Algorithmen des Internets

Größe: px
Ab Seite anzeigen:

Download "Algorithmen des Internets"

Transkript

1 Algorithmen des Internets Sommersemester Vorlesung

2 Überblick Das Internet: Einführung und Überblick Mathematische Grundlagen IP: Routing im Internet TCP: Das Transport-Protokoll des Internets Die Struktur des World Wide Web und des Internets Suche im Web Web-Caching im Internet Web-Caching Lastverteilung durch Hash-Funktionen Konsistentes Hashing Peer-to-peer-Netzwerke Angriffe auf das Internet Heute

3 WWW-Lastbalancierung Für Surfen im Web typisch: Web-Server bieten Web-Seiten an Web-Clients fordern Web-Seiten an In der Regel sind diese Mengen disjunkt Eingehende Anforderungen belasten Web-Server hinsichtlich: Übertragungsbandbreite Rechenaufwand (Zeit,Speicher) Peter Stefan Markus

4 Lastanforderungen Einige Web-Server haben immer hohe Lastanforderungen Z.B. Nachrichten-Sites, Suchmaschinen, Web-verzeichnisse Für permanente Anforderungen müssen Server entsprechen ausgelegt werden Andere leiden unter hohen Fluktuationen z. B. bei besonderen Ereignissen: jpl.nasa.gov (Pathfinder Mission) Montag Dienstag Mittwoch apple.com (Steve Jobs Keynote Address) Server-Erweiterung nicht sinnvoll Bedienung der Anfragen aber erwünscht

5 Lastbalancierung im WWW Fluktuationen betreffen meistens einzelne Server Montag Dienstag Mittwoch A B A B A B (Kommerzielle) Lösung Dienstleister bieten Ausweich- (Cache-)Server an Viele Anforderungen werden auf diese Server verteilt A B Aber wie?

6 Web-Caching Leighton, Lewin, et al. STOC 97 Consistent Hashing and Random Trees: Distributed Caching Protocols for Relieving Hot Spots on the World Wide Web Passen bestehende Verfahren für dynamische Hash-Funktionen an WWW-Anforderungen an Leighton und Lewin (MIT) gründen Akamai 1997 Web-Cache Akaimai 2003: 550 Angestellte Ertrag 145 Mio. $ (2002) Server in 60 Ländern verbunden mit lokalen Netzwerken

7 Ausgangssituation Ohne Lastbalancierung: Jeder Browser (Web-Client) belegt einen Web-Server für eine Web-Site Vorteil: Einfach Web-Server Webseiten Nachteil: Der Server muss immer für den Worst-Case ausgelegt werden request Web-Clients

8 Site Caching Ganze Web-Site wird auf verschiedene Web-Caches kopiert Browser fragt bei Web-Server nach Seite Web-Server leitet Anfrage auf Web- Cache um (redirect) Web-Cache liefert Web-Seite aus Web-Server redirect Web-Cache Vorteil: Gute Lastbalancierung für Seitenverteilung Nachteil: Bottleneck: Redirect Großer Overhead durch vollständige Web-Site- Replikationen Web-Clients

9 Proxy Caching Jede Web-Seite wird auf einige (wenige) Web-Caches verteilt Nur Startanfrage erreicht Web-Server Links referenzieren auf Seiten im Web- Cache Dann surft der Web-Client nur noch auf den Web-Cache Web-Server redirect Link Vorteil: Kein Bottleneck Nachteil: Lastbalancierung nur implizit möglich request Web- Cache Hohe Anforderung an Caching- Algorithmus Web-Client

10 Anforderungen an Caching-Algorithmus 1. Balance Gleichmäßige Verteilung der Seiten 2. Dynamik Effizientes Einfügen/Löschen von neuen Web-Cache-Servern?? new X X 3. Views Web-Clients sehen unterschiedliche Menge von Web-Caches

11 Hash-Funktionen Buckets Items Menge der Items: Menge der Buckets: Beispiel:

12 Ranged Hash-Funktionen Gegeben: Elemente (Items), Anzahl Caches (Buckets), Menge der Buckets: Views Ranged Hash-Funktion: Voraussetzung: für alle Views gilt Buckets Items View

13 Erste Idee: Hash-Funktion Verfahren: Wähle Hash-Funktion, z.b. n: Anzahl Cache-Server Balance: Sehr gut! 5 3 i + 1 mod Dynamik Einfügen/Löschen von nur einem Cache-Server Neue Hash-Funktion und vollständige Neuzuweisung Hoher Aufwand! 2 i + 2 mod X

14 Erste Idee: Hash-Funktion (mit Views) Verfahren: Wähle Hash-Funktion, z.b. n: Anzahl Cache-Server 5 3 i + 1 mod Views Verschiedene Nummerierungen der Web-Cache notwendig Anzahl der Duplikate proportional zu der Anzahl der Views 2 i + 2 mod 3 View View

15 Anforderungen an Ranged Hash-Funktionen Monotonie nach dem Hinzufügen neuer Caches (Buckets) sollten keine Seiten (Items) zwischen alten Caches verschoben werden Balance Alle Caches sollten gleichmäßig ausgelastet werden Spread (Verbreitung,Streuung) Eine Seite sollte auf eine beschränkte Anzahl von Caches verteilt werden Load Kein Cache sollte wesentlich mehr als die durchschnittliche Anzahl von Seiten enthalten

16 1. Monotonie Seiten, die im umfassenderen View einem Cache zugewiesen sind, werden nicht umorganisiert d.h. nach dem Hinzufügen neuer Buckets dürfen (alte) Seiten nur in neue Buckets verschoben werden Formal: Für alle gilt: View 1: View 2: Seiten Caches Caches Seiten

17 2. Balance Für jeden View V ist die Hash-Funktion f V (i) balanciert Für eine Konstant c und alle gilt: View 1: View 2: Seiten Caches Caches Seiten

18 3. Spread Die Verbreitung (i) (spread) einer Seite i ist die Gesamtanzahl aller notwendigen Kopien (über alle Views) View 1: View 2: View 3:

19 4. Load Die Last λ(b) (load) eines Caches b ist die Gesamtanzahl aller notwendigen Kopien (über alle Views) wobei := Menge aller Seiten, die Bucket b zugewiesen werden (in View V) View 1: View 2: λ(b 1 ) = 2 λ(b 2 ) = 3 View 3: b 1 b 2

20 Bälle in Körbe (balls into bins) Lemma Werden m Bälle zufällig in n Körbe geworfen. Dann gilt: 1. Die erwartete Zahl von Bällen pro Korb ist m/n. 2. Die W keit, dass k Bälle auf einen bestimmten Korb fallen: Lemma Werden m=n Bälle zufällig in n Körbe geworfen. Dann gilt: 1. Die W keit, dass ein (bestimmter) Korb leer bleibt, ist konstant (konvergiert gegen 1/e). Die erwartete Anzahl leerer Körbe konvergiert gegen n/e. 2. Die W keit, dass mehr als k log n/log log n Bälle auf einen bestimmten Korb fallen, ist höchstens O(n -c ) für konstante k und c.

