Lineare Codes. Dipl.-Inform. Wolfgang Globke. Institut für Algebra und Geometrie Arbeitsgruppe Differentialgeometrie Universität Karlsruhe 1 / 19

Größe: px
Ab Seite anzeigen:

Download "Lineare Codes. Dipl.-Inform. Wolfgang Globke. Institut für Algebra und Geometrie Arbeitsgruppe Differentialgeometrie Universität Karlsruhe 1 / 19"

Transkript

1 Lineare Codes Dipl.-Inform. Wolfgang Globke Institut für Algebra und Geometrie Arbeitsgruppe Differentialgeometrie Universität Karlsruhe 1 / 19

2 Codes Ein Code ist eine eindeutige Zuordnung von Zeichen aus einem gegebenen Zeichenvorrat zu einem Codewort aus einem anderen Zeichenvorrat. Matrikelnummern codieren Studenten. ASCII-Zeichen codieren das lateinische Alphabet (und etliche weitere Zeichen). Bitfolgen codieren im Rechner natürliche Zahlen und mit etwas Geschick auch einige rationale Zahlen. 2 / 19

3 Achtung Code Chiffre 3 / 19

4 Binäre Codes Wir konzentrieren uns nun auf die Codierung durch endliche Bitfolgen fester Länge k: 0, 1, 0, 1, 0, 0, 1, 0 } {{ } k In diesem Fall sprechen wir von einem binären Code. 4 / 19

5 Binäre Arithmetik Die Bits gehorchen bestimmten Regeln: AND XOR Was hat das mit dem Körper F2 = Z/2Z zu tun? / 19

6 Binäre Codes Und wenn wir gerade dabei sind... 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, c = ( ) F n 2 Wir können eine Bitfolge c der Länge n als Vektor im Vektorraum F n 2 auffassen. 6 / 19

7 Lineare Codes Ein linearer Code C ist ein Untervektorraum von F n 2. C enthält 2 k Codeworte für dim C = k n. 7 / 19

8 Nachrichtenübertragung Rauschen Nachricht x c v Codierer Kanal Decodierer e decodierte Nachricht 8 / 19

9 Effizienz vs. Fehlerkorrektur Bei der Konstruktion von Codes hat man zwei Ziele im Auge: 1 Effizienz der Darstellung. 2 Möglichkeiten zur Fehlerkorrektur. Dies sind zwei gegensätzliche Ziele: Korrekturfähigkeit wird verbessert, wenn man zusätzliche Bits zur Darstellung hinzufügt (also die Redundanz erhöht). Dadurch wird die Darstellung weniger effizient. 9 / 19

10 Fehlerkorrektur Wir betrachten die Fehlerkorrektur. Hinzufügen redundanter Bits geschieht durch Einbetten des Codes C der Dimension k in F n 2 mit n > k. Der Hamming-Abstand zweier Codeworte c = (c 1... c n ), c = (c 1... c n) ist die Anzahl der Stellen, an denen sich die beiden unterscheiden: dist(c, c ) = #{j c j c j }. Die Minimaldistanz d ist der minimale Abstand zwischen zwei Codeworten aus C, d = min{dist(c, c ) c, c C}. Sie ist entscheidend für die Fehlerkorrekturfähigkeit des Codes. 10 / 19

11 Fehlerkorrektur Die Minimaldistanz d bestimmt, wieviele Fehler erkannt bzw. korrigiert werden können. dd 1 cccc d 1 2 d 1 2 d 1 d 2 dist(c, dcc c )=5 vc C c ccc Es können bis zu d 1 Fehler erkannt oder d 1 2 Fehler korrigiert werden (hängt vom Übertragungskanal ab). 11 / 19

