Stochastik Abitur 2009 Stochastik

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Stochastik Abitur 2009 Stochastik"

Transkript

1 Abitur 2009 Stochastik Beilage ea (erhöhtes Anforderungsniveau) ga (grundlegendes Anforderungsniveau) ISBN und ISBN

2 Aufgabe 2 (ea) Rauchen ist das größte vermeidbare Gesundheitsrisiko unserer Zeit, über auf das Rauchen zurückzuführende Todesfälle sind pro Jahr in Deutschland zu verzeichnen. Umso wichtiger ist es, bereits Jugendliche vom Tabakkonsum fernzuhalten. Der Drogen- und Suchtbericht im Jahr 2004 der Drogenbeauftragten der Bundesregierung, Frau Marion Caspers-Merk, kommt zu dem Ergebnis, dass ca. ein Drittel aller Schüler, die eine 9. oder 10. Klasse besuchen, täglich Zigaretten rauchen. Befragt wurden mehr als Schülerinnen und Schüler an verschiedenen Schulformen. a) Mit welchem mathematischen Modell lässt sich eine Stichprobe von 100 Schülern beschreiben? b) Berechnen Sie die Wahrscheinlichkeit, dass von 100 Schülern höchstens 20 rauchen bzw. mindestens 27 rauchen. c) Wie viele Schülerinnen und Schüler müsste man wenigstens befragen, um mit einer Wahrscheinlichkeit von mindestens 0,99 mindestens einen Raucher zu finden? d) Bei der Prävention nehmen laut der Bundeszentrale für gesundheitliche Aufklärung (BZgA) die Sportvereine eine wichtige Rolle ein. Als Beispiel sei die Kampagne Kinder stark machen genannt, die bereits seit den 90er Jahren läuft. In einer aktuellen Umfrage an einer Schule ist erfasst worden, wie viele Schülerinnen und Schüler der 9. und 10. Klasse regelmäßig rauchen und Mitglied in Sportvereinen sind. 43 Raucher gaben an, Mitglied in einem Sportverein zu sein, 65 Raucher hingegen zählen zu den Nichtmitgliedern. Bei den Nichtrauchern waren 77 Schüler im Sportverein und wiederum 65 nicht. Zeigen Sie, dass die Ereignisse Mitgliedschaft im Sportverein und Raucher nicht unabhängig sind. e) Die BZgA ergreift verschiedene Maßnahmen zur Suchtprävention. Die von der BZgA beauftragte Werbeagentur behauptet, dass die präventiven Kampagnen bereits Erfolg hatten. Die BZgA möchte dies überprüfen und lässt dazu 1200 zufällig ausgewählte Schüler/innen befragen (α = 0,05). Erläutern Sie, warum sich ein einseitiger Hypothesentest anbietet und geben Sie eine ausführlich begründete Entscheidungshilfe: Bis zu welcher Anzahl von Rauchern kann die Raucherprävention als gelungen angesehen werden? Welche Fehler können bei der Interpretation der Daten unterlaufen? f) Bei einer aktuellen Befragung geben 400 von 1500 Schülern der Klassen 9 und 10 an, regelmäßig zu rauchen. Lässt sich mit einer Wahrscheinlichkeit von 95,5 % sagen, dass sich der Anteil der Raucher verringert hat? (Teile aus Abitur, Hessen.) 2

3 Lösung Aufgabe 2 (ea) a) Eine Stichprobe von 100 Schülern kann als Bernoulli-Experiment angesehen werden, da nur die Ergebnisse Schüler raucht und Schüler raucht nicht interessieren. Nach Aufgabe raucht jeder Schüler mit einer Wahrscheinlichkeit von p = 1 3. Die Auswahl der Schüler muss zufällig erfolgen. b) X: Anzahl der Raucher; X ist B 100; 1 3 -verteilt P(X 20) = 0,0024 P(X 26) = 1 P(X 25) = 1 0,0715 = 0,9285 c) Bestimmung über das Gegenereignis: P(X 1) 0,99 P(X 1) = 1 P(X = 0) = 1 ( 2 3 ) n Bedingung für n: 1 ( 2 3 ) n 0,99 Logarithmieren ergibt: ( 2 3 ) n 0,01 <=> n ln(0,01) ln( 2 = 11,36 3 ) Mindestens 12 Schüler sind zu befragen. d) R: Raucher; S: Mitglied im Sportverein Vierfeldertafel S S R R R R S S S S Die Wahrscheinlichkeiten ergeben sich durch die angegebenen Häufigkeiten, die sich in einer Vierfeldertafel darstellen lassen. Sind die Ergebnisse Rauchen und Mitglied unabhängig, so gilt: P(R S) = P(R) P(S) Berechnung der Wahrscheinlichkeiten: P(R S) = = 0,172; P(R) = = 0,432; P(S) = 250 = 0,48 P(R) P(S) = 0,432 0,48 = 0, ,172 Die beiden Merkmale Raucher und Mitglied im Sportverein sind nicht unabhängig, da die beiden berechneten Wahrscheinlichkeiten voneinander abweichen. 3

4 Lösung Aufgabe 2 (ea) e) Es eignet sich ein einseitiger Hypothesentest, da die Vermutung p < 1 3 lautet. Die Nullhypothese wird man ablehnen, wenn die Prüfgröße sehr kleine Werte annimmt. H 0 : p = 1 3 H 1 : p < 1 3 Die Anzahl der Raucher ist unverändert. Die Anzahl der Raucher ist gesunken Der Fehler 1. Art bedeutet, dass die BZgA die Hypothese H 1 annimmt, obwohl H 0 gilt, also irrtümlich einen Erfolg feiert, obwohl die Anzahl der Raucher nicht gesunken ist. Beim Fehler 2. Art wird H 0 angenommen, obwohl die Anzahl der Raucher gesunken ist. Die BZgA bringt sich damit um ihren Erfolg. Falls H 0 wahr ist, ergibt sich die Zufallsvariable als B 1200; 1 3 -verteilt σ = = 16,33 > 3; die Binomialverteilung kann durch die Normalverteilung approximiert werden. Die Irrtumswahrscheinlichkeit soll höchstens 5 % betragen. α = P(weniger als g Raucher) = P(x < g) = 0,05 α = Ф( z) = 1 Ф(z) = 0,05 => Ф(z) = 0,95 Aus der Tafel: z = 1,645 Aus z = x μ σ folgt durch Einsetzen: x = 373,1 Werden bis zu 373 Raucher gezählt, so sollte man sich für die Alternativhypothese entscheiden. Bei einer größeren Anzahl von Rauchern kann man der Raucherprävention nur wenig Erfolg bescheinigen. f) Berechnung des Vertrauensintervalls zur Sicherheitswahrscheinlichkeit γ = 95,5% Ansatz für die Wahrscheinlichkeit p: Mit n = 1500, dem Schätzwert h n = 4 15 und c = 2 (für γ = 95,5%) erhält man ( 4 15 p) 2 = 2 2 p(1 p) 1500 Lösung der quadratischen Gleichung: p 1 = 0,2445; p 2 = 0, ,5%-Konfidenzintervall: [0,2445; 0,2901] Der Wert p alt = 1 3 ist nicht enthalten; die Zahl der Raucher hat sich verringert. Bei Wahrscheinlichkeiten von p 1 = 0,24 bis p 2 = 0,29 ist eine Raucherwahrscheinlichkeit von 1 3 nicht mehr verträglich, so dass unter diesen Vorgaben von einer Abnahme des Raucheranteils ausgegangen werden kann. 4

