1. Übungsblatt zur Theoretischen Physik I im SS16: Mechanik & Spezielle Relativitätstheorie. Newtonsche Mechanik

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "1. Übungsblatt zur Theoretischen Physik I im SS16: Mechanik & Spezielle Relativitätstheorie. Newtonsche Mechanik"

Transkript

1 1. Übungsblatt zu Theoetischen Physik I im SS16: Mechanik & Spezielle elativitätstheoie Newtonsche Mechanik Aufgabe 1 Abhängigkeit physikalische Gesetze von de Zeitdefinition Eine wesentliche Gundlage de Newtonschen Mechanik ist die Annahme eines absoluten aums und eine absoluten Zeit. In Newtons Philosophia Natualis Pincipia Mathematica heißt es übe das Wesen de Zeit:...Die absolute, wahe und mathematische Zeit vefließt an sich und vemöge ihe Natu gleichfömig und ohne Beziehung auf igendeinen äußeen Gegenstand... Um den Velauf de Zeit in einem Inetialsystem zu messen, seien Sie mit eine ungenauen Uh ausgestattet, welche die Zeit τ anzeigt. Da es eine absolute efeenzzeit t gibt, können Sie den Gang de ungenauen Uh τ duch einen funktionalen Zusammenhang τ(t) bezüglich de wahen Zeit t bescheiben. Bezüglich de ungenauen Uh misst man fü die käftefeie, eindimensionale Bewegung eines Massenpunktes d 2 x dτ 2 = F s m 0. (1) Dies steht im Widespuch zu Newtons Axiomen und zeigt die Abhängigkeit physikalische Gesetze von de Zeitdefinition. a) Beechnen Sie die Scheinkaft F s. b) Setzen Sie nun speziell fü die ungenaue Uh die Beziehung τ(t) = µ 1 ln(1 + µ t) zu wahen Zeit t an, wobei µ eine Konstante sei. Wie lautet F s in diesem Fall? Lösungsvoschlag a) Man beechne zunächst die tatsächliche Geschwindigkeit Die tatsächliche Beschleunigung egibt sich wegen Käftefeiheit zu d 2 x dt 2 = d dt ( dx dτ ) dτ = d2 x dt dτ 2 v = dx dt = dx dτ dτ dt. (2) ( ) 2 dτ + dx dt dτ Duch Auflösen nach d 2 x/dτ 2 ehält man die Scheinkaft ( d 2 ) τ dt 2 = d2 x dτ 2 ( ) 2 dτ + v d2 τ/dt 2 = 0 () dt dτ/dt F s = m d2 x dτ 2 = m v d2 τ/dt 2 (dτ/dt). (4) 1

2 b) Fü den Zusammenhang τ(t) = µ 1 ln(1 + µ t), de eine schwäche wedenden Fede in eine mechanischen Uh bescheiben könnte, egibt sich und damit schließlich die Scheinkaft dτ dt = 1 (1 + µ t), d 2 τ dt 2 = µ (1 + µ t) 2 (5) F s = m v µ (1 + µ t). (6) Aufgabe 2 eise duch die Ede Ein efindungseiche Ingenieu kommt auf die Idee einen Tunnel duch die Ede zu gaben, um eine Kapsel mit Pesonen schnell von de Nodhalbkugel zu Südhalbkugel zu beföden. Die Ede sei im folgenden als uhende Vollkugel mit konstante homogene Dichte angenommen, die Kapsel befinde sich im feien Fall duch den Tunnel und Lufteibung sei zu venachlässigen. De Tunnel wede auf de Edobefläche an einem beliebigen Punkt A duch die Ede bis zum Punkt B gegaben, siehe Abbildung. a) Beechnen Sie zunächst das Gavitationspotential im Inneen eine homogenen Hohlkugel mit äusseem adius a und inneem adius i fü die dei Fälle > a, < i und i < < a, siehe Skizze. Leiten Sie die zugehöigen Käfte ab. a dm i ϑ M Hinweis: De letzte Fall ist aus Kombination de esten beiden Fälle zu ehalten. b) Beechnen Sie dann, wie lange eine eise duch die Ede in de Kapsel dauen wüde. Betachten Sie dazu den Fall i < < a mit i = 0 und a = e ( e =Edadius) und beechnen Sie die Komponente de Gavitationskaft in z-ichtung paallel zum Tunnel, siehe Skizze. Kapsel A e α z Tunnel B Die Bewegungsgleichung fü z füht auf einen hamonischen Oszillato aus dessen Fequenz sich die eisezeit bestimmen lässt. Was wüde sich an de eisezeit änden, wäe ein küzee Tunnel duch 2

3 die Ede gegaben woden? Hinweis: Nutzen Sie e = 670 km und g = 9.81 m/s um die eisezeit in Minuten zu bestimmen. Lösungsvoschlag a) Das von dem infinitesimalen Masse-Element dm zwischen dem im Abstand befindlichen Massenpunkt M veusachte infinitesimal Gavitationspotential dφ ist gegeben duch dφ = γ dm ρ dv = γ. (7) Hiebei nutzt man aus, dass dm = ρ dv, da die Dichte als konstant angenommen wude. Das Volumenelement in Kugelkoodinaten ist Integation egibt dv = 2 sinϑ d dϑ dϕ. (8) Φ() = γ ρ a π 2 π i sinϑ dϕ dϑ d. (9) Man nutzt nun die tigonometische Beziehung zwischen, und ϑ. De Kosinussatz liefet 2 = cos ϑ (10) und somit ehält man fü eine infinitesimale Ändeung von in Abhängigkeit von ϑ 2 d = 2 sinϑ dϑ ode sinϑ dϑ = d. (11) Setzt man dies in das Integal ein und integiet übe ϕ, ehält man Φ() = 2 π γ ρ a max Die Integalgenzen hängen von den dei zu betachtenden Fällen ab: Fü a ist min = und max = + und man ehält i min d d. (12) Φ() = 4 π γ ρ a i 2 d = 4 π γ M ρ a i. (1) Mit de Gesamtmasse de Hohlkugel m = 4 π ρ (a i )/ egibt sich das bekannte Gavitationspotential zwischen zwei Punktmassen Φ() = γ m. (14) Folglich kann das Gavitationsfeld de Hohlkugel im Außenaum als das von einem im Mittelpunkt de Hohlkugel befindlichen Massenpunkt mit Masse m ezeugte Gavitationsfeld betachtet weden (siehe Satz von Gauß). Die Gavitationskaft ist dann duch gegeben. F = M Φ e = γ M m 2 e (15)

