Was ist Symmetrie? Tobias Dyckerhoff. 21. November Hausdorff Center for Mathematics Universität Bonn

Größe: px
Ab Seite anzeigen:

Download "Was ist Symmetrie? Tobias Dyckerhoff. 21. November Hausdorff Center for Mathematics Universität Bonn"

Transkript

1 Was ist Symmetrie? Tobias Dyckerhoff Hausdorff Center for Mathematics Universität Bonn 21. November 2015

2 Was haben und x x + 16 = 0 gemeinsam?

3 Erster Teil Symmetrie im geometrischen Kontext

4 Bin ich normal, wenn ich Symmetrie brauche? - Von Fanny Jimenez (Die Welt)

5 Wes Anderson: The fantastic Mr. Fox (2009)

6 Maurits Cornelis Escher: Convex and Concave (1955)

7 Ustad Ahmad Lahauri: Taj Mahal (1653)

8 Villa Maria (Hausdorff Center for Mathematics)

9 Plato: Timaeus (360 BC)

10 Johannes Kepler: Mysterium Cosmographicum (1596)

11 Wieso fasziniert uns Symmetrie?

12 Wieso fasziniert uns Symmetrie? - Chris Madden

13 Was ist Symmetrie? Eine Symmetrie einer geometrischen Figur F ist eine Abbildung von F auf sich selbst, die Abstände und Winkel erhält. Spiegelung Drehung Verschiebung

14 Wie kann man Symmetrie messen?

15 Symmetrien: Drehsymmetrie: Tetraeder

16 Drehsymmetrie: Tetraeder Symmetrien: Identität e

17 Drehsymmetrie: Tetraeder Symmetrien: Identität e 3 Drehungen a, b, c um 180 um diagonale Achsen

18 Drehsymmetrie: Tetraeder Symmetrien: Identität e 3 Drehungen a, b, c um 180 um diagonale Achsen 4 Drehungen d 1, d 2, d 3, d 4 um 120 um Höhenachsen

19 Drehsymmetrie: Tetraeder Symmetrien: Identität e 3 Drehungen a, b, c um 180 um diagonale Achsen 4 Drehungen d 1, d 2, d 3, d 4 um 120 um Höhenachsen 4 Drehungen d1 2, d 2 2, d 3 2, d 4 2 um 240 um Höhenachsen also insgesamt 12.

20 Symmetrien: Drehsymmetrie: Prisma

21 Drehsymmetrie: Prisma Symmetrien: Identität e

22 Drehsymmetrie: Prisma Symmetrien: Identität e 5 Drehungen v, v 2, v 3, v 4, v 5 um 60, 120, 180, 240, 300 um vertikale Achse

23 Drehsymmetrie: Prisma Symmetrien: Identität e 5 Drehungen v, v 2, v 3, v 4, v 5 um 60, 120, 180, 240, 300 um vertikale Achse 6 Drehungen h 1, h 2, h 3, h 4, h 5, h 6 um 180 um horizontale Achsen also insgesamt 12.

24 Multiplikationstafel: Tetraeder e a b c d 1 d 2 1 d 2 d 2 2 d 3 d 2 3 d 4 d 2 4 e e a b c d 1 d 2 1 d 2 d 2 2 d 3 d 2 3 d 4 d 2 4 a a e c b d 4 d 2 3 d 3 d 2 4 d 2 d 2 1 d 1 d 2 2 b b c e a d 2 d 2 4 d 1 d 2 3 d 4 d 2 2 d 3 d 2 1 c c b a e d 3 d 2 2 d 4 d 2 1 d 1 d 2 4 d 2 d 2 3 d 1 d 1 d 3 d 4 d 2 d 2 1 e d 2 3 b d 2 4 c d 2 2 a d 2 1 d 2 1 d 2 4 d 2 2 d 2 3 e d 1 c d 4 a d 2 b d 3 d 2 d 2 d 4 d 3 d 1 d 2 4 b d 2 2 e d 2 1 a d 2 3 c d 2 2 d 2 2 d 2 3 d 2 1 d 2 4 c d 3 e d 2 b d 4 a d 1 d 3 d 3 d 1 d 2 d 4 d 2 2 c d 2 4 a d 2 3 e d 2 1 b d 2 3 d 2 3 d 2 2 d 2 4 d 2 1 a d 4 b d 1 e d 3 c d 2 d 4 d 4 d 2 d 1 d 3 d 2 3 a d 2 1 c d 2 2 b d 2 4 e d 2 4 d 2 4 d 2 1 d 2 3 d 2 2 b d 2 a d 3 c d 1 e d 4

25 Multiplikationstafel: Prisma e v v 2 v 3 v 4 v 5 h 1 h 2 h 3 h 4 h 5 h 6 e e v v 2 v 3 v 4 v 5 h 1 h 2 h 3 h 4 h 5 h 6 v v v 2 v 3 v 4 v 5 e h 2 h 3 h 4 h 5 h 6 h 1 v 2 v 2 v 3 v 4 v 5 e v h 3 h 4 h 5 h 6 h 1 h 2 v 3 v 3 v 4 v 5 e v v 2 h 4 h 5 h 6 h 1 h 2 h 3 v 4 v 4 v 5 e v v 2 v 3 h 5 h 6 h 1 h 2 h 3 h 4 v 5 v 5 e v v 2 v 3 v 4 h 6 h 1 h 2 h 3 h 4 h 5 h 1 h 1 h 6 h 5 h 4 h 3 h 2 e v 5 v 4 v 3 v 2 v h 2 h 2 h 1 h 6 h 5 h 4 h 3 v e v 5 v 4 v 3 v 2 h 3 h 3 h 2 h 1 h 6 h 5 h 4 v 2 v e v 5 v 4 v 3 h 4 h 4 h 3 h 2 h 1 h 6 h 5 v 3 v 2 v e v 5 v 4 h 5 h 5 h 4 h 3 h 2 h 1 h 6 v 4 v 3 v 2 v e v 5 h 6 h 6 h 5 h 4 h 3 h 2 h 1 v 5 v 4 v 3 v 2 v e

26 Symmetrie auf mathematisch Definition Eine Gruppe ist eine Menge G mit einem Kompositionsgesetz a, b G a b G mit den folgenden Eigenschaften: 1. Es gilt (a b) c = a (b c) 2. Es gibt ein Identitätselement e G mit a e = a = e a. 3. Jedes a G hat ein Inverses a 1 G mit a a 1 = e = a 1 a.