5 Aufgabe 2 (ga) Seite 1/2 Rauchen ist das größte vermeidbare Gesundheitsrisiko unserer Zeit, über auf das Rauchen zurückzuführende Todesfälle sind pro Jahr in Deutschland zu verzeichnen. Umso wichtiger ist es, bereits Jugendliche vom Tabakkonsum fernzuhalten. Der Drogen- und Suchtbericht im Jahr 2004 der Drogenbeauftragten der Bundesregierung, Frau Marion Caspers-Merk, kommt zu dem Ergebnis, dass ca. 35 % aller Schüler, die eine 9. oder 10. Klasse besuchen, täglich Zigaretten rauchen. Befragt wurden mehr als Schülerinnen und Schüler an verschiedenen Schulformen. a) Es werden 120 Schülerinnen und Schüler der Jahrgangsstufe 9/10 einer Schule befragt. Berechnen Sie die Wahrscheinlichkeit, dass höchstens 33 rauchen, mindestens 50 rauchen. Begründen Sie Ihren mathematischen Ansatz. b) Wie viele Schülerinnen und Schüler müsste man wenigstens befragen, damit die Wahrscheinlichkeit mindestens einen Raucher zu finden, größer als 99 % ist? c) Bei der Prävention nehmen laut der Bundeszentrale für gesundheitliche Aufklärung (BZgA) die Sportvereine eine wichtige Rolle ein. Als Beispiel sei die Kampagne Kinder stark machen genannt, die bereits seit den 90er Jahren läuft. In einer aktuellen Umfrage an einer Schule ist erfasst worden, wie viele Schülerinnen und Schüler der 9. und 10. Klasse regelmäßig rauchen und Mitglied in Sportvereinen sind. 43 Raucher gaben an, Mitglied in einem Sportverein zu sein, 65 Raucher hingegen zählen zu den Nichtmitgliedern. Bei den Nichtrauchern waren 77 Schüler im Sportverein und wiederum 65 nicht. Zeigen Sie, dass die Ereignisse Mitgliedschaft im Sportverein und Raucher nicht unabhängig sind. d) Die BZgA ergreift verschiedene Maßnahmen zur Suchtprävention. Die von der BZgA beauftragte Werbeagentur behauptet, dass die präventiven Kampagnen bereits Erfolg hatten. Die BZgA möchte dies überprüfen, sie vertritt die Hypothese, dass der Anteil der Raucher unverändert ist. Sie befragt 65 zufällig ausgewählte Schülerinnen und Schüler und will ihre eigene Hypothese verwerfen, wenn höchstens 18 Raucher angetroffen werden. 5

6 Aufgabe 2 (ga) Seite 2/2 d) Erklären Sie, warum hier einseitig getestet wird und welche Fehler bei der Interpretation der Daten unterlaufen können. Beurteilen Sie die Entscheidungsregel und verändern Sie den Test so, dass der Fehler 1. Art unter 5 % liegt und berechnen Sie für diesen Fall den Fehler 2. Art, wenn der Anteil der Raucher tatsächlich auf 20 % gesunken ist. e) Bei einer aktuellen Befragung geben 400 von 1500 Schülern der Klassen 9 und 10 an, regelmäßig zu rauchen. Lässt sich mit einer Wahrscheinlichkeit von 95,5 % sagen, dass sich der Anteil der Raucher verringert hat? (Teile aus Abitur, Hessen.) 6

7 Lösung Aufgabe 2 (ga) a) X: Anzahl der Raucher; X ist B 120; 0,35 -verteilt P(X 33) = 0,0499 P(X 50) = 1 P(X 49) = 0,0768 Eine Stichprobe von 120 Schülern kann als Bernoulli-Experiment angesehen werden, da nur die Ergebnisse Schüler raucht und Schüler raucht nicht interessieren. Die Zufallsvariable X beschreibt die Anzahl der Raucher. Nach Aufgabenstellung raucht jeder Schüler mit einer Wahrscheinlichkeit von p = 0,35. Die Auswahl der Schüler muss zufällig erfolgen. b) Bestimmung über das Gegenereignis: P(X 1) = 1 P(X = 0) = 1 0,65 n Bedingung für n: 1 0,65 n > 0,99 Logarithmieren ergibt: 0,65 n < 0,01 <=> n > ln(0,01) ln(0,65) = 10,69 Mindestens 11 Schüler sind zu befragen. c) R: Raucher; S: Mitgleid im Sportverein Vierfeldertafel S S R R Sind die Ergebnisse Rauchen und Mitglied unabhängig, so gilt: P(R S) = P(R) P(S) Berechnung der Wahrscheinlichkeiten: P(R S) = = 0,172; P(R) = = 0,432; P(S) = 250 = 0,48 P(R) P(S) = 0,432 0,48 = 0, ,172 Die beiden Merkmale Raucher und Mitgleid im Sportverein sind nicht unabhängig, da die beiden berechneten Wahrscheinlichkeiten voneinander abweichen. R R S S S S 7

8 Lösung Aufgabe 2 (ga) d) Es eignet sich ein einseitiger Hypothesentest, da die Vermutung p < 0,35 lautet. Die Nullhypothese wird man ablehnen, wenn die Prüfgröße sehr kleine Werte annimmt. H 0 : p = 0,35 Die Anzahl der Raucher ist unverändert. H 1 : p < 0,35 Die Anzahl der Raucher ist gesunken Der Fehler 1. Art bedeutet, dass die BZgA die Hypothese H 1 annimmt, obwohl H 0 gilt, also irrtümlich einen Erfolg feiert, obwohl die Anzahl der Raucher nicht gesunken ist. Beim Fehler 2. Art wird H 0 angenommen, obwohl die Anzahl der Raucher gesunken ist. Die BZgA bringt sich damit um ihren Erfolg. Falls H 0 wahr ist: X ist B 65; 0,35 -verteilt Fehler 1. Art: P(X 18) = 0,1338 Die Irrtumswahrscheinlichkeit erscheint sehr hoch. Die Wahrscheinlichkeit, einen Fehler 1. Art zu begehen beträgt mehr als 13%. Irrtumswahrscheinlichkeit kleiner 5%: P(X 16) = 0,0492 < 0,05 Werden höchstens 16 Raucher gezählt, sollte H 0 verworfen werden. Fehler 2. Art für diesen Fall: Falls H 1 wahr ist: X ist B 65; 0,2 -verteilt P(X > 16) = 1 P(X 16) = 0,1396 e) Berechnung des Vertrauensintervalls zur Sicherheitswahrscheinlichkeit γ = 95,5% Ansatz für die Wahrscheinlichkeit p: Mit n = 1500, dem Schätzwert h n = 4 15 und c = 2 (für γ = 95,5%) erhält man ( 4 15 p) 2 = 2 2 p(1 p) 1500 Lösung der quadratischen Gleichung: p 1 = 0,2445; p 2 = 0, ,5%-Konfidenzintervall: [0,2445; 0,2901] Der Wert p alt = 0,35 ist nicht enthalten; die Zahl der Raucher hat sich verringert. Bei Wahrscheinlichkeiten von p 1 = 0,24 bis p 2 = 0,29 ist eine Raucherwahrscheinlichkeit von 0,35 nicht mehr verträglich, so dass unter diesen Vorgaben von einer Abnahme des Raucheranteils ausgegangen werden kann. 8