4 Fü den Fall i ist min = und max = + und man ehält Φ() = 4 π γ ρ a i d = 2 π γ ρ ( a 2 i 2 ). (16) Das Gavitationsfeld im Inneen eine Hohlkugel ist also konstant. Demnach veschwindet die esultieende Gavitationskaft im Inneen eine Hohlkugel F = M Φ e = 0. (17) Da das Coulomb-Potential fomal die selbe Gestalt wie das Gavitationspotential hat, tifft dies auch in de Elektostatik zu, siehe Faadaysche Käfig. Fü den letzten Fall i a kann man die Egebnisse de voheigen Fälle nutzen. De duch beschiebene Punkt liegt am Außenand eine Kugelschale mit inneem adius i und äußeem adius und gleichzeitig am Innenand eine Kugelschale mit inneem adius und äußeem adius a. Das Potential kann dahe aus den Beitägen de Potentiale de beiden Kugelschalen konstuiet weden. Mit den Egebnissen aus den esten beiden Fällen egibt sich Φ() = 2 π γ ρ ( 2 i + 2 a 2 ) = 2 π γ ρ ( a 2 2 i 1 2 ). (18) Die Gavitationskaft in eine homogenen Kugelschale ist also F = M Φ e = γ M 4 π ρ ( ) i 2 e. = γ M m() 2 e. (19) Hie ist m() die Masse de homogenen Kugelschale mit inneem adius i und äußeem adius. Insbesondee egibt sich fü die Gavitationskaft im inneen eine eine homogenen Vollkugel mit adius (d.h. i = 0) ein lineaes Kaftgesetz F e. (20) In allen Fällen ist die Gavitationskaft stets zum Zentum de Kugel geichtet. b) Aus Aufgabenteil a.) ist das Gavitationsfeld im inneen eine homogenen Kugel bekannt, welche hie idealisiet mit de Ede identifiziet wid. Die Gavitationskaft ist zum Mittelpunkt de Ede geichtet und de Betag ist von de Fom F = β, wobei e den Abstand eines Punktes in de Ede vom Edmittelpunkt bescheibt. An de Edobefläche ist = e und die Gavitationskaft hat den Betag F = m g, wobei m nun die Masse de Kapsel bezeichne. Wi ehalten somit die Anschlussbedingung an de Obefläche m g = β e, woaus sich β bestimmen läßt β = m g e. (21) Bezeichnen wi die Komponente von paallel zu Tunnelichtung mit z, so gilt z = sin α, wobei de Winkel α aus de Abbildung zu entnehmen ist. Die Komponente de Gavitationskaft in Tunnelichtung ist somit F z = β sin α = m g e z. (22) Dies ist eine linea ückteibende Kaft, vgl. Hooksches Gesetz. Fü die Bewegungsgleichung egibt sich dahe die Gleichung eines hamonischen Oszillatos mit Fequenz(quadat) z + g e z = 0, (2) ω 2 := g e. (24) 4

5 Die Peiode eine vollen Schwingung (einmal duch die Ede und wiede zuück) ist gegeben duch T = 2 π ω. (25) Die eisezeit ist also duch eine halbe Peiode bestimmt t eise = T 2 = π e g. (26) Fü die numeischen Wete e = 670 km und g = 9.81 m/s 2 egibt sich eine eisezeit von t eise 42.2 min. Da die eisezeit ausschließlich von dem Vehältnis e /g abhängt und unabhängig von de Lage und de Länge des Tunnels ist, egibt sich auch fü küzee Tunnel dieselbe eisezeit. Aufgabe Wassetopfen im Schweefeld Ein als kugelfömig angenommene Wassetopfen mit Masse m und adius beginne zum Zeitpunkt t = 0 mit Geschwindigkeit v 0 := v(t = 0) = 0 senkecht im Schweefeld de Ede duch gesättigten Wassedampf zu fallen. Auf den Wassetopfen wike die Gavitationskaft F gav = m g e z und die eibungskaft F eib = β (t) 2 v(t) e z mit konstantem Koeffizienten β > 0. Wähend des Falls kondensiet nun de umgebende Wassedampf am Wassetopfen in solche Weise, dass das Volumen V(t) des Wassetopfens popotional zu seine Obefläche O(t) wächst. a) Nutzen Sie die Bedingung, dass de Volumenzuwachs popotional zu Obefläche ist um (t) explizit als Funktion de Zeit t auszudücken. b) Bestimmen Sie die Bewegungsgleichungen des Wassetopfens und lösen Sie die esultieende Diffeentialgleichung 1. Odnung fü die Geschwindigkeit v. Hinweis: Beachten Sie, dass die Masse des Wassetopfens zeitabhängig ist. Nehmen Sie an, dass die Dichte von Wasse konstant ist. Finden Sie die Lösung de Bewegungsgleichung fü v() anstelle von v(t) indem Sie den adius anstelle de Zeit t als unabhängige Vaiable einfühen. c) Nutzen Sie das in Aufgabenteil a.) ehaltene esultat um die Lösung v() aus Aufgabenteil b.) als Funktion de Zeit v(t) auszudücken. Untesuchen und diskutieen Sie die beiden Genzfälle t 0 /α und t 0 /α. 5

6 Lösungsvoschlag a) Die Bewegung findet ausschließlich in z ichtung statt. Wi betachten dahe im folgenden das eindimensionale Poblem. Das Volumen und die Obefläche eine Kugel sind duch V(t) = 4 π (t), O(t) = 4 π (t) 2 (27) gegeben. De Volumenzuwachs ist popotional zum Obeflächenzuwachs Integation egibt dv dt = α O(t) 4 π (t)2 ṙ(t) = α 4 π (t) 2 ṙ(t) = α. (28) wobei 0 = (t = 0) de adius zum Zeitpunkt t = 0 ist. (t) = 0 + α t, (29) b) Die Dichte von Wasse ρ w sei konstant. Die Masse des Wassetopfens ist somit gegeben duch m(t) = ρ w V(t). (0) Die zeitliche Ändeung de Masse ist dann duch die zeitliche Ändeung des Volumens bestimmt dm(t) dt = ρ w dv(t) dt = 4 π ρ w (t) 2 ṙ(t) = m(t) ṙ(t) (t) = α m(t) 1 (t). (1) Im letzten Schitt haben wi die Lösung (29) genutzt um ṙ zu eliminieen. Die Bewegungsgleichung in z-ichtung lautet somit ode F ges = dp dt = d dm (m v) = dt dt v + m dv dt = F gav + F eib = m g β 2 v (2) v(t) + α ( ) β 1 + v(t) g = 0 () (t) 4 π ρ w α Mit de Abküzung γ := 1 + β 4 π ρ w α (4) egibt sich die Diffeentialgleichung v(t) + α γ v(t) (t) g = 0. (5) Betachtet man nun anstelle de Zeit t, den adius als unabhängige Vaiable, ehält man mit v = dv dt = dv d d dt = v ṙ = α v () (6) (wobei v die Ableitung von v bezüglich bescheibt) die inhomogene lineae Diffeentialgleichung este Odnung in de unabhängigen Vaiable v () + γ v() g α = 0. (7) 6

7 Die Lösung ist gegeben duch die Supeposition de allgemeinen Lösung de homogenen Gleichung und eine speziellen Lösung de inhomogenen Gleichung. Die homogene Gleichung lautet v () + γ v() = 0 (8) und kann duch Tennung de Vaiablen gelöst weden dv 1 v = γ d 1 v hom () = c 0 γ. (9) Eine spezielle Lösung de inhomogenen Gleichung kann duch Potenzeihenansatz gefunden weden. Hie sieht man jedoch diekt, dass de lineae Ansatz v inhom = ξ (40) eine Lösung ist, wobei ξ duch Einsetzten in die inhomogene Diffeentialgleichung zu ξ = bestimmt weden kann. Die Lösung lautet also g α (1 + γ) v() = v hom () + v inhom () = c 0 γ + (41) g α (1 + γ). (42) Die Integationskonstante c 0 ist duch die Wahl de Anfangsbedingung v 0 = v( = 0 ) = 0 bestimmt und man findet c 0 γ 0 + Die Lösung lässt sich dahe scheiben als g α (1 + γ) g 0 = 0 c 0 = α (1 + γ) 1+ γ 0. (4) v() = g 0 α (1 + γ) [ 0 ( 0 ) ] γ. (44) c) Setzt man hiein nun die Lösung (29) fü (t) ein, ehält man schließlich die Geschwindigkeit in Abhängigkeit de Zeit [ ( g 0 v(t) = 1 + α t ) ( 1 + α t ) ] γ. (45) α (1 + γ) 0 0 Wi betachten nun Genzfälle de allgemeinen Lösung: Fü kleine Zeiten t 0 /α egibt sich g 0 v(t) = α (1 + γ) Fü goße Zeiten t 0 /α ehält man [ (1 + γ) α t ] ( α t + O 0 0 v(t) ) 2 g t. (46) (47) g t (1 + γ). (48) Intepetation: Zu Beginn des Falls, fü kleine Zeiten t 0 /α, ist v v 0 = 0. Die eibungskaft F eib v ist dahe klein. Auch die duch Kondensation bedingte Massenzunahme ist noch klein dm/dt 0. Die Ändeung des Impulses ist also im wesentlichen duch die Ändeung de Geschwindigkeit bestimmt. De Wassetopfen befindet sich dahe näheungsweise im feien Fall v = gt. Fü goße Zeiten t 0 /α wächst sowohl die Geschwindigkeit und damit die eibungskaft als auch die Masse duch Kondensation. Daduch wid die Beschleunigung von g auf g/(1 + γ) eduziet. 7