27 Klassifikation der endlichen Drehgruppen C n (n 3) D n (n 1) S 4 A 5 A 4 A 5 S 4

28 Zweiter Teil Symmetrie im algebraischen Kontext

29 x 2 + px + q = 0 (I) Substitution: x = z p 2 (II) Gleichung wird zu z 2 = p2 4 q. (III) Lösungen für z sind { p 2 p 2 } 4 q, 4 q (IV) Lösungen für x sind { p 2 + p 2 4 q, p 2 p 2 4 q }

30 x 3 + ax 2 + bx + c = 0

31 x 3 + ax 2 + bx + c = 0 Niccolò Tartaglia ( )

32 Ehre sei Gott, 1534, dem 22. Februar, in Venedig. Diese sind die dreißig Aufgaben vorgeschlagen von mir, Antonio Maria Fior, an Sie, Herrn Niccolò Tartaglia: 1. Finde eine Zahl, die mit ihrer dritten Wurzel addiert sechs ergibt, Finde zwei Zahlen in doppeltem Verhältnis, so dass wenn das Quadrat der grösseren mit der kleineren multipliziert und dieses Produkt zu den ursprünglichen Zahlen addiert wird, das Ergebnis vierzig ist,

33 Ehre sei Gott, 1534, dem 22. Februar, in Venedig. Diese sind die dreißig Aufgaben vorgeschlagen von mir, Antonio Maria Fior, an Sie, Herrn Niccolò Tartaglia: 1. Finde eine Zahl, die mit ihrer dritten Wurzel addiert sechs ergibt, 6. x 3 + x = 6 2. Finde zwei Zahlen in doppeltem Verhältnis, so dass wenn das Quadrat der grösseren mit der kleineren multipliziert und dieses Produkt zu den ursprünglichen Zahlen addiert wird, das Ergebnis vierzig ist,

34 Ehre sei Gott, 1534, dem 22. Februar, in Venedig. Diese sind die dreißig Aufgaben vorgeschlagen von mir, Antonio Maria Fior, an Sie, Herrn Niccolò Tartaglia: 1. Finde eine Zahl, die mit ihrer dritten Wurzel addiert sechs ergibt, 6. x 3 + x = 6 2. Finde zwei Zahlen in doppeltem Verhältnis, so dass wenn das Quadrat der grösseren mit der kleineren multipliziert und dieses Produkt zu den ursprünglichen Zahlen addiert wird, das Ergebnis vierzig ist, 40. 4x 3 + 3x =

35 Tartaglias Formel (1535): Wenn der Kubus und die Dinge zusammen Gleich einer diskreten Zahl sind, Finde zwei Zahlen mit dieser als Differenz. Dann mache es zur Gewohnheit Dass deren Produkt immer soll gleich sein Genau zum Kubus einem Drittel der Dinge. Der Rest, als allgemeine Regel, Der Subtraktion deren Kubikwurzeln Ist gleich Deiner Unbekannten.

36 Tartaglias Formel (1535): Wenn der Kubus und die Dinge zusammen Gleich einer diskreten Zahl sind, Finde zwei Zahlen mit dieser als Differenz. Dann mache es zur Gewohnheit Dass deren Produkt immer soll gleich sein Genau zum Kubus einem Drittel der Dinge. Der Rest, als allgemeine Regel, Der Subtraktion deren Kubikwurzeln Ist gleich Deiner Unbekannten. } x 3 + px = q

37 Tartaglias Formel (1535): Wenn der Kubus und die Dinge zusammen Gleich einer diskreten Zahl sind, Finde zwei Zahlen mit dieser als Differenz. Dann mache es zur Gewohnheit Dass deren Produkt immer soll gleich sein Genau zum Kubus einem Drittel der Dinge. Der Rest, als allgemeine Regel, Der Subtraktion deren Kubikwurzeln Ist gleich Deiner Unbekannten. } x 3 + px = q } u v = q

38 Tartaglias Formel (1535): Wenn der Kubus und die Dinge zusammen Gleich einer diskreten Zahl sind, Finde zwei Zahlen mit dieser als Differenz. Dann mache es zur Gewohnheit Dass deren Produkt immer soll gleich sein Genau zum Kubus einem Drittel der Dinge. Der Rest, als allgemeine Regel, Der Subtraktion deren Kubikwurzeln Ist gleich Deiner Unbekannten. } x 3 + px = q } u v = q uv = ( p 3 )3

39 Tartaglias Formel (1535): Wenn der Kubus und die Dinge zusammen Gleich einer diskreten Zahl sind, Finde zwei Zahlen mit dieser als Differenz. Dann mache es zur Gewohnheit Dass deren Produkt immer soll gleich sein Genau zum Kubus einem Drittel der Dinge. Der Rest, als allgemeine Regel, Der Subtraktion deren Kubikwurzeln Ist gleich Deiner Unbekannten. } x 3 + px = q } u v = q uv = ( p 3 )3 x = 3 u 3 v

40 Tartaglias Formel (1535): Wenn der Kubus und die Dinge zusammen Gleich einer diskreten Zahl sind, Finde zwei Zahlen mit dieser als Differenz. Dann mache es zur Gewohnheit Dass deren Produkt immer soll gleich sein Genau zum Kubus einem Drittel der Dinge. Der Rest, als allgemeine Regel, Der Subtraktion deren Kubikwurzeln Ist gleich Deiner Unbekannten. x = 3 q 2 } x 3 + px = q } u v = q uv = ( p 3 )3 x = 3 u 3 v q p q 2 + q p3 27

41 x 4 + ax 3 + bx 2 + cx + d = 0

42 x 4 + ax 3 + bx 2 + cx + d = 0 Cardano und Ferrari (Ars magna 1545):

43 x 5 + ax 4 + bx 3 + cx 2 + dx + e = 0

44 x 5 + ax 4 + bx 3 + cx 2 + dx + e = 0 Evariste Galois ( )

45 x 5 + ax 4 + bx 3 + cx 2 + dx + e = 0 Wie symmetrisch ist diese Gleichung?

46 Symmetrie von polynomialen Gleichungen Jede polynomiale Gleichung x n + a n 1 x n a 0 = 0 ( ) mit Koeffizienten in Q hat Lösungen x 1, x 2,..., x n in C, so dass x n + a n 1 x n a 0 = (x x 1 )(x x 2 )... (x x n ). Eine Symmetrie der Gleichung ( ) ist eine Vertauschung der Lösungen die alle polynomialen Relationen zwischen x 1,..., x n mit Koeffizienten in Q erhält.

47 Beispiel: x 4 2 = 0 Lösungen: a = 4 2, b = i 4 2, c = 4 2, d = i 4 2. Polynomiale Relationen: Wegen x 4 2 = (x a)(x b)(x c)(x d) gelten die Gleichungen abcd = 2 abc + abd + acd + bcd = 0 ab + ac + ad + bc + bd + cd = 0 a + b + c + d = 0. Zusätzlich gelten a 2 b 2 = 2 b 2 c 2 = 2 a 2 c 2 = 2 c 2 d 2 = 2 b 2 d 2 = 2 d 2 a 2 = 2. a d b c Symmetriegruppe = D 4

48 Beispiel: x 3 + x 2 2x + 1 = 0 Lösungen: a = 2 cos( 2π 7 ), b = 2 cos( 4π 7 ), c = 2 cos( 6π 7 ). Polynomiale Relationen: Wegen x 3 + x 2 2x + 1 = (x a)(x b)(x c) gelten die Gleichungen abc = 1 ab + ac + bc = 2 a + b + c = 1. Zusätzlich gelten b = a 2 2 c = b 2 2 a = c 2 2. a b c Symmetriegruppe = C 3

49 Galois fundamentale Einsicht: Komplexität einer Gleichung Komplexität ihrer Symmetriegruppe Wenn die Symmetriegruppe zu kompliziert ist, dann können die Lösungen nicht durch eine explizite Formel beschrieben werden.

50 Was haben und x x + 16 = 0 gemeinsam?

51 Die Symmetriegruppe A 5. Dies ist die kleinste Gruppe die zu kompliziert ist. Deshalb hat die Gleichung x x + 16 = 0 keine explizite Lösungsformel, die nur die vier Grundrechenarten und Wurzeln einbezieht.