Abitur 2007 Mathematik GK Stochastik Aufgabe C1

Abitur 2007 Mathematik GK Stochastik Aufgabe C1 Seite 1 Abiturloesung.de - Abituraufgaben Abitur 2007 Mathematik GK Stochastik Aufgabe C1 Eine Werbeagentur ermittelte durch eine Umfrage im Auftrag eines Kosmetikunternehmens vor Beginn einer Werbekampagne

Mehr

Schleswig-Holstein 2011. Kernfach Mathematik

Schleswig-Holstein 2011. Kernfach Mathematik Aufgabe 6: Stochastik Vorbemerkung: Führen Sie stets geeignete Zufallsvariablen und Namen für Ereignisse ein. Machen Sie auch Angaben über die Verteilung der jeweiligen Zufallsvariablen. Eine repräsentative

Mehr

9. Schätzen und Testen bei unbekannter Varianz

9. Schätzen und Testen bei unbekannter Varianz 9. Schätzen und Testen bei unbekannter Varianz Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Schätzen und Testen bei unbekannter Varianz Wenn wir die Standardabweichung σ nicht kennen,

Mehr

Ein möglicher Unterrichtsgang

Ein möglicher Unterrichtsgang Ein möglicher Unterrichtsgang. Wiederholung: Bernoulli Experiment und Binomialverteilung Da der sichere Umgang mit der Binomialverteilung, auch der Umgang mit dem GTR und den Diagrammen, eine notwendige

Mehr

Abitur 2012 Mathematik GK Stochastik Aufgabe C1

Abitur 2012 Mathematik GK Stochastik Aufgabe C1 Seite 1 Abiturloesung.de - Abituraufgaben Abitur 2012 Mathematik GK Stochastik Aufgabe C1 nter einem Regentag verstehen Meteorologen einen Tag, an dem mehr als ein Liter Niederschlag pro Quadratmeter gefallen

Mehr

Der Provider möchte möglichst vermeiden, dass die Werbekampagne auf Grund des Testergebnisses irrtümlich unterlassen wird.

Der Provider möchte möglichst vermeiden, dass die Werbekampagne auf Grund des Testergebnisses irrtümlich unterlassen wird. Hypothesentest ================================================================== 1. Ein Internetprovider möchte im Fichtelgebirge eine Werbekampagne durchführen, da er vermutet, dass dort höchstens 40%

Mehr

Übungsaufgaben zu Kapitel 5. Aufgabe 101. Inhaltsverzeichnis:

Übungsaufgaben zu Kapitel 5. Aufgabe 101. Inhaltsverzeichnis: Inhaltsverzeichnis: Übungsaufgaben zu Kapitel 5... 1 Aufgabe 101... 1 Aufgabe 102... 2 Aufgabe 103... 2 Aufgabe 104... 2 Aufgabe 105... 3 Aufgabe 106... 3 Aufgabe 107... 3 Aufgabe 108... 4 Aufgabe 109...

Mehr

WB 11 Aufgabe: Hypothesentest 1

WB 11 Aufgabe: Hypothesentest 1 WB 11 Aufgabe: Hypothesentest 1 Ein Medikament, das das Überleben eines Patienten sichern soll, wird getestet. Stelle Null- und Alternativhypothese auf und beschreibe die Fehler 1. Art und 2. Art. Welcher

Mehr

LM2. WAHRSCHEINLICHKEITSRECHNUNG/STATISTIK

LM2. WAHRSCHEINLICHKEITSRECHNUNG/STATISTIK LM2. WAHRSCHEINLICHKEITSRECHNUNG/STATISTIK III. In einer Region haben 60 % der Haushalte einen Internetanschluss. Das Diagramm veranschaulicht die Anteile der Zugangsgeschwindigkeiten unter den Haushalten

Mehr

R. Brinkmann Seite

R. Brinkmann  Seite R. Brinkmann http://brinkmann-du.de Seite 1 17.3.21 Grundlagen zum Hypothesentest Einführung: Wer Entscheidungen zu treffen hat, weiß oft erst im nachhinein ob seine Entscheidung richtig war. Die Unsicherheit

Mehr

Abitur 2011 Mathematik GK Stochastik Aufgabe C1

Abitur 2011 Mathematik GK Stochastik Aufgabe C1 Seite 1 Abiturloesung.de - Abituraufgaben Abitur 2011 Mathematik GK Stochastik Aufgabe C1 Bei der TOTO-13er-Wette (vgl. abgebildeten Ausschnitt aus einem Spielschein) wird auf den Spielausgang von 13 Fußballspielen

Mehr

y 1 2 3 4 5 6 P (Y = y) 1/6 1/6 1/6 1/6 1/6 1/6

y 1 2 3 4 5 6 P (Y = y) 1/6 1/6 1/6 1/6 1/6 1/6 Fachhochschule Köln Fakultät für Wirtschaftswissenschaften Prof. Dr. Arrenberg Raum 221, Tel. 39 14 jutta.arrenberg@fh-koeln.de Übungen zur Statistik für Prüfungskandidaten und Prüfungskandidatinnen Unabhängigkeit

Mehr

Aufgabe 7: Stochastik (WTR)

Aufgabe 7: Stochastik (WTR) Abitur Mathematik: Nordrhein-Westfalen 2013 Aufgabe 7 a) SITUATION MODELLIEREN Annahmen: Es werden 100 Personen unabhängig voneinander befragt. Auf die Frage, ob mindestens einmal im Monat ein Fahrrad

Mehr

q = 1 p = 0.8 0.2 k 0.8 10 k k = 0, 1,..., 10 1 1 0.8 2 + 10 0.2 0.8 + 10 9 1 2 0.22 1 = 0.8 8 [0.64 + 1.6 + 1.8] = 0.678

q = 1 p = 0.8 0.2 k 0.8 10 k k = 0, 1,..., 10 1 1 0.8 2 + 10 0.2 0.8 + 10 9 1 2 0.22 1 = 0.8 8 [0.64 + 1.6 + 1.8] = 0.678 Lösungsvorschläge zu Blatt 8 X binomialverteilt mit p = 0. und n = 10: a PX = = 10 q = 1 p = 0.8 0. 0.8 10 = 0, 1,..., 10 PX = PX = 0 + PX = 1 + PX = 10 10 = 0. 0 0.8 10 + 0. 1 0.8 9 + 0 1 10 = 0.8 8 [

Mehr

R. Brinkmann Seite

R. Brinkmann  Seite R. Brinkmann http://brinkmann-du.de Seite 1 24.2.214 Grundlagen zum Hypothesentest Einführung: Wer Entscheidungen zu treffen hat, weiß oft erst im nachhinein ob seine Entscheidung richtig war. Die Unsicherheit

Mehr

Hamburg Mathematik Stochastik Übungsaufgabe 1 Grundlegendes Niveau

Hamburg Mathematik Stochastik Übungsaufgabe 1 Grundlegendes Niveau Hamburg Mathematik Stochastik Übungsaufgabe 1 Grundlegendes Niveau Thermoschalter Der Konzern Thermosicherheit stellt Thermoschalter in Massenproduktion her. Jeder Thermoschalter ist mit einer Wahrscheinlichkeit

Mehr

Gibt es einen Geschmacksunterschied zwischen Coca Cola und Cola Zero?

Gibt es einen Geschmacksunterschied zwischen Coca Cola und Cola Zero? Gibt es einen Geschmacksunterschied zwischen Coca Cola und Cola Zero? Manche sagen: Ja, manche sagen: Nein Wie soll man das objektiv feststellen? Kann man Geschmack objektiv messen? - Geschmack ist subjektiv

Mehr

Stellen Sie den Sachverhalt durch eine geeignete Vierfeldertafel mit relativen Häufigkeiten

Stellen Sie den Sachverhalt durch eine geeignete Vierfeldertafel mit relativen Häufigkeiten Bei der Bearbeitung der Aufgabe dürfen alle Funktionen des Taschenrechners genutzt werden. Aufgabe 4: Stochastik Vorbemerkung: Führen Sie stets geeignete Zufallsvariablen und Namen für Ereignisse ein.

