057)

e-business - Patterns Stefan Brauch (sb058) -- Julian Stoltmann (js057) e-business - Patterns Stefan Brauch (sb058) -- Julian Stoltmann (js057) 1 e-business Patterns??? e-business Patterns Architekturen, die sich über die Zeit bewährt haben. Pattern-Fundgrube web-basierte

Mehr

Seminar in der Seminarreihe Business Intelligence 1. OLAP und Datawarehousing

Seminar in der Seminarreihe Business Intelligence 1. OLAP und Datawarehousing Seminar in der Seminarreihe Business Intelligence 1 OLAP und Datawarehousing OLAP & Warehousing Die wichtigsten Produkte Die Gliederung Produkt Bewertung & Vergleiche Die Marktentwicklung Der aktuelle

Mehr

Best Practice für Schulträger, Schulorganisationen und Schulzentren

Best Practice für Schulträger, Schulorganisationen und Schulzentren Best Practice für Schulträger, Schulorganisationen und Schulzentren 0 Verschlanken Sie das Schulmanagement mit innovativen, digitalen Werkzeugen Der Druck auf Schulorganisationen und Träger, die Arbeit

Mehr

bi-cube Aktiver Compliance - Monitor (ACM)

bi-cube Aktiver Compliance - Monitor (ACM) INSTITUT FÜR SYSTEM- MANAGEMENT bi-cube Aktiver Compliance - Monitor (ACM) ism- Architektur Team ism GmbH 2010 Definition: Compliance Compliance bedeutet die Einhaltung von Verhaltensmaßregeln, Gesetzen

Mehr

Business Performance Management Next Generation Business Intelligence?

Business Performance Management Next Generation Business Intelligence? Business Performance Management Next Generation Business Intelligence? München, 23. Juni 2004 Jörg Narr Business Application Research Center Untersuchung von Business-Intelligence-Software am Lehrstuhl

Mehr

Data Warehousing und Data Mining

Data Warehousing und Data Mining 2 Data Warehousing und Data Mining Kapitel 1: Data-Warehousing-Architektur von Geschäftsprozessen Mögliche Fragestellungen Wie entwickelt sich unser Umsatz im Vergleich zum letzten Jahr? In welchen Regionen

Mehr

Inhalt. 1 Übersicht. 2 Anwendungsbeispiele. 3 Einsatzgebiete. 4 Systemanforderungen. 5 Lizenzierung. 6 Installation. 7 Key Features.

Inhalt. 1 Übersicht. 2 Anwendungsbeispiele. 3 Einsatzgebiete. 4 Systemanforderungen. 5 Lizenzierung. 6 Installation. 7 Key Features. Inhalt 1 Übersicht 2 Anwendungsbeispiele 3 Einsatzgebiete 4 Systemanforderungen 5 Lizenzierung 6 Installation 7 Key Features Seite 2 von 11 1. Übersicht MIK.mobile for ipad ist eine Business Intelligence

Mehr

Teil VI. Datenbanken

Teil VI. Datenbanken Teil VI Datenbanken Überblick 1 Grundlegende Begriffe Motivation 2 Relationale Datenbanksysteme Das Relationale Datenmodell SQL 3 Entwurf von Datenbanken Das Enity Relationship (ER) Modell Abbildung von

Mehr

Systemen. Stand der Umsetzung von BSC-Systemen. 3/4 der Unternehmen setzen Balanced Scorecard als neues Instrument der Unternehmensführung ein.

Systemen. Stand der Umsetzung von BSC-Systemen. 3/4 der Unternehmen setzen Balanced Scorecard als neues Instrument der Unternehmensführung ein. Stand der Umsetzung von BSC-Systemen Systemen BSC eingeführt keine Überarbeitung 11% kein Interesse 26% BSC eingeführt Überarbeitung geplant 5% BSC geplant 58% n = 141 3/4 der Unternehmen setzen Balanced

Mehr

Anwendertage WDV2012

Anwendertage WDV2012 Anwendertage WDV2012 28.02.-01.03.2013 in Pferdingsleben Thema: Business Intelligence mit Excel 2010 Referent: Dipl. Wirtsch.-Inf. Torsten Kühn PRAXIS-Consultant Alles ist möglich! 1 Torsten Kühn Dipl.

Mehr

Microsoft Lizenzierung SQL Server 2014. Bernd Löschner

Microsoft Lizenzierung SQL Server 2014. Bernd Löschner Bernd Löschner EDITIONEN Enterprise Edition für mission critical Anwendungen und large scale Data Warehousing. Business Intelligence Edition für Premium Unternehmen und self service BI. Standard Edition

Mehr

IBM SPSS Data Access Pack Installationsanweisung für Windows

IBM SPSS Data Access Pack Installationsanweisung für Windows IBM SPSS Data Access Pack Installationsanweisung für Windows Inhaltsverzeichnis Kapitel 1. Übersicht.......... 1 Einführung............... 1 Bereitstellen einer Datenzugriffstechnologie.... 1 ODBC-Datenquellen...........

Mehr

Data Warehousing. Sommersemester 2005. Ulf Leser Wissensmanagement in der Bioinformatik

Data Warehousing. Sommersemester 2005. Ulf Leser Wissensmanagement in der Bioinformatik Data Warehousing Sommersemester 2005 Ulf Leser Wissensmanagement in der Bioinformatik ... Der typische Walmart Kaufagent verwendet täglich mächtige Data Mining Werkzeuge, um die Daten der 300 Terabyte

Mehr

Business Intelligence

Business Intelligence Hochschule Darmstadt Business Intelligence und Wissensmanagement Fachbereich Informatik Praktikumsversuch BI, Teil 1 Prof. Dr. C. Wentzel, Dipl. Inf. Dipl. Math. Y. Orkunoglu Datum: 03.04.2006 1. Kurzbeschreibung

Mehr

Themen. M. Duffner: Datenbanksysteme

Themen. M. Duffner: Datenbanksysteme Datenbanksysteme Themen Theorie Einführung Datenbank, Datenbankmanagementsystem (DBMS), Aufgaben eines DBMS Relationale Datenbanken Daten als Tabellen Datenbankentwurf im Entity-Relationship-Modell Abfragesprache

Mehr

Business Rules Ansatz It s a long way... 21. Januar 2008

Business Rules Ansatz It s a long way... 21. Januar 2008 Business Rules Ansatz It s a long way... 21. Januar 2008 Patrice Witschi SI-SE Fachtagung 2008 Business Rules Agenda Einleitung Geschichte Erste Schritte mit Business Rules Projekte mit der Business Rule

Mehr

Big Data Analytics Roadshow. Nils Grabbert. Wie man mit einer analytischen Datenbank im Retargeting mehr erreicht. Düsseldorf, 24.04.

Big Data Analytics Roadshow. Nils Grabbert. Wie man mit einer analytischen Datenbank im Retargeting mehr erreicht. Düsseldorf, 24.04. Folie Retargeting intelligent Wie man mit einer analytischen Datenbank im Retargeting mehr erreicht. Big Data Analytics Roadshow Düsseldorf, 24.04.2012 Nils Grabbert Director Data Science Der Retargeting

Mehr

Mobile Analytics mit Oracle BI - was steckt in den Apps?

Mobile Analytics mit Oracle BI - was steckt in den Apps? Mobile Analytics mit Oracle BI - was steckt in den Apps? Schlüsselworte Oracle BI, OBIEE, Mobile, Analytics Einleitung Gerd Aiglstorfer G.A. itbs GmbH Eching Oracle erweiterte im Laufe dieses Jahres das

Mehr