Klassische Mechanik - Ferienkurs. Sommersemester 2011, Prof. Metzler

Klassische Mechanik - Ferienkurs. Sommersemester 2011, Prof. Metzler Klassische Mechanik - Feienkus Sommesemeste 2011, Pof. Metzle 1 Inhaltsvezeichnis 1 Kelegesetze 3 2 Zweiköeoblem 3 3 Zentalkäfte 4 4 Bewegungen im konsevativen Zentalkaftfeld 5 5 Lenzsche Vekto 7 6 Effektives

Mehr

Übungen zur Kursvorlesung Physik II (Elektrodynamik) Sommersemester 2008

Übungen zur Kursvorlesung Physik II (Elektrodynamik) Sommersemester 2008 Übungsblatt 4 zu Physik II Von Patik Hlobil (38654), Leonhad Doeflinge (496) Übungen zu Kusvolesung Physik II (Elektodynamik) Sommesemeste8 Übungsblatt N. 4 Aufgabe 3: Feldstäke im Innen eines Ladungsinges

Mehr

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern?

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern? An welche Stichwöte von de letzten Volesung können Sie sich noch einnen? Positive und negative Ladung Das Coulombsche Gesetz F 1 4πε q q 1 Quantisieung und haltung de elektischen Ladung e 19 1, 6 1 C Das

Mehr

I)Mechanik: 1.Kinematik, 2.Dynamik

I)Mechanik: 1.Kinematik, 2.Dynamik 3. Volesung EP I) Mechanik 1.Kinematik Fotsetzung 2.Dynamik Anfang Vesuche: 1. Feie Fall im evakuieten Falloh 2.Funkenflug (zu Keisbewegung) 3. Affenschuss (Übelageung von Geschwindigkeiten) 4. Luftkissen

Mehr

Tutoriumsaufgaben. 1. Aufgabe. Die Eulerschen Formeln für Geschwindigkeiten und Beschleunigungen auf einem Starrkörper lauten:

Tutoriumsaufgaben. 1. Aufgabe. Die Eulerschen Formeln für Geschwindigkeiten und Beschleunigungen auf einem Starrkörper lauten: Technische Univesität elin Fakultät V Institut fü Mechanik Fachgebiet fü Kontinuumsmechanik und Mateialtheoie Seketaiat MS 2, Einsteinufe 5, 10587 elin 9. Übungsblatt-Lösungen Staköpekinematik I SS 2016

Mehr

Experimentierfeld 1. Statik und Dynamik. 1. Einführung. 2. Addition von Kräften

Experimentierfeld 1. Statik und Dynamik. 1. Einführung. 2. Addition von Kräften Expeimentiefeld 1 Statik und Dynamik 1. Einfühung Übelegungen im Beeich de Statik und Dynamik beuhen stets auf de physikalischen Göße Kaft F. Betachten wi Käfte und ihe Wikung auf einen ausgedehnten Köpe,

Mehr

1.2.2 Gravitationsgesetz

1.2.2 Gravitationsgesetz VAK 5.04.900, WS03/04 J.L. Vehey, (CvO Univesität Oldenbug ) 1.. Gavitationsgesetz Heleitung aus Planetenbewegung Keplesche Gesetze 1. Planeten bewegen sich auf Ellipsen. De von Sonne zum Planeten gezogene

Mehr

I)Mechanik: 1.Kinematik, 2.Dynamik

I)Mechanik: 1.Kinematik, 2.Dynamik 3. Volesung EP I) Mechanik 1.Kinematik Fotsetzung 2.Dynamik Anfang Vesuche: 1. Feie Fall im evakuieten Falloh 2.Funkenflug (zu Keisbewegung) 3. Affenschuss (Übelageung von Geschwindigkeiten) 4. Luftkissen

Mehr

Inhalt der Vorlesung A1

Inhalt der Vorlesung A1 PHYSIK A S 03/4 Inhalt de Volesung A. Einfühung Methode de Physik Physikalische Gößen Übesicht übe die vogesehenen Theenbeeiche. Teilchen A. Einzelne Teilchen Bescheibung von Teilchenbewegung Kineatik:

Mehr

Kapitel 4 Energie und Arbeit

Kapitel 4 Energie und Arbeit Kapitel 4 negie und Abeit Kaftfelde Wenn wi jedem unkt des Raums eindeutig einen Kaft-Vekto zuodnen können, ehalten wi ein Kaftfeld F ( ) Häufig tauchen in de hysik Zental-Kaftfelde auf : F( ) f ( ) ˆ

Mehr

Lösung der Aufgabe 4.2.2

Lösung der Aufgabe 4.2.2 Elektomagnetische Felde und Wellen: Lösung de Aufgabe 422 1 Lösung de Aufgabe 422 Übeabeitet von: JüM 172005 Aufgabe wie in de Klausu Eine Kugel vom adius ist gleichfömig in x-ichtung polaisiet mit P =

Mehr

Experimentalphysik II (Kip SS 2007)

Experimentalphysik II (Kip SS 2007) Epeimentalphysik II (Kip SS 7) Zusatzvolesungen: Z- Ein- und mehdimensionale Integation Z- Gadient, Divegenz und Rotation Z-3 Gaußsche und Stokessche Integalsatz Z-4 Kontinuitätsgleichung Z-5 Elektomagnetische

Mehr

Integration von Ortsgrößen zu Bereichsgrößen

Integration von Ortsgrößen zu Bereichsgrößen Integation von Otsgößen zu Beeichsgößen 1 Integation von Otsgößen zu Beeichsgößen Stömungen sind Bewegungen von Teilchen innehalb von Stoffen. Ihe wesentlichen Gesetzmäßigkeiten gehen aus Zusammenhängen

Mehr

Übungen zur Ingenieur-Mathematik III WS 2013/14 Blatt

Übungen zur Ingenieur-Mathematik III WS 2013/14 Blatt Übungen zu Ingenieu-Mathematik III WS 3/4 Blatt 7..4 Aufgabe 38: Betachten Sie eine Ellipse (in de Ebene) mit den Halbachsen a und b und bestimmen Sie die Kümmung in den Scheitelpunkten. Lösung:Eine Paametisieung

Mehr

5. Vorlesung EP. f) Scheinkräfte 3. Arbeit, Leistung, Energie und Stöße

5. Vorlesung EP. f) Scheinkräfte 3. Arbeit, Leistung, Energie und Stöße 5. Volesung EP I) Mechanik 1. Kinematik.Dynamik a) Newtons Axiome (Begiffe Masse und Kaft) b) Fundamentale Käfte c) Schwekaft (Gavitation) d) Fedekaft e) Reibungskaft f) Scheinkäfte 3. Abeit, Leistung,

Mehr

6. Gravitation. m s. r r. G = Nm 2 /kg 2. Beispiel: Mond. r M = 1738 km

6. Gravitation. m s. r r. G = Nm 2 /kg 2. Beispiel: Mond. r M = 1738 km 00 0 6. Gavitation Gavitationswechselwikung: eine de vie fundaentalen Käfte (die andeen sind elektoagnetische, schwache und stake Wechselwikung) Ein Köpe it asse i Abstand zu eine Köpe it asse übt auf

