1.2 Modulare Arithmetik

Größe: px
Ab Seite anzeigen:

Download "1.2 Modulare Arithmetik"

Transkript

1 Algebra I 8. April 2008 c Rudolf Scharlau, Modulare Arithmetik Wir erinnern an die Notation für Teilbarkeit: m c für m, c Z heißt, dass ein q Z existiert mit qm = c. Definition Sei m eine feste natürliche Zahl. Zwei Zahlen a, b Z heißen kongruent modulo m (kurz: kongruent), falls m b a. In Zeichen wird dieses geschrieben als a m b. Die Schreibweise a b (mod m) statt a m b ist ebenfalls üblich. Man sollte hier nicht die Klammern weglassen. Die Zeichenfolge b mod m (ohne vorhergehendes a ) hat ja bereits eine eigene Bedeutung, sie bezeichnet nämlich den Rest von b nach Division durch m; siehe oben. Für die Negation wird die Notation a m b verwendet. Satz Sei m fest. Die Kongruenz-Relation m auf Z ist eine Äquivalenzrelation, d.h. sie hat die folgenden Eigenschaften: 1. a Z : a m a Reflexivität 2. a, b Z : a m b = b m a Symmetrie 3. a, b, c Z : a m b b m c = a m c Transitivität Beweis: Man prüft die drei Eigenschaften ohne Mühe direkt anhand der Definition nach. Dabei verwendet man drei offensichtliche Eigenschaften der Teilerrelation: m 0, m x = m ( x), (m x m y) = m (x + y). Wenn man sich diesen Beweis im Lichte späterer Definitionen noch einmal anschaut, ergibt sich folgende Interpretation und Verallgemeinerung: Wir haben eine Relation auf einer additiv geschriebenen abelschen Gruppe G, gegeben durch b a H, wobei H G eine Untergruppe ist. In unserer aktuellen Situation ist G = Z und H = mz die Menge der Vielfachen von m. Man sieht, dass die drei Eigenschaften einer Äquivalenzrelation genau aus den drei Eigenschaften einer Untergruppe in folgen. Weitergehende spezielle Eigenschaften von Z oder H werden nicht benutzt. Satz Sei m N fest. Zwei Zahlen a, b Z sind kongruent modulo m genau dann, wenn sie bei Division durch m denselben Rest lassen. M.a.W. Der Beweis ist leicht und kurz. a m b a mod m = b mod m. Aus ergibt sich erneut der vorige Satz In der Tat sehen wir wir hier ein ganz allgemeines Prinzip zur Erzeugung von Äquivalenzrelationen. Wenn man eine Abbildung f : Z Y mit irgendeinem Zielbereich Y hat, so ist die durch

2 Algebra I 8. April 2008 c Rudolf Scharlau, f(a) = f(b) definierte Relation auf Z eine Äquivalenzrelation. (Natürlich hat das nichts mit der speziellen Menge Z zu tun.) Hier nehmen wir die durch f(a) = (a mod m) gegebene Abbildung. Der erste Teil der folgenden Definition handelt von einer beliebigen Äquivalenzrelation R auf einer Menge M. Wir erinnern daran, dass eine Relation auf M formal einfach eine Teilmenge von M M ist; sie heißt Äquivalenzrelation, wenn sie reflexiv, symmetrisch und transitiv ist (vergl. obigen Satz 1.2.2). Definition (Äquivalenzklassen und Kongruenzklassen) a) Es sei R eine Äquivalenzrelation auf der Menge M und a M. Die Äquivalenzklasse von a bezüglich R ist die Teilmenge aller zu a in Relation stehenden Elemente von M: [a] R := {x M xra} b) Die Äquivalenzklassen für die Kongruenzrelation m heißen Restklassen (genauer: Restklassen modulo m) und werden mit bezeichnet. Es gilt also für a Z: = {x Z x m a} Zahlenbeispiel m = 4: [0] 4 = {..., 8, 4, 0, 4, 8,...} [1] 4 = {..., 7, 3, 1, 5, 9,...} [2] 4 = {..., 6, 2, 2, 6, 10,...} [3] 4 = {..., 5, 1, 3, 7, 11,...} Es gibt keine weiteren Restklassen modulo 4, da zum Beispiel: [4] 4 = [0] 4, [5] 4 = [1] 4, [6] 4 = [2] 4,... An diesem Beispiel fällt auch deutlich die allgemeine Struktur der Restklassen ins Auge: die Klasse von a modulo m ist die um a verschobene Untergruppe mz in Z: = a + mz = {a + mz z Z}. Dieses ist völlig analog zum Fall der affinen Unterräume in Vektorräumen. Der Beweis folgt sofort aus dem Kriterium Bemerkung und Definition Für allgemeines m hat die Relation m genau m Äquivalunzklassen, nämlich = {x Z x mod m = a} für 0 a < m. Wir bezeichnen die Menge dieser Restklassen mit Z/mZ (lies: Z nach mz oder Z modulo mz ). Es ist also Z/mZ := {[0] m, [1] m,...,[m 1] m }.

3 Algebra I 8. April 2008 c Rudolf Scharlau, Beweis: Aus Satz ergibt sich sofort, dass es erstens keine weiteren Restklassen gibt und zweitens die angegebenen Restklassen alle voneinander verschieden sind. Um zu einer ähnlichen Beschreibung der Äquivalenzklassen einer beliebigen Äquivalenzrelation zu kommen, überlegt man sich zunächst folgendes: Satz Sei R eine Äquivalenzrelation auf der Menge M und a, b M. Dann sind folgende drei Bedingungen äquivalent: (i) arb (ii) [a] R = [b] R (iii) [a] R [b] R. Beweis: siehe Vorlesung. In anderen Worten besagt Satz 1.2.6, dass zwei Äquivalenzklassen entweder disjunkt sind oder vollständig übereinstimmen. (Für Restklassen folgt das übrigens direkt aus der obigen Beschreibung.) Dieses führt auf folgende allgemeine Definition: Definition Eine Menge M = {M i i I} nichtleerer Teilmengen der Menge M heißt Partition von M, wenn 1. M = i I M i 2. M i M j = für alle i, j I mit i j. Die M i werden in diesem Zusammenhang auch Blöcke genannt. Ein Wort zur Schreibweise: I ist hier eine geeignete Indexmenge; wenn M aus unendlich vielen Mengen besteht, dann muss auch I unendlich sein. Eigentlich geht es hier aber nur darum, für die Mengen in M Namen zu haben, man könnte sie genauso A, B, C,... oder sonstwie nennen. Die Verwendung einer Indexmenge mag in Beispielen praktisch sein, und sie unterstützt die Gewohnheit, das große Vereinigungszeichen ähnlich wie ein Summenzeichen zu handhaben. Nötig ist die Verwendung von Indices hier keineswegs. Man kann die beiden Bedingungen an eine Partition auch wie folgt schreiben: 1. M = B M B 2. B C = für alle B, C M mit B C. Als kleinen Exkurs geben wir folgenden allgemeinen Satz über Äquivalenzrelationen an.