12 Lineare Codes vs. beliebige Codes Nutze die Vektorraumstruktur des linearen Codes: Ein beliebiger Code B ist eine Teilmenge von F n 2. Ein linearer Code C ist ein Untervektorraum von F n 2. Ein beliebiger Code B hat keine Struktur, es müssen alle Codeworte separat gespeichert werden. linearer Speicheraufwand. Ist C ein k-dimensionaler Unterraum, so reichen k Basisvektoren, um alle 2 k Codeworte darzustellen. logarithmischer Speicheraufwand. 12 / 19

13 Codierungsabbildung Nutze die Vektorraumstruktur des linearen Codes: Wir haben 2 k Informationsworte x F k 2, die wir durch Bitfolgen c der Länge n > k codieren wollen. Codierung erfolgt durch die lineare Codierungsabbildung Γ : F k 2 F n 2, x c = x G. Sie ist durch die Erzeugermatrix G definiert, deren Zeilen eine Basis unseres Codes C sind. Es ist also C = Bild Γ F n / 19

14 Fehlererkennung Nutze die Vektorraumstruktur des linearen Codes: Problem: Sender schickt ein Codewort c F n 2 Empfänger erhält v F n 2. Ein Fehler liegt vor, wenn v c gilt. Wie kann man Fehler erkennen? Prüfe, ob v ein Codewort aus C ist: Löse das LGS v = x G nach x F k 2. über den Kanal, 14 / 19

15 Fehlererkennung Der Code C ist als Untervektorraum die Lösungsmenge eines homogenen LGS. Es gibt also eine Prüfmatrix H mit G H = O. Mit H kann man ein empfangenes v auf Fehler prüfen: v C v H = / 19

16 Fehlerkorrektur Das Fehlersyndrom s von v ist s = v H F n k 2. Es hängt nur von einem additiven Fehler e ab, nicht von c: v = c + e v H = c } {{ H } +e H = e H = s. =0 Aus v kann man also das ursprüngliche Codewort c rekonstruieren, wenn man eine Lösung e des LGS findet. e H = s Zur Fehlerkorrektur finde Vektor e mit möglichst kleinem Hamming-Gewicht. Dieses Problem ist NP-schwer. 16 / 19

17 Weitere Eigenschaften und Problemstellungen Systematische Codierung: Durch geeigneten Basiswechsel S die Erzeugermatrix G auf eine einfachere Form S G bringen. Zyklische Codes: Periodische Struktur der Erzeugermatrix liefert Abschätzungen für Minimaldistanz d. Bestimmung der Minimaldistanz d bei gegebener Erzeugermatrix G. Bestimmung der maximalen Anzahl der Codeworte bei gegebener Minimaldistanz. Aufzählen aller Codeworte. 17 / 19

18 Codierungstheorie in Karlsruhe IKS (vormals IAKS Beth) Institut für Kryptographie und Sicherheit (Leitung Dr. Jörn Müller-Quade) Vorlesung: Signale, Codes und Chiffren I - II Vorlesung: Grundlagen der Computersicherheit Vorlesung: Public Key Kryptographie Vorlesung: Embedded Security diverse Praktika zur Computersicherheit 18 / 19

19 G. Goos Vorlesungen über Informatik, Band 1 (Springer) M. Grassl, W. Globke Algorithmen für Gruppen und Codes K. Jacobs, D. Jungnickel Einführung in die Kombinatorik (de Gruyter) F.J. MacWilliams, N.J.A. Sloane The Theory of Error-Correcting Codes (North-Holland) 19 / 19

Einführung in die Kodierungstheorie

Einführung in die Kodierungstheorie Einführung in die Kodierungstheorie Einführung Vorgehen Beispiele Definitionen (Code, Codewort, Alphabet, Länge) Hamming-Distanz Definitionen (Äquivalenz, Coderate, ) Singleton-Schranke Lineare Codes Hamming-Gewicht

Mehr

Die Mathematik in der CD

Die Mathematik in der CD Lehrstuhl D für Mathematik RWTH Aachen Lehrstuhl D für Mathematik RWTH Aachen St.-Michael-Gymnasium Monschau 14. 09. 2006 Codes: Definition und Aufgaben Ein Code ist eine künstliche Sprache zum Speichern