21 Bälle in Körbe (balls into bins) Lemma Werden m= k n log n Bälle zufällig in n Körbe geworfen (für geeignete Konstante k). Dann gilt: 1. Die W keit, dass mehr als c log n Bälle auf einen Korb fallen ist höchstens O(n -Ω(1) ) 2. Die W keit, dass ein Korb leer bleibt ist höchstens O(n -Ω(1) ) Beweis: Übungsaufgabe!

22 Familien von Hash-Funktionen Für jede Hash-Funktion existiert eine Worst-Case-Eingabe Daher betrachtet man grundsätzlich Familien von Hash-Funktionen Genauso definieren wir Familie von Ranged-Hash-Funktionen für geg. Views und Caches Wir gehen im folgenden davon aus, dass eine Hash-Funktion sich verhält wie ein perfektes Zufallsereignis Gleichwahrscheinlich Unabhängig Die Elemente werden wie Bälle in Körbe verteilt.

23 Konsistentes Hashing Theorem Es gibt eine Familie von Ranged Hash-Funktionen F mit den folgenden Eigenschaften: Jede Funktion f F ist monoton Balance: Für jeden View gilt C Anzahl aller Caches (Buckets) C/t Mindestanzahl Caches pro View V/C = konstant (#Views / #Caches) I = C (# Seiten = # Caches) Spread: Für jede Seite i ist mit W keit Load: Für jeden Cache b ist mit W keit

24 Die Konstruktion 2 Hash-Funktionen auf das reelle Intervall [0,1] bildet k log C Kopien des Caches b zufällig auf [0,1] ab bildet Web-Seite i zufällig auf Intervall [0,1] ab := Cache, der den Abstand minimiert. Caches (Buckets): View View Webseiten (Items):

25 1. Monotonie := Cache, der den Abstand minimiert. Für alle gilt: Beobachtung: Blaues Intervall sowohl in V 2 als auch in V 1 leer! View View 2 0 1

26 2. Balance Balance: Für jeden View gilt Wähle festen View und eine Web-Seite i Wende nun die Hash-Funktionen und an. Unter der Annahme, dass diese sich wie zufällige Abbildungen verhalten, wird jeder Cache mit der gleichen Wahrscheinlichkeit ausgewählt. Caches (Buckets): View 0 1 Webseiten (Items):

27 3. Spread (I) (i) = Gesamtanzahl aller notwendigen Kopien (über alle Views) C Anzahl aller Caches (Buckets) C/t Mindestanzahl Caches pro View V/C = konstant (#Views / #Caches) I = C (# Seiten = # Caches) jeder User kennt mindestens einen Anteil von 1/t der Caches Für jede Seite i ist mit W keit Beweisidee: Von Jedem View fällt ein Cache in ein Intervall der Länge t/c (mit hoher W keit) Die Anzahl der Caches in diesem Intervall liefert eine obere Schranke für die Verbreitung 0 t/c 2t/C 1

28 3. Spread (II) Beweis: Betrachte Intervalle der Länge t/c Caches insgesamt: k C log C zufällig verteilt über C/t Intervalle C Anzahl aller Caches (Buckets) C/t Mindestanzahl Caches pro View V/C = konstant (#Views / #Caches) I = C (# Seiten = # Caches) O(N t log N) Bällen in N Körbe mit N = C/t Mit W keit 1-N -Ω(1) sind höchstens O(t log C) Caches in jedem Intervall Caches (alle Views) 0 t/c 2t/C i 1 Anzahl Caches in benachbarten Intervallen von Item i O(t log C)

29 3. Spread (III) Beweis: Betrachte Intervalle der Länge t/c Caches in einem View: C/t log C zufällig verteilt über C/t Intervalle O(N log N) Bällen in N Körbe mit N = C/t Mit W keit 1-n -Ω(1) ist mindestens ein Cache in einem Intervall C Anzahl aller Caches (Buckets) C/t Mindestanzahl Caches pro View V/C = konstant (#Views / #Caches) I = C (# Seiten = # Caches) View 1 View 2 i i 0 t/c 2t/C 1 In der Nähe von Item i ist in jedem View ein Cache

30 3. Spread (IV) C Anzahl aller Caches (Buckets) C/t Mindestanzahl Caches pro View Beweis: V/C = konstant (#Views / #Caches) Betrachte Intervalle der Länge t/c I = C (# Seiten = # Caches) Mit W keit 1-n -Ω(1) ist mindestens ein Cache in einem Intervall Also wird die Webseite i immer lokal gespeichert d.h. in ihrem Intervall oder im Nachbarintervall gespeichert Mit W keit 1-n -Ω(1) sind höchstens O(t log C) Caches in jedem Intervall Obere Schranke für Verbreitung: O(t log C) View 1 View 2 i i 0 t/c 2t/C 1 In der Nähe von Item i ist in jedem View ein Cache

31 4. Load (I) Last (load): λ(b) = Gesamtanzahl aller notwendigen Kopien (über alle Views) wobei := Menge aller Seiten, die Bucket b zugewiesen werden (in View V) Für jeden Cache b ist mit W keit Beweisidee: Wir betrachten wieder Intervalle der Länge t/c) Mit hoher W keit fällt ein Cache aus jedem View in eines dieser Intervalle Die Anzahl der Items in diesem Intervall liefert eine obere Schranke für die Last 0 t/c 2t/C 1

32 4. Load (II) Beweis: Web-Seiten insgesamt: k C log C zufällig verteilt über C/t Intervalle O(N t log N) Bällen in N Körbe mit N = C/t C Anzahl aller Caches (Buckets) C/t Mindestanzahl Caches pro View V/C = konstant (#Views / #Caches) I = C (# Seiten = # Caches) Mit W keit 1-n -Ω(1) sind höchstens O(t log C) Web-Seiten in jedem Intervall Mit W keit 1-n -Ω(1) ist für jeden View mindestens ein Cache in jedem Intervall Also wird die Webseite i immer lokal gespeichert d.h. in ihrem Intervall oder im Nachbarintervall gespeichert Mit W keit 1-n -Ω(1) sind höchstens O(t log C) Web-Seiten in jedem Intervall Jeder Cache hat höchstens O(t log C) Web-Seiten View 1 View 2 0 t/c 2t/C 1

33 Zusammenfassung Web-Caching durch konsistentes Hashing Familie von Ranged Hash-Funktionen Seiten und Caches werden auf das Einheitsintervall abgebildet Zuordnung durch minimalen Abstand 0 1 Die Funktionen besitzen folgende Eigenschaften: Jede Funktion aus dieser Familie ist monoton Balance: Für jeden View gilt Spread: Für jede Seite i ist mit W keit Load: Für jeden Cache b ist mit W keit

34 Vielen Dank! Ende der 10. Vorlesung Nächste Übung: Mo Nächste Vorlesung: Mo Heinz Nixdorf Institut & Institut für Informatik Fürstenallee Paderborn Tel.: / Fax: / schindel@upb.de