52 Danke!

Terme und Formeln Grundoperationen

Terme und Formeln Grundoperationen Terme und Formeln Grundoperationen Die Vollständige Anleitung zur Algebra vom Mathematiker Leonhard Euler (*1707 in Basel, 1783 in Petersburg) prägte den Unterricht und die Lehrmittel für lange Zeit. Euler

Mehr

Analytische Lösung algebraischer Gleichungen dritten und vierten Grades

Analytische Lösung algebraischer Gleichungen dritten und vierten Grades Analytische Lösung algebraischer Gleichungen dritten und vierten Grades Inhaltsverzeichnis 1 Einführung 1 2 Gleichungen dritten Grades 3 3 Gleichungen vierten Grades 7 1 Einführung In diesem Skript werden

Mehr

Algebraische Gleichungen. Martin Brehm February 2, 2007

Algebraische Gleichungen. Martin Brehm February 2, 2007 Algebraische Gleichungen Martin Brehm February, 007 1. Der Begriff Algebra Algebraische Gleichungen Durch das herauskristalisieren von mehreren Teilgebieten der Algebra ist es schwer geworden eine einheitliche

Mehr

Historisches zur Gruppentheorie

Historisches zur Gruppentheorie Historisches zur Gruppentheorie Dipl.-Inform. Wolfgang Globke Institut für Algebra und Geometrie Arbeitsgruppe Differentialgeometrie Universität Karlsruhe 1 / 20 Gruppen: Abstrakte Definition Eine Gruppe

Mehr

Gleichungen dritten und vierten Grades und Konstruktionen mit mehr als Zirkel und Lineal

Gleichungen dritten und vierten Grades und Konstruktionen mit mehr als Zirkel und Lineal 1 Gleichungen dritten und vierten Grades und Konstruktionen mit mehr als Zirkel und Lineal Holger Stephan Weierstraß Institut für Angewandte Analysis und Stochastic (WIAS) e-mail: stephan@wias-berlin.de

Mehr

Kubische und quartische Gleichungen:

Kubische und quartische Gleichungen: Kubische und quartische Gleichungen: Die ersten Mathematiker, die allgemeine Lösungswege für kubische und quartische Gleichungen gefunden haben, waren die italienischen Mathematiker der Renaissance (ca.

Mehr

Kubische Gleichungen als Brutkasten komplexer Zahlen

Kubische Gleichungen als Brutkasten komplexer Zahlen Kubische Gleichungen als Brutkasten komplexer Zahlen Benjamin Klopsch Mathematisches Institut Heinrich-Heine-Universität zu Düsseldorf Tag der Forschung November 2006 Mathematik macht das Denkbare möglich.

Mehr

02. Komplexe Zahlen. a = Re z ist der Realteil von z, b = Im z der Imaginärteil von z.

02. Komplexe Zahlen. a = Re z ist der Realteil von z, b = Im z der Imaginärteil von z. 0. Komplexe Zahlen Da für alle x R gilt dass x 0, hat die Gleichung x +1 = 0 offenbar keine reellen Lösungen. Rein formal würden wir x = ± 1 erhalten, aber dies sind keine reellen Zahlen. Um das Problem

Mehr

Brüche, Polynome, Terme

Brüche, Polynome, Terme KAPITEL 1 Brüche, Polynome, Terme 1.1 Zahlen............................. 1 1. Lineare Gleichung....................... 3 1.3 Quadratische Gleichung................... 6 1.4 Polynomdivision........................

Mehr

Johann-Michael-Fischer-Gymnasium Kollegstufenjahrgang 1995/97 Burglengenfeld FACHARBEIT. aus dem Fach. Mathematik. Erzielte Note: in Worten:

Johann-Michael-Fischer-Gymnasium Kollegstufenjahrgang 1995/97 Burglengenfeld FACHARBEIT. aus dem Fach. Mathematik. Erzielte Note: in Worten: Michael Manglberger mangl@gmx.net Johann-Michael-Fischer-Gymnasium Kollegstufenjahrgang 995/97 Burglengenfeld FACHARBEIT aus dem Fach Mathematik Thema: Bestimmung exakter Lösungen der Gleichung: ax + bx

Mehr

2.9 Die komplexen Zahlen

2.9 Die komplexen Zahlen LinAlg II Version 1 3. April 2006 c Rudolf Scharlau 121 2.9 Die komplexen Zahlen Die komplexen Zahlen sind unverzichtbar für nahezu jede Art von höherer Mathematik. Systematisch gehören sie zum einen in

Mehr

40. Österreichische Mathematik-Olympiade Kurswettbewerb Lösungen

40. Österreichische Mathematik-Olympiade Kurswettbewerb Lösungen 40. Österreichische Mathematik-Olympiade Kurswettbewerb Lösungen TU Graz, 29. Mai 2009 1. Für welche Primzahlen p ist 2p + 1 die dritte Potenz einer natürlichen Zahl? Lösung. Es soll also gelten 2p + 1

Mehr

(Man sagt dafür auch, dass die Teilmenge U bezüglich der Gruppenoperationen abgeschlossen sein muss.)

(Man sagt dafür auch, dass die Teilmenge U bezüglich der Gruppenoperationen abgeschlossen sein muss.) 3. Untergruppen 19 3. Untergruppen Nachdem wir nun einige grundlegende Gruppen kennengelernt haben, wollen wir in diesem Kapitel eine einfache Möglichkeit untersuchen, mit der man aus bereits bekannten

Mehr

Komplexe Zahlen. Bemerkungen. (i) Man zeigt leicht, dass C mit diesen beiden Operationen

Komplexe Zahlen. Bemerkungen. (i) Man zeigt leicht, dass C mit diesen beiden Operationen Komplexe Zahlen Da für jede reelle Zahl x R gilt dass x 0, besitzt die Gleichung x + 1 = 0 keine Lösung in R bzw. das Polynom P (x) = x + 1 besitzt in R (!) keine Nullstelle. Dies führt zur Frage, ob es

Mehr

SYMMETRIE FRANZ LEMMERMEYER

SYMMETRIE FRANZ LEMMERMEYER SYMMETRIE FRANZ LEMMERMEYER Symmetrie ist ein außerordentlich wichtiges Konzept in der Mathematik und der Physik. Ist beispielsweise (x, y) eine Lösung des Gleichungssystems x + y = 5, xy = 1, so muss

Mehr

Komplexe Zahlen und Geometrie

Komplexe Zahlen und Geometrie Komplexe Zahlen und Geometrie Dr. Axel Schüler, Univ. Leipzig März 1998 Zusammenfassung Ziel dieses Beitrages ist es, die komplexen Zahlen bei einfachen geometrischen Aufgaben einzusetzen. Besonderes Augenmerk

Mehr

Graphen quadratischer Funktionen und deren Nullstellen

Graphen quadratischer Funktionen und deren Nullstellen Binomische Formeln Mithilfe der drei binomischen Formeln kann man Funktionen bzw. Gleichungen vereinfachen. 1. Binomische Formel ( Plusformel ) a 2 + 2 a b+ b 2 = (a+ b) 2 Herleitung: (a+ b) 2 = (a+ b)