Mehr

Profil A 49,3 48,2 50,7 50,9 49,8 48,7 49,6 50,1 Profil B 51,8 49,6 53,2 51,1 51,1 53,4 50,7 50 51,5 51,7 48,8

Profil A 49,3 48,2 50,7 50,9 49,8 48,7 49,6 50,1 Profil B 51,8 49,6 53,2 51,1 51,1 53,4 50,7 50 51,5 51,7 48,8 1. Aufgabe: Eine Reifenfirma hat für Winterreifen unterschiedliche Profile entwickelt. Bei jeweils gleicher Geschwindigkeit und auch sonst gleichen Bedingungen wurden die Bremswirkungen gemessen. Die gemessenen

Mehr

Abitur 2013 Mathematik GK Stochastik Aufgabe C1

Abitur 2013 Mathematik GK Stochastik Aufgabe C1 Seite 1 Abiturloesung.de - Abituraufgaben Abitur 2013 Mathematik GK Stochastik Aufgabe C1 Wissenschaftler der israelischen Ben-Gurion-Universität sind der Frage nachgegangen, ob die Attraktivität eines

Mehr

Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau

Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau 1 Einführung in die statistische Datenanalyse Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau 2 Gliederung 1.Grundlagen 2.Nicht-parametrische Tests a. Mann-Whitney-Wilcoxon-U Test b. Wilcoxon-Signed-Rank

Mehr

Grundkursabitur 2011 Stochastik Aufgabe III

Grundkursabitur 2011 Stochastik Aufgabe III Grundkursabitur 011 Stochastik Aufgabe III An einem Musikwettbewerb, der aus einer Messehalle bundesweit live im Fernsehen übertragenwird, nehmen zwölf Nachwuchsbands aus ganz Deutschland teil. Genau zwei

Mehr

Klausur Nr. 1. Wahrscheinlichkeitsrechnung. Keine Hilfsmittel gestattet, bitte alle Lösungen auf dieses Blatt.

Klausur Nr. 1. Wahrscheinlichkeitsrechnung. Keine Hilfsmittel gestattet, bitte alle Lösungen auf dieses Blatt. Klausur Nr. 1 2014-02-06 Wahrscheinlichkeitsrechnung Pflichtteil Keine Hilfsmittel gestattet, bitte alle Lösungen auf dieses Blatt. Name: 0. Für Pflicht- und Wahlteil gilt: saubere und übersichtliche Darstellung,

Mehr

Kaufhaus-Aufgabe. aus Abiturprüfung Bayern LK (abgeändert)

Kaufhaus-Aufgabe. aus Abiturprüfung Bayern LK (abgeändert) Kaufhaus-Aufgabe aus Abiturprüfung Bayern LK (abgeändert) 5. a) Ein Kunde eines Kaufhauses benutzt mit einer Wahrscheinlichkeit von 75% die hauseigene Tiefgarage. Mit einer Wahrscheinlichkeit von 40% bleibt

Mehr

Grundlagen der Inferenzstatistik

Grundlagen der Inferenzstatistik Grundlagen der Inferenzstatistik (Induktive Statistik oder schließende Statistik) Dr. Winfried Zinn 1 Deskriptive Statistik versus Inferenzstatistik Die Deskriptive Statistik stellt Kenngrößen zur Verfügung,

Mehr

5. Schließende Statistik. 5.1. Einführung

5. Schließende Statistik. 5.1. Einführung 5. Schließende Statistik 5.1. Einführung Sollen auf der Basis von empirischen Untersuchungen (Daten) Erkenntnisse gewonnen und Entscheidungen gefällt werden, sind die Methoden der Statistik einzusetzen.

Mehr

90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft

90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft Prof. Dr. Helmut Küchenhoff SS08 90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft am 22.7.2008 Anmerkungen Überprüfen Sie bitte sofort, ob Ihre Angabe vollständig ist. Sie sollte

Mehr

12. Vergleich mehrerer Stichproben

12. Vergleich mehrerer Stichproben 12. Vergleich mehrerer Stichproben Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Häufig wollen wir verschiedene Populationen, Verfahren, usw. miteinander vergleichen. Beipiel: Vergleich

Mehr

Tulpenzwiebel-Aufgabe Abiturprüfung GK Bayern 2000

Tulpenzwiebel-Aufgabe Abiturprüfung GK Bayern 2000 Tulpenzwiebel-Aufgabe Abiturprüfung GK Bayern 2000 Ein Fachmarkt besteht nur aus einer Bau- und einer Gartenabteilung; in letzterer werden unter anderem Tulpenzwiebeln von rot blühenden, gelb blühenden

Mehr

Beurteilende Statistik

Beurteilende Statistik Beurteilende Statistik Wahrscheinlichkeitsrechnung und Beurteilende Statistik was ist der Unterschied zwischen den beiden Bereichen? In der Wahrscheinlichkeitstheorie werden aus gegebenen Wahrscheinlichkeiten

Mehr

Abituraufgabe zur Stochastik, Hessen 2009, Grundkurs (TR)

Abituraufgabe zur Stochastik, Hessen 2009, Grundkurs (TR) Abituraufgabe zur Stochastik, Hessen 2009, Grundkurs (TR) Eine Firma stellt USB-Sticks her. Sie werden in der Fabrik ungeprüft in Packungen zu je 20 Stück verpackt und an Händler ausgeliefert. 1 Ein Händler

Mehr

9. StatistischeTests. 9.1 Konzeption

9. StatistischeTests. 9.1 Konzeption 9. StatistischeTests 9.1 Konzeption Statistische Tests dienen zur Überprüfung von Hypothesen über einen Parameter der Grundgesamtheit (bei einem Ein-Stichproben-Test) oder über die Verteilung einer Zufallsvariablen

Mehr

Klausur: Einführung in die Statistik

Klausur: Einführung in die Statistik 1 Lösungen immer unter die jeweiligen Aufgaben schreiben. Bei Platzmangel auf die Rückseite schreiben (dann Nummer der bearbeiteten Aufgabe mit anmerken!!!). Lösungen, die nicht auf den Aufgabenblättern

Mehr

Prüfungsteil 2, Aufgabe 8 Stochastik

Prüfungsteil 2, Aufgabe 8 Stochastik Prüfung Mathematik Nordrhein-Westfalen 2013 (LK) Aufgabe 7: (WTR) Abitur Mathematik: Prüfungsteil 2, Aufgabe 8 Nordrhein-Westfalen 2012 GK Aufgabe a (1) und (2) 1. SCHRITT: VERTEILUNG ANGEBEN Da die Anzahl

Mehr

Bei vielen Zufallsexperimenten interessiert man sich lediglich für das Eintreten bzw. das Nichteintreten eines bestimmten Ereignisses.