4 Algebra I 8. April 2008 c Rudolf Scharlau, Satz a) Sei R eine Äquivalenzrelation in M. Dann bilden die Äquivalenzklassen zu R eine Partition von M. Sie heißt die von R induzierte Partition. b) Sei umgekehrt M eine Partition von M. Dann gibt es dazu eine Äquivalenzrelation R in M, deren Äquivalenzklassen genau die Mengen aus M (also die gegebenen Blöcke) sind.. Diese Relation R = R M ist definiert durch arb : B M : a B b B. Mit anderen Worten, a und b gelten als äquivalent, wenn sie im gleichen Block liegen. Beweis: zu a): Im Wesentlichen ist das bereits im Satz gezeigt worden. Man beachte noch a [a] R, weswegen die Klassen nicht leer sind und ihre Vereinigung ganz M ergibt. zu b): Wir zeigen zunächst, dass die im Satz definierte Relation eine Äquivalenzrelation ist, also reflexiv, symmetrisch und transitiv. Zu gegebenem a M gibt es nach Eigenschaft 1 einer Partition ein B M mit a B. Somit gilt ara, wie es die Reflexivität verlangt. Es ist offensichtlich, dass die definierende Bedingung für R symmetrisch in a und b ist. Zum Beweis der Transitivität seien nund a, b, c M mit arb, brc gegeben. Dann existieren B, C M mit a B, b B sowie b C, c C. Wegen b B C und Eigenschaft 2 einer Partition muss B = C sein. Es folgt a B c B, also arc, wie behauptet. Nun zeigen wir die zweite Behauptung, dass nämlich die Äquivalenzklassen von R genau die Mengen in M sind. Sei hierzu a M beliebig und A M der eindeutig bestimmte Block mit a A. Offenbar müssen wir jetzt [a] R = A zeigen und sind dann fertig. Wir zeigen nacheinander die beiden Inklusionen [a] R A und A [a] R. Sei zunächst x [a] R. Dann ist xra, also existiert B M mit x B a B. Wegen a A B muss B = A sein. Also ist x A, wie gewünscht. Sei umgekehrt x A. Dann gilt x A a A, also nach Definition xra, also x [a] R, wie behauptet. Insgesamt liefert der letzte Satz unter Berücksichtigung von eine bijektive Korrespondenz zwischen der Gesamtheit aller Partitionen einer Menge M und der Gesamtheit aller Äquivalenzrelationen auf M. Wir hatten oben nach Satz angemerkt, dass es eine (auf den ersten Blick) besonders schöne Sorte von Äquivalenzrelationen gibt, nämlich diejenigen, die durch xry f(x) = f(y) definiert werden, wobei f eine auf M definierte Funktion ist. Man sieht jetzt, dass jede Äquivalenzrelation R von dieser schönen Art ist: Man nimmt für f die Abbildung x [x] R, deren Zielbereich also die Menge aller Äquivalenzklassen, m.a.w. die zu R gehörige Partition M P(M) ist. Dass dieses so möglich ist, liegt an der Allgemeinheit des mathematischen

5 Algebra I 8. April 2008 c Rudolf Scharlau, Begriffs einer Abbildung. Ob es zu einer gegebenen Äquivalenzrelation eine naheliegende, sozusagen wirklich vereinfachende solche Abbildung gibt, ist eine andere (weniger präzise) Frage. Folgende Definition ist sehr gängig, auch für Anwendungen von Äquivalenzrelationen in der Algebra. Definition Es sei R eine Äquivalenzrelation in M, bzw. M eine Partition von M. Eine Teilmenge V M heißt Repräsentantensystem oder Vertretersystem für die Äquivalenzrelation R bzw. die Partition M, wenn jede Äquivalenzklasse bzw. jeder Block B M genau ein Element aus V enthält. Man hat dann eine disjunkte Zerlegung M = v V [v]. Hier bezeichnet [v] die Äquivalenzklasse von v bzw. den (eindeutig bestimmten) Block B M mit v B. In der Situation von Satz läuft beides auf dasselbe hinaus. Zur Notation mit dem großen Vereinigungszeichen bemerken wir noch, dass hier die Menge V sinnvoll die Funktion einer Indexmenge erfüllt: zu jeder der zu vereinigenden Mengen, nennen wir sie neutral zunächst B, gibt es genau einen Index v mit B = [v]. Bei der Äquivalenzrelation m in Z ist die vom Rechnen mit Resten bekannte Menge Z m = {0, 1, 2,..., m 1} ein Vertretersystem. Es gibt beliebig viele weitere Möglichkeiten. Eine naheliegende Wahl wäre z.b. {1, 2,..., m} oder für ungerades m = 2k + 1 die Menge { k, (k 1),..., 1, 0, 1,..., k 1, k}. Für ein Vertretersystem reicht es, m Elemente a 1,..., a m anzugeben, von denen keine zwei kongruent modulo m sind. Dieses gilt ganz allgemein für jede Äquivalenzrelation mit m (also nur endlich vielen) Äquivalenzklassen. Denn wenn die a i alle voneiander verschieden sind, dann sind es auch ihre Klassen [a i ], und aus Anzahlgründen sind das dann alle Klassen. Wir verlassen nun die allgemeinen Äquivalenzrelationen und kehren zur Kongruenzrelation auf Z zurück. Der nächste Satz handelt von einer algebraischen Zusatzeigenschaft der Kongruenzrelation, nämlich ihrer Verträglichkeit mit Addition und Multiplikation: Satz (Rechnen mit Kongruenzen) Sei m N fest. Kongruenzen (modulo m) darf man addieren und multiplizieren. Genauer gilt folgendes: seien a, a, b, b Z so, dass a m a und b m b Dann ist auch a + b m a + b a b m a b

6 Algebra I 8. April 2008 c Rudolf Scharlau, Beweis: Mach Voraussetzung ist a = a+sm und b = b+tm mit s, t Z. Dann folgt a + b = a + b + (s + t)m m a + b und entsprechend a b = ab + (at + bs + stm)m m ab, wie gewünscht. Mit dem nächsten, für vieles grundlegenden und stark verallgemeinerungsfähigen Satz kommen wir zum eigentlichen Ziel dieses Abschnittes. Wir benutzen dabei bereits die Begriffe Gruppe und Ring sowie weitere hierzu gehörige Begriffe, die man bei Bedarf in den Abschnitten 1.3 und 1.5 nachschlagen kann. Alternativ arbeitet man den Rest dieses Abschnittes erst nach den genannten Abschnitten durch. Satz (Restklassenaddition und -multiplikation) a) Auf der Menge Z/mZ aller Restklassen modulo m wird durch [b] m := [a + b] m eine Verknüpfung sinnvoll definiert. Diese Verknüpfung heißt auch Restklassenaddition. b) Z/mZ zusammen mit ist eine Gruppe mit [0] m als neutralem Element. c) Auf der Menge Z/mZ aller Restklassen modulo m wird durch [b] m := [a b] m eine Verknüpfung sinnvoll definiert. Diese Verknüpfung heißt auch Restklassenmultiplikation d) Die Struktur (Z/mZ,, ) ist ein kommutativer Ring mit Einselement [1] m. Beweis: zu a) und c): Zu zeigen ist, daß die Verknüpfung bei gegebenem [a] und [b] ein eindeutiges Ergebnis liefert. Das heißt, die rechte Seite [a + b] beziehungsweise [a b] darf nur von [a] und [b] abhängen (aber nicht von a und b selbst). Zu zeigen ist also folgendes: wenn a, b Z weitere Elemente sind so, dass [a] = [a ] und [b] = [b ], dann muss auch [a + b]! = [a + b ] sein; entsprechend für mal statt +. Aus und der Voraussetzung [a] = [a ] und [b] = [b ] folgt a a und b b. Nach folgt: a + b a + b. Wieder nach folgt [a + b] = [a + b ], wie gewünscht. Der Beweis für mal ist der gleiche. zu b), d): Die beiden Assoziativgesetze beweist man durch einfaches Zurückführen auf das entsprechende Gesetz in Z: Es ist für drei Elemente a :=, b, c Z/mZ (a b) c = ab c = (ab)c = a(bc) = a bc = a (b c).