Mehr

1. Woche Einführung in die Codierungstheorie, Definition Codes, Präfixcode, kompakte Codes

1. Woche Einführung in die Codierungstheorie, Definition Codes, Präfixcode, kompakte Codes 1 Woche Einführung in die Codierungstheorie, Definition Codes, Präfixcode, kompakte Codes 1 Woche: Einführung in die Codierungstheorie, Definition Codes, Präfixcode, kompakte Codes 5/ 44 Unser Modell Shannon

Mehr

6 Fehlerkorrigierende Codes

6 Fehlerkorrigierende Codes R. Reischuk, ITCS 35 6 Fehlerkorrigierende Codes Wir betrachten im folgenden nur Blockcodes, da sich bei diesen das Decodieren und auch die Analyse der Fehlertoleranz-Eigenschaften einfacher gestaltet.

Mehr

Codierung. H.-G. Hopf

Codierung. H.-G. Hopf Codierung H.-G. Hopf Inhalt Informationsübermittlung Codierung von Zeichen GDI: Codierung / 2 Inhalt Informationsübermittlung Codierung von Zeichen GDI: Codierung / 3 Ideale Kommunikation Übertragungskanal

Mehr

Organisation. Was kommt zum Test? Buch Informatik Grundlagen bis inkl. Kapitel 7.4 Wissensfragen und Rechenbeispiele

Organisation. Was kommt zum Test? Buch Informatik Grundlagen bis inkl. Kapitel 7.4 Wissensfragen und Rechenbeispiele Organisation Was kommt zum Test? Buch Informatik Grundlagen bis inkl Kapitel 74 Wissensfragen und Rechenbeispiele 3 Vorträge zur Übung Informationstheorie, Huffman-Codierung und trennzeichenfreie Codierung

Mehr

Grundlagen der Technischen Informatik. Codierung und Fehlerkorrektur. Kapitel 4.2

Grundlagen der Technischen Informatik. Codierung und Fehlerkorrektur. Kapitel 4.2 Codierung und Fehlerkorrektur Kapitel 4.2 Prof. Dr.-Ing. Jürgen Teich Lehrstuhl für Hardware-Software-Co-Design Technische Informatik - Meilensteine Informationstheorie Claude Elwood Shannon (geb. 1916)

Mehr

Mathematik II für Studierende der Informatik Kapitel. Kodierungstheorie

Mathematik II für Studierende der Informatik Kapitel. Kodierungstheorie Mathematik II für Studierende der Informatik Kapitel Kodierungstheorie Markus Junker Sommersemester 2011 (korrigierte Version vom Sommersemester 2012) Einführung, Beispiele, Definitionen Ausgangspunkt

Mehr

2.1 Codes: einige Grundbegriffe

2.1 Codes: einige Grundbegriffe Gitter und Codes c Rudolf Scharlau 2. Mai 2009 51 2.1 Codes: einige Grundbegriffe Wir stellen die wichtigsten Grundbegriffe für Codes über dem Alphabet F q, also über einem endlichen Körper mit q Elementen

Mehr

4. Woche Decodierung; Maximale, Perfekte und Optimale Codes. 4. Woche: Decodierung; Maximale, Perfekte und Optimale Codes 69/ 140

4. Woche Decodierung; Maximale, Perfekte und Optimale Codes. 4. Woche: Decodierung; Maximale, Perfekte und Optimale Codes 69/ 140 4 Woche Decodierung; Maximale, Perfekte und Optimale Codes 4 Woche: Decodierung; Maximale, Perfekte und Optimale Codes 69/ 140 Szenario für fehlerkorrigierende Codes Definition (n, M)-Code Sei C {0, 1}

Mehr

Frank Weinhold Professur VSR Fakultät für Informatik TU Chemnitz Mai 2011

Frank Weinhold Professur VSR Fakultät für Informatik TU Chemnitz Mai 2011 Rechnernetze Übung 5 Frank Weinhold Professur VSR Fakultät für Informatik TU Chemnitz Mai 2011 Ziel: Nachrichten fehlerfrei übertragen und ökonomisch (wenig Redundanz) übertragen Was ist der Hamming-Abstand?