Systeme II 13. Woche Data Centers und Verteiltes Hashing

Systeme II 13. Woche Data Centers und Verteiltes Hashing Systeme II 13. Woche Data Centers und Verteiltes Hashing Christian Schindelhauer Technische Fakultät Rechnernetze und Telematik Albert-Ludwigs-Universität Freiburg World Wide Web Client-Server-Architektur

Mehr

Rolf Wanka Sommersemester Vorlesung

Rolf Wanka Sommersemester Vorlesung Peer-to to-peer-netzwerke Rolf Wanka Sommersemester 2007 12. Vorlesung 12.07.2007 rwanka@cs.fau.de basiert auf einer Vorlesung von Christian Schindelhauer an der Uni Freiburg Aufbau Viceroy Knoten in Viceroy

Mehr

Rolf Wanka Sommersemester Vorlesung

Rolf Wanka Sommersemester Vorlesung Peer-to to-peer-netzwerke Rolf Wanka Sommersemester 2007 7. Vorlesung 05.06.2007 rwanka@cs.fau.de basiert auf einer Vorlesung von Christian Schindelhauer an der Uni Freiburg Lookup in CAN Verbindungsstruktur:

Mehr

Rolf Wanka Sommersemester Vorlesung

Rolf Wanka Sommersemester Vorlesung Peer-to to-peer-netzwerke Rolf Wanka Sommersemester 2007 8. Vorlesung 14.06.2007 rwanka@cs.fau.de basiert auf einer Vorlesung von Christian Schindelhauer an der Uni Freiburg Inhalte Kurze Geschichte der

Mehr

Algorithmen II Vorlesung am

Algorithmen II Vorlesung am Algorithmen II Vorlesung am 24.01.2013 Online Algorithmen INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg und Algorithmen nationales Forschungszentrum

Mehr

Informatik II, SS 2014

Informatik II, SS 2014 Informatik II SS 2014 (Algorithmen & Datenstrukturen) Vorlesung 9 (28.5.2014) Hashtabellen III Algorithmen und Komplexität Offene Adressierung : Zusammenfassung Offene Adressierung: Alle Schlüssel/Werte

Mehr

Replikation in einem homogenen strukturierten Chord Peer-to-Peer Netz

Replikation in einem homogenen strukturierten Chord Peer-to-Peer Netz INSTITUT FÜR KOMMUNIKATIONSNETZE UND RECHNERSYSTEME Prof. Dr.-Ing. Dr. h. c. mult. P. J. Kühn Replikation in einem homogenen strukturierten Chord Peer-to-Peer Netz VFF IND/IKR-Workshop Andreas Reifert,

Mehr

Chord. Zusätzliche Quelle: Christian Schindelhauer, Vorlesung: Algorithmen für Peer-to-Peer-Netzwerke

Chord. Zusätzliche Quelle: Christian Schindelhauer, Vorlesung: Algorithmen für Peer-to-Peer-Netzwerke Chord Zusätzliche Quelle: Christian Schindelhauer, Vorlesung: Algorithmen für Peer-to-Peer-Netzwerke Peer-to-peer Netzwerke Peer-to-peer Netzwerke sind verteilte Systeme: ohne zentrale Kontrolle oder hierarchische

Mehr

Definition. Gnutella. Gnutella. Kriterien für P2P-Netzwerke. Gnutella = +

Definition. Gnutella. Gnutella. Kriterien für P2P-Netzwerke. Gnutella = + Definition Gnutella Ein -to--netzwerk ist ein Kommunikationsnetzwerk zwischen Rechnern, in dem jeder Teilnehmer sowohl Client als auch Server- Aufgaben durchführt. Beobachtung: Das Internet ist (eigentlich

Mehr

Algorithmen und Komplexität Teil 1: Grundlegende Algorithmen

Algorithmen und Komplexität Teil 1: Grundlegende Algorithmen Algorithmen und Komplexität Teil 1: Grundlegende Algorithmen WS 08/09 Friedhelm Meyer auf der Heide Vorlesung 8, 4.11.08 Friedhelm Meyer auf der Heide 1 Organisatorisches Am Dienstag, 11.11., fällt die

Mehr

Rolf Wanka Sommersemester Vorlesung

Rolf Wanka Sommersemester Vorlesung Peer-to to-peer-netzwerke Rolf Wanka Sommersemester 2007 10. Vorlesung 28.06.2007 rwanka@cs.fau.de basiert auf einer Vorlesung von Christian Schindelhauer an der Uni Freiburg Inhalte Kurze Geschichte der

Mehr

Parallelität und Kommunikation

Parallelität und Kommunikation Parallelität und Kommunikation WS 2010/2011 Friedhelm Meyer auf der Heide V9, 3.1.2011 Friedhelm Meyer auf der Heide 1 Rückblick, Thema heute Wir wollen herausfinden, wie gut Routing entlang unabhängig

Mehr

6: Diskrete Wahrscheinlichkeit

6: Diskrete Wahrscheinlichkeit Stefan Lucks Diskrete Strukturen (WS 2009/10) 219 6: Diskrete Wahrscheinlichkeit 6: Diskrete Wahrscheinlichkeit Stefan Lucks Diskrete Strukturen (WS 2009/10) 220 Wahrscheinlichkeitsrechnung Eines der wichtigsten

Mehr

Algorithmen des Internets Sommersemester Vorlesung

Algorithmen des Internets Sommersemester Vorlesung Algorithmen des Internets Sommersemester 2005 23.05.2005 6. Vorlesung schindel@upb.de 1 Überblick Das Internet: Einführung und Überblick Mathematische Grundlagen IP: Routing im Internet TCP: Das Transport-Protokoll

Mehr

Grundlagen: Algorithmen und Datenstrukturen

Grundlagen: Algorithmen und Datenstrukturen Grundlagen: Algorithmen und Datenstrukturen Prof. Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Sommersemester 2010

Mehr

Die Höhe von binären Suchbäumen Ausarbeitung zum Seminar zu Stochastischen Rekursionsgleichungen im WS 2011/2012

Die Höhe von binären Suchbäumen Ausarbeitung zum Seminar zu Stochastischen Rekursionsgleichungen im WS 2011/2012 Die Höhe von binären Suchbäumen Ausarbeitung zum Seminar zu Stochastischen Rekursionsgleichungen im WS 011/01 Sandra Uhlenbrock 03.11.011 Die folgende Ausarbeitung wird, basierend auf Branching Processes

Mehr

Übung Algorithmen und Datenstrukturen

Übung Algorithmen und Datenstrukturen Übung Algorithmen und Datenstrukturen Sommersemester 2016 Patrick Schäfer, Humboldt-Universität zu Berlin Organisation Vorlesung: Montag 11 13 Uhr Marius Kloft RUD 26, 0 115 Mittwoch 11 13 Uhr Marius Kloft