Mehr

Lösbarkeit linearer Gleichungssysteme

Lösbarkeit linearer Gleichungssysteme Lösbarkeit linearer Gleichungssysteme Lineares Gleichungssystem: Ax b, A R m n, x R n, b R m L R m R n Lx Ax Bemerkung b 0 R m Das Gleichungssystem heißt homogen a A0 0 Das LGS ist stets lösbar b Wenn

Mehr

Karoline Grandy und Renate Schöfer

Karoline Grandy und Renate Schöfer Karoline Grandy und Renate Schöfer 1 Lemma 1 (Haruki) In einem Kreis seien zwei sich nicht schneidende Sehnen AB und CD gegeben. Außerdem wähle einen beliebiger Punkt P auf dem Kreisbogen zwischen A und

Mehr

Komplexe Zahlen. Allgemeines. Definition. Darstellungsformen. Umrechnungen

Komplexe Zahlen. Allgemeines. Definition. Darstellungsformen. Umrechnungen Komplexe Zahlen Allgemeines Definition Eine komplexe Zahl z x + y i besteht aus einem Realteil Re(z) x und einem Imaginärteil Im(z) y. Der Imaginärteil wird mit der Imaginären-Einheit i multipliziert.

Mehr

Aufgaben des MSG-Zirkels 10b Schuljahr 2007/2008

Aufgaben des MSG-Zirkels 10b Schuljahr 2007/2008 Aufgaben des MSG-Zirkels 10b Schuljahr 2007/2008 Alexander Bobenko und Ivan Izmestiev Technische Universität Berlin 1 Hausaufgaben vom 12.09.2007 Zahlentheorie 1 Aufgabe 1.1 Berechne die (quadratischen)

Mehr

Gleichung auflösen oder eben nicht

Gleichung auflösen oder eben nicht Gleichung auflösen oder eben nicht Universität Kassel 24. Februar 2006 Gliederung 1 Gleichungen auflösen Quadratische Gleichungen Satz von Vieta 2 Elementarsymmetrische Funktionen Elementarsymmetrische

Mehr

Polynome Teil IV: Hilfspolynome oder Eine Erweiterung des Satzes von VIETA.

Polynome Teil IV: Hilfspolynome oder Eine Erweiterung des Satzes von VIETA. Die WURZEL Werkstatt Mathematik Polynome Teil IV: Hilfspolynome oder Eine Erweiterung des Satzes von VIETA. Was hat ein Gleichungssystem der Art x + y + z = 5 x 2 + y 2 + z 2 = 29 xyz = 24 mit Polynomen

Mehr

Proseminar Algebra und diskrete Mathematik. SS 2017

Proseminar Algebra und diskrete Mathematik. SS 2017 Proseminar Algebra und diskrete Mathematik. SS 2017 Bachelorstudium Lehramt Sekundarstufe (Allgemeinbildung) Lehramtsstudium Unterrichtsfach Mathematik Ganze Zahlen: 1. Zeigen Sie folgende Teibarkeiten

Mehr

Übungsblatt 12: Abschluss

Übungsblatt 12: Abschluss Übungsblatt 1: Abschluss 1. PRIMITIVE ELEMENTE V 1.1. (a) Sei E K eine endliche Galoiserweiterung. Zeigen Sie (mit Hilfe der Galoiskorrespondenz), dass für α E die beiden Aussagen äquivalent sind: (i)

Mehr

1. Definition der komplexen Zahlen Ziel: neuerliche Zahlbereichserweiterung, so dass auch Quadratwurzeln aus negativen Zahlen

1. Definition der komplexen Zahlen Ziel: neuerliche Zahlbereichserweiterung, so dass auch Quadratwurzeln aus negativen Zahlen Komplexe Zahlen Mathe I / 12.11.08 1. Definition der komplexen Zahlen Ziel: neuerliche Zahlbereichserweiterung, so dass auch Quadratwurzeln aus negativen Zahlen gezogen werden können (in nicht möglich!).

Mehr

Einführung. Ablesen von einander zugeordneten Werten

Einführung. Ablesen von einander zugeordneten Werten Einführung Zusammenhänge zwischen Größen wie Temperatur, Geschwindigkeit, Lautstärke, Fahrstrecke, Preis, Einkommen, Steuer etc. werden mit beschrieben. Eine Zuordnung f, die jedem x A genau ein y B zuweist,

Mehr

2 Die Algebra der Matrizen

2 Die Algebra der Matrizen Die Algebra der Matrizen Ein Hauptziel der Vorlesung zur Linearen Algebra besteht darin, Aussagen über die Lösungsmenge linearer Gleichungssysteme zu machen Etwa ob das Gleichungssystem x y + z 1 x + y

Mehr

47. Österreichische Mathematik-Olympiade Landeswettbewerb für Anfänger/innen Lösungen

47. Österreichische Mathematik-Olympiade Landeswettbewerb für Anfänger/innen Lösungen 47. Österreichische Mathematik-Olympiade Landeswettbewerb für Anfänger/innen Lösungen 16. Juni 016 Aufgabe 1. Man bestimme alle natürlichen Zahlen n mit zwei verschiedenen positiven Teilern, die von n

Mehr

Institut für Mathematik Geometrie und Lineare Algebra J. Schönenberger-Deuel

Institut für Mathematik Geometrie und Lineare Algebra J. Schönenberger-Deuel Lösungen Übung 6 Aufgabe 1. a.) Idee: Gesucht sind p, q mit pq = 6 2 und p + q = 13. Dies entspricht genau der Situation im Höhensatz. Konstruktion: 1. Punkte A, B mit AB = 13 2. Gerade g AB mit dist(g,

Mehr

Da diese Zahlenmenge nicht unter Subtraktion abgeschlossen ist, erweitert man sie zur Menge der ganzen Zahlen

Da diese Zahlenmenge nicht unter Subtraktion abgeschlossen ist, erweitert man sie zur Menge der ganzen Zahlen Kapitel 2 Die reellen Zahlen Die reellen Zahlen werden zunächst und vorübergehend als Dezimalzahlen eingeführt. Die wichtigsten Eigenschaften werden aus dieser Darstellung hergeleitet, mit denen dann die

Mehr

Gleichungen höheren Grades und Konstruktionen mit Zirkel und Lineal als Motivation für komplexe Zahlen

Gleichungen höheren Grades und Konstruktionen mit Zirkel und Lineal als Motivation für komplexe Zahlen 1 Gleichungen höheren Grades und Konstruktionen mit Zirkel und Lineal als Motivation für komplexe Zahlen Holger Stephan Weierstraß Institut für Angewandte Analysis und Stochastic (WIAS) e-mail: stephan@wias-berlin.de

Mehr

Vierecke. 7.1 Grundwissen Mathematik Geometrie Klasse 7. Drachenviereck: Viereck, bei dem eine Diagonale Symmetrieachse ist

Vierecke. 7.1 Grundwissen Mathematik Geometrie Klasse 7. Drachenviereck: Viereck, bei dem eine Diagonale Symmetrieachse ist 7.1 Grundwissen Mathematik Geometrie Klasse 7 Vierecke Trapez: Viereck, bei dem zwei Gegenseiten parallel sind gleichschenkliges Trapez: Trapez, bei dem die beiden Schenkel c gleich lang sind (b = d) d

Mehr

Übungsaufgabe z. Th. lineare Funktionen und Parabeln

Übungsaufgabe z. Th. lineare Funktionen und Parabeln Übungsaufgabe z. Th. lineare Funktionen und Parabeln Gegeben sind die Parabeln: h(x) = 8 x + 3 x - 1 9 und k(x) = - 8 x - 1 1 8 x + 11 a) Bestimmen Sie die Koordinaten der Schnittpunkte A und C der Graphen

Mehr

Wie misst man Symmetrie?