Mehr

Index. Chien-Suche, 220 CIRC, 234 Code, 2, 9 äquidistanter, 81

Index. Chien-Suche, 220 CIRC, 234 Code, 2, 9 äquidistanter, 81 Index Abelsche Gruppe, 140 Abgeschlossenheit, 47, 140, 143 Abhängigkeit lineare, 53 Abtastfolge, 226 ACS-Operation, 279 Addition, 46, 163 Alphabet, 1 ARQ, 6, 174 Assoziativität, 47, 52, 140, 143 Audio-CD,

Mehr

Single Parity check Codes (1)

Single Parity check Codes (1) Single Parity check Codes (1) Der Single Parity check Code (SPC) fügt zu dem Informationsblock u = (u 1, u 2,..., u k ) ein Prüfbit (englisch: Parity) p hinzu: Die Grafik zeigt drei Beispiele solcher Codes

Mehr

Übungen zur Vorlesung Grundlagen der Rechnernetze. Zusätzliche Übungen

Übungen zur Vorlesung Grundlagen der Rechnernetze. Zusätzliche Übungen Übungen zur Vorlesung Grundlagen der Rechnernetze Zusätzliche Übungen Hamming-Abstand d Der Hamming-Abstand d zwischen zwei Codewörtern c1 und c2 ist die Anzahl der Bits, in denen sich die beiden Codewörter

Mehr

Codes und Codegitter. Katharina Distler. 27. April 2015

Codes und Codegitter. Katharina Distler. 27. April 2015 Codes und Codegitter Katharina Distler 7. April 015 Inhaltsverzeichnis 1 Codes 4 Codegitter 14 Einleitung Die folgende Seminararbeit behandelt das Konzept von Codes und Codegittern. Da sie bei der Informationsübertragung

Mehr

Grundlagen exakter Methoden zur Verschlüsselung von Codewörtern mittels linearer Codes*

Grundlagen exakter Methoden zur Verschlüsselung von Codewörtern mittels linearer Codes* Grundlagen exakter Methoden zur Verschlüsselung von Codewörtern mittels linearer Codes* Andrea Kraft andreakraft@gmx.at Elisabeth Pilgerstorfer elisabeth_pilg@hotmail.com Johannes Kepler Universität Linz

Mehr

Grundlagen der Technischen Informatik. 2. Übung

Grundlagen der Technischen Informatik. 2. Übung Grundlagen der Technischen Informatik 2. Übung Christian Knell Keine Garantie für Korrekt-/Vollständigkeit Organisatorisches Übungsblätter zuhause vorbereiten! In der Übung an der Tafel vorrechnen! Bei

Mehr

Zusammenfassung zu Codierungstheorie

Zusammenfassung zu Codierungstheorie Zusammenfassung zu Codierungstheorie Proseminar Mathematische Modelle in den Naturwissenschaften WS 09/10 Thomas Holzer 0755600 Sandra Sampl 0755049 Kathrin Oberradter 0755123 1 Inhaltsverzeichnis 1. Einführung

Mehr

Übung zur Vorlesung. Informationstheorie und Codierung

Übung zur Vorlesung. Informationstheorie und Codierung Übung zur Vorlesung Informationstheorie und Codierung Prof. Dr. Lilia Lajmi Juni 25 Ostfalia Hochschule für angewandte Wissenschaften Hochschule Braunschweig/Wolfenbüttel Postanschrift: Salzdahlumer Str.