7 Algebra I 8. April 2008 c Rudolf Scharlau, d) folgt durch entsprechendes Zurückführen des Distributivgesetzes auf das in Z: Es ist für drei Elemente a, b, c Z/mZ (a b) c = a + b c = (a + b)c = ac + bc = ac bc = (a c) a c). Die Verknüpfungen und auf Z/mZ werden wir in Zukunft wie allgemein üblich einfach mit + und bezeichnen (wie man ja auch das + von Zahlen genauso notiert wie das + von Vektoren). In der Zahlentheorie studiert man neben ganzzahligen polynomialen Gleichungen oft auch auch Kongruenzgleichungen vom Typ a 0 + a 1 x + a 2 x a n x n m 0, x Z, wobei m N ein fester Modul ist (man rechnet modulo m) und a 0,...,a n Z feste Konstanten. Aus Satz folgt nun unmittelbar, dass mit jeder Lösung x Z auch jedes modulo m zu x kongruente x Z eine Lösung ist. Mit anderen Worten, die (unendliche) Lösungsmenge ist Vereinigung von Restklassen [x] m, von denen es nur endliche viele gibt und die man im Prinzip durch endliches Überprüfen aller Möglichkeiten bestimmen kann. Beispiel Die Kongruenz x hat die Lösungsmenge [3] 7 [4] 7 Z, besteht also aus allen x Z, die kongruent zu 3 oder 4 modulo 7 sind. Zum Beweis muss man nur für ein Vertretersystem für Z/7Z die Quadrate bilden, etwa für das Vertretersystem {0, ±1, ±2, ±3} und notieren, in welchen Fällen das Quadrat kongruent zu 2 modulo 7 ist. Allgemein kann man das Prinzip wie folgt festhalten: Bemerkung Jedes Polynom f(x) Z[X] induziert für jedes m eine Abbildung f : Z/mZ Z/mZ, [x] m [f(x)] m. Die Lösungsmenge in Z der Kongruenzgleichung f(x) m 0 ist eine Vereinigung von vollen Restklassen modulo m. Diese Restklassen sind die Nullstellen in Z/mZ von f. Das Lösen von Kongruenzen, präziser formuliert von Kongruenzgleichungen ist also vollständig äquivalent zum Lösen gewöhnlicher Gleichungen im Restklassenring Z/mZ. Alles bleibt richtig für Gleichungen in mehreren Unbestimmten, d.h. für Polynome in Z[X 1,...,X n ] (Polynomringe in mehreren Unbestimmten werden in späteren Kapiteln noch genau erklärt).

Wie kann man beweisen, dass (H, ) eine Gruppe ist?

Wie kann man beweisen, dass (H, ) eine Gruppe ist? Wie kann man beweisen, dass (H, ) eine Gruppe ist? Wie kann man beweisen, dass (H, ) eine Gruppe ist? (zb wenn die Multiplikation mit Hilfe einer Tabelle gegeben ist) Wie kann man beweisen, dass (H, )

Mehr

2: Zahlentheorie / Restklassen 2.1: Modulare Arithmetik

2: Zahlentheorie / Restklassen 2.1: Modulare Arithmetik Stefan Lucks Diskrete Strukturen (WS 2009/10) 57 2: Zahlentheorie / Restklassen 2.1: Modulare Arithmetik Uhr: Stunden mod 24, Minuten mod 60, Sekunden mod 60,... Rechnerarithmetik: mod 2 w, w {8, 16, 32,

Mehr

Kongruenzrechnung. 2 Kongruenzrechnung 7 2.1 Rechnenregeln Addition und Multiplikation... 7 2.2 Rechenregeln bzgl. verschiedener Moduln...

Kongruenzrechnung. 2 Kongruenzrechnung 7 2.1 Rechnenregeln Addition und Multiplikation... 7 2.2 Rechenregeln bzgl. verschiedener Moduln... Kongruenzrechnung Inhaltsverzeichnis 1 Einführung und Definitionen 2 1.1 Einige Beispiele aus dem Alltag..................... 2 1.2 Kongruenzrechnung im Alltag und Rechenproben........... 3 1.3 Kongruenzen

Mehr

4 Kongruenz und Modulorechnung

4 Kongruenz und Modulorechnung 4 Kongruenz und Modulorechnung 39 4 Kongruenz und Modulorechnung In unserer Zeitrechnung haben wir uns daran gewöhnt, nur mit endlich vielen Zahlen zu rechnen. Es ist gerade 3 Uhr und in 50 Stunden muss

Mehr

Kapitel 4. Euklidische Ringe und die Jordansche Normalform. 4.1 Euklidische Ringe

Kapitel 4. Euklidische Ringe und die Jordansche Normalform. 4.1 Euklidische Ringe Kapitel 4 Euklidische Ringe und die Jordansche Normalform 4.1 Euklidische Ringe Die Ringe der ganzen Zahlen, Z, sowie Polynomringe über Körpern, K[X], wobei K ein Körper ist, haben die folgenden Gemeinsamheiten:

Mehr

2.2 Nebenklassen, Normalteiler und Faktorgruppen

2.2 Nebenklassen, Normalteiler und Faktorgruppen Algebra I c Rudolf Scharlau, 2002 2012 61 2.2 Nebenklassen, Normalteiler und Faktorgruppen Bei der Konstruktion der Restklassengruppe Z/mZ hatten wir auf der Gruppe Z mit Hilfe einer Untergruppe mz eine

Mehr

Q(n) = n 0 +n 1 +n 2 +...+n k.

Q(n) = n 0 +n 1 +n 2 +...+n k. 25 2 Kongruenzen Mit Hilfe der hier definierten Kongruenz können Aussagen über Teilbarkeit einfacher formuliert und bewiesen werden, und man erhält eine Differenzierung der Zahlen, die bezüglich einer

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 13 Einheiten Definition 13.1. Ein Element u in einem Ring R heißt Einheit, wenn es ein Element v R gibt mit uv = vu = 1. DasElementv

Mehr

11. Primfaktorzerlegungen

11. Primfaktorzerlegungen 78 Andreas Gathmann 11 Primfaktorzerlegungen Euch ist sicher aus der Schule bekannt, dass sich jede positive ganze Zahl a als Produkt a = p 1 p n von Primzahlen schreiben lässt, und dass diese Darstellung

Mehr

Probabilistische Primzahltests

Probabilistische Primzahltests Probabilistische Primzahltests Daniel Tanke 11. Dezember 2007 In dieser Arbeit wird ein Verfahren vorgestellt, mit welchem man relativ schnell testen kann, ob eine ganze Zahl eine Primzahl ist. Für einen

Mehr

3.3 Eigenwerte und Eigenräume, Diagonalisierung

3.3 Eigenwerte und Eigenräume, Diagonalisierung 3.3 Eigenwerte und Eigenräume, Diagonalisierung Definition und Lemma 3.3.1. Sei V ein K-Vektorraum, φ End K (V ), λ K. Wir defnieren den zu λ gehörigen Eigenraum von φ als Dies ist ein Unterraum von V.