Wie misst man Symmetrie? Wie misst man Symmetrie? Was ist Symmetrie? Beispiele Bewegungen Friesgruppen Verallgemeinerungen Was ist Symmetrie denn eigentlich? Kann man sie überhaupt messen? Symmetrie = Gleichmaß August Ferdinand

Mehr

Zahlen und metrische Räume

Zahlen und metrische Räume Zahlen und metrische Räume Natürliche Zahlen : Die natürlichen Zahlen sind die grundlegendste Zahlenmenge, da man diese Menge für das einfache Zählen verwendet. N = {1, 2, 3, 4,...} bzw. N 0 = {0, 1, 2,

Mehr

Aufgabensammlung Klasse 8

Aufgabensammlung Klasse 8 Aufgabensammlung Klasse 8 Inhaltsverzeichnis 1 Potenzen mit natürlichen Hochzahlen 3 1.1 Rechenregeln für das Rechnen mit Potenzen..................... 3 1.1.1 Addition und Subtraktion von Potenzen...................

Mehr

Inhaltsübersicht. Definition und erste Eigenschaften komplexer Zahlen

Inhaltsübersicht. Definition und erste Eigenschaften komplexer Zahlen Inhaltsübersicht Kapitel 4: Die Macht des Imaginären: Komplexe Zahlen Definition und erste Eigenschaften komplexer Zahlen Die Polardarstellung komplexer Zahlen Polynome im Komplexen Exponentialfunktion

Mehr

Klausur (Modulprüfung) zum Lehrerweiterbildungskurs Geometrie WiSe 2014/2015 am

Klausur (Modulprüfung) zum Lehrerweiterbildungskurs Geometrie WiSe 2014/2015 am Klausur (Modulprüfung) zum Lehrerweiterbildungskurs Geometrie WiSe 2014/2015 am 23.1.2015 Bearbeiten Sie bitte zwei der drei folgenden Aufgaben! Falls Sie alle drei Aufgaben bearbeitet haben sollten, kennzeichnen

Mehr

Hauptprüfung Abiturprüfung 2015 (ohne CAS) Baden-Württemberg

Hauptprüfung Abiturprüfung 2015 (ohne CAS) Baden-Württemberg Baden-Württemberg: Abitur 01 Pflichtteil www.mathe-aufgaben.com Hauptprüfung Abiturprüfung 01 (ohne CAS) Baden-Württemberg Pflichtteil Hilfsmittel: keine allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com

Mehr

Abbildungen im Koordinatensystem

Abbildungen im Koordinatensystem Klasse 0 I. Drehe die Gerade g mit y = x um O(0/0) mit α = 5. Bestimme die Gleichung der Bildgeraden g. Berechne das Maß des Winkels zwischen g und g.. Die Gerade g mit y = x + 5 soll um O(0/0) so gedreht

Mehr

Lösung von Gleichungen vierten Grades Carolin Dick

Lösung von Gleichungen vierten Grades Carolin Dick Lösung von Gleichungen vierten Grades 1 Lösung für x 4 + ax 3 + bx 2 + cx + d = 0: 2 Geschichtlicher Hintergrund 1539: Cardano erhält die Formel zur Lösung kubischer Gleichungen 1540: Cardanos Schüler

Mehr

Tutorium Mathematik II, M Lösungen

Tutorium Mathematik II, M Lösungen Tutorium Mathematik II, M Lösungen März 03 *Aufgabe Bestimmen Sie durch Hauptachsentransformation Lage und Typ der Kegelschnitte (a) 3x + 4x x + 3x 4x = 0, (b) 3x + 4x x + 3x 4x 6 = 0, (c) 3x + 4x x +

Mehr

Kapitel 3. Kapitel 3 Gleichungen

Kapitel 3. Kapitel 3 Gleichungen Gleichungen Inhalt 3.1 3.1 Terme, Gleichungen, Lösungen x 2 2 + y 2 2 3.2 3.2 Verfahren zur zur Lösung von von Gleichungen 3x 3x + 5 = 14 14 3.3 3.3 Gleichungssysteme Seite 2 3.1 Terme, Gleichungen, Lösungen

Mehr

Zahlen und Gleichungen

Zahlen und Gleichungen Kapitel 2 Zahlen und Gleichungen 21 Reelle Zahlen Die Menge R der reellen Zahlen setzt sich zusammen aus den rationalen und den irrationalen Zahlen Die Mengen der natürlichen Zahlen N, der ganzen Zahlen

Mehr

Komplexe Aufgaben. Trigonometrische Funktionen. Eine Präsentation von Johannes & Nikola

Komplexe Aufgaben. Trigonometrische Funktionen. Eine Präsentation von Johannes & Nikola Komplexe Aufgaben Trigonometrische Funktionen Eine Präsentation von Johannes & Nikola Aufgabenstellung 8.Strandpromenade Der Aufgang der Strandpromenade zu einem 8 m hohen Deich soll in der Waagerechten

Mehr

Brückenkurs Mathematik für Studierende der Chemie

Brückenkurs Mathematik für Studierende der Chemie Brückenkurs Mathematik für Studierende der Chemie PD Dr Dirk Andrae (nach Vorlagen von Dr Werner Gans vom WS 2015/2016) Institut für Chemie und Biochemie Freie Universität Berlin 20 September 2016 1 Teil:

Mehr

Gruppentheorie und Symmetrie in der Chemie

Gruppentheorie und Symmetrie in der Chemie Gruppentheorie und Symmetrie in der Chemie Martin Schütz Institut für theoretische Chemie, Universität Stuttgart Pfaffenwaldring 55, D-70569 Stuttgart Stuttgart, 26. April 2002 Mathematische Definition

Mehr

Mathematischer Vorkurs NAT-ING1

Mathematischer Vorkurs NAT-ING1 Mathematischer Vorkurs NAT-ING1 (02.09. 20.09.2013) Dr. Robert Strehl WS 2013-2014 Mathematischer Vorkurs TU Dortmund Seite 1 / 40 Kapitel 12 Komplexe Zahlen Kapitel 12 Komplexe Zahlen Mathematischer Vorkurs

Mehr

Lineare Algebra I. Prof. Dr. M. Rost. Übungen Blatt 2 (WS 2010/2011) Abgabetermin: Donnerstag, 28. Oktober.

Lineare Algebra I. Prof. Dr. M. Rost. Übungen Blatt 2 (WS 2010/2011) Abgabetermin: Donnerstag, 28. Oktober. Lineare Algebra I Prof. Dr. M. Rost Übungen Blatt 2 (WS 2010/2011) Abgabetermin: Donnerstag, 28. Oktober http://www.math.uni-bielefeld.de/~rost/la1 Erinnerungen und Ergänzungen zur Vorlesung: Im Folgenden

Mehr

Name, Klasse, Jahr Schwierigkeit Mathematisches Thema Frederieke Sperke x Funktionsanpassung

Name, Klasse, Jahr Schwierigkeit Mathematisches Thema Frederieke Sperke x Funktionsanpassung Frederieke Sperke 12 16.11.2009 x Funktionsanpassung Verbinde die Strecken zwischen den Punkten A(-4/1) und B(-3/-3)mit der Strecke zwischen den Punkten C(4/2) und D(3/-1) knickfrei und exakt miteinander.