Mehr

Teil VII. Hashverfahren

Teil VII. Hashverfahren Teil VII Hashverfahren Überblick 1 Hashverfahren: Prinzip 2 Hashfunktionen 3 Kollisionsstrategien 4 Aufwand 5 Hashen in Java Prof. G. Stumme Algorithmen & Datenstrukturen Sommersemester 2009 7 1 Hashverfahren:

Mehr

Lineare Kongruenzgeneratoren und Quicksort

Lineare Kongruenzgeneratoren und Quicksort Seminar Perlen der theoretischen Informatik Dozenten: Prof. Johannes Köbler und Olaf Beyersdorff Lineare Kongruenzgeneratoren und Quicksort Ausarbeitung zum Vortrag Mia Viktoria Meyer 12. November 2002

Mehr

Systeme II 6. Die Anwendungsschicht

Systeme II 6. Die Anwendungsschicht Systeme II 6. Die Anwendungsschicht Christian Schindelhauer Technische Fakultät Rechnernetze und Telematik Albert-Ludwigs-Universität Freiburg Version 27.06.2016 1 Domain Name System (DNS) Motivation Menschen

Mehr

4.4.1 Statisches perfektes Hashing. des Bildbereichs {0, 1,..., n 1} der Hashfunktionen und S U, S = m n, eine Menge von Schlüsseln.

4.4.1 Statisches perfektes Hashing. des Bildbereichs {0, 1,..., n 1} der Hashfunktionen und S U, S = m n, eine Menge von Schlüsseln. 4.4 Perfektes Hashing Das Ziel des perfekten Hashings ist es, für eine Schlüsselmenge eine Hashfunktion zu finden, so dass keine Kollisionen auftreten. Die Größe der Hashtabelle soll dabei natürlich möglichst

Mehr

Organic Computing: Peer-to-Peer-Netzwerke

Organic Computing: Peer-to-Peer-Netzwerke Organic Computing Peer-to-Peer-Netzwerke Rolf Wanka Sommersemester 2015 rwanka@cs.fau.de Inhalte Kurze Geschichte der Peer-to-Peer- Netzwerke Das Internet: Unter dem Overlay Die ersten Peer-to-Peer-Netzwerke

Mehr

String - Matching. Kapitel Definition

String - Matching. Kapitel Definition Kapitel 1 String - Matching 1.1 Definition String - Matching ( übersetzt in etwa Zeichenkettenanpassung ) ist die Suche eines Musters ( Pattern ) in einem Text. Es findet beispielsweise Anwendung bei der

Mehr

12. Hashing. Hashing einfache Methode um Wörtebücher zu implementieren, d.h. Hashing unterstützt die Operationen Search, Insert, Delete.

12. Hashing. Hashing einfache Methode um Wörtebücher zu implementieren, d.h. Hashing unterstützt die Operationen Search, Insert, Delete. Hashing einfache Methode um Wörtebücher zu implementieren, d.h. Hashing unterstützt die Operationen Search, Insert, Delete. Worst-case Zeit für Search: Θ(n). In der Praxis jedoch sehr gut. Unter gewissen

Mehr

Signale und Codes Vorlesung 4

Signale und Codes Vorlesung 4 Signale und Codes Vorlesung 4 Nico Döttling December 6, 2013 1 / 18 2 / 18 Letztes Mal Allgemeine Hamming Codes als Beispiel linearer Codes Hamming Schranke: Obere Schranke für k bei gegebenem d bzw. für

Mehr

7. Übung zu Algorithmen I 1. Juni 2016

7. Übung zu Algorithmen I 1. Juni 2016 7. Übung zu Algorithmen I 1. Juni 2016 Lukas Barth lukas.barth@kit.edu (mit Folien von Lisa Kohl) Roadmap Ganzzahliges Sortieren mit reellen Zahlen Schnellere Priority Queues Bucket Queue Radix Heap Organisatorisches

Mehr

Seminararbeit. Consistent Hashing und Balancing in DHTs

Seminararbeit. Consistent Hashing und Balancing in DHTs Seminararbeit Consistent Hashing und Balancing in DHTs Informationsverwaltung in Netzen Sommersemester 2003 Simon Rieche Institut für Informatik Freie Universität Berlin Berlin, Mai 2003 Betreuer: Dr.

Mehr

Algorithmen für Peer-to-Peer-Netzwerke Sommersemester 2004 23.04.2004 1. Vorlesung

Algorithmen für Peer-to-Peer-Netzwerke Sommersemester 2004 23.04.2004 1. Vorlesung Algorithmen für Peer-to-Peer-Netzwerke Sommersemester 2004 23.04.2004 1. Vorlesung 1 Kapitel I Netzw erke 2 Inhalte P2P-Netzwerke der 1. Generation: Napster, Gnutella, Kazaa. Moderne P2P-Netzwerke CAN,

Mehr

Prinzipien der modernen Kryptographie Sicherheit

Prinzipien der modernen Kryptographie Sicherheit Prinzipien der modernen Kryptographie Sicherheit Prinzip 1 Sicherheitsmodell Das Sicherheitsmodell (Berechnungsmodell, Angriffstypen, Sicherheitsziele) muss präzise definiert werden. Berechnungsmodell:

Mehr

Peer-to-Peer- Netzwerke

Peer-to-Peer- Netzwerke Peer-to-Peer- Netzwerke Christian Schindelhauer Sommersemester 2006 14. Vorlesung 23.06.2006 schindel@informatik.uni-freiburg.de 1 Evaluation der Lehre im SS2006 Umfrage zur Qualitätssicherung und -verbesserung

Mehr

Übung zur Vorlesung Berechenbarkeit und Komplexität

Übung zur Vorlesung Berechenbarkeit und Komplexität RWTH Aachen Lehrgebiet Theoretische Informatik Reidl Ries Rossmanith Sanchez Tönnis WS 2012/13 Übungsblatt 7 26.11.2012 Übung zur Vorlesung Berechenbarkeit und Komplexität Aufgabe T15 Entwickeln Sie ein

Mehr

2.7 Der Shannon-Fano-Elias Code

2.7 Der Shannon-Fano-Elias Code 2.7 Der Shannon-Fano-Elias Code Die Huffman-Codierung ist ein asymptotisch optimales Verfahren. Wir haben auch gesehen, dass sich die Huffman-Codierung gut berechnen und dann auch gut decodieren lassen.