Mehr

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s Nachtrag zur allgemeinen Vektorraum-Theorie. 1.5.15. Direkte Summen. Sei V ein Vektorraum, seien U 1,..., U t Unterräume, wir schreiben V = U 1 U 2 U t = t i=1 U i falls die folgenden beiden Bedingungen

Mehr

Algebra. Patrik Hubschmid. 8. Oktober 2013

Algebra. Patrik Hubschmid. 8. Oktober 2013 Algebra Patrik Hubschmid 8. Oktober 2013 Inhaltsverzeichnis 1 Fortführung der Gruppentheorie 7 1.1 Sylowsätze.................................... 7 3 Vorwort Dieses Skript zur Vorlesung Algebra im Wintersemester

Mehr

Minimale Darstellungen, Kommutator- und Fixräume, projektive Geometrie

Minimale Darstellungen, Kommutator- und Fixräume, projektive Geometrie Notation Die in dieser Arbeit verwendete Notation ist im Wesentlichen Standard, so wie sie beispielsweise in [As] zu nden ist. Einige Abweichungen hiervon, Klarstellungen und zusätzliche Notationen (sofern

Mehr

Ergänzungen zur Analysis I

Ergänzungen zur Analysis I 537. Ergänzungsstunde Logik, Mengen Ergänzungen zur Analysis I Die Behauptungen in Satz 0.2 über die Verknüpfung von Mengen werden auf die entsprechenden Regelnfür die Verknüpfung von Aussagen zurückgeführt.

Mehr

Der Zwei-Quadrate-Satz von Fermat

Der Zwei-Quadrate-Satz von Fermat Der Zwei-Quadrate-Satz von Fermat Proseminar: Das BUCH der Beweise Fridtjof Schulte Steinberg Institut für Informatik Humboldt-Universität zu Berlin 29.November 2012 1 / 20 Allgemeines Pierre de Fermat

Mehr

Lineare Algebra I. HP Butzmann. Vorlesung im HWS 09

Lineare Algebra I. HP Butzmann. Vorlesung im HWS 09 Lineare Algebra I HP Butzmann Vorlesung im HWS 09 Inhaltsverzeichnis 1 Mengen und Abbildungen 2 2 Körper 15 3 Vektorräume 40 4 Basis und Dimension 53 5 Lineare Abbildungen 67 6 Matrizen 80 7 Lineare Gleichungssysteme

Mehr

9. Anwendungen der Fundamentalgruppe

9. Anwendungen der Fundamentalgruppe 76 Andreas Gathmann 9. Anwendungen der Fundamentalgruppe Nachdem wir mit Hilfe von Überlagerungen nun in der Lage sind, Fundamentalgruppen zu berechnen, wollen wir in diesem abschließenden Kapitel noch

Mehr

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt - 17 - Die Frage ist hier also: Für welche x R gilt x = x + 1? Das ist eine quadratische Gleichung für x. Es gilt x = x + 1 x x 3 = 0, und man kann quadratische Ergänzung machen:... ( ) ( ) x x + = 3 +

Mehr

Didaktik der Zahlbereiche 4. Die Menge der ganzen Zahlen. Mathematikunterricht in der Jahrgangsstufe 7. Zahlbereichserweiterungen in der Hauptschule

Didaktik der Zahlbereiche 4. Die Menge der ganzen Zahlen. Mathematikunterricht in der Jahrgangsstufe 7. Zahlbereichserweiterungen in der Hauptschule Zahlbereichserweiterungen in der Hauptschule Didaktik der Zahlbereiche 4 Dr. Christian Groß Lehrstuhl Didaktik der Mathematik Universität Augsburg Wintersemester 2006/07 Natürliche Zahlen, : Klasse 5 positive

Mehr

Mathematik für Informatiker II. Beispiellösungen zur Probeklausur. Aufgabe 1. Aufgabe 2 (5+5 Punkte) Christoph Eisinger Sommersemester 2011

Mathematik für Informatiker II. Beispiellösungen zur Probeklausur. Aufgabe 1. Aufgabe 2 (5+5 Punkte) Christoph Eisinger Sommersemester 2011 Mathematik für Informatiker II Christoph Eisinger Sommersemester 211 Beispiellösungen zur Probeklausur Aufgabe 1 Gegeben sind die Polynome f, g, h K[x]. Zu zeigen: Es gibt genau dann Polynome h 1 und h

Mehr

Oft kommt es darauf an, Potenzen a n mod m zu berechnen. Dabei kann n eine sehr groÿe Zahl sein.

Oft kommt es darauf an, Potenzen a n mod m zu berechnen. Dabei kann n eine sehr groÿe Zahl sein. Oft kommt es darauf an, Potenzen a n mod m zu berechnen. Dabei kann n eine sehr groÿe Zahl sein. 3 1384788374932954500363985493554603584759389 mod 28374618732464817362847326847331872341234 Wieso kann ein

Mehr

Anhang I zur Vorlesung Kryptologie: Elementare Zahlentheorie

Anhang I zur Vorlesung Kryptologie: Elementare Zahlentheorie Anhang I zur Vorlesung Kryptologie: Elementare Zahlentheorie von Peter Hellekalek Fakultät für Mathematik, Universität Wien, und Fachbereich Mathematik, Universität Salzburg Tel: +43-(0)662-8044-5310 Fax:

Mehr

Vorlesung. Komplexe Zahlen

Vorlesung. Komplexe Zahlen Vorlesung Komplexe Zahlen Motivation Am Anfang der Entwicklung der komplexen Zahlen stand ein algebraisches Problem: die Bestimmung der Lösung der Gleichung x 2 + 1 = 0. 1 Mit der Lösung dieses Problems

Mehr

4. Relationen. Beschreibung einer binären Relation

4. Relationen. Beschreibung einer binären Relation 4. Relationen Relationen spielen bei Datenbanken eine wichtige Rolle. Die meisten Datenbanksysteme sind relational. 4.1 Binäre Relationen Eine binäre Relation (Beziehung) R zwischen zwei Mengen A und B

Mehr

Wintersemester 2005/2006 Gedächtnisprotokoll der mündlichen Prüfung

Wintersemester 2005/2006 Gedächtnisprotokoll der mündlichen Prüfung Wintersemester 2005/2006 Gedächtnisprotokoll der mündlichen Prüfung Ulrich Loup 24.03.2006 Prüfungsstoff: Alegebra I, Analysis IV, Graphentheorie I Prüfer: Prof. Dr. Wilhelm Plesken Protokollant: Dipl.