Mehr

Einleitung, historischer Hintergrund

Einleitung, historischer Hintergrund i i i Einleitung, historischer Hintergrund Der kürzester Weg zwischen zwei Wahrheiten im Reellen verläuft über das Komplexe. (Hadamard 1865-1963) 1-E1 unmöglich, eingebildet, imaginär 1-E2 Carl Friedrich

Mehr

9. Geometrische Konstruktionen und Geometrische Zahlen.

9. Geometrische Konstruktionen und Geometrische Zahlen. 9. Geometrische Konstruktionen und Geometrische Zahlen. Die Dreiteilungsgleichnung. Das Problem der Dreiteilung des Winkels wurde von Descartes vollständig gelöst. Dies ist in der Geometrie von Descartes

Mehr

I. Reelle Zahlen GRUNDWISSEN MATHEMATIK - 9. KLASSE

I. Reelle Zahlen GRUNDWISSEN MATHEMATIK - 9. KLASSE I. Reelle Zahlen 1. Die Menge der rationalen Zahlen und die Menge der irrationalen Zahlen bilden zusammen die Menge der reellen Zahlen. Nenne Beispiele für rationale und irrationale Zahlen.. Aus negativen

Mehr

Komplexe Zahlen. Axel Schüler, Leipzig Juli 2003

Komplexe Zahlen. Axel Schüler, Leipzig Juli 2003 Komplexe Zahlen Axel Schüler, Leipzig schueler@mathematikuni-leipzigde Juli 2003 Da die komplexen Zahlen nicht mehr im Lehrplan stehen, sollen hier die Grundlagen gelegt werden Eine sehr schöne Einführung

Mehr

17 Grundrechenarten für komplexe Zahlen

17 Grundrechenarten für komplexe Zahlen 7 Grundrechenarten für komplexe Zahlen Jörn Loviscach Versionsstand: 2. September 203, 5:58 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen beim Ansehen der Videos: http://www.j3l7h.de/videos.html

Mehr

Outline. 1 Vektoren im Raum. 2 Komponenten und Koordinaten. 3 Skalarprodukt. 4 Vektorprodukt. 5 Analytische Geometrie. 6 Lineare Räume, Gruppentheorie

Outline. 1 Vektoren im Raum. 2 Komponenten und Koordinaten. 3 Skalarprodukt. 4 Vektorprodukt. 5 Analytische Geometrie. 6 Lineare Räume, Gruppentheorie Outline 1 Vektoren im Raum 2 Komponenten und Koordinaten 3 Skalarprodukt 4 Vektorprodukt 5 Analytische Geometrie 6 Lineare Räume, Gruppentheorie Roman Wienands (Universität zu Köln) Mathematik II für Studierende

Mehr

Ganzrationale Funktionen

Ganzrationale Funktionen Eine Dokumentation von Sandro Antoniol Klasse 3f Mai 2003 Inhaltsverzeichnis: 1. Einleitung...3 2. Grundlagen...4 2.1. Symmetrieeigenschaften von Kurven...4 2.1.1. gerade Exponenten...4 2.1.2. ungerade

Mehr

Theorie 3: Graphische Veranschaulichung der Fallunterscheidung

Theorie 3: Graphische Veranschaulichung der Fallunterscheidung Die Formel von Cardano - mit grahischer Lösung Theorie : Grahische Veranschaulichung der Fallunterscheidung Gegeben ist eine kubische Gleichung in reduzierter Form: x x = 0 mit 0 IR. Definieren Sie einen

Mehr

1.3 Gleichungen und Ungleichungen

1.3 Gleichungen und Ungleichungen 1.3 Gleichungen und Ungleichungen Ein zentrales Thema der Algebra ist das Lösen von Gleichungen. Ganz einfach ist dies für sogenannte lineare Gleichungen a x = b Wenn hier a 0 ist, können wir beide Seiten

Mehr

Teil I.2 Lösen von Bestimmungsgleichungen

Teil I.2 Lösen von Bestimmungsgleichungen Brückenkurs Mathematik Teil I.2 Lösen von Bestimmungsgleichungen Staatliche Studienakademie Leipzig Studienrichtung Informatik Dr. Susanne Schneider 12. September 2011 Bestimmungsgleichungen 1 Reelle Zahlen

Mehr

3 Strukturen aus der Algebra: Gruppe, Ringe, Körper

3 Strukturen aus der Algebra: Gruppe, Ringe, Körper 3 Strukturen aus der Algebra: Gruppe, Ringe, Körper 3.1 Gruppen Vergleicht man die Gesetze (A1 (A4 und (M1 (M4, so stellt man eine grosse Ähnlichkeit in den Strukturen fest. Man kann das zugrundeliegende

Mehr

2. alle Grundrechenarten +,, und / uneingeschränkt durchführbar sind und die Rechenregeln für R erhalten bleiben.

2. alle Grundrechenarten +,, und / uneingeschränkt durchführbar sind und die Rechenregeln für R erhalten bleiben. 41 3 Komplexe Zahlen Für alle reellen Zahlen x gilt x 2 0. Es gibt also keine reelle Zahl, welche Lösung der Gleichung x 2 +1 = 0 ist. Allgemein hat die quadratische Gleichung ax 2 +bx+c = 0, a,b,c R nur

Mehr

24.1 Überblick. 24.2 Beispiele. A. Bestimmen einer ganzrationalen Funktion. 24. Interpolation mit Ableitungen

24.1 Überblick. 24.2 Beispiele. A. Bestimmen einer ganzrationalen Funktion. 24. Interpolation mit Ableitungen 4. Interpolation mit Ableitungen 4. Interpolation mit Ableitungen 4.1 Überblick Die Interpolationsaufgabe haben wir bereits in Kapitel 7 (Band Analysis 1) untersucht. Als Auffrischung: Zu n vorgegebenen

Mehr

Stefan Ruzika. 24. April 2016

Stefan Ruzika. 24. April 2016 Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz 24. April 2016 Stefan Ruzika 2: Körper 24. April 2016 1 / 21 Gliederung 1 1 Schulstoff 2 Körper Definition eines Körpers

Mehr

Zahlen und metrische Räume

Zahlen und metrische Räume Zahlen und metrische Räume Natürliche Zahlen : Die natürlichen Zahlen sind die grundlegendste Zahlenmenge, da man diese Menge für das einfache Zählen verwendet. N = {1, 2, 3, 4,...} Ganze Zahlen : Aus

Mehr

2 Rechentechniken. 2.1 Potenzen und Wurzeln. Übersicht

2 Rechentechniken. 2.1 Potenzen und Wurzeln. Übersicht 2 Rechentechniken Übersicht 2.1 Potenzen und Wurzeln.............................................. 7 2.2 Lösen linearer Gleichungssysteme..................................... 8 2.3 Polynome.........................................................