Bei vielen Zufallsexperimenten interessiert man sich lediglich für das Eintreten bzw. das Nichteintreten eines bestimmten Ereignisses. XI. Binomialverteilung ================================================================== 11.1 Definitionen -----------------------------------------------------------------------------------------------------------------

Mehr

Name:... Matrikel-Nr.:... 3 Aufgabe Handyklingeln in der Vorlesung (9 Punkte) Angenommen, ein Student führt ein Handy mit sich, das mit einer Wahrscheinlichkeit von p während einer Vorlesung zumindest

Mehr

Lösungen zum Aufgabenblatt 14

Lösungen zum Aufgabenblatt 14 Lösungen zum Aufgabenblatt 14 61. Das Gewicht von Brötchen (gemessen in g) sei zufallsabhängig und werde durch eine normalverteilte Zufallsgröße X N(µ, 2 ) beschrieben, deren Varianz 2 = 49 g 2 bekannt

Mehr

Eine Einführung in R: Statistische Tests

Eine Einführung in R: Statistische Tests Eine Einführung in R: Statistische Tests Bernd Klaus, Verena Zuber Institut für Medizinische Informatik, Statistik und Epidemiologie (IMISE), Universität Leipzig http://www.uni-leipzig.de/ zuber/teaching/ws12/r-kurs/

Mehr

4.1. Nullhypothese, Gegenhypothese und Entscheidung

4.1. Nullhypothese, Gegenhypothese und Entscheidung rof. Dr. Roland Füss Statistik II SS 8 4. Testtheorie 4.. Nullhypothese, Gegenhypothese und Entscheidung ypothesen Annahmen über die Verteilung oder über einzelne arameter der Verteilung eines Merkmals

Mehr

Güte von Tests. die Wahrscheinlichkeit für den Fehler 2. Art bei der Testentscheidung, nämlich. falsch ist. Darauf haben wir bereits im Kapitel über

Güte von Tests. die Wahrscheinlichkeit für den Fehler 2. Art bei der Testentscheidung, nämlich. falsch ist. Darauf haben wir bereits im Kapitel über Güte von s Grundlegendes zum Konzept der Güte Ableitung der Gütefunktion des Gauss im Einstichprobenproblem Grafische Darstellung der Gütefunktionen des Gauss im Einstichprobenproblem Ableitung der Gütefunktion

Mehr

Aufgabe 8: Stochastik (WTR)

Aufgabe 8: Stochastik (WTR) Abitur Mathematik: Nordrhein-Westfalen 2013 Aufgabe 8 a) (1) WAHRSCHEINLICHKEIT FÜR KEINE ANGABE ERMITTELN Nach der Laplace Formel ist Anzahl der Personen, die keine Angabe machten keine Angabe Gesamtzahl

Mehr

Die Anteile rauchender Schülerinnen und Schüler verteilen sich wie folgt:

Die Anteile rauchender Schülerinnen und Schüler verteilen sich wie folgt: 2 Hauptschulen in Pforzheim, 6-9 Auswertung der Fragebögen zum Rauchen in der XX Schule April 2008 Auswertung der Fragebögen zum Rauchen in der YY Schule Juli 2008 Ausgewertet von Gudrun Pelzer, Netzwerk

Mehr

Abitur 2008 Mathematik GK Stochastik Aufgabe C1

Abitur 2008 Mathematik GK Stochastik Aufgabe C1 Seite Abiturloesung.de - Abituraufgaben Abitur 00 Mathematik GK Stochastik Aufgabe C Teilaufgabe. BE Ein Laplace-Würfel ist mit den Augenzahlen,,,, 5, 5 beschriftet. Der Würfel wird achtmal geworfen. Geben

Mehr

geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Gehen wir einmal davon aus, dass die von uns angenommenen

geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Gehen wir einmal davon aus, dass die von uns angenommenen geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Vollständigkeit halber aufgeführt. Gehen wir einmal davon aus, dass die von uns angenommenen 70% im Beispiel exakt berechnet sind. Was würde

Mehr

bedingte Wahrscheinlichkeit

bedingte Wahrscheinlichkeit bedingte Wahrscheinlichkeit 1. Neun von zehn Ungeborenen bevorzugen im Mutterleib den rechten Daumen zum Lutschen. Forscher fanden heraus, dass alle Kinder, die rechts genuckelt hatten, im Alter von 10

Mehr

Originalklausur Abitur Mathematik

Originalklausur Abitur Mathematik Originalklausur Abitur Mathematik Bundesland: Nordrhein-Westfalen Jahrgang: 2009 Die Musterlösung zu dieser und über 100 weiteren Originalklausuren ab dem Abiturjahrgang 2006 finden Sie im Download-Center

Mehr

Klausur Statistik Lösungshinweise

Klausur Statistik Lösungshinweise Klausur Statistik Lösungshinweise Prüfungsdatum: 1. Juli 2015 Prüfer: Etschberger, Heiden, Jansen Studiengang: IM und BW Aufgabe 1 14 Punkte Ein Freund von Ihnen hat über einen Teil seiner Daten, die er

Mehr

Verbrauch, Missbrauch, Abhängigkeit - Zahlen und Fakten

Verbrauch, Missbrauch, Abhängigkeit - Zahlen und Fakten Verbrauch, Missbrauch, Abhängigkeit Zahlen und Fakten Walramstraße 3 53175 Bonn Tel.: 0228/261555 Fax: 0228/215885 sucht@sucht.de www.sucht.de 2. Tabakkonsum Zigarettenkonsum (in Stück) 4), in Klammern

Mehr

Prüfungsteil 2, Aufgabe 8 Stochastik

Prüfungsteil 2, Aufgabe 8 Stochastik Prüfung Mathematik Nordrhein-Westfalen 2013 (LK) Aufgabe 8: (WTR) Abitur Mathematik: Prüfungsteil 2, Aufgabe 8 Nordrhein-Westfalen 2012 LK Aufgabe a (1) und (2) 1. SCHRITT: VERTEILUNG ANGEBEN Da die Anzahl

Mehr

Statistische Tests. Kapitel Grundbegriffe. Wir betrachten wieder ein parametrisches Modell {P θ : θ Θ} und eine zugehörige Zufallsstichprobe

Statistische Tests. Kapitel Grundbegriffe. Wir betrachten wieder ein parametrisches Modell {P θ : θ Θ} und eine zugehörige Zufallsstichprobe Kapitel 4 Statistische Tests 4.1 Grundbegriffe Wir betrachten wieder ein parametrisches Modell {P θ : θ Θ} und eine zugehörige Zufallsstichprobe X 1,..., X n. Wir wollen nun die Beobachtung der X 1,...,

Mehr

Statistik im Versicherungs- und Finanzwesen

Statistik im Versicherungs- und Finanzwesen Springer Gabler PLUS Zusatzinformationen zu Medien von Springer Gabler Grimmer Statistik im Versicherungs- und Finanzwesen Eine anwendungsorientierte Einführung 2014 1. Auflage Übungsaufgaben zu Kapitel

Mehr

Jetzt lerne ich Stochastik für die Oberstufe

Jetzt lerne ich Stochastik für die Oberstufe Jetzt lerne ich Stochastik für die Oberstufe von Dr. rer. nat. Marco Schuchmann, Dipl.-Math. - 2 - - 3 - Vorwort In diesem Buch werden Anwendungen der Stochastik in der Oberstufe mit vielen Beispielen

Mehr

Fortgeschrittene Statistik Logistische Regression

Fortgeschrittene Statistik Logistische Regression Fortgeschrittene Statistik Logistische Regression O D D S, O D D S - R A T I O, L O G I T T R A N S F O R M A T I O N, I N T E R P R E T A T I O N V O N K O E F F I Z I E N T E N, L O G I S T I S C H E

Mehr

Kugel-Fächer-Modell. 1fach. 3fach. Für die Einzelkugel gibt es 3 Möglichkeiten. 6fach. 3! Möglichkeiten

Kugel-Fächer-Modell. 1fach. 3fach. Für die Einzelkugel gibt es 3 Möglichkeiten. 6fach. 3! Möglichkeiten Kugel-Fächer-Modell n Kugeln (Rosinen) sollen auf m Fächer (Brötchen) verteilt werden, zunächst 3 Kugeln auf 3 Fächer. 1fach 3fach Für die Einzelkugel gibt es 3 Möglichkeiten } 6fach 3! Möglichkeiten Es

Mehr

Skriptum zur Veranstaltung. Quantitative Methoden (Mathematik/Statistik) Teil Induktive Statistik. 1. Version (mehr Draft als Skriptum)

Skriptum zur Veranstaltung. Quantitative Methoden (Mathematik/Statistik) Teil Induktive Statistik. 1. Version (mehr Draft als Skriptum) Skriptum zur Veranstaltung Quantitative Methoden (Mathematik/Statistik) Teil Induktive Statistik 1. Version (mehr Draft als Skriptum) Anmerkungen, Aufzeigen von Tippfehlern und konstruktive Kritik erwünscht!!!