Mehr

Kap. 4.7 Skiplisten. 14./15. VO DAP2 SS /16. Juni 2009

Kap. 4.7 Skiplisten. 14./15. VO DAP2 SS /16. Juni 2009 Kap. 4.7 Skiplisten Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 14./15. VO DAP2 SS 2008 9./16. Juni 2009 1 2. Übungstest Termin: Di 16. Juni 2009 im AudiMax,

Mehr

Grundlagen: Algorithmen und Datenstrukturen

Grundlagen: Algorithmen und Datenstrukturen Technische Universität München Fakultät für Informatik Lehrstuhl für Effiziente Algorithmen Dr. Hanjo Täubig Tobias Lieber Sommersemester 011 Übungsblatt 6. August 011 Grundlagen: Algorithmen und Datenstrukturen

Mehr

UNABHÄNGIGER LASTEN. Vorlesung 9 BALANCIERUNG DYNAMISCHER. Graphenalgorithmen und lineare Algebra Hand in Hand

UNABHÄNGIGER LASTEN. Vorlesung 9 BALANCIERUNG DYNAMISCHER. Graphenalgorithmen und lineare Algebra Hand in Hand Vorlesung 9 BALANCIERUNG DYNAMISCHER UNABHÄNGIGER LASTEN 266 Lastbalancierung Motivation! Ein paralleles System besteht aus! verschiedenen Recheneinheiten,! die miteinander kommunizieren können! Warum

Mehr

Kapitel 1. Exakte Suche nach einem Wort. R. Stiebe: Textalgorithmen, WS 2003/04 11

Kapitel 1. Exakte Suche nach einem Wort. R. Stiebe: Textalgorithmen, WS 2003/04 11 Kapitel 1 Exakte Suche nach einem Wort R. Stiebe: Textalgorithmen, WS 2003/04 11 Überblick Aufgabenstellung Gegeben: Text T Σ, Suchwort Σ mit T = n, = m, Σ = σ Gesucht: alle Vorkommen von in T Es gibt

Mehr

Algorithmische Methoden für schwere Optimierungsprobleme

Algorithmische Methoden für schwere Optimierungsprobleme Algorithmische Methoden für schwere Optimierungsprobleme Juniorprof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund

Mehr

5. Woche Perfekte und Optimale Codes, Schranken. 5. Woche: Perfekte und Optimale Codes, Schranken 88/ 142

5. Woche Perfekte und Optimale Codes, Schranken. 5. Woche: Perfekte und Optimale Codes, Schranken 88/ 142 5 Woche Perfekte und Optimale Codes, Schranken 5 Woche: Perfekte und Optimale Codes, Schranken 88/ 142 Packradius eines Codes (Wiederholung) Definition Packradius eines Codes Sei C ein (n, M, d)-code Der

Mehr

Dank. Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I. Probleme über Sprachen. Teil II.

Dank. Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I. Probleme über Sprachen. Teil II. Dank Vorlesung Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Bernhard Beckert Diese Vorlesungsmaterialien basieren ganz wesentlich auf den Folien zu den Vorlesungen

Mehr

Abgabe: (vor der Vorlesung) Aufgabe 2.1 (P) O-Notation Beweisen Sie die folgenden Aussagen für positive Funktionen f und g:

Abgabe: (vor der Vorlesung) Aufgabe 2.1 (P) O-Notation Beweisen Sie die folgenden Aussagen für positive Funktionen f und g: TECHNISCHE UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR INFORMATIK Lehrstuhl für Sprachen und Beschreibungsstrukturen SS 2009 Grundlagen: Algorithmen und Datenstrukturen Übungsblatt 2 Prof. Dr. Helmut Seidl, S. Pott,

Mehr

CCNA Exploration Network Fundamentals. ARP Address Resolution Protocol

CCNA Exploration Network Fundamentals. ARP Address Resolution Protocol CCNA Exploration Network Fundamentals ARP Address Resolution Protocol ARP: Address resolution protocol 1. Eigenschaften ARP-Cache Aufbau 2. Ablauf Beispiel Flussschema 3. ARP-Arten 4. Sicherheit Man-In-The-Middle-Attacke

Mehr

Alle bislang betrachteten Sortieralgorithmen hatten (worst-case) Laufzeit Ω(nlog(n)).

Alle bislang betrachteten Sortieralgorithmen hatten (worst-case) Laufzeit Ω(nlog(n)). 8. Untere Schranken für Sortieren Alle bislang betrachteten Sortieralgorithmen hatten (worst-case) Laufzeit Ω(nlog(n)). Werden nun gemeinsame Eigenschaften dieser Algorithmen untersuchen. Fassen gemeinsame

Mehr

Die reellen Zahlen als Äquivalenzklassen rationaler Cauchy-Folgen. Steven Klein

Die reellen Zahlen als Äquivalenzklassen rationaler Cauchy-Folgen. Steven Klein Die reellen Zahlen als Äquivalenzklassen rationaler Cauchy-Folgen Steven Klein 04.01.017 1 In dieser Ausarbeitung konstruieren wir die reellen Zahlen aus den rationalen Zahlen. Hierzu denieren wir zunächst

Mehr

Randomisierte Algorithmen 2. Erste Beispiele

Randomisierte Algorithmen 2. Erste Beispiele Randomisierte Algorithmen Randomisierte Algorithmen 2. Erste Beispiele Thomas Worsch Fakultät für Informatik Karlsruher Institut für Technologie Wintersemester 2016/2017 1 / 35 Randomisierter Identitätstest

Mehr

7. Sortieren Lernziele. 7. Sortieren

7. Sortieren Lernziele. 7. Sortieren 7. Sortieren Lernziele 7. Sortieren Lernziele: Die wichtigsten Sortierverfahren kennen und einsetzen können, Aufwand und weitere Eigenschaften der Sortierverfahren kennen, das Problemlösungsparadigma Teile-und-herrsche

Mehr

2. Entsprechende Listen P i von Vorgängern von i 3. for i := 1 to n do. (ii) S i = Knoten 2 + 1}

2. Entsprechende Listen P i von Vorgängern von i 3. for i := 1 to n do. (ii) S i = Knoten 2 + 1} 1. Berechne für jeden Knoten i in BFS-Art eine Liste S i von von i aus erreichbaren Knoten, so dass (i) oder (ii) gilt: (i) S i < n 2 + 1 und Si enthält alle von i aus erreichbaren Knoten (ii) S i = n

Mehr

Die Topologie von R, C und R n

Die Topologie von R, C und R n Die Topologie von R, C und R n Für R haben wir bereits eine Reihe von Strukturen kennengelernt: eine algebraische Struktur (Körper), eine Ordnungsstruktur und eine metrische Struktur (Absolutbetrag, Abstand).