Mehr

Diskrete Mathematik für Informatiker

Diskrete Mathematik für Informatiker Diskrete Mathematik für Informatiker Markus Lohrey Universität Siegen Wintersemester 2014/2015 Lohrey (Universität Siegen) Diskrete Mathematik Wintersem. 2014/2015 1 / 344 Organisatorisches zur Vorlesung

Mehr

ax 2 + bx + c = 0, (4.1)

ax 2 + bx + c = 0, (4.1) Kapitel 4 Komplexe Zahlen Wenn wir uns auf die reellen Zahlen beschränken, ist die Operation des Wurzelziehens (also die Umkehrung der Potenzierung) nicht immer möglich. Zum Beispiel können wir nicht die

Mehr

Euklidischer Algorithmus, Restklassenring und seine Struktur, Chinesischer Restklassensatz

Euklidischer Algorithmus, Restklassenring und seine Struktur, Chinesischer Restklassensatz Tobias Kraushaar Kaiserstr. 178 44143 Dortmund Matr.- Nr.: 122964 Euklidischer Algorithmus, Restklassenring und seine Struktur, Chinesischer Restklassensatz 1. EINLEITUNG... 2 2. HAUPTTEIL... 3 2.1. Der

Mehr

Lineare Algebra - alles was man wissen muß

Lineare Algebra - alles was man wissen muß Statistik für Bioinformatiker SoSe 3 Rainer Spang Lineare Algebra - alles was man wissen muß Der Titel ist natürlich gelogen, aber was wir hier zusammengetragen haben ist zumindest ein Anfang. Weniger

Mehr

Mathematik 1. Lösungsvorschläge zum 2. Übungsblatt

Mathematik 1. Lösungsvorschläge zum 2. Übungsblatt Hochschule Regensburg Fakultät Informatik/Mathematik Christoph Böhm Wintersemester 0/0 Wirtschaftsinformatik Bachelor IW Informatik Bachelor IN Vorlesung Mathematik Mathematik Lösungsvorschläge zum Übungsblatt

Mehr

Einführung in die Zahlentheorie und algebraische Strukturen

Einführung in die Zahlentheorie und algebraische Strukturen Einführung in die Zahlentheorie und algebraische Strukturen Wintersemester 2012/2013 Universität Bayreuth Michael Stoll Inhaltsverzeichnis 1. Wiederholung: Gruppen, Ringe, Körper 2 2. Teilbarkeitslehre

Mehr

Reelle Zahlen. Mathematische Grundlagen Lernmodul 4. Stand: Oktober 2010

Reelle Zahlen. Mathematische Grundlagen Lernmodul 4. Stand: Oktober 2010 Mathematische Grundlagen Lernmodul 4 Reelle Zahlen Stand: Oktober 200 Autoren: Prof. Dr. Reinhold Hübl, Professor Fakultät für Technik, Wissenschaftliche Leitung ZeMath, E-Mail: huebl@dhbw-mannheim.de

Mehr

2 Algebraische Grundstrukturen

2 Algebraische Grundstrukturen 2 ALGEBRAISCHE GRUNDSTRUKTUREN 1 8. November 2002 2 Algebraische Grundstrukturen Definitionen. Eine binäre Operation (binary operation) oder zweistellige Verknüpfung auf einer Menge M ist eine Abbildung

Mehr

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema 2x 4 + x 3 + x + 3 div x 2 + x 1 = 2x 2 x + 3 (2x 4 + 2x 3 2x 2 ) x 3 + 2x 2 + x + 3 ( x

Mehr

Vorlesung. Funktionen/Abbildungen 1

Vorlesung. Funktionen/Abbildungen 1 Vorlesung Funktionen/Abbildungen 1 1 Grundlagen Hinweis: In dieser Vorlesung werden Funktionen und Abbildungen synonym verwendet. In der Schule wird eine Funktion häufig als eindeutige Zuordnung definiert.

Mehr

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 9.. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 Die Grundfrage bei der Anwendung des Satzes über implizite Funktionen betrifft immer die folgende Situation: Wir haben eine Funktion f : V W und eine Stelle x

Mehr

Codierungstheorie Rudolf Scharlau, SoSe 2006 9

Codierungstheorie Rudolf Scharlau, SoSe 2006 9 Codierungstheorie Rudolf Scharlau, SoSe 2006 9 2 Optimale Codes Optimalität bezieht sich auf eine gegebene Quelle, d.h. eine Wahrscheinlichkeitsverteilung auf den Symbolen s 1,..., s q des Quellalphabets

Mehr

3.1. Die komplexen Zahlen

3.1. Die komplexen Zahlen 3.1. Die komplexen Zahlen Es gibt viele Wege, um komplexe Zahlen einzuführen. Wir gehen hier den wohl einfachsten, indem wir C R als komplexe Zahlenebene und die Punkte dieser Ebene als komplexe Zahlen

Mehr

5 Relationen. Formale Grundlagen der Informatik I Herbstsemester 2012. Robert Marti

5 Relationen. Formale Grundlagen der Informatik I Herbstsemester 2012. Robert Marti Formale Grundlagen der Informatik I Herbstsemester 2012 Robert Marti Vorlesung teilweise basierend auf Unterlagen von Prof. emer. Helmut Schauer Allgemeine Definition einer Relation Eine n-stellige Relation

Mehr

w a is die Anzahl der Vorkommen von a in w Beispiel: abba a = 2

w a is die Anzahl der Vorkommen von a in w Beispiel: abba a = 2 1 2 Notation für Wörter Grundlagen der Theoretischen Informatik Till Mossakowski Fakultät für Informatik Otto-von-Guericke Universität Magdeburg w a is die Anzahl der Vorkommen von a in w Beispiel: abba

Mehr

RSA-Verschlüsselung. von Johannes Becker Gießen 2006/2008

RSA-Verschlüsselung. von Johannes Becker Gießen 2006/2008 RSA-Verschlüsselung von Johannes Becker Gießen 2006/2008 Zusammenfassung Es wird gezeigt, wieso das nach Ronald L. Rivest, Adi Shamir und Leonard Adleman genannte RSA-Krptosstem funktioniert, das mittlerweile

Mehr

2.1 Codes: einige Grundbegriffe

2.1 Codes: einige Grundbegriffe Gitter und Codes c Rudolf Scharlau 2. Mai 2009 51 2.1 Codes: einige Grundbegriffe Wir stellen die wichtigsten Grundbegriffe für Codes über dem Alphabet F q, also über einem endlichen Körper mit q Elementen

Mehr

Definition 27 Affiner Raum über Vektorraum V

Definition 27 Affiner Raum über Vektorraum V Definition 27 Affiner Raum über Vektorraum V Definition 27 Affiner Raum über Vektorraum V ist die Menge A = Definition 27 Affiner Raum über Vektorraum V ist die Menge A = mit einer Abbildung + : A V A,

Mehr

Induktive Limiten. Arpad Pinter, Tobias Wöhrer. 30. Jänner 2010

Induktive Limiten. Arpad Pinter, Tobias Wöhrer. 30. Jänner 2010 Induktive Limiten Arpad Pinter, Tobias Wöhrer 30. Jänner 2010 1 Inhaltsverzeichnis 1 Induktiver Limes von Mengen 2 2 Induktiver Limes von Vektorräumen 4 3 Lokalkonvexe topologische Vektorräumen 7 4 Induktiver

Mehr

Zusatztutorium, 25.01.2013

Zusatztutorium, 25.01.2013 Zusatztutorium, 25.01.2013 David Müßig muessig[at]mi.fu-berlin.de http://page.mi.fu-berlin.de/def/tutorium/ WiSe 12/13 1 Der Homomorphiesatz Der Homomorphiesatz scheint für viele eine Art rotes Tuch zu

Mehr

Höhere Mathematik 3. Apl. Prof. Dr. Norbert Knarr. Wintersemester 2015/16. FB Mathematik

Höhere Mathematik 3. Apl. Prof. Dr. Norbert Knarr. Wintersemester 2015/16. FB Mathematik Höhere Mathematik 3 Apl. Prof. Dr. Norbert Knarr FB Mathematik Wintersemester 2015/16 4. Homogene lineare Dierentialgleichungen 4.1. Grundbegrie 4.1.1. Denition. Es sei J R ein Intervall und a 0 ; : :

Mehr

7 Rechnen mit Polynomen

7 Rechnen mit Polynomen 7 Rechnen mit Polynomen Zu Polynomfunktionen Satz. Zwei Polynomfunktionen und f : R R, x a n x n + a n 1 x n 1 + a 1 x + a 0 g : R R, x b n x n + b n 1 x n 1 + b 1 x + b 0 sind genau dann gleich, wenn

Mehr

Elementare Zahlentheorie (Version 1)

Elementare Zahlentheorie (Version 1) Elementare Zahlentheorie (Version (Winter Semester, 2005-6 Zur Notation N ist die Menge der natürlichen Zahlen:, 2, 3, 4, 5,... und so weiter. Z ist die Menge aller ganzen Zahlen:..., 4, 3, 2,, 0,, 2,

Mehr

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung.