Mehr

12.1 Wie funktioniert ein Signifikanztest?

12.1 Wie funktioniert ein Signifikanztest? Sedlmeier & Renkewitz Kapitel 12 Signifikanztests 12.1 Wie funktioniert ein Signifikanztest? Zentrales Ergebnis eine Signifikanztests: Wie wahrscheinlich war es unter der Bedingung dass H0 gilt, diesen

Mehr

Statistiktraining im Qualitätsmanagement

Statistiktraining im Qualitätsmanagement Gerhard Linß Statistiktraining im Qualitätsmanagement ISBN-0: -446-75- ISBN-: 978--446-75-4 Leserobe Weitere Informationen oder Bestellungen unter htt://www.hanser.de/978--446-75-4 sowie im Buchhandel

Mehr

an, anderfalls wird sie verworfen. Bestimmen Sie den Fehler 1. und 2. Art. Bestimmen Sie zu obigem Beispiel jeweils den Anahmebereich a 0; 1;...

an, anderfalls wird sie verworfen. Bestimmen Sie den Fehler 1. und 2. Art. Bestimmen Sie zu obigem Beispiel jeweils den Anahmebereich a 0; 1;... Hypothesentest ================================================================== Fehler 1. und 2.Art Ein Pilzsammler findet einen Pilz der giftig sein könnte. a) Welchen Fehler kann er bei der Überprüfung

Mehr

6 Mehrstufige zufällige Vorgänge Lösungshinweise

6 Mehrstufige zufällige Vorgänge Lösungshinweise 6 Mehrstufige zufällige Vorgänge Lösungshinweise Aufgabe 6.: Begründen Sie, warum die stochastische Unabhängigkeit zweier Ereignisse bzw. zufälliger Vorgänge nur ein Modell der Realität darstellen kann.

Mehr

Überblick über die Verfahren für Ordinaldaten

Überblick über die Verfahren für Ordinaldaten Verfahren zur Analyse ordinalskalierten Daten 1 Überblick über die Verfahren für Ordinaldaten Unterschiede bei unabhängigen Stichproben Test U Test nach Mann & Whitney H Test nach Kruskal & Wallis parametrische

Mehr

Aufhör- und Reduktionsbereitschaft der Raucherinnen und Raucher in der Schweiz

Aufhör- und Reduktionsbereitschaft der Raucherinnen und Raucher in der Schweiz Hans Krebs Kommunikation und Publikumsforschung Aufhör- und Reduktionsbereitschaft der Raucherinnen und Raucher in der Schweiz Zusammenfassung des Forschungsberichts 2004 Tabakmonitoring Schweizerische

Mehr

Analytische Statistik I. Statistische Methoden in der Korpuslinguistik Heike Zinsmeister WS 2009/10

Analytische Statistik I. Statistische Methoden in der Korpuslinguistik Heike Zinsmeister WS 2009/10 Analytische Statistik I Statistische Methoden in der Korpuslinguistik Heike Zinsmeister WS 2009/10 Testen Anpassungstests (goodness of fit) Weicht eine gegebene Verteilung signifikant von einer bekannten

Mehr

Abitur 2015 Mathematik Stochastik III

Abitur 2015 Mathematik Stochastik III Seite 1 http://www.abiturloesung.de/ Seite 2 Abitur 2015 Mathematik Stochastik III Bei der Wintersportart Biathlon wird bei jeder Schießeinlage auf fünf Scheiben geschossen. Ein Biathlet tritt bei einem

Mehr

Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt!

Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt! Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt! 1 Einführung 2 Wahrscheinlichkeiten kurz gefasst 3 Zufallsvariablen und Verteilungen 4 Theoretische Verteilungen (Wahrscheinlichkeitsfunktion)

Mehr

Zeigen Sie mittles vollständiger Induktion, dass für jede natürliche Zahl n 1 gilt: k = n (n + 1) 2

Zeigen Sie mittles vollständiger Induktion, dass für jede natürliche Zahl n 1 gilt: k = n (n + 1) 2 Aufgabe 1. (5 Punkte) Zeigen Sie mittles vollständiger Induktion, dass für jede natürliche Zahl n 1 gilt: n k = k=1 n (n + 1). 2 Aufgabe 2. (5 Punkte) Bestimmen Sie das folgende Integral mithilfe partieller

Mehr

Hamburg Mathematik Stochastik Übungsaufgabe 4 Erhöhtes Niveau

Hamburg Mathematik Stochastik Übungsaufgabe 4 Erhöhtes Niveau Hamburg Mathematik Stochastik Übungsaufgabe 4 Erhöhtes Niveau Lichterkettenproduktion Eine Firma stellt hochwertige Lichterketten für den Einsatz im Außenbereich her, die durch ihre spezielle Konstruktion,

Mehr

14.01.14 DAS THEMA: INFERENZSTATISTIK II. Standardfehler Konfidenzintervalle Signifikanztests. Standardfehler

14.01.14 DAS THEMA: INFERENZSTATISTIK II. Standardfehler Konfidenzintervalle Signifikanztests. Standardfehler DAS THEMA: INFERENZSTATISTIK II INFERENZSTATISTISCHE AUSSAGEN Standardfehler Konfidenzintervalle Signifikanztests Standardfehler der Standardfehler Interpretation Verwendung 1 ZUR WIEDERHOLUNG... Ausgangspunkt:

Mehr

Um zu entscheiden, welchen Inhalt die Urne hat, werden der Urne nacheinander 5 Kugeln mit Zurücklegen entnommen und ihre Farben notiert.