Mehr

4.0.2 Beispiel (Einfacher Wiederholungscode). Im einfachsten Fall wird die Nachricht einfach wiederholt. D.h. man verwendet die Generatorabbildung

4.0.2 Beispiel (Einfacher Wiederholungscode). Im einfachsten Fall wird die Nachricht einfach wiederholt. D.h. man verwendet die Generatorabbildung Wir beschäftigen uns mit dem Problem, Nachrichten über einen störungsanfälligen Kanal (z.b. Internet, Satelliten, Schall, Speichermedium) zu übertragen. Wichtigste Aufgabe in diesem Zusammenhang ist es,

Mehr

CODIERUNGSTHEORIE KURS ZELL AN DER PRAM, FEBRUAR 2005

CODIERUNGSTHEORIE KURS ZELL AN DER PRAM, FEBRUAR 2005 CODIERUNGSTHEORIE KURS ZELL AN DER PRAM, FEBRUAR 2005. Das Problem.. Quellcodierung und Datenkompression. Wir wollen eine Nachricht über einen digitalen Kanal, der nur 0 oder übertragen kann, schicken.

Mehr

KANALCODIERUNG AUFGABEN. Aufgabe 1. Aufgabe 2

KANALCODIERUNG AUFGABEN. Aufgabe 1. Aufgabe 2 AUFGABEN KANALCODIERUNG Aufgabe Wir betrachten den Hamming-Code mit m = 5 Prüfbits. a) Wie gross ist die Blocklänge n dieses Codes? b) Wie viele gültige Codewörter umfasst dieser Code? c) Leiten Sie die

Mehr

Fehlerkorrigierende Codes

Fehlerkorrigierende Codes Fehlerkorrigierende Codes SS 2013 Gerhard Dorfer 2 Inhaltsverzeichnis 1 Fehlerkorrigierende Codes 4 1.1 Einführende Beispiele................................. 4 1.2 Mathematische Grundlagen..............................

Mehr

Fehlererkennung und Fehlerkorrektur in Codes

Fehlererkennung und Fehlerkorrektur in Codes Fehlererkennung und Fehlerkorrektur in Codes Blockcodes und Hamming Abstand Untersuchungen zu Codierungen von Informationen, die über einen Nachrichtenkanal übertragen werden sollen, konzentrieren sich

Mehr

Einführung in die Informatik I

Einführung in die Informatik I Einführung in die Informatik I Das Rechnen in Zahlensystemen zur Basis b=2, 8, 10 und 16 Prof. Dr. Nikolaus Wulff Zahlensysteme Neben dem üblichen dezimalen Zahlensystem zur Basis 10 sind in der Informatik

Mehr

Fachschaft Mathematik und Informatik (FIM) LA I VORKURS. Herbstsemester 2015. gehalten von Harald Baum

Fachschaft Mathematik und Informatik (FIM) LA I VORKURS. Herbstsemester 2015. gehalten von Harald Baum Fachschaft Mathematik und Informatik (FIM) LA I VORKURS Herbstsemester 2015 gehalten von Harald Baum 2. September 2015 Inhaltsverzeichnis 1. Stichpunkte zur Linearen Algebra I 2. Körper 3. Vektorräume

Mehr

Theoretische Grundlagen der Informatik WS 09/10

Theoretische Grundlagen der Informatik WS 09/10 Theoretische Grundlagen der Informatik WS 09/10 - Tutorium 6 - Michael Kirsten und Kai Wallisch Sitzung 13 02.02.2010 Inhaltsverzeichnis 1 Formeln zur Berechnung Aufgabe 1 2 Hamming-Distanz Aufgabe 2 3

Mehr

Harm Pralle. Codierungstheorie WS 2005/06. Institut Computational Mathematics Technische Universität Braunschweig

Harm Pralle. Codierungstheorie WS 2005/06. Institut Computational Mathematics Technische Universität Braunschweig Harm Pralle Codierungstheorie WS 2005/06 Institut Computational Mathematics Technische Universität Braunschweig II Literatur: A. Beutelspacher und U. Rosenbaum. Projektive Geometrie. Vieweg, Wiesbaden