Mehr

Physik für Nicht-Physikerinnen und Nicht-Physiker

Physik für Nicht-Physikerinnen und Nicht-Physiker FAKULTÄT FÜR PHYSIK UND ASTRONOMIE Physik fü Nicht-Physikeinnen und Nicht-Physike A. Belin 15.Mai2014 Lenziele Die Gößen Winkelgeschwindigkeit, Dehmoment und Dehimpuls sind Vektoen die senkecht auf de

Mehr

6 Die Gesetze von Kepler

6 Die Gesetze von Kepler 6 DIE GESETE VON KEPER 1 6 Die Gesetze von Kele Wi nehmen an, dass de entalköe (Sonne) eine seh viel gössee Masse M besitzt als de Planet mit de Masse m, so dass de Schweunkt in gute Näheung im entum de

Mehr

U y. U z. x U. U x y. dy dz. 3. Gradient, Divergenz & Rotation 3.1 Der Gradient eines Skalarfeldes. r dr

U y. U z. x U. U x y. dy dz. 3. Gradient, Divergenz & Rotation 3.1 Der Gradient eines Skalarfeldes. r dr PHYSIK A Zusatvolesung SS 13 3. Gadient Divegen & Rotation 3.1 De Gadient eines Skalafeldes Sei ein skalaes eld.b. ein Potential das von abhängt. Dann kann man scheiben: d d d d d d kann duch eine Veändeung

Mehr

Mechanik. 2. Dynamik: die Lehre von den Kräften. Physik für Mediziner 1

Mechanik. 2. Dynamik: die Lehre von den Kräften. Physik für Mediziner 1 Mechanik. Dynamik: die Lehe von den Käften Physik fü Medizine 1 Usache von Bewegungen: Kaft Bislang haben wi uns auf die Bescheibung von Bewegungsvogängen beschänkt, ohne nach de Usache von Bewegung zu

Mehr

Gravitationsgesetz. Name. d in km m in kg Chaldene 4 7, Callirrhoe 9 8, Ananke 28 3, Sinope 38 7, Carme 46 1,

Gravitationsgesetz. Name. d in km m in kg Chaldene 4 7, Callirrhoe 9 8, Ananke 28 3, Sinope 38 7, Carme 46 1, . De Jupite hat etwa 60 Monde auch Tabanten genannt. De Duchesse seines gößten Mondes Ganyed betägt 56k. Es gibt abe auch Monde die nu einen Duchesse von etwa eine Kiloete haben. Die Monde des Jupites

Mehr

Mathematik für Ingenieure 2

Mathematik für Ingenieure 2 Mathematik fü Ingenieue Doppelintegale THE SERVICES Mathematik PROVIDER fü Ingenieue DIE - Doppelintegale Anschauung des Integals ingenieusmäßige Intepetation des bestimmten Integals Das bestimmte Integal

Mehr

Arbeit in Kraftfeldern

Arbeit in Kraftfeldern Abeit in Kaftfelden In einem Kaftfeld F ( ) ist F( )d die vom Feld bei Bewegung eines Köps entlang dem Weg geleistete Abeit. Achtung: Vozeichenwechsel bzgl. voheigen Beispielen Konsevative Kaftfelde Ein

Mehr

Inhalt der Vorlesung A1

Inhalt der Vorlesung A1 PHYSIK Physik A/B A WS SS 07 03/4 Inhalt de Volesung A. Teilchen A. Einzelne Teilchen Bescheibung von Teilchenbewegung Kinematik: Quantitative Efassung Dynamik: Usachen de Bewegung Käfte Abeit + Leistung,

Mehr

Mehrkörperproblem & Gezeitenkräfte

Mehrkörperproblem & Gezeitenkräfte 508.55 Satellitengeodäsie Mehköpepoblem & Gezeitenkäfte Tosten Maye-Gü Tosten Maye-Gü Bewegungsgleichung Bewegungsgleichung (Keplepoblem): Diffeentialgleichung. Odnung ( t) ( t) GM ( t) Bestimmt bis auf

Mehr

Kepler sche Bahnelemente

Kepler sche Bahnelemente Keple sche Bahnelemente Siegfied Eggl In de Dynamischen Astonomie ist es üblich, das Vehalten von gavitativ inteagieenden Köpen nicht im katesischen Koodinatensystem zu studieen, sonden die Entwicklung

Mehr

Übungen zur Physik 1 - Wintersemester 2012/2013. Serie Oktober 2012 Vorzurechnen bis zum 9. November

Übungen zur Physik 1 - Wintersemester 2012/2013. Serie Oktober 2012 Vorzurechnen bis zum 9. November Seie 3 29. Oktobe 2012 Vozuechnen bis zum 9. Novembe Aufgabe 1: Zwei Schwimme spingen nacheinande vom Zehn-Mete-Tum ins Becken. De este Schwimme lässt sich vom Rand des Spungbetts senkecht heuntefallen,

Mehr

(Newton II). Aus der Sicht eines mitbeschleunigten Beobachters liest sich diese Gleichung:

(Newton II). Aus der Sicht eines mitbeschleunigten Beobachters liest sich diese Gleichung: f) Scheinkäfte.f) Scheinkäfte Tägheitskäfte in beschleunigten Systemen, z.b. im anfahenden ode bemsenden Auto ode in de Kuve ( Zentifugalkaft ). In nicht beschleunigten Systemen ( Inetialsysteme ) gibt

Mehr

Vorlesung Technische Mechanik 1 Statik, Wintersemester 2007/2008. Technische Mechanik

Vorlesung Technische Mechanik 1 Statik, Wintersemester 2007/2008. Technische Mechanik Volesung Technische Mechanik 1 Statik, Wintesemeste 2007/2008 Technische Mechanik 1. Einleitung 2. Statik des staen Köpes 2.1 Äquivalenz von Käfteguppen am staen Köpe 2.2 Käfte mit gemeinsamem Angiffspunkt

Mehr

e r a Z = v2 die zum Mittelpunkt der Kreisbahn gerichtet ist. herbeigeführt. Diese Kraft lässt sich an ausgelenkter Federwaage ablesen.

e r a Z = v2 die zum Mittelpunkt der Kreisbahn gerichtet ist. herbeigeführt. Diese Kraft lässt sich an ausgelenkter Federwaage ablesen. Im (x 1, y 1 ) System wikt auf Masse m die Zentipetalbeschleunigung, a Z = v2 e die zum Mittelpunkt de Keisbahn geichtet ist. Folie: Ableitung von a Z = v2 e Pfeil auf Keisscheibe, Stoboskop Die Keisbewegung

Mehr

Kapitel 3 Kräfte und Drehmomente

Kapitel 3 Kräfte und Drehmomente Kapitel 3 Käfte und Dehmomente Käfte Messung und physikalische Bedeutung eine Kaft : Messung von Masse m Messung von Beschleunigung a (Rückgiff auf Längen- und Zeitmessung) Aus de Messung von Masse und

Mehr

v A 1 v B D 2 v C 3 Aufgabe 1 (9 Punkte)

v A 1 v B D 2 v C 3 Aufgabe 1 (9 Punkte) Institut fü Technische und Num. Mechanik Technische Mechanik II/III Pof. D.-Ing. Pof. E.h. P. Ebehad WS 009/10 P 1 4. Mäz 010 Aufgabe 1 (9 Punkte) Bestimmen Sie zeichneisch die Momentanpole alle vie Köpe

Mehr

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern?