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung. Lineare Gleichungen mit einer Unbekannten Die Grundform der linearen Gleichung mit einer Unbekannten x lautet A x = a Dabei sind A, a reelle Zahlen. Die Gleichung lösen heißt, alle reellen Zahlen anzugeben,

Mehr

Weiterbildung und Zusatzausbildung der PHZ Luzern Interessantes und Spannendes aus der Welt der Mathematik September 2006, Dieter Ortner

Weiterbildung und Zusatzausbildung der PHZ Luzern Interessantes und Spannendes aus der Welt der Mathematik September 2006, Dieter Ortner Weiterbildung und Zusatzausbildung der PHZ Luzern Interessantes und Spannendes aus der Welt der Mathematik September 2006, Dieter Ortner Rechengesetze 1. Rechengesetze für natürliche Zahlen Es geht um

Mehr

Zuammenfassung: Reelle Funktionen

Zuammenfassung: Reelle Funktionen Zuammenfassung: Reelle Funktionen 1 Grundlegendes a) Zahlenmengen IN = {1; 2; 3; 4;...} Natürliche Zahlen IN 0 = IN {0} Natürliche Zahlen mit 0 ZZ = {... ; 2; 1; 0; 1; 2;...} Ganze Zahlen Q = { z z ZZ,

Mehr

Lösungen zum 3. Aufgabenblatt

Lösungen zum 3. Aufgabenblatt SS, Lineare Algebra Die Lösungen wurden erstellt von: Isabel Voigt, Vanessa Lamm und Matthias Rehder Hinweis: Eine Liste der zur Bearbeitung verwendeten Literatur ist unter www.mathematiwelt.com aufrufbar.

Mehr

Invariantentheorie. Vorlesung 5. Invariantenringe zu Untergruppen

Invariantentheorie. Vorlesung 5. Invariantenringe zu Untergruppen Prof. Dr. H. Brenner Osnabrück WS 2012/2013 Invariantentheorie Vorlesung 5 Invariantenringe zu Untergruppen Proposition 5.1. Es sei R G R eine Operation einer Gruppe G auf einem kommutativen Ring durch

Mehr

3. Die Eigenschaften der reellen Zahlen II: Geordnete Körper

3. Die Eigenschaften der reellen Zahlen II: Geordnete Körper 32 Andreas Gathmann 3. Die Eigenschaften der reellen Zahlen II: Geordnete Körper Wir haben bisher von den reellen Zahlen nur die Körpereigenschaften, also die Eigenschaften der vier Grundrechenarten ausgenutzt

Mehr

Mathematik 1. Inhaltsverzeichnis. Prof. Dr. K. Melzer. karin.melzer@hs-esslingen.de http://www.hs-esslingen.de/de/mitarbeiter/karin-melzer.

Mathematik 1. Inhaltsverzeichnis. Prof. Dr. K. Melzer. karin.melzer@hs-esslingen.de http://www.hs-esslingen.de/de/mitarbeiter/karin-melzer. Mathematik 1 Prof Dr K Melzer karinmelzer@hs-esslingende http://wwwhs-esslingende/de/mitarbeiter/karin-melzerhtml Inhaltsverzeichnis 1 Matrizenrechnung 2 11 Matrixbegri 2 12 Spezielle Matrizen 3 13 Rechnen

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Sei K ein Körper, a ij K für 1 i m, 1 j n. Weiters seien b 1,..., b m K. Dann heißt a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... + a 2n x n = b 2... a m1

Mehr

Übungsbuch Algebra für Dummies

Übungsbuch Algebra für Dummies ...für Dummies Übungsbuch Algebra für Dummies von Mary Jane Sterling, Alfons Winkelmann 1. Auflage Wiley-VCH Weinheim 2012 Verlag C.H. Beck im Internet: www.beck.de ISBN 978 3 527 70800 0 Zu Leseprobe

Mehr

u + v = v + u. u + (v + w) = (u + v) + w. 0 V + v = v + 0 V = v v + u = u + v = 0 V. t (u + v) = t u + t v, (t + s) u = t u + s u.

u + v = v + u. u + (v + w) = (u + v) + w. 0 V + v = v + 0 V = v v + u = u + v = 0 V. t (u + v) = t u + t v, (t + s) u = t u + s u. Universität Stuttgart Fachbereich Mathematik Prof. Dr. C. Hesse PD Dr. P. H. Lesky Dipl. Math. D. Zimmermann Msc. J. Köllner FAQ 3 Höhere Mathematik I 4..03 el, kyb, mecha, phys Vektorräume Vektorräume

Mehr

KAPITEL 0. Einführung

KAPITEL 0. Einführung Lineare Algebra KAPITEL 0 Einführung Dieses Skript zur Vorlesung Lineare Algebra an der Goethe Universität Frankfurt im Sommersemester 2011 befindet sich noch in der Entstehung und wird fortlaufend aktualisiert

Mehr

Übungen zum Ferienkurs Lineare Algebra WS 14/15

Übungen zum Ferienkurs Lineare Algebra WS 14/15 Übungen zum Ferienkurs Lineare Algebra WS 14/15 Linearkombinationen, Basen, Lineare Abbildungen 2.1 Lineare Unabhängigkeit Sind die folgenden Vektoren linear unabhängig? (a) 1, 2, 3 im Q Vektorraum R (b)

Mehr

Das RSA-Verfahren. Armin Litzel. Proseminar Kryptographische Protokolle SS 2009

Das RSA-Verfahren. Armin Litzel. Proseminar Kryptographische Protokolle SS 2009 Das RSA-Verfahren Armin Litzel Proseminar Kryptographische Protokolle SS 2009 1 Einleitung RSA steht für die drei Namen Ronald L. Rivest, Adi Shamir und Leonard Adleman und bezeichnet ein von diesen Personen

Mehr

Karlsruher Institut für Technologie Institut für Algebra und Geometrie

Karlsruher Institut für Technologie Institut für Algebra und Geometrie Karlsruher Institut für Technologie Institut für Algebra und Geometrie PD Dr. Stefan Kühnlein Dipl.-Math. Jochen Schröder Einführung in Algebra und Zahlentheorie Übungsblatt 2 Aufgabe 1 (4 Punkte) Seien

Mehr

Ringe. Kapitel 3. 3.1 Abelsche Gruppen, Ringe und Moduln

Ringe. Kapitel 3. 3.1 Abelsche Gruppen, Ringe und Moduln Kapitel 3 Ringe Gruppen- und Ringstrukturen sind uns schon in den verschiedensten Zusammenhängen begegnet. In diesem Kapitel wollen wir einige wichtige Klassen von Ringen im Hinblick auf Anwendungen in