Mehr

Wiederholung der Grundlagen

Wiederholung der Grundlagen Terme Schon wieder! Terme nerven viele von euch, aber sie kommen immer wieder. Daher ist es wichtig, dass man besonders die Grundlagen drauf hat. Bevor es also mit der richtigen Arbeit los geht solltest

Mehr

GRUNDLAGEN MATHEMATIK

GRUNDLAGEN MATHEMATIK Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik GRUNDLAGEN MATHEMATIK 6. Komplexe Zahlen Prof. Dr. Gunar Matthies Wintersemester 2015/16 G. Matthies Grundlagen

Mehr

Erzeugende Funktionen

Erzeugende Funktionen Hallo! Erzeugende Funktionen sind ein Mittel um lineare Rekursionen schneller ausrechnen zu können. Es soll die Funktion nicht mehr als Rekursion angeschrieben werden, sondern so, dass man nur n einsetzen

Mehr

zur Modulprüfung zum Lehrerweiterbildungskurs Geometrie am

zur Modulprüfung zum Lehrerweiterbildungskurs Geometrie am Nachklausur zur Modulprüfung zum Lehrerweiterbildungskurs Geometrie am 12.7.17 Name, Vorname Matrikel-Nr. Aufg.1 Aufg.2 Aufg.3 Aufg.4 Σ Note bzw. Kennzeichen Punkte Bearbeiten Sie bitte drei der vier folgenden

Mehr

Multiplikation und Division in Polarform

Multiplikation und Division in Polarform Multiplikation und Division in Polarform 1-E1 1-E Multiplikation und Division in Polarform: Mathematisches Rüstzeug n m b b = b n+m bn bm = bn m ( b n )m = b n m Additionstheoreme: cos 1 = cos 1 cos sin

Mehr

6.1.2 Bem.: Für Vierecke ist der Begriff Innenwinkel im allgemeinen nicht sinnvoll. Skizze.

6.1.2 Bem.: Für Vierecke ist der Begriff Innenwinkel im allgemeinen nicht sinnvoll. Skizze. 6 Flächeninhalt 6.1 Vierecke 6.1.1 Def.: Seien A, B, C, D vier verschiedene Punkte in E, keine drei auf einer Geraden, so dass AB, BC, CD, DA einander höchstens in Endpunkten treffen. Dann bilden diese

Mehr

Koordinatengeometrie. Aufgabe 4 Untersuchen Sie die Funktion f(x) = x² 9.

Koordinatengeometrie. Aufgabe 4 Untersuchen Sie die Funktion f(x) = x² 9. Koordinatengeometrie Aufgabe 1 Gegeben sind der Punkt P (-1; 9) sowie die Geraden g: 3x y + 6 = 0 und h: x + 4y 8 = 0. a) Die Geraden g und h schneiden einander im Punkt S. Berechnen Sie die exakten Koordinaten

Mehr

Mathematische Probleme, SS 2015 Montag $Id: quadratisch.tex,v /06/22 12:08:41 hk Exp $

Mathematische Probleme, SS 2015 Montag $Id: quadratisch.tex,v /06/22 12:08:41 hk Exp $ Mathematische Probleme, SS 15 Montag 6 $Id: quadratischtex,v 111 15/06/ 1:08:41 hk Exp $ 4 Kegelschnitte 41 Quadratische Gleichungen In der letzten Sitzung hatten wir die Normalform (1 ɛ )x + y pɛx p =

Mehr

Vektorrechnung Aufgabe aus Abiturprüfung Bayern GK

Vektorrechnung Aufgabe aus Abiturprüfung Bayern GK Vektorrechnung Aufgabe aus Abiturprüfung Bayern GK 1. In einem kartesischen Koordinatensystem sind der Punkt C(4 4, die Ebene E 1 : x 1 x +x 3 + = und die Gerade g: x = ( + λ( 1 gegeben. a Zeigen Sie,

Mehr

Download. Basics Mathe Gleichungen mit Klammern und Binomen. Einfach und einprägsam mathematische Grundfertigkeiten wiederholen.

Download. Basics Mathe Gleichungen mit Klammern und Binomen. Einfach und einprägsam mathematische Grundfertigkeiten wiederholen. Download Michael Franck Basics Mathe Gleichungen mit Klammern und Binomen Einfach und einprägsam mathematische Grundfertigkeiten wiederholen Downloadauszug aus dem Originaltitel: Basics Mathe Gleichungen

Mehr

Zahlen und elementares Rechnen

Zahlen und elementares Rechnen und elementares Rechnen Christian Serpé Universität Münster 7. September 2011 Christian Serpé (Universität Münster) und elementares Rechnen 7. September 2011 1 / 51 Gliederung 1 2 Elementares Rechnen 3

Mehr

Mathematik. FOS 11. Jahrgangsstufe (technisch) c 2003, Thomas Barmetler Stand: 23. Juli Kontakt und weitere Infos:

Mathematik. FOS 11. Jahrgangsstufe (technisch) c 2003, Thomas Barmetler Stand: 23. Juli Kontakt und weitere Infos: FOS 11. Jahrgangsstufe (technisch) c 2003, Thomas Barmetler Stand: 23. Juli 2004 Kontakt und weitere Infos: www.schule.barmetler.de Inhaltsverzeichnis 1 Wiederholung 5 1.1 Bruchrechnen.............................

Mehr

Geometrie. Homepage zur Veranstaltung: Lehre Geometrie

Geometrie. Homepage zur Veranstaltung:  Lehre Geometrie Geometrie 4.1 Geometrie Homepage zur Veranstaltung: http://www.juergen-roth.de Lehre Geometrie Geometrie 4.2 Inhaltsverzeichnis Geometrie 1 Axiome der Elementargeometrie 2 Kongruenzabbildungen 3 Längen-,

Mehr

Matrizen und Determinanten, Aufgaben

Matrizen und Determinanten, Aufgaben Matrizen und Determinanten, Aufgaben Inhaltsverzeichnis 1 Multiplikation von Matrizen 1 11 Lösungen 3 2 Determinanten 6 21 Lösungen 7 3 Inverse Matrix 8 31 Lösungen 9 4 Matrizengleichungen 11 41 Lösungen

Mehr

4.5. Ganzrationale Funktionen

4.5. Ganzrationale Funktionen .5. Ganzrationale Funktionen Definition Eine Funktion der Gestalt f(x) = a n x n a n 1 x n 1... a 2 x 2 a 1 x a 0 mit reellen Koeffizienten a n, a n 1,... und a n 0 heißt ganzrationale Funktion n-ten Grades

Mehr

18 Elementare Funktionen

18 Elementare Funktionen 18 Elementare Funktionen 18.1 Polynome und rationale Funktionen Polynome und rationale Funktionen haben die angenehme Eigenschaft, dass man ihre Funktionswerte leicht, nämlich nur unter Verwendung der

Mehr

9. Woche: Elliptische Kurven - Gruppenarithmetik. 9. Woche: Elliptische Kurven - Gruppenarithmetik 187/ 238

9. Woche: Elliptische Kurven - Gruppenarithmetik. 9. Woche: Elliptische Kurven - Gruppenarithmetik 187/ 238 9 Woche: Elliptische Kurven - Gruppenarithmetik 9 Woche: Elliptische Kurven - Gruppenarithmetik 187/ 238 Elliptische Kurven Ḋefinition Elliptische Kurve Eine elliptische Kurve E über dem Körper K ist eine