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern? An welche Stichwöte von de letzten Volesung können Sie sich noch einnen? Magnetfeld: Pemanentmagnete und Elektomagnete F = qv B B Gekeuzte Felde De Hall-Effekt Geladene Teilchen auf eine Keisbahn = mv

Mehr

1 Lineare Bewegung der Körper

1 Lineare Bewegung der Körper Lineae Bewegung de Köpe.3 Regentopfen und Fallschimspinge (v 0 (t) = g v(t)) In beiden Fällen handelt es sich um Objekte, die aus goßen Höhen fallen und von dem duchfallennen Medium (Luft) gebemst weden.

Mehr

HTL Kapfenberg Gravitation Seite 1 von 7. Gravitation

HTL Kapfenberg Gravitation Seite 1 von 7. Gravitation HTL Kapfenbeg Gavitation Seite 1 von 7 Pichle oland oland.pichle@htl-kapfenbeg.ac.at Gavitation Matheatische / Fachliche Inhalte in Stichwoten: Gavitationskaft, Gavitationsfeldstäke, Gavitationspotenzial,

Mehr

Der Lagrange- Formalismus

Der Lagrange- Formalismus Kapitel 8 De Lagange- Fomalismus 8.1 Eule-Lagange-Gleichung In de Quantenmechanik benutzt man oft den Hamilton-Opeato, um ein System zu bescheiben. Es ist abe auch möglich den Lagange- Fomalismus zu vewenden.

Mehr

Physik II Übung 1 - Lösungshinweise

Physik II Übung 1 - Lösungshinweise Physik II Übung 1 - Lösungshinweise Stefan Reutte SoSe 01 Moitz Kütt Stand: 19.04.01 Fanz Fujaa Aufgabe 1 We kennt wen? Möglicheweise kennt ih schon einige de Studieenden in eue Übungsguppe, vielleicht

Mehr

Wintersemester 2012/2013 Prof. Dr. Stefan Müller AG Computergraphik km 2 0,1571 0, km 2. r d. 4πI

Wintersemester 2012/2013 Prof. Dr. Stefan Müller AG Computergraphik km 2 0,1571 0, km 2. r d. 4πI 1. Übungsblatt zu Volesung CV-Integation (Lösung) ufgabe 1: Kugelobefläche ufgabe : Raumwinkel 15 43 Wintesemeste 1/13 Pof.. Stefan Mülle G Computegaphik sinθ θ ϕ 43 [ ϕ] 6 ---------- [ cosθ] 18 35 6 35

Mehr

Einführung in die Physik I. Dynamik des Massenpunkts (2) O. von der Lühe und U. Landgraf

Einführung in die Physik I. Dynamik des Massenpunkts (2) O. von der Lühe und U. Landgraf Einfühung in die Physik I Dynaik des Massenpunkts () O. von de Lühe und U. Landgaf Abeit Käfte können aufgeteilt ode ugefot weden duch (z. B.) Hebel Flaschenzüge De Weg, übe welchen eine eduziete Kaft

Mehr

8. Bewegte Bezugssysteme

8. Bewegte Bezugssysteme 8. Bewegte Bezugssysteme 8.1. Vobemekungen Die gundlegenden Gesetze de Mechanik haben wi bishe ohne Bezug auf ein spezielles Bezugssystem definiet. Gundgesetze sollen ja auch unabhängig vom Bezugssystem

Mehr

I)Mechanik: 1.Kinematik, 2.Dynamik

I)Mechanik: 1.Kinematik, 2.Dynamik 3. Volesung EPI 06 I) Mechanik 1.Kinematik Fotsetzung 2.Dynamik Anfang EPI WS 2006/07 Dünnwebe/Faessle 1 x 1 = x 1 y 1 x 1 x 1 = y 1 I)Mechanik: 1.Kinematik, 2.Dynamik Bewegung in Ebene und Raum (2- und

Mehr

Kreisbewegungen (und gekrümmte Bewegungen allgemein)

Kreisbewegungen (und gekrümmte Bewegungen allgemein) Auf den folgenden Seiten soll anhand de Gleichung fü die Zentipetalbeschleunigung, a = v 2 / 1, dagelegt weden, dass es beim Ekläen physikalische Sachvehalte oftmals veschiedene Wege gibt, die jedoch fühe

Mehr

Übungen zur Physik II (Elektrodynamik) SS Übungsblatt Bearbeitung bis Mi

Übungen zur Physik II (Elektrodynamik) SS Übungsblatt Bearbeitung bis Mi Übungen zu Physik II (Eektodynamik) SS 5. Übungsbatt 3.6.5 eabeitung bis Mi. 6.7.5 Aufgabe. Loentzkaft (+4) Ein Stab mit de Masse m und dem Ohmschen Widestand kann sich eibungsfei auf zwei paaeen Schienen

Mehr

Bewegungen im Zentralfeld

Bewegungen im Zentralfeld Egänzungen zu Physik I Wi wollen jetzt einige allgemeine Eigenschaften de Bewegung eines Massenpunktes unte dem Einfluss eine Zentalkaft untesuchen, dh de Bewegung in einem Zentalfeld Danach soll de spezielle

Mehr

9.2. Bereichsintegrale und Volumina

9.2. Bereichsintegrale und Volumina 9.. Beeichsintegale und Volumina Beeichsintegale Rein fomal kann man Integale übe einem (meßbaen) Beeich B bilden, indem man eine möglicheweise auf einem gößeen Beeich definiete Funktion f mit de chaakteistischen

Mehr

Übungen zur Theoretischen Physik 2 Lösungen zu Blatt 13

Übungen zur Theoretischen Physik 2 Lösungen zu Blatt 13 Prof. C. Greiner, Dr. H. van Hees Sommersemester 014 Übungen zur Theoretischen Physik Lösungen zu Blatt 13 Aufgabe 51: Massenpunkt auf Kugel (a) Als generalisierte Koordinaten bieten sich Standard-Kugelkoordinaten

Mehr

Mathematische Hilfsmittel der Physik Rechen-Test I. Markieren Sie die richtige(n) Lösung(en):

Mathematische Hilfsmittel der Physik Rechen-Test I. Markieren Sie die richtige(n) Lösung(en): Technische Betiebswitschaft Gundlagen de Physik D. Banget Mat.-N.: Mathematische Hilfsmittel de Physik Rechen-Test I Makieen Sie die ichtige(n) Lösung(en):. Geben Sie jeweils den Wahheitswet (w fü wah;

Mehr

Seminar Gewöhnliche Dierentialgleichungen Anwendungen in der Mechanik

Seminar Gewöhnliche Dierentialgleichungen Anwendungen in der Mechanik Semina Gewöhnliche Dieentialgleichungen Anwendungen in de Mechanik Geog Daniilidis 6.Juli 05 Inhaltsvezeichnis Einleitung Motivation:.Newtonsche Gesetz 3 Vowissen 4 Konsevativen Systeme 3 5 Zentale Kaftfelde

Mehr

1 Umkehrfunktionen und implizite Funktionen

1 Umkehrfunktionen und implizite Funktionen $Id: impliit.tex,v 1.6 2012/10/30 14:00:59 hk Exp $ 1 Umkehfunktionen und impliite Funktionen 1.1 De Umkehsat Am Ende de letten Situng hatten wi alle Vobeeitungen um Beweis des Umkehsates abgeschlossen,

Mehr

Ferienkurs Experimentalphysik Übung 1 - Musterlösung

Ferienkurs Experimentalphysik Übung 1 - Musterlösung Feienkus Expeimentalphysik 1 1 Übung 1 - Mustelösung 1. Spungschanze 1. Die maximale Höhe nach Velassen de Spungschanze kann übe die Enegieehaltung beechnet weden, de Bezugspunkt sei im Uspung am Abspungpunkt.