Mehr

5.1 Drei wichtige Beweistechniken... 55 5.2 Erklärungen zu den Beweistechniken... 56

5.1 Drei wichtige Beweistechniken... 55 5.2 Erklärungen zu den Beweistechniken... 56 5 Beweistechniken Übersicht 5.1 Drei wichtige Beweistechniken................................. 55 5. Erklärungen zu den Beweistechniken............................ 56 Dieses Kapitel ist den drei wichtigsten

Mehr

Lösungen zur Vorrundenprüfung 2006

Lösungen zur Vorrundenprüfung 2006 Lösungen zur Vorrundenprüfung 2006 Zuerst einige Bemerkungen zum Punkteschema. Eine vollständige und korrekte Lösung einer Aufgabe ist jeweils 7 Punkte wert. Für komplette Lösungen mit kleineren Fehlern

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Einheit 8: kontextfreie Grammatiken Thomas Worsch Karlsruher Institut für Technologie, Fakultät für Informatik Wintersemester 2009/2010 1/37 Überblick Kontextfreie Grammatiken

Mehr

Lineare Algebra I & II. Gert-Martin Greuel Universität Kaiserslautern Fachbereich Mathematik

Lineare Algebra I & II. Gert-Martin Greuel Universität Kaiserslautern Fachbereich Mathematik Lineare Algebra I & II Gert-Martin Greuel Universität Kaiserslautern Fachbereich Mathematik Ausarbeitung der je vierstündigen Vorlesung im Wintersemester 1999/2000 und Sommersemester 2000 durch Thomas

Mehr

Frohe Weihnachten und ein gutes neues Jahr!

Frohe Weihnachten und ein gutes neues Jahr! Frohe Weihnachten und ein gutes neues Jahr! Die mit dem Stern * gekennzeichneten Übungen sind nicht verpflichtend, aber sie liefern zusätzliche Punkte. Unten wird immer mit I das reelle Intervall [0, 1]

Mehr

GF(2 2 ) Beispiel eines Erweiterungskörpers (1)

GF(2 2 ) Beispiel eines Erweiterungskörpers (1) GF(2 2 ) Beispiel eines Erweiterungskörpers (1) Im Kapitel 2.1 wurde bereits gezeigt, dass die endliche Zahlenmenge {0, 1, 2, 3} q = 4 nicht die Eigenschaften eines Galoisfeldes GF(4) erfüllt. Vielmehr

Mehr

3. Zusammenhang. 22 Andreas Gathmann

3. Zusammenhang. 22 Andreas Gathmann 22 Andreas Gathmann 3. Zusammenhang Eine der anschaulichsten Eigenschaften eines topologischen Raumes ist wahrscheinlich, ob er zusammenhängend ist oder aus mehreren Teilen besteht. Wir wollen dieses Konzept

Mehr

Elemente der Analysis II

Elemente der Analysis II Elemente der Analysis II Kapitel 3: Lineare Abbildungen und Gleichungssysteme Informationen zur Vorlesung: http://www.mathematik.uni-trier.de/ wengenroth/ J. Wengenroth () 15. Mai 2009 1 / 35 3.1 Beispiel

Mehr

Lösungen zu Kapitel 7

Lösungen zu Kapitel 7 Lösungen zu Kapitel 7 Lösung zu Aufgabe 1: Nach Definition 7.1 ist eine Verknüpfung auf der Menge H durch eine Abbildung : H H H definiert. Gilt H = {a 1,..., a m }, so wird eine Verknüpfung auch vollständig

Mehr

Brückenkurs Mathematik, THM Friedberg, 15 19.9.2014

Brückenkurs Mathematik, THM Friedberg, 15 19.9.2014 egelsammlung mb2014 THM Friedberg von 6 16.08.2014 15:04 Brückenkurs Mathematik, THM Friedberg, 15 19.9.2014 Sammlung von Rechenregeln, extrahiert aus dem Lehrbuch: Erhard Cramer, Johanna Neslehová: Vorkurs

Mehr

Dirk Hachenberger Mathematik für Informatiker

Dirk Hachenberger Mathematik für Informatiker Dirk Hachenberger Mathematik für Informatiker ein Imprint von Pearson Education München Boston San Francisco Harlow, England Don Mills, Ontario Sydney Mexico City Madrid Amsterdam Inhaltsverzeichnis Vorwort

Mehr

Die reellen Lösungen der kubischen Gleichung

Die reellen Lösungen der kubischen Gleichung Die reellen Lösungen der kubischen Gleichung Klaus-R. Löffler Inhaltsverzeichnis 1 Einfach zu behandelnde Sonderfälle 1 2 Die ganzrationale Funktion dritten Grades 2 2.1 Reduktion...........................................

Mehr

Erinnerung/Zusammenfassung zu Abbildungsmatrizen

Erinnerung/Zusammenfassung zu Abbildungsmatrizen Erinnerung/Zusammenfassung zu Abbildungsmatrizen Thomas Coutandin (cthomas@student.ethz.ch) 7. November 2 Abbildungsmatrizen Im Folgenden betrachten wir stets endlich dimensionale K-Vektorräume (K irgend

Mehr

Zahlentheorie. Daniel Scholz im Winter 2006 / 2007. Überarbeitete Version vom 7. September 2007.

Zahlentheorie. Daniel Scholz im Winter 2006 / 2007. Überarbeitete Version vom 7. September 2007. Zahlentheorie Daniel Scholz im Winter 2006 / 2007 Überarbeitete Version vom 7. September 2007. Inhaltsverzeichnis 1 Einleitung und Grundlagen 4 1.1 Einleitung............................. 4 1.2 Zahlensysteme..........................

Mehr

Programmiersprachen und Übersetzer

Programmiersprachen und Übersetzer Programmiersprachen und Übersetzer Sommersemester 2010 19. April 2010 Theoretische Grundlagen Problem Wie kann man eine unendliche Menge von (syntaktisch) korrekten Programmen definieren? Lösung Wie auch

Mehr

Leitfaden Lineare Algebra: Determinanten

Leitfaden Lineare Algebra: Determinanten Leitfaden Lineare Algebra: Determinanten Die symmetrische Gruppe S n. Eine Permutation σ der Menge S ist eine bijektive Abbildung σ : S S. Ist S eine endliche Menge, so reicht es zu verlangen, dass σ injektiv

Mehr

2 Die Darstellung linearer Abbildungen durch Matrizen

2 Die Darstellung linearer Abbildungen durch Matrizen 2 Die Darstellung linearer Abbildungen durch Matrizen V und V seien Vektorräume über einem Körper K. Hom K (V, V ) bezeichnet die Menge der K linearen Abbildungen von V nach V. Wir machen Hom K (V, V )

Mehr

Siegfried Bosch. Lineare Algebra. Vierte, überarbeitete Auflage

Siegfried Bosch. Lineare Algebra. Vierte, überarbeitete Auflage Springer-Lehrbuch Siegfried Bosch Lineare Algebra Vierte, überarbeitete Auflage 123 Prof. Dr. Siegfried Bosch Mathematisches Institut Universität Münster Einsteinstraße 62 48149 Münster bosch@math.uni-muenster.de

Mehr

Theoretische Informatik

Theoretische Informatik Theoretische Informatik für die Studiengänge Ingenieur-Informatik berufsbegleitendes Studium Lehramt Informatik (Sekundar- und Berufsschule) http://theo.cs.uni-magdeburg.de/lehre04s/ Lehrbeauftragter:

Mehr

Basis und Dimension. Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren.