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen 1 Algorithmen und Datenstrukturen Wintersemester 013/14 7. Vorlesung Zufall! Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I Ein Experiment Ein Franke und ein Münchner gehen (unabhängig voneinander)

Mehr

Seminar: Innovative Netztechnologien

Seminar: Innovative Netztechnologien Seminar: Innovative Netztechnologien Content Distribution Networks Andreas Siemer 06/2002 1 Inhalt 1. Content Networking 2. 3. Akamai 2 Begriffe: Content Networking Inhalt (Content) im Internet verfügbare

Mehr

Fortgeschrittene Netzwerk- und Graph-Algorithmen

Fortgeschrittene Netzwerk- und Graph-Algorithmen Fortgeschrittene Netzwerk- und Graph-Algorithmen Prof. Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Wintersemester

Mehr

Vorlesung Informatik 2 Algorithmen und Datenstrukturen

Vorlesung Informatik 2 Algorithmen und Datenstrukturen Vorlesung Informatik 2 Algorithmen und Datenstrukturen (16 Dynamische Tabellen) Prof. Dr. Susanne Albers Dynamische Tabellen Problem: Verwaltung einer Tabelle unter den Operationen Einfügen und Entfernen,

Mehr

Software ubiquitärer Systeme

Software ubiquitärer Systeme Software ubiquitärer Systeme 13. Übung Constantin Timm Arbeitsgruppe Entwurfsautomatisierung für Eingebettete Systeme Lehrstuhl für Informatik 12 TU Dortmund constantin.timm@cs.tu-dortmund.de http://ls12-www.cs.tu-dortmund.de/staff/timm/

Mehr

6/23/06. Universelles Hashing. Nutzen des Universellen Hashing. Problem: h fest gewählt es gibt ein S U mit vielen Kollisionen

6/23/06. Universelles Hashing. Nutzen des Universellen Hashing. Problem: h fest gewählt es gibt ein S U mit vielen Kollisionen Universelles Hashing Problem: h fest gewählt es gibt ein S U mit vielen Kollisionen wir können nicht annehmen, daß die Keys gleichverteilt im Universum liegen (z.b. Identifier im Programm) könnte also

Mehr

Analysis 1, Woche 2. Reelle Zahlen. 2.1 Anordnung. Definition 2.1 Man nennt eine Anordnung für K, wenn: 1. Für jeden a K gilt a a (Reflexivität).

Analysis 1, Woche 2. Reelle Zahlen. 2.1 Anordnung. Definition 2.1 Man nennt eine Anordnung für K, wenn: 1. Für jeden a K gilt a a (Reflexivität). Analysis 1, Woche 2 Reelle Zahlen 2.1 Anordnung Definition 2.1 Man nennt eine Anordnung für K, wenn: 1. Für jeden a K gilt a a (Reflexivität). 2. Für jeden a, b K mit a b und b a gilt a = b (Antisymmetrie).

Mehr

Vorlesung Sicherheit

Vorlesung Sicherheit Vorlesung Sicherheit Jörn Müller-Quade ITI, KIT basierend auf den Folien von Dennis Hofheinz, Sommersemester 2014 02.05.2016 1 / 22 Überblick 1 Hashfunktionen Erinnerung Formalisierung Die Merkle-Damgård-Konstruktion

Mehr

Einführung in Berechenbarkeit, Formale Sprachen und Komplexitätstheorie

Einführung in Berechenbarkeit, Formale Sprachen und Komplexitätstheorie Einführung in Berechenbarkeit, Formale Sprachen und Komplexitätstheorie Wintersemester 2005/2006 07.11.2005 5. Vorlesung 1 Überblick: Kontextfreie Sprachen Formale Grammatik Einführung, Beispiele Formale

Mehr

Stackelberg Scheduling Strategien

Stackelberg Scheduling Strategien Stackelberg Scheduling Strategien Von Tim Roughgarden Präsentiert von Matthias Ernst Inhaltsübersicht Einleitung Vorbetrachtungen Stackelberg Strategien Ergebnisse Seminar Algorithmische Spieltheorie:

Mehr

Einführung in Berechenbarkeit, Formale Sprachen und Komplexitätstheorie

Einführung in Berechenbarkeit, Formale Sprachen und Komplexitätstheorie Einführung in Berechenbarkeit, Formale Sprachen und Komplexitätstheorie Wintersemester 2005/2006 20.12.2005 18. Vorlesung 1 Komplexitätstheorie - Zeitklassen Komplexitätsmaße Wiederholung: O,o,ω,Θ,Ω Laufzeitanalyse

Mehr

(b) Man nennt die Menge M beschränkt, wenn sie nach oben und unten beschränkt ist.

(b) Man nennt die Menge M beschränkt, wenn sie nach oben und unten beschränkt ist. 8 Punktmengen Für die Menge M = { 1 n ; n N } ist 1 = max(m), denn 1 M und 1 n 1 für alle n N. Die Menge M besitzt aber kein Minimum, denn zu jeder Zahl x = 1 n M existiert ein y M mit y < x, etwa y =

Mehr

Komplexität von Algorithmen:

Komplexität von Algorithmen: Komplexität von Algorithmen: Ansatz: Beschreiben/erfassen der Komplexität über eine Funktion, zur Abschätzung des Rechenaufwandes abhängig von der Größe der Eingabe n Uns interessiert: (1) Wie sieht eine

Mehr

Literatur. Dominating Set (DS) Dominating Sets in Sensornetzen. Problem Minimum Dominating Set (MDS)

Literatur. Dominating Set (DS) Dominating Sets in Sensornetzen. Problem Minimum Dominating Set (MDS) Dominating Set 59 Literatur Dominating Set Grundlagen 60 Dominating Set (DS) M. V. Marathe, H. Breu, H.B. Hunt III, S. S. Ravi, and D. J. Rosenkrantz: Simple Heuristics for Unit Disk Graphs. Networks 25,

Mehr

Stochastik für die Informatik

Stochastik für die Informatik Stochastik für die Informatik Wintersemester 2012/13 Anton Wakolbinger 1 StofI-Webseite: http://ismi.math.unifrankfurt.de/wakolbinger/teaching/stofi1213/ 2 StofI-Webseite: http://ismi.math.unifrankfurt.de/wakolbinger/teaching/stofi1213/

Mehr

Übung Algorithmen und Datenstrukturen

Übung Algorithmen und Datenstrukturen Übung Algorithmen und Datenstrukturen Sommersemester 2017 Marc Bux, Humboldt-Universität zu Berlin Organisatorisches Vorlesung: Montag 11 13 Uhr Ulf Leser RUD 26, 0 115 Mittwoch 11 13 Uhr Ulf Leser RUD

Mehr

Greedy Algorithms - Gierige Algorithmen

Greedy Algorithms - Gierige Algorithmen Greedy Algorithms - Gierige Algorithmen Marius Burfey 23. Juni 2009 Inhaltsverzeichnis 1 Greedy Algorithms 1 2 Interval Scheduling - Ablaufplanung 2 2.1 Problembeschreibung....................... 2 2.2

Mehr

lokaler Cache-Server Planung und Einsatz Planung lokaler Cache-Server Kalkulation Aufwand vs. Nutzen Konzept für die Nutzung Dimensionierung C.

lokaler Cache-Server Planung und Einsatz Planung lokaler Cache-Server Kalkulation Aufwand vs. Nutzen Konzept für die Nutzung Dimensionierung C. Planung und Einsatz lokaler Cache-Server C. Grimm Lehrgebiet Rechnernetze und erteilte Systeme Universität Hannover 2001 Lehrgebiet Rechnernetze und erteilte Systeme Planung lokaler Cache-Server Kalkulation

Mehr

Bucketsort. Korrektheit. Beispiel. Eingabe: Array A mit n Elementen im Bereich [0,1) Annahme: die Elemente sind in [0,1) gleichverteilt.