Mehr

5. Gravitation Drehimpuls und Drehmoment. Mechanik Gravitation

5. Gravitation Drehimpuls und Drehmoment. Mechanik Gravitation Mechanik Gavitation 5. Gavitation 5.1. Dehipuls und Dehoent De Dehipuls titt bei Dehbewegungen an die Stelle des Ipulses. Wi betachten zunächst den Dehipuls eines Teilchens (späte weden wi den Dehipuls

Mehr

Übungsaufgaben zum Thema Kreisbewegung Lösungen

Übungsaufgaben zum Thema Kreisbewegung Lösungen Übungsaufgaben zum Thema Keisbewegung Lösungen 1. Ein Käfe (m = 1 g) otiet windgeschützt auf de Flügelspitze eine Windkaftanlage. Die Rotoen de Anlage haben einen Duchmesse von 30 m und benötigen fü eine

Mehr

Seminarvortrag Differentialgeometrie: Rotationsflächen konstanter Gaußscher

Seminarvortrag Differentialgeometrie: Rotationsflächen konstanter Gaußscher Seminavotag Diffeentialgeometie: Rotationsflächen konstante Gaußsche Kümmung Paul Ebeman, Jens Köne, Mata Vitalis 1. Juni 22 Inhaltsvezeichnis Vobemekung 2 1 Einfühung 2 2 Este Fundamentalfom 2 3 Vetägliche

Mehr

IM6. Modul Mechanik. Zentrifugalkraft

IM6. Modul Mechanik. Zentrifugalkraft IM6 Modul Mechanik Zentifugalkaft Damit ein Köpe eine gleichfömige Keisbewegung ausfüht, muss auf ihn eine Radialkaft, die Zentipetalkaft, wiken, die imme zu einem festen Punkt, dem Zentum, hinzeigt. In

Mehr

Magnetismus EM 63. fh-pw

Magnetismus EM 63. fh-pw Magnetismus Elektische Fluß 64 Elektische Fluß, Gauss sches Gesetz 65 Magnetische Fluß 66 eispiel: magnetische Fluß 67 Veschiebungsstom 68 Magnetisches Moment bewegte Ladungen 69 Magnetisches Moment von

Mehr

Dr. Jan Friedrich Nr L 2

Dr. Jan Friedrich Nr L 2 Übungen zu Expeimentalphysik 4 - Lösungsvoschläge Pof. S. Paul Sommesemeste 5 D. Jan Fiedich N. 4 9.5.5 Email Jan.Fiedich@ph.tum.de Telefon 89/89-1586 Physik Depatment E18, Raum 3564 http://www.e18.physik.tu-muenchen.de/teaching/phys4/

Mehr

Bestimmung der Fallbeschleunigung. (1) dt. Durch Integration ergibt sich für die Zeitabhängigkeit von Geschwindigkeit und Ort.

Bestimmung der Fallbeschleunigung. (1) dt. Durch Integration ergibt sich für die Zeitabhängigkeit von Geschwindigkeit und Ort. M09 Bestimmung de allbeschleunigung Die usammenhänge zwischen eschwindigkeit, Beschleunigung, Masse und Kaft weden am Beispiel des feien alles mit de Atwoodschen allmaschine expeimentell untesucht. Im

Mehr

Kinematik und Dynamik der Rotation - Der starre Körper (Analogie zwischen Translation und Rotation eine Selbstlerneinheit)

Kinematik und Dynamik der Rotation - Der starre Körper (Analogie zwischen Translation und Rotation eine Selbstlerneinheit) Kinematik und Dynamik de Rotation - De stae Köpe (Analogie zwischen Tanslation und Rotation eine Selbstleneinheit) 1. Kinematische Gößen de Rotation / Bahn- und Winkelgößen A: De ebene Winkel Bei eine

Mehr

Von Kepler zu Hamilton und Newton

Von Kepler zu Hamilton und Newton Von Kele zu Hamilton und Newton Eine seh elegante Vaiante von 3 Kele egeben 1 Newton 1. Das este Kele sche Gesetz 2. Das zweite Kele sche Gesetz 3. Die Bahngeschwindigkeit v und de Hodogah 4. Die Beschleunigung

Mehr

A A Konservative Kräfte und Potential /mewae/scr/kap2 14s

A A Konservative Kräfte und Potential /mewae/scr/kap2 14s 2.4 Konsevative Käfte und Potential /mewae/sc/kap2 4s3 29-0-0 Einige Begiffe: Begiff des Kaftfeldes: Def.: Kaftfeld: von Kaft-Wikung efüllte Raum. Dastellung: F ( ) z.b. Gavitation: 2. Masse m 2 in Umgebung

Mehr

Abiturprüfung Physik 2016 (Nordrhein-Westfalen) Leistungskurs Aufgabe 1: Induktion bei der Torlinientechnik

Abiturprüfung Physik 2016 (Nordrhein-Westfalen) Leistungskurs Aufgabe 1: Induktion bei der Torlinientechnik Abitupüfung Physik 2016 (Nodhein-Westfalen) Leistungskus Aufgabe 1: Induktion bei de Tolinientechnik Im Fußball sogen egelmäßig umstittene Entscheidungen übe zu Unecht gegebene bzw. nicht gegebene Toe

Mehr

Hinweis: Geben Sie für den Winkel α keinen konkreten Wert, sondern nur für sin α und/oder cos α an.

Hinweis: Geben Sie für den Winkel α keinen konkreten Wert, sondern nur für sin α und/oder cos α an. 1. Geschwindigkeiten (8 Punkte) Ein Schwimmer, der sich mit konstanter Geschwindigkeit v s = 1.25 m/s im Wasser vorwärts bewegen kann, möchte einen mit Geschwindigkeit v f = 0.75 m/s fließenden Fluß der

Mehr

4.2 Allgemeine ebene Bewegung. Lösungen

4.2 Allgemeine ebene Bewegung. Lösungen 4. Allgemeine ebene Bewegung Lösungen Aufgabe 1: a) Massentägheitsmoment: Fü das Massentägheitsmoment eine homogenen Kugel gilt: J= 5 m Zahlenwet: J= 5 8 kg 0,115 m =0,0405 kgm b) Gleitstecke: Schwepunktsatz:

Mehr

Wichtige Begriffe dieser Vorlesung:

Wichtige Begriffe dieser Vorlesung: Wichtige Begiffe diese Volesung: Impuls Abeit, Enegie, kinetische Enegie Ehaltungssätze: - Impulsehaltung - Enegieehaltung Die Newtonschen Gundgesetze 1. Newtonsches Axiom (Tägheitspinzip) Ein Köpe, de

Mehr

3b) Energie. Wenn Arbeit W von außen geleistet wird: W = E gesamt = E pot + E kin + EPI WS 2006/07 Dünnweber/Faessler

3b) Energie. Wenn Arbeit W von außen geleistet wird: W = E gesamt = E pot + E kin + EPI WS 2006/07 Dünnweber/Faessler 3b) Enegie (Fotsetzung) Eines de wichtigsten Natugesetze Die Gesamtenegie eines abgeschlossenen Systems ist ehalten, also zeitlich konstant. Enegie kann nu von eine Fom in eine andee vewandelt weden kann

Mehr

2.12 Dreieckskonstruktionen

2.12 Dreieckskonstruktionen .1 Deieckskonstuktionen 53.1 Deieckskonstuktionen.1.1 B aus a, b und c. Keis um mit Radius b 3. Keis um B mit Radius a 4. Schnittpunkt de Keise ist Bemekung: Es entstehen zwei konguente B..1. B aus α,

Mehr

3.1 Elektrostatische Felder symmetrischer Ladungsverteilungen

3.1 Elektrostatische Felder symmetrischer Ladungsverteilungen 3 Elektostatik Das in de letzten Volesung vogestellte Helmholtz-Theoem stellt eine fomale Lösung de Maxwell- Gleichungen da. Im Folgenden weden wi altenative Methoden kennenlenen (bzw. wiedeholen), die