Um zu entscheiden, welchen Inhalt die Urne hat, werden der Urne nacheinander 5 Kugeln mit Zurücklegen entnommen und ihre Farben notiert. 7. Testen von Hypothesen ================================================================== 15.1 Alternativtest -----------------------------------------------------------------------------------------------------------------

Mehr

0, v 6 = 2 2. 1, v 4 = 1. 2. span(v 1, v 5, v 6 ) = span(v 1, v 2, v 3, v 4, v 5, v 6 ) 4. span(v 1, v 2, v 4 ) = span(v 2, v 3, v 5, v 6 )

0, v 6 = 2 2. 1, v 4 = 1. 2. span(v 1, v 5, v 6 ) = span(v 1, v 2, v 3, v 4, v 5, v 6 ) 4. span(v 1, v 2, v 4 ) = span(v 2, v 3, v 5, v 6 ) Aufgabe 65. Ganz schön span(n)end. Gegeben sei folgende Menge M von 6 Vektoren v, v,..., v 6 R 4 aus Aufgabe P 6: M = v =, v =, v =, v 4 =, v 5 =, v 6 = Welche der folgenden Aussagen sind wahr? span(v,

Mehr

Klausur Wirtschaftsmathematik Lösungshinweise

Klausur Wirtschaftsmathematik Lösungshinweise Klausur Wirtschaftsmathematik Lösungshinweise Prüfungsdatum: 27. Juni 2015 Prüfer: Etschberger Studiengang: Wirtschaftsingenieurwesen Aufgabe 1 16 Punkte Anton Arglos hat von seiner Großmutter 30 000 geschenkt

Mehr

Hauptprüfung Abiturprüfung 2014 (ohne CAS) Baden-Württemberg

Hauptprüfung Abiturprüfung 2014 (ohne CAS) Baden-Württemberg Baden-Württemberg: Abitur 14 Wahlteil B www.mathe-aufgaben.com Hauptprüfung Abiturprüfung 14 (ohne CAS) Baden-Württemberg Wahlteil Analytische Geometrie / Stochastik Hilfsmittel: GTR und Formelsammlung

Mehr

Erstellen Sie eine Vierfeldertafel, die diese Situation wiedergibt.

Erstellen Sie eine Vierfeldertafel, die diese Situation wiedergibt. Bei der Bearbeitung der Aufgabe dürfen alle Funktionen des Taschenrechners genutzt werden. Aufgabe 4: Stochastik Vorbemerkung: Führen Sie stets geeignete Zufallsvariablen und Namen für Ereignisse ein.

Mehr

Prüfung eines Datenbestandes

Prüfung eines Datenbestandes Prüfung eines Datenbestandes auf Abweichungen einzelner Zahlen vom erwarteten mathematisch-statistischen Verhalten, die nicht mit einem Zufall erklärbar sind (Prüfung auf Manipulationen des Datenbestandes)

Mehr

2. Formulieren von Hypothesen. Nullhypothese: H 0 : µ = 0 Gerät exakt geeicht

2. Formulieren von Hypothesen. Nullhypothese: H 0 : µ = 0 Gerät exakt geeicht 43 Signifikanztests Beispiel zum Gauß-Test Bei einer Serienfertigung eines bestimmten Typs von Messgeräten werden vor der Auslieferung eines jeden Gerätes 10 Kontrollmessungen durchgeführt um festzustellen,

Mehr

DIPLOMVORPRÜFUNG GRUNDZÜGE DER STATISTIK, TEIL B WINTERSEMESTER 2006/07 28.02.2007

DIPLOMVORPRÜFUNG GRUNDZÜGE DER STATISTIK, TEIL B WINTERSEMESTER 2006/07 28.02.2007 Wirtschaftswissenschaftliches Prüfungsamt DIPLOMVORPRÜFUNG GRUNDZÜGE DER STATISTIK, TEIL B WINTERSEMESTER 006/07 8.0.007 Lösung Prof. Dr. R Friedmann / Dr. R. Hauser Hinweise für die Klausurteilnehmer

Mehr

Mathematik IV für Maschinenbau und Informatik (Stochastik) Universität Rostock, Institut für Mathematik Sommersemester 2007

Mathematik IV für Maschinenbau und Informatik (Stochastik) Universität Rostock, Institut für Mathematik Sommersemester 2007 Mathematik IV für Maschinenbau und Informatik Stochastik Universität Rostock, Institut für Mathematik Sommersemester 007 Prof. Dr. F. Liese Dipl.-Math. M. Helwich Serie Termin: 9. Juni 007 Aufgabe 3 Punkte

Mehr

Stochastik: Hypothesentest Stochastik Testen von Hypothesen (einseitiger Test) allgemein bildende Gymnasien J1/J2

Stochastik: Hypothesentest Stochastik Testen von Hypothesen (einseitiger Test) allgemein bildende Gymnasien J1/J2 Stochastik Testen von Hypothesen (einseitiger Test) allgemein bildende Gymnasien J/J2 Alexander Schwarz www.mathe-aufgaben.com Oktober 25 Hinweis: Für die Aufgaben darf der GTR benutzt werden. Aufgabe

Mehr

WS 2014/15. (d) Bestimmen Sie die Wahrscheinlichkeitsfunktion von X. (e) Bestimmen Sie nun den Erwartungswert und die Varianz von X.

WS 2014/15. (d) Bestimmen Sie die Wahrscheinlichkeitsfunktion von X. (e) Bestimmen Sie nun den Erwartungswert und die Varianz von X. Fragenkatalog zur Übung Methoden der empirischen Sozialforschung WS 2014/15 Hier finden Sie die denkbaren Fragen zum ersten Teil der Übung. Das bedeutet, dass Sie zu diesem Teil keine anderen Fragen im

Mehr

Statistiktutorium (Kurs Frau Jacobsen)

Statistiktutorium (Kurs Frau Jacobsen) Statistiktutorium (Kurs Frau Jacobsen) von Timo Beddig 1 Grundbegriffe p = Punktschätzer, d.h. der Mittelwert aus der Stichprobe, auf Basis dessen ein angenäherter Wert für den unbekannten Parameter der

Mehr

1 Von Test zu Test. 2 Arbeitsblatt

1 Von Test zu Test. 2 Arbeitsblatt 1 Von Test zu Test 2 Arbeitsblatt 1. Ein FDP-Kandidat behauptet, dass 10% oder mehr Wahlberechtigten seines Stimmkreises FDP wählen würden. Zur Überprüfung befragt die Partei 200 Wahlberechtigte des Stimmkreises.

Mehr

Statistik II Wahrscheinlichkeitsrechnung und induktive Statistik Erste Klausur zum Sommersemester 2005 26. Juli 2005

Statistik II Wahrscheinlichkeitsrechnung und induktive Statistik Erste Klausur zum Sommersemester 2005 26. Juli 2005 Statistik II Wahrscheinlichkeitsrechnung und induktive Statistik Erste Klausur zum Sommersemester 2005 26. Juli 2005 Aufgabe 1: Grundzüge der Wahrscheinlichkeitsrechnung 19 P. Als Manager eines großen

Mehr

Von der Untersuchungsfrage zu statistischen Hypothesen, und wie war das nochmal mit dem α- und

Von der Untersuchungsfrage zu statistischen Hypothesen, und wie war das nochmal mit dem α- und Von der Untersuchungsfrage zu statistischen Hypothesen, und wie war das nochmal mit dem α- und β-fehler? Sven Garbade Fakultät für Angewandte Psychologie SRH Hochschule Heidelberg sven.garbade@hochschule-heidelberg.de

Mehr

Kapitel 3. Zufallsvariable. Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion. Erwartungswert, Varianz und Standardabweichung

Kapitel 3. Zufallsvariable. Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion. Erwartungswert, Varianz und Standardabweichung Kapitel 3 Zufallsvariable Josef Leydold c 2006 Mathematische Methoden III Zufallsvariable 1 / 43 Lernziele Diskrete und stetige Zufallsvariable Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion

Mehr

DWT 2.1 Maximum-Likelihood-Prinzip zur Konstruktion von Schätzvariablen 330/467 Ernst W. Mayr

DWT 2.1 Maximum-Likelihood-Prinzip zur Konstruktion von Schätzvariablen 330/467 Ernst W. Mayr 2.1 Maximum-Likelihood-Prinzip zur Konstruktion von Schätzvariablen Wir betrachten nun ein Verfahren zur Konstruktion von Schätzvariablen für Parameter von Verteilungen. Sei X = (X 1,..., X n ). Bei X