Bucketsort. Korrektheit. Beispiel. Eingabe: Array A mit n Elementen im Bereich [0,1) Annahme: die Elemente sind in [0,1) gleichverteilt. Bucketsort Beispiel Eingabe: Array A mit n Elementen im Bereich [0,1) Annahme: die Elemente sind in [0,1) gleichverteilt 1 2 A.78.17 0 1 B.12.17 Sonst: Skalieren ( Aufwand O(n) ) 3.39 2.21.23.26 Idee:

Mehr

aus der Bedingung/Annahme A folgt ein Widerspruch ), so ist A falsch!

aus der Bedingung/Annahme A folgt ein Widerspruch ), so ist A falsch! Bemerkungen: 1 Die Bedeutung von (und damit ) ist klar. wird oft, vor allem in Beweisen, auch als geschrieben (im Englischen: iff, if and only if). 2 Für zwei boolesche Aussagen A und B ist A B falsch

Mehr

Vollständigkeit. 1 Konstruktion der reellen Zahlen

Vollständigkeit. 1 Konstruktion der reellen Zahlen Vortrag im Rahmen des Proseminars zur Analysis, 17.03.2006 Albert Zeyer Ziel des Vortrags ist es, die Vollständigkeit auf Basis der Konstruktion von R über die CAUCHY-Folgen zu beweisen und äquivalente

Mehr

Vorlesung Informatik 2 Algorithmen und Datenstrukturen. (25 Sortieren vorsortierter Daten)

Vorlesung Informatik 2 Algorithmen und Datenstrukturen. (25 Sortieren vorsortierter Daten) Vorlesung Informatik 2 Algorithmen und Datenstrukturen (25 Sortieren vorsortierter Daten) 1 Untere Schranke für allgemeine Sortierverfahren Satz Zum Sortieren einer Folge von n Schlüsseln mit einem allgemeinen

Mehr

CCNA Exploration Network Fundamentals. ARP Address Resolution Protocol

CCNA Exploration Network Fundamentals. ARP Address Resolution Protocol CCNA Exploration Network Fundamentals ARP Address Resolution Protocol ARP: Address resolution protocol 1. Eigenschaften ARP-Cache Aufbau 2. Ablauf Beispiel Flussschema 3. ARP-Arten 4. Sicherheit Man-In-The-Middle-Attacke

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen 1 Algorithmen und Datenstrukturen Wintersemester 2014/15 7. Vorlesung Zufall! Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I 2 Inhaltsverzeichnis Ein Zufallsexperiment InsertionSort: erwartete bzw.

Mehr

Stefan Schmid TU Berlin & T-Labs, Berlin, Germany. Reduktionen in der Berechenbarkeitstheorie

Stefan Schmid TU Berlin & T-Labs, Berlin, Germany. Reduktionen in der Berechenbarkeitstheorie Stefan Schmid TU Berlin & T-Labs, Berlin, Germany Reduktionen in der Berechenbarkeitstheorie Problem: Wie komme ich von hier zum Hamburger Hbf? 2 Beispiel P1 Wie komme ich von hier zum Hamburger Hbf? kann

Mehr

Grundlagen: Algorithmen und Datenstrukturen

Grundlagen: Algorithmen und Datenstrukturen Technische Universität München Fakultät für Informatik Lehrstuhl für Effiziente Algorithmen Dr. Hanjo Täubig Tobias Lieber Sommersemester 011 Übungsblatt 30. Mai 011 Grundlagen: Algorithmen und Datenstrukturen

Mehr

Mathematik für Ökonomen 1

Mathematik für Ökonomen 1 Mathematik für Ökonomen 1 Dr. Thomas Zehrt Wirtschaftswissenschaftliches Zentrum Universität Basel Herbstemester 2008 Mengen, Funktionen und Logik Inhalt: 1. Mengen 2. Funktionen 3. Logik Teil 1 Mengen

Mehr

Seminar: Randomisierte Algorithmen Auswerten von Spielbäumen Nele Küsener

Seminar: Randomisierte Algorithmen Auswerten von Spielbäumen Nele Küsener Seminar: Randomisierte Algorithmen Auswerten von Sielbäumen Nele Küsener In diesem Vortrag wird die Laufzeit von Las-Vegas-Algorithmen analysiert. Das Ergebnis ist eine obere und eine untere Schranke für

Mehr

13. Hashing. AVL-Bäume: Frage: Suche, Minimum, Maximum, Nachfolger in O(log n) Einfügen, Löschen in O(log n)

13. Hashing. AVL-Bäume: Frage: Suche, Minimum, Maximum, Nachfolger in O(log n) Einfügen, Löschen in O(log n) AVL-Bäume: Ausgabe aller Elemente in O(n) Suche, Minimum, Maximum, Nachfolger in O(log n) Einfügen, Löschen in O(log n) Frage: Kann man Einfügen, Löschen und Suchen in O(1) Zeit? 1 Hashing einfache Methode

Mehr

Praktische Informatik I Algorithmen und Datenstrukturen Wintersemester 2006/07

Praktische Informatik I Algorithmen und Datenstrukturen Wintersemester 2006/07 6 Hashverfahren zum Namen Hash : engl für zerhacken gestreute Speicherung 61 Grundbegriffe Wir unterstellen ein direkt adressierbares Speichermedium mit einer Menge von Adressen, dem Adressraum Die Datensätze

Mehr

14. Hashing. Motivation. Naive Ideen. Bessere Idee? k(s) = s i b i

14. Hashing. Motivation. Naive Ideen. Bessere Idee? k(s) = s i b i Motivation 14. Hashing Hash Tabellen, Geburtstagsparadoxon, Hashfunktionen, Perfektes und universelles Hashing, Kollisionsauflösung durch Verketten, offenes Hashing, Sondieren [Ottan/Widayer, Kap. 4.1-4.3.2,

Mehr

Vorlesung Sicherheit

Vorlesung Sicherheit Vorlesung Sicherheit Dennis Hofheinz ITI, KIT 12.05.2014 1 / 26 Überblick 1 Hashfunktionen Erinnerung Angriffe auf Hashfunktionen Zusammenfassung Hashfunktionen 2 Asymmetrische Verschlüsselung Idee Beispiel:

Mehr

Der Dreyfus-Wagner Algorithmus für das Steiner Baum Problem

Der Dreyfus-Wagner Algorithmus für das Steiner Baum Problem Der Dreyfus-Wagner Algorithmus für das Steiner Baum Problem Andreas Moser Dietmar Ebner Christian Schauer Markus Bauer 9. Dezember 2003 1 Einführung Der in der Vorlesung gezeigte Algorithmus für das Steiner

Mehr

2. Woche Eindeutige Entschlüsselbarleit, Sätze von Kraft und McMillan, Huffmancodierung

2. Woche Eindeutige Entschlüsselbarleit, Sätze von Kraft und McMillan, Huffmancodierung 2 Woche Eindeutige Entschlüsselbarleit, Sätze von Kraft und McMillan, Huffmancodierung 2 Woche: Eindeutige Entschlüsselbarleit, Sätze von Kraft und McMillan, Huffmancodierung 24/ 44 Zwei Beispiele a 0