Mehr

Inhalt Dynamik Dynamik, Kraftstoß Dynamik, Arbeit Dynamik, Leistung Kinetische Energie Potentielle Energie

Inhalt Dynamik Dynamik, Kraftstoß Dynamik, Arbeit Dynamik, Leistung Kinetische Energie Potentielle Energie Inhalt 1.. 3. 4. 5. 6. Dynamik Dynamik, Kaftstoß Dynamik, beit Dynamik, Leistung Kinetische Enegie Potentielle Enegie Pof. D.-Ing. abaa Hippauf Hochschule fü Technik und Witschaft des Saalandes; 1 Liteatu

Mehr

Eine lineare Differentialgleichung 2. Ordnung hat die allgemeine Form: d. 2 dx

Eine lineare Differentialgleichung 2. Ordnung hat die allgemeine Form: d. 2 dx XVIII. as mathematische un as physikalische Penel Eine lineae iffeentialgleichung. Onung hat ie allgemeine Fom: y() y() () P() Q() y() = (). ie allgemeine Lösung iese inhomogenen Gleichung lautet y() =

Mehr

Einführung in die Physik I. Kinematik der Massenpunkte. O. von der Lühe und U. Landgraf

Einführung in die Physik I. Kinematik der Massenpunkte. O. von der Lühe und U. Landgraf Einfühung in die Phsik I Kinemaik de Massenpunke O. on de Lühe und U. Landgaf O und Geschwindigkei Wi beachen den O eines als punkfömig angenommenen Köpes im Raum als Funkion de Zei Eindimensionale Posiion

Mehr

1.3. Prüfungsaufgaben zur Statik

1.3. Prüfungsaufgaben zur Statik .3. Püfungsaufgaben zu Statik Aufgabe a: Käftezelegung (3) Eine 0 kg schwee Lape ist in de Mitte eines 6 beiten Duchganges an eine Seil aufgehängt, welches dot duchhängt. Wie goß sind die Seilkäfte? 0

Mehr

(a) Transformation auf die generalisierten Koordinaten (= Kugelkoordinaten): ẏ = l cos(θ) θ sin(ϕ) + l sin(θ) cos(ϕ) ϕ.

(a) Transformation auf die generalisierten Koordinaten (= Kugelkoordinaten): ẏ = l cos(θ) θ sin(ϕ) + l sin(θ) cos(ϕ) ϕ. Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Theoretische Physik B - Lösungen SS 10 Prof. Dr. Aleander Shnirman Blatt 5 Dr. Boris Narozhny, Dr. Holger Schmidt 11.05.010

Mehr

Physik 1 ET, WS 2012 Aufgaben mit Lösung 5. Übung (KW 48) Verschiebungsarbeit )

Physik 1 ET, WS 2012 Aufgaben mit Lösung 5. Übung (KW 48) Verschiebungsarbeit ) 5. Übung (KW 48) Aufgabe 1 (M 4.1 Veschiebungsabeit ) Welche Abeit muss aufgewendet weden, um eine Fede mit Fedekonstanten k (a) ohne Vospannung, d. h. von de Vospannlänge x 1 0, (b) von de Vospannlänge

Mehr

Allgemeine Mechanik Musterlösung 3.

Allgemeine Mechanik Musterlösung 3. Allgemeine Mechanik Mustelösung 3. HS 014 Pof. Thomas Gehmann Übung 1. Umlaufbahnen fü Zweiköpepobleme Die Bewegungsgleichung von zwei Köpen in einem zentalwikenem Kaftfel, U() = α/, lautet wie folgt:

Mehr

Magnetostatik I Grundlagen

Magnetostatik I Grundlagen Physik VL31 (08.01.2013) Magnetostatik I Gundlagen Magnetische Käfte und Felde Magnetfelde - Dipolnatu Das Magnetfeld de Ede De magnetische Fluß 1. & 2. Maxwellsche Gleichungen Flußdichte und magnetische

Mehr

Vektoraddition. Vektoraddition. Vektoraddition. Kraftwirkung bei Drehungen. Vektorzerlegung. Vektorzerlegung. Vektorzerlegung.

Vektoraddition. Vektoraddition. Vektoraddition. Kraftwirkung bei Drehungen. Vektorzerlegung. Vektorzerlegung. Vektorzerlegung. Vektoaddition Vektozelegung Vektoaddition Vektozelegung N F Α Α F mg F s 25 26 Vektoaddition Vektozelegung Kaftwikung bei Dehungen Dehmoment Eine im Schwepunkt angeifende Kaft bewikt nu eine Beschleunigung

Mehr

Einführung in die Physik I. Elektromagnetismus 1

Einführung in die Physik I. Elektromagnetismus 1 infühung in die Physik I lektomagnetismus O. von de Lühe und. Landgaf lektische Ladung lektische Ladung bleibt in einem abgeschlossenen System ehalten s gibt zwei Aten elektische Ladung positive und negative

Mehr

1.3. Statik. Kräfte bewirken Verformungen und Bewegungsänderungen. Die Wirkung einer Kraft wird bestimmt durch Angriffspunkt Richtung

1.3. Statik. Kräfte bewirken Verformungen und Bewegungsänderungen. Die Wirkung einer Kraft wird bestimmt durch Angriffspunkt Richtung 1.3. Statik 1.3.1. Käfte Zug- und Duckfede, Expande, Kaftmesse: Je göße die Kaft, desto göße die Vefomung mit Kaftmesse an OHP-Pojekto, Stuhl, ode Pesente ziehen Je göße die Kaft, desto göße die Beschleunigung.

Mehr

Musterlösungen. Theoretische Physik I: Klassische Mechanik

Musterlösungen. Theoretische Physik I: Klassische Mechanik Blatt 8.0.0 Mustelösungen Theoetische Physik I: Klassische Mechanik Pof. D. G. Albe MSc Nenad Balanesković Das Zwei-Köpe-Poblem. Zeigen Sie, dass fü die PotentialfunktionU x x ) gilt mit = x x. x U x x

Mehr

Abschlussprüfung Berufliche Oberschule 2012 Physik 12 Technik - Aufgabe II - Lösung

Abschlussprüfung Berufliche Oberschule 2012 Physik 12 Technik - Aufgabe II - Lösung athphys-online Abschlusspüfung Beufliche Obeschule 0 Physik Technik - Aufgabe II - Lösung Teilaufgabe.0 Die Raustation ISS ist das zuzeit gößte künstliche Flugobjekt i Edobit. Ihe ittlee Flughöhe übe de

Mehr

Aufgaben zur Bestimmung des Tangentenwinkels von Spiralen

Aufgaben zur Bestimmung des Tangentenwinkels von Spiralen Aufgabenblatt-Spialen Tangentenwinkel.doc 1 Aufgaben zu Bestimmung des Tangentenwinkels von Spialen Gegeben ist die Spiale mit de Gleichung = 0,5 φ, φ im Bogenmaß. (a) Geben Sie die Gleichung fü Winkel

Mehr

2. Lagrange-Gleichungen

2. Lagrange-Gleichungen 2. Lagrange-Gleichungen Mit dem Prinzip der virtuellen Leistung lassen sich die Bewegungsgleichungen für komplexe Systeme einfach aufstellen. Aus dem Prinzip der virtuellen Leistung lassen sich die Lagrange-Gleichungen

Mehr

Repetition: Kinetische und potentielle Energie, Zentripetalkraft

Repetition: Kinetische und potentielle Energie, Zentripetalkraft Us Wyde CH-4057 Basel Us.Wyde@edubs.ch Repetition: Kinetische und entielle negie, Zentipetalkaft. in Kindekaussell deht sich po Minute viemal im Keis. ine auf dem Kaussell stehende Peson elebt dabei die