Mehr

Symmetrien, gerade und ungerade Funktionen

Symmetrien, gerade und ungerade Funktionen Symmetrien, gerade und ungerade Funktionen Wir Menschen fühlen uns von Symmetrien angezogen. 1-E1 1-E2 Vorausgesetzte Kenntnisse Definition einer Funktion, einer Relation, des Definitionsbereiches einer

Mehr

viele weitere Anwendungen wie zum Beispiel Schwingungsvorgänge. 4.1 Die algebraische Struktur der komplexen Zahlen

viele weitere Anwendungen wie zum Beispiel Schwingungsvorgänge. 4.1 Die algebraische Struktur der komplexen Zahlen 4 Komplexe Zahlen In diesem Kapitel wollen wir uns erneut mit dem R 2 beschäftigen, diesmal aber mit einer anderen algebraischen Struktur. Dies erlaubt uns weitere Anwendungen in der Geometrie die Lösung

Mehr

Komplexe Zahlen und Allgemeines zu Gruppen

Komplexe Zahlen und Allgemeines zu Gruppen Komplexe Zahlen und Allgemeines zu Gruppen Die komplexen Zahlen sind von der Form z = x + iy mit x, y R, wobei i = 1 als imaginäre Einheit bezeichnet wird. Wir nennen hierbei Re(z = x den Realteil von

Mehr

f(x nk ) = lim y nk ) = lim Bemerkung 2.14 Der Satz stimmt nicht mehr, wenn D nicht abgeschlossen oder nicht beschränkt ist, wie man z.b.

f(x nk ) = lim y nk ) = lim Bemerkung 2.14 Der Satz stimmt nicht mehr, wenn D nicht abgeschlossen oder nicht beschränkt ist, wie man z.b. Proposition.13 Sei f : D R stetig und D = [a, b] R. Dann ist f(d) beschränkt. Außerdem nimmt f sein Maximum und Minimum auf D an, d.h. es gibt x max D und ein x min D, so dass f(x max ) = sup f(d) und

Mehr

Musterlösung Serie 3. ITET Diskrete Mathematik WS 02/03 R. Suter. d) Für beliebige a, b G gilt

Musterlösung Serie 3. ITET Diskrete Mathematik WS 02/03 R. Suter. d) Für beliebige a, b G gilt ITET Diskrete Mathematik WS 2/3 R. Suter. a) r s = r + )s + ). Assoziativität: Ist erfüllt, denn Musterlösung Serie 3 r s) t = r + )s + ) + ) t + ) = r + )s + )t + ) = r + ) s + )t + ) + ) = r s t) Neutrales

Mehr

Bestimme ferner die Koordinaten des Bildpunktes von B bei der Spiegelung

Bestimme ferner die Koordinaten des Bildpunktes von B bei der Spiegelung Vektoren - Skalar- und Vektorprodukt ================================================================== 1. Gegeben sind die Punkte A 1 2 3 und B 3 4 1 bzgl. eines kartesischen Koordina- tensystems mit

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Mathematik-Lexikon. Abszisse Die x-koordinate eines Punktes -> Ordinate

Mathematik-Lexikon. Abszisse Die x-koordinate eines Punktes -> Ordinate Mathematik-Lexikon HM00 Abszisse Die x-koordinate eines Punktes -> Ordinate Aufstellen von Funktionstermen Gesucht: Ganzrationale Funktion n-ten Grades: ƒ(x) = a n x n + a n-1 x n-1 + a n- x n- +... +

Mehr

Nullstellen. Somit ergibt sich x = 4 oder x = -4, da das Quadrat beider Zahlen 16 ergibt. Man schreibt

Nullstellen. Somit ergibt sich x = 4 oder x = -4, da das Quadrat beider Zahlen 16 ergibt. Man schreibt Nullstellen Aufgabe 1 Gegeben ist die folgende quadratische Funktion: Bestimme die Nullstellen. f( x) x² 3 x² 3 : x² 16 16 x² 16 Somit ergibt sich x = 4 oder x = -4, da das Quadrat beider Zahlen 16 ergibt.

Mehr

Grundlagen Mathematik 7. Jahrgangsstufe

Grundlagen Mathematik 7. Jahrgangsstufe ALGEBRA 1. Grundlagen Grundlagen Mathematik 7. Jahrgangsstufe Menge der ganzen Zahlen Z = {..., -3, -2, -1, 0, 1, 2, 3,... } Menge der rationalen Zahlen Q = { z z Z und n N } (Menge aller n positiven und

Mehr

Ganzrationale Funktionen (ohne Ableitungen) Datei Nr Ausdrucken ist nur von der Mathematik-CD möglich. Mai 2002.

Ganzrationale Funktionen (ohne Ableitungen) Datei Nr Ausdrucken ist nur von der Mathematik-CD möglich. Mai 2002. Funktionen Klassenstufe 0/ Teil Ganzrationale Funktionen (ohne Ableitungen) Datei Nr. 80 Ausdrucken ist nur von der Mathematik-CD möglich Mai 00 Friedrich Buckel Internatsgymnasium Schloß Torgelow Funktionen

Mehr

Vorkurs Mathematik. JProf. Dr. Pia Pinger. April Lennéstraße 43, 1. OG

Vorkurs Mathematik. JProf. Dr. Pia Pinger. April Lennéstraße 43, 1. OG Vorkurs Mathematik JProf. Dr. Pia Pinger Lennéstraße 43, 1. OG pinger@uni-bonn.de April 2017 JProf. Dr. Pia Pinger Vorkurs Mathematik April 2017 1 / 74 Ein paar Tipps vorab Be gritty : Perseverance and

Mehr

3.3. Drehungen und Spiegelungen

3.3. Drehungen und Spiegelungen 3.3. Drehungen und Spiegelungen Drehungen und Spiegelungen in der Ebene Die Multiplikation einer komplexen Zahl z = x + i y (aufgefaßt als Punkt oder Ortsvektor der Ebene) mit der Zahl w = e ( ) = i φ

Mehr

Algebraische und transzendente Zahlen -zum Beispiel und π ( Wurzel aus 2 und Pi )

Algebraische und transzendente Zahlen -zum Beispiel und π ( Wurzel aus 2 und Pi ) Algebraische und transzendente Zahlen -zum Beispiel und π ( Wurzel aus 2 und Pi ) π-tag Universität Bozen-Bolzano 13. März 2015 Franz Pauer Universität Innsbruck Institut für Fachdidaktik und Institut

Mehr

Funktionen und andere Zuordnungen

Funktionen und andere Zuordnungen Funktionen und andere Zuordnungen Rainer Hauser November 2011 1 Allgemeine Zuordnungen 1.1 Pfeildarstellung von Zuordnungen Sätze wie Das ist der Schlüssel zu diesem Schloss und Hänsel ist der Bruder von

Mehr

Quadratische Gleichungen

Quadratische Gleichungen Quadratische Gleichungen 1/10 Quadratische Gleichungen Teil 1 Grundlagen Lehrstoff Gleichungen und Gleichungssysteme - Lösen von linearen und quadratischen Gleichungen in einer Variablen Inhalt Quadratische

Mehr