Basis und Dimension. Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren. Basis und Dimension Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren. Definition. Sei V ein K-Vektorraum und (v i ) i I eine Familie von Vektoren

Mehr

Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14. Auswahl vorausgesetzter Vorkenntnisse

Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14. Auswahl vorausgesetzter Vorkenntnisse UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 MATHEMATIK Dipl.-Math. Kevin Everard Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14 Auswahl vorausgesetzter Vorkenntnisse

Mehr

Geometrische Mannigfaltigkeiten

Geometrische Mannigfaltigkeiten Geometrische Mannigfaltigkeiten Thilo Kuessner Abstract Kurzfassung der Vorlesung: Definitionen, Beispiele und Sätze, keine Beweise. Definition 1. Ein topologischer Raum ist eine Menge X mit einer Familie

Mehr

6 Conways Chequerboard-Armee

6 Conways Chequerboard-Armee 6 Conways Chequerboard-Armee Spiele gehören zu den interessantesten Schöpfungen des menschlichen Geistes und die Analyse ihrer Struktur ist voller Abenteuer und Überraschungen. James R. Newman Es ist sehr

Mehr

RSA Verfahren. Kapitel 7 p. 103

RSA Verfahren. Kapitel 7 p. 103 RSA Verfahren RSA benannt nach den Erfindern Ron Rivest, Adi Shamir und Leonard Adleman war das erste Public-Key Verschlüsselungsverfahren. Sicherheit hängt eng mit der Schwierigkeit zusammen, große Zahlen

Mehr

Gleichungen - Aufgabenstellung und Lösungsstrategien

Gleichungen - Aufgabenstellung und Lösungsstrategien Gleichungen - Aufgabenstellung und Lösungsstrategien Franz Pauer Institut für Mathematik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Österreich. Franz.Pauer@uibk.ac.at 18. Juli 2006 1 Einleitung

Mehr

Seminararbeit für das SE Reine Mathematik- Graphentheorie

Seminararbeit für das SE Reine Mathematik- Graphentheorie Seminararbeit für das SE Reine Mathematik- Graphentheorie Der binäre Rang, der symplektische Graph, die Spektralzerlegung und rationale Funktionen Vortrag am 24.01.2012 Heike Farkas 0410052 Inhaltsverzeichnis

Mehr

Beispiele für Relationen

Beispiele für Relationen Text Relationen 2 Beispiele für Relationen eine Person X ist Mutter von einer Person Y eine Person X ist verheiratet mit einer Person Y eine Person X wohnt am gleichen Ort wie eine Person Y eine Person

Mehr

Was ist Mathematik? Eine Strukturwissenschaft, eine Geisteswissenschaft, aber keine Naturwissenschaft.

Was ist Mathematik? Eine Strukturwissenschaft, eine Geisteswissenschaft, aber keine Naturwissenschaft. Vorlesung 1 Einführung 1.1 Praktisches Zeiten: 10:00-12:00 Uhr Vorlesung 12:00-13:00 Uhr Mittagspause 13:00-14:30 Uhr Präsenzübung 14:30-16:00 Uhr Übungsgruppen Material: Papier und Stift wacher Verstand

Mehr

Hans Kurzweil. Endliche Körper. Verstehen, Rechnen, Anwenden. Zweite, überarbeitete Auflage

Hans Kurzweil. Endliche Körper. Verstehen, Rechnen, Anwenden. Zweite, überarbeitete Auflage Springer-Lehrbuch Hans Kurzweil Endliche Körper Verstehen, Rechnen, Anwenden Zweite, überarbeitete Auflage 123 Prof. Dr. Hans Kurzweil Mathematisches Institut Friedrich-Alexander-Universität Bismarckstraße

Mehr

Mathematik für Informatiker: Algebraische Strukturen

Mathematik für Informatiker: Algebraische Strukturen Mathematik für Informatiker: Algebraische Strukturen Vorlesungsskript 2009/205 Klaus Wirthmüller http://www.mathematik.uni-kl.de/ wirthm/de/mfi.html K. Wirthmüller Mathematik für Informatiker: Algebraische

Mehr

0, v 6 = 2 2. 1, v 4 = 1. 2. span(v 1, v 5, v 6 ) = span(v 1, v 2, v 3, v 4, v 5, v 6 ) 4. span(v 1, v 2, v 4 ) = span(v 2, v 3, v 5, v 6 )

0, v 6 = 2 2. 1, v 4 = 1. 2. span(v 1, v 5, v 6 ) = span(v 1, v 2, v 3, v 4, v 5, v 6 ) 4. span(v 1, v 2, v 4 ) = span(v 2, v 3, v 5, v 6 ) Aufgabe 65. Ganz schön span(n)end. Gegeben sei folgende Menge M von 6 Vektoren v, v,..., v 6 R 4 aus Aufgabe P 6: M = v =, v =, v =, v 4 =, v 5 =, v 6 = Welche der folgenden Aussagen sind wahr? span(v,

Mehr

Mathematischer Vorbereitungskurs für Ökonomen

Mathematischer Vorbereitungskurs für Ökonomen Mathematischer Vorbereitungskurs für Ökonomen Dr. Thomas Zehrt Wirtschaftswissenschaftliches Zentrum Universität Basel Gleichungen Inhalt: 1. Grundlegendes 2. Lineare Gleichungen 3. Gleichungen mit Brüchen

Mehr

Leseprobe. Wolfgang Ertel. Angewandte Kryptographie. ISBN (Buch): 978-3-446-42756-3. ISBN (E-Book): 978-3-446-43196-6

Leseprobe. Wolfgang Ertel. Angewandte Kryptographie. ISBN (Buch): 978-3-446-42756-3. ISBN (E-Book): 978-3-446-43196-6 Leseprobe Wolfgang Ertel Angewandte Kryptographie ISBN (Buch): 978-3-446-42756-3 ISBN (E-Book): 978-3-446-43196-6 Weitere Informationen oder Bestellungen unter http://www.hanser-fachbuch.de/978-3-446-42756-3

Mehr

6 Symmetrische Matrizen und quadratische Formen

6 Symmetrische Matrizen und quadratische Formen Mathematik für Ingenieure II, SS 9 Freitag. $Id: quadrat.tex,v.5 9//5 ::59 hk Exp $ $Id: orthogonal.tex,v.4 9// ::54 hk Exp $ $Id: fourier.tex,v. 9// :: hk Exp $ Symmetrische Matrizen und quadratische

Mehr

Definition:Eine meromorphe Modulform vom Gewicht k Z ist eine meromorphe. f : H C. (ii) C > 0, so daß f(z) im Bereich Im z > C keine Singularität hat.

Definition:Eine meromorphe Modulform vom Gewicht k Z ist eine meromorphe. f : H C. (ii) C > 0, so daß f(z) im Bereich Im z > C keine Singularität hat. Die k/2 - Formel von Renate Vistorin Zentrales Thema dieses Vortrages ist die k/2 - Formel für meromorphe Modulformen als eine Konsequenz des Residuensatzes. Als Folgerungen werden danach einige Eigenschaften

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme 1 Zwei Gleichungen mit zwei Unbekannten Es kommt häufig vor, dass man nicht mit einer Variablen alleine auskommt, um ein Problem zu lösen. Das folgende Beispiel soll dies verdeutlichen

Mehr