Mehr

TEIL 1 Untersuchung des Grundbereichs 2)

TEIL 1 Untersuchung des Grundbereichs 2) Matin ock, Düppenweilestaße 6, 66763 Dillingen / Saa lementa-physikalische Stuktu Wassestoff-Molek Molekülionlion ( + ) ) kläung ung des Velaufs de Gesamtenegie (( Ges fü den Σ g Zustand des -Molekülsls

Mehr

Einführung in die Theoretische Physik

Einführung in die Theoretische Physik Einfühung in die Theoetische Physik De elektische Stom Wesen und Wikungen Teil : Gundlagen Siegfied Pety Fassung vom 19. Janua 013 n h a l t : 1 Einleitung Stomstäke und Stomdichte 3 3 Das Ohmsche Gesetz

Mehr

Inhalt der Vorlesung Experimentalphysik II

Inhalt der Vorlesung Experimentalphysik II Inhalt de Volesung Expeimentalphysik II Teil 1: Elektizitätslehe, Elektodynamik 1. Elektische Ladung und elektische Felde 2. Kapazität 3. Elektische Stom 4. Magnetostatik 5. Elektodynamik 6. Schwingkeise

Mehr

2. Klausur zur Theoretischen Physik I (Mechanik)

2. Klausur zur Theoretischen Physik I (Mechanik) 2. Klausur zur Theoretischen Physik I (echanik) 09.07.2004 Aufgabe 1 Physikalisches Pendel 4 Punkte Eine homogene, kreisförmige, dünne Platte mit Radius R und asse ist am Punkt P so aufgehängt, daß sie

Mehr

I 1. x r 2. PDDr. S.Mertens M. Hummel SS 2009 06.05.2009. Theoretische Physik II Elektrodynamik Blatt 6

I 1. x r 2. PDDr. S.Mertens M. Hummel SS 2009 06.05.2009. Theoretische Physik II Elektrodynamik Blatt 6 PDD. S.Metens M. Hummel Theoetische Physik II Elektodynamik Blatt 6 SS 29 6.5.29 I M 1. Halbunendliche Leiteschleife. Gegeben sei die abgebildete Leiteschleife aus zwei einseitig unendlichen (4Pkt.) Dähten

Mehr

9. Der starre Körper; Rotation I

9. Der starre Körper; Rotation I Mechank De stae Köpe; Rotaton I 9. De stae Köpe; Rotaton I 9.. Enletung bshe: (Systeme on) Punktmassen jetzt: Betachtung ausgedehnte Köpe, übe de de Masse glechmäßg etelt st (kene Atome). Köpe soll sch

Mehr

Physik A VL6 ( )

Physik A VL6 ( ) Physik A VL6 (19.10.01) Bescheibung on Bewegungen - Kinematik in dei Raumichtungen II Deh- und Rotationsbewegungen Zusammenfassung: Kinematik Deh- und Rotationsbewegungen Deh- und Rotationsbewegungen Paamete

Mehr

Übungsaufgaben zum Prüfungsteil 1 Lineare Algebra /Analytische Geometrie

Übungsaufgaben zum Prüfungsteil 1 Lineare Algebra /Analytische Geometrie Übungsaufgaben zum Püfungsteil Lineae Algeba /Analytische Geometie Aufgabe Von de Ebene E ist folgende Paametefom gegeben: 3 E: x= 4 + 0 + s 3 ;,s 0 3 4 a) Duch geeignete Wahl de Paamete und s ehält man

Mehr

SPEZIELLE FUNKTIONEN. 3. Übungseinheit. H. Leeb Einführung in die Datenverarbeitung 2 Spezielle Funktionen

SPEZIELLE FUNKTIONEN. 3. Übungseinheit. H. Leeb Einführung in die Datenverarbeitung 2 Spezielle Funktionen SPEZIELLE FUNKTIONEN 3. Übungseinheit 1 Übesicht In de (theoetischen) Physi weden zu Veeinfachung de Foulieungen oft spezielle Funtionen bzw. Sätze von Funtionen eingesetzt. Beispiele: Γ- Funtion Kugelflächenfuntion

Mehr

Physik 1, WS 2015/16 Musterlösung 4. Aufgabenblatt (KW 46)

Physik 1, WS 2015/16 Musterlösung 4. Aufgabenblatt (KW 46) Physik, WS 05/6 Mustelösung 4. Aufgabenblatt (KW 46 Aufgabe Welche de folgenden Aussagen sind ichtig, welche falsch und waum? (i Nu konsevative Käfte können Abeit veichten. (ii Solange nu konsevative Käfte

Mehr

e r Rotationsbewegung gleichförmige Kreisbewegung dϕ =ds/r und v=ds/dt=rdϕ/dt=rω

e r Rotationsbewegung gleichförmige Kreisbewegung dϕ =ds/r und v=ds/dt=rdϕ/dt=rω Rotatonsbewegung ω d ϕ / dt glechfömge Kesbewegung dϕ ds/ und vds/dtdϕ/dtω δϕ ds m v (Umlaufgeschwndgket v, Kesfequenz ode Wnkelgeschwndgket ωdϕ/dt. ) F Außedem glt ωπν mt de Fequenz ν. Umlaufzet T : T1/νπ/ω

Mehr

Der typische erwachsene Mensch probiert die Dinge nur 2-3 x aus und gibt dann entnervt oder frustriert auf!

Der typische erwachsene Mensch probiert die Dinge nur 2-3 x aus und gibt dann entnervt oder frustriert auf! De typische ewachsene Mensch pobiet die Dinge nu -3 x aus und gibt dann entnevt ode fustiet auf! Haben Sie noch die Hatnäckigkeit eines Kleinkindes welches laufen lent? Wie viel Zeit haben Sie mit dem

Mehr

Fallender Stein auf rotierender Erde

Fallender Stein auf rotierender Erde Übungen zu Theoretische Physik I - Mechanik im Sommersemester 2013 Blatt 4 vom 13.05.13 Abgabe: 27. Mai Aufgabe 16 4 Punkte allender Stein auf rotierender Erde Wir lassen einen Stein der Masse m in einen

Mehr

Ü b u n g s b l a t t 9. r/2 für 0 r < 1, F X (r) = 3/5 für 1 r < 2, (3 r + 1)/10 für 2 r < 3, 1 für 3 r.

Ü b u n g s b l a t t 9. r/2 für 0 r < 1, F X (r) = 3/5 für 1 r < 2, (3 r + 1)/10 für 2 r < 3, 1 für 3 r. Einfühung in die Stochastik Sommesemeste 07 D Walte Oevel 4 6 007 Ü b u n g s b l a t t 9 Mit und gekennzeichnete Aufgaben können zum Sammeln von Bonuspunkten vewendet weden Lösungen von -Aufgaben sind

Mehr

7 Die Hamilton-Jacobi-Theorie

7 Die Hamilton-Jacobi-Theorie 7 Die Hamilton-Jacobi-Theorie Ausgearbeitet von Rolf Horn und Bernhard Schmitz 7.1 Einleitung Um die Hamilton schen Bewegungsgleichungen q k = H(q, p) p k ṗ k = H(p, q) q k zu vereinfachen, führten wir

Mehr

Magnetostatik. Feldberechnungen

Magnetostatik. Feldberechnungen Magnetostatik 1. Pemanentmagnete. Magnetfeld stationäe Stöme i. Elektomagnetismus Phänomenologie ii. Magnetische Fluss Ampeesches Gesetz iii. Feldbeechnungen mit Ampeschen Gesetz i.das Vektopotenzial.

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Blatt 2 - Lösung Technische Universität München 1 Fakultät für Physik 1 Perle Eine Perle der Masse m gleite reibungsfrei auf einem vertikal stehenden Ring vom Radius

Mehr