Mehr

Müsli-Aufgabe Bayern GK 2009

Müsli-Aufgabe Bayern GK 2009 Müsli-Aufgabe Bayern GK 2009 1 Anlässlich einer Studie wurden 2000 Jugendliche im Alter von 18 Jahren zu ihren Ernährungsgewohnheiten befragt Von den Befragten gaben 740 an, am Morgen nicht zu frühstücken

Mehr

RUPRECHTS-KARLS-UNIVERSITÄT HEIDELBERG

RUPRECHTS-KARLS-UNIVERSITÄT HEIDELBERG Die Poisson-Verteilung Jianmin Lu RUPRECHTS-KARLS-UNIVERSITÄT HEIDELBERG Ausarbeitung zum Vortrag im Seminar Stochastik (Wintersemester 2008/09, Leitung PD Dr. Gudrun Thäter) Zusammenfassung: In der Wahrscheinlichkeitstheorie

Mehr

Regelmäßigkeit (Erkennen von Mustern und Zusammenhängen) versus Zufall

Regelmäßigkeit (Erkennen von Mustern und Zusammenhängen) versus Zufall Wahrscheinlichkeitstheorie Was will die Sozialwissenschaft damit? Regelmäßigkeit (Erkennen von Mustern und Zusammenhängen) versus Zufall Auch im Alltagsleben arbeiten wir mit Wahrscheinlichkeiten, besteigen

Mehr

5. Seminar Statistik

5. Seminar Statistik Sandra Schlick Seite 1 5. Seminar 5. Seminar Statistik 30 Kurztest 4 45 Testen von Hypothesen inkl. Übungen 45 Test- und Prüfverfahren inkl. Übungen 45 Repetitorium und Prüfungsvorbereitung 15 Kursevaluation

Mehr

Statistische Tests (Signifikanztests)

Statistische Tests (Signifikanztests) Statistische Tests (Signifikanztests) [testing statistical hypothesis] Prüfen und Bewerten von Hypothesen (Annahmen, Vermutungen) über die Verteilungen von Merkmalen in einer Grundgesamtheit (Population)

Mehr

Studiendesign/ Evaluierungsdesign

Studiendesign/ Evaluierungsdesign Jennifer Ziegert Studiendesign/ Evaluierungsdesign Praxisprojekt: Nutzerorientierte Evaluierung von Visualisierungen in Daffodil mittels Eyetracker Warum Studien /Evaluierungsdesign Das Design einer Untersuchung

Mehr

Übungsaufgaben WS1011

Übungsaufgaben WS1011 Übungsaufgaben WS1011 Peter Schrott Martin Zuber 1 Aufgabe 2: Studien zeigen, dass der Benzinverbrauch von Motorrädern in Deutschland normal verteilt ist, mit einem Mittel von 25,5 km/l und einer Standardabweichung

Mehr

Aufgabenblock 4. Da Körpergröße normalverteilt ist, erhalten wir aus der Tabelle der t-verteilung bei df = 19 und α = 0.05 den Wert t 19,97.

Aufgabenblock 4. Da Körpergröße normalverteilt ist, erhalten wir aus der Tabelle der t-verteilung bei df = 19 und α = 0.05 den Wert t 19,97. Aufgabenblock 4 Aufgabe ) Da s = 8. cm nur eine Schätzung für die Streuung der Population ist, müssen wir den geschätzten Standardfehler verwenden. Dieser berechnet sich als n s s 8. ˆ = = =.88. ( n )

Mehr

Testen von Hypothesen bei gesuchtem Annahmebereich - Übungen

Testen von Hypothesen bei gesuchtem Annahmebereich - Übungen Mathias Russ, MK 19.04.2007 Hypothesentest_Ueb_Alpha.mcd Testen von Hypothesen bei gesuchtem Annahmebereich - Übungen (7) Wieder der Schulschwänzer Von einem Schüler wird behauptet, dass er (mindestens)

Mehr

$ % + 0 sonst. " p für X =1 $

$ % + 0 sonst.  p für X =1 $ 31 617 Spezielle Verteilungen 6171 Bernoulli Verteilung Wir beschreiben zunächst drei diskrete Verteilungen und beginnen mit einem Zufallsexperiment, indem wir uns für das Eintreffen eines bestimmten Ereignisses

Mehr

FF Düsseldorf WS 2007/08 Prof. Dr. Horst Peters. Vorlesung Quantitative Methoden 1B im Studiengang Business Administration (Bachelor) Seite 1 von 6

FF Düsseldorf WS 2007/08 Prof. Dr. Horst Peters. Vorlesung Quantitative Methoden 1B im Studiengang Business Administration (Bachelor) Seite 1 von 6 Vorlesung Quantitative Methoden 1B im Studiengang Business Administration (Bachelor) Seite 1 von 6 (Konfidenzintervalle, Gauß scher Mittelwerttest) 1. Bei einem bestimmten Großraumflugzeug sei die Auslastung

Mehr

Abiturprüfung 2000 MATHEMATIK. als Grundkursfach. Arbeitszeit: 180 Minuten

Abiturprüfung 2000 MATHEMATIK. als Grundkursfach. Arbeitszeit: 180 Minuten Abiturprüfung 000 MATHEMATIK als Grundkursfach Arbeitszeit: 180 Minuten Der Fachausschuss wählt je eine Aufgabe aus den Gebieten GM1, GM und GM zur Bearbeitung aus. - - GM1. INFINITESIMALRECHNUNG I. 10

Mehr

Mädchen Jungen Smartphone 42 52 Computer 77 87 Fernsehgerät 54 65 feste Spielkonsole 37 62

Mädchen Jungen Smartphone 42 52 Computer 77 87 Fernsehgerät 54 65 feste Spielkonsole 37 62 Unabhängigkeit ================================================================== 1. Im Rahmen der sogenannten JIM-Studie wurde in Deutschland im Jahr 2012 der Umgang von Jugendlichen im Alter von 12 bis

Mehr

MUSTER 2 FÜR DIE ABITURPRÜFUNG AM BERUFLICHEN GYMNASIUM AB DEM SCHULJAHR 2016/2017. Teil 1: Keine Hilfsmittel zugelassen.

MUSTER 2 FÜR DIE ABITURPRÜFUNG AM BERUFLICHEN GYMNASIUM AB DEM SCHULJAHR 2016/2017. Teil 1: Keine Hilfsmittel zugelassen. MINISTERIUM FÜR KULTUS, JUGEND UND SPORT BADEN-WÜRTTEMBERG MUSTER 2 FÜR DIE ABITURPRÜFUNG AM BERUFLICHEN GYMNASIUM AB DEM SCHULJAHR 21/217 Hauptprüfung LÖSUNGSVORSCHLAG FÜR DAS FACH Arbeitszeit Hilfsmittel

Mehr

8. Konfidenzintervalle und Hypothesentests

8. Konfidenzintervalle und Hypothesentests 8. Konfidenzintervalle und Hypothesentests Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Beispiel. Sie wollen den durchschnittlichen Fruchtsaftgehalt eines bestimmten Orangennektars

Mehr

Medizinische Statistik Epidemiologie und χ 2 Vierfeldertest

Medizinische Statistik Epidemiologie und χ 2 Vierfeldertest Universität Wien Institut für Mathematik Wintersemester 2009/2010 Medizinische Statistik Epidemiologie und χ 2 Vierfeldertest Seminar Angewandte Mathematik Ao. Univ. Prof. Dr. Peter Schmitt von Nadja Reiterer

Mehr