Mehr

Teil III: Routing - Inhalt I. Literatur. Geometric Routing. Voraussetzungen. Unit Disk Graph (UDG) Geometric Routing 29

Teil III: Routing - Inhalt I. Literatur. Geometric Routing. Voraussetzungen. Unit Disk Graph (UDG) Geometric Routing 29 1 29 Teil III: Routing - Inhalt I Literatur Compass & Face Routing Bounded & Adaptive Face Routing Nicht Ω(1) UDG E. Kranakis, H. Singh und Jorge Urrutia: Compass Routing on Geometric Networks. Canadian

Mehr

5.8.2 Erweiterungen Dynamische Hash-Funktionen (mit variabler Tabellengröße)?

5.8.2 Erweiterungen Dynamische Hash-Funktionen (mit variabler Tabellengröße)? 5.8.2 Erweiterungen Dynamische Hash-Funktionen (mit variabler Tabellengröße)? Ladefaktor: α, n aktuelle Anzahl gespeicherter Werte m Tabellengröße. Einfacher Ansatz: rehash() a z c h s r b s h a z Wenn

Mehr

Diskrete Strukturen Kapitel 1: Einleitung

Diskrete Strukturen Kapitel 1: Einleitung WS 2015/16 Diskrete Strukturen Kapitel 1: Einleitung Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_15

Mehr

Wahrscheinlichkeitsrechnung und Statistik

Wahrscheinlichkeitsrechnung und Statistik 3. Vorlesung - 21.10.2016 Bedingte Wahrscheinlichkeit In einer Urne sind 2 grüne und 3 blaue Kugeln. 2 Kugeln werden ohne Zürücklegen gezogen. Welches ist die Wahrscheinlichkeit, dass : a) man eine grüne

Mehr

Grundlagen: Algorithmen und Datenstrukturen

Grundlagen: Algorithmen und Datenstrukturen Grundlagen: Algorithmen und Datenstrukturen Prof. Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Sommersemester 2010

Mehr

Kapitel 4. Streuen. (h K injektiv) k 1 k 2 K = h(k 1 ) h(k 2 )

Kapitel 4. Streuen. (h K injektiv) k 1 k 2 K = h(k 1 ) h(k 2 ) Kapitel 4 Streuen Wir behandeln nun Ipleentationen ungeordneter Wörterbücher, in denen die Schlüssel ohne Beachtung ihrer Sortierreihenfolge gespeichert werden dürfen, verlangen aber, dass es sich bei

Mehr

Algorithmische Methoden zur Netzwerkanalyse

Algorithmische Methoden zur Netzwerkanalyse Algorithmische Methoden zur Netzwerkanalyse Juniorprof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund für Theoretische

Mehr

Effiziente Algorithmen Lineares Programmieren 216. Schwache Dualität

Effiziente Algorithmen Lineares Programmieren 216. Schwache Dualität Effiziente Algorithmen Lineares Programmieren 216 Schwache Dualität Sei wieder z = max{ c T x Ax b, x 0 } (P ) und w = min{ b T u A T u c, u 0 }. (D) x ist primal zulässig, wenn x { x Ax b, x 0 }. u ist

Mehr

Verteilte Systeme Übung T5

Verteilte Systeme Übung T5 Verteilte Systeme Übung T5 IP- Multicast Exkurs W M-Übertragung an der ETH Nachbesprechung T5 Vorbesprechung T6 Ziele IP-Multicast Exkurs Eine praxistaugliche Technologie aufzeigen I P -Multicast = rel.

Mehr

Von den rationalen zu den reellen Zahlen

Von den rationalen zu den reellen Zahlen Skript zur Schülerwoche 016, zweiter Tag: Von den rationalen zu den reellen Zahlen Dr. Mira Schedensack 1. September 016 1 Einführung Dieser Vorlesung geht von der Menge der rationalen Zahlen aus und definiert

Mehr

Intervallaustauschtransformationen, Flüsse und das Lemma von Masur

Intervallaustauschtransformationen, Flüsse und das Lemma von Masur Intervallaustauschtransformationen, Flüsse und das Lemma von Masur Gregor Bethlen 1 Intervallaustauschtransformationen Stets sei in diesem Abschnitt I := [a, b] ein Intervall und a = a 0 < a 1

Mehr

Stochastik I. Vorlesungsmitschrift

Stochastik I. Vorlesungsmitschrift Stochastik I Vorlesungsmitschrift Ulrich Horst Institut für Mathematik Humboldt-Universität zu Berlin Inhaltsverzeichnis 1 Grundbegriffe 1 1.1 Wahrscheinlichkeitsräume..................................

Mehr

Zeitstetige Markov-Prozesse: Einführung und Beispiele

Zeitstetige Markov-Prozesse: Einführung und Beispiele Zeitstetige Markov-Prozesse: Einführung und Beispiele Simone Wielart 08.12.10 Inhalt Q-Matrizen und ihre Exponentiale Inhalt Q-Matrizen und ihre Exponentiale Zeitstetige stochastische Prozesse Inhalt Q-Matrizen

Mehr

Prinzipien der modernen Kryptographie Sicherheit

Prinzipien der modernen Kryptographie Sicherheit Prinzipien der modernen Kryptographie Sicherheit Prinzip 1 Sicherheitsziel Die Sicherheitsziele müssen präzise definiert werden. Beispiele für ungenügende Definitionen von Sicherheit Kein Angreifer kann

Mehr

Vorkurs Mathematik. Übungen Teil IV

Vorkurs Mathematik. Übungen Teil IV Vorkurs Mathematik Herbst 009 M. Carl E. Bönecke Skript und Übungen Teil IV. Folgen und die Konstruktion von R Im vorherigen Kapitel haben wir Z und Q über (formale) Lösungsmengen von Gleichungen der Form

Mehr

Bäume, Suchbäume und Hash-Tabellen

Bäume, Suchbäume und Hash-Tabellen Im folgenden Fokus auf Datenstrukturen, welche den assoziativen Zugriff (über einen bestimmten Wert als Suchkriterium) optimieren Bäume: Abbildung bzw. Vorberechnung von Entscheidungen während der Suche

Mehr

Die Kopplung von Markovketten und die Irrfahrt auf dem Torus

Die Kopplung von Markovketten und die Irrfahrt auf dem Torus Die Kopplung von Markovketten und die Irrfahrt auf dem Torus Verena Monschang Vortrag 20.05.20 Dieser Seminarvortrag thematisiert in erster Linie die Kopplung von Markovketten. Zu deren besseren Verständnis

Mehr

Hypertext Transfer Protocol

Hypertext Transfer Protocol Ingo Blechschmidt LUGA 6. Juli 2005 Inhalt 1 Geschichte Verwendung von HTTP 2 Typischer Ablauf Request-Methoden Header-Felder Keep-Alive 3 Nutzen von Proxies Proxies bei HTTP CONNECT-Methode

Mehr