Mehr

Kapitel 1: Codierungstheorie. 1.2 Quellcodierung 1.3 Fehlererkennende Codes 1.4 Fehlerkorrigierende Codes

Kapitel 1: Codierungstheorie. 1.2 Quellcodierung 1.3 Fehlererkennende Codes 1.4 Fehlerkorrigierende Codes Inhalt: 1.1 Einführung 1.2 Quellcodierung 1.3 Fehlererkennende Codes 1.4 Fehlerkorrigierende Codes 1.1 Einführung In In der der Codierungstheorie unterscheidet man man Quellcodierung und und Kanalcodierung.

Mehr

Codierung zur Fehlerkorrektur und Fehlererkennung

Codierung zur Fehlerkorrektur und Fehlererkennung Codierung zur Fehlerkorrektur und Fehlererkennung von Dr.-techn. Joachim Swoboda Mit 39 Bildern und 24 Tafeln R. OLDENBOURG VERLAG MÜNCHEN WIEN 1973 Inhalt Vorwort 9 1. Einführung 11 1.1 Redundante Codierung

Mehr

FEHLERKORRIGIERENDE CODES

FEHLERKORRIGIERENDE CODES FEHLERKORRIGIERENDE CODES Inhalt der Vorlesung Jürgen Koslowski @ Institut für Theoretische Informatik Technische Universität Braunschweig Juli 2009 INHALTSVERZEICHNIS -1 Inhaltsverzeichnis 0 Einführung

Mehr

Formelsammlung. Wahrscheinlichkeit und Information

Formelsammlung. Wahrscheinlichkeit und Information Formelsammlung Wahrscheinlichkeit und Information Ein Ereignis x trete mit der Wahrscheinlichkeit p(x) auf, dann ist das Auftreten dieses Ereignisses verbunden mit der Information I( x): mit log 2 (z)

Mehr

3 Der Hamming-Code. Hamming-Codes

3 Der Hamming-Code. Hamming-Codes 3 Der Hamming-Code Hamming-Codes Ein binärer Code C heißt ein Hamming-Code Ha s, wenn seine Kontrollmatrix H als Spalten alle Elemente in Z 2 s je einmal hat. Die Parameter eines n-k-hamming-codes sind:

Mehr

Lineare Algebra I: Eine Landkarte

Lineare Algebra I: Eine Landkarte Bild F Algebra I: Eine Landkarte Faser Versuch einer Übersicht der Themen und Zusammenhänge der n Algebra 1. 1 Algebra I: Bild F Faser Sei B Basis von V. Jedes v V läßt sich eindeutig aus den Basisvektoren

Mehr

Codierungstheorie Teil 1: Fehlererkennung und -behebung

Codierungstheorie Teil 1: Fehlererkennung und -behebung Codierungstheorie Teil 1: Fehlererkennung und -behebung von Manuel Sprock 1 Einleitung Eine Codierung ist eine injektive Abbildung von Wortmengen aus einem Alphabet A in über einem Alphabet B. Jedem Wort

Mehr

Kapitel 3. Codierung von Text (ASCII-Code, Unicode)

Kapitel 3. Codierung von Text (ASCII-Code, Unicode) Kapitel 3 Codierung von Text (ASCII-Code, Unicode) 1 Kapitel 3 Codierung von Text 1. Einleitung 2. ASCII-Code 3. Unicode 2 1. Einleitung Ein digitaler Rechner muss jede Information als eine Folge von 0

Mehr

Übungen zum Ferienkurs Lineare Algebra WS 14/15

Übungen zum Ferienkurs Lineare Algebra WS 14/15 Übungen zum Ferienkurs Lineare Algebra WS 14/15 Linearkombinationen, Basen, Lineare Abbildungen 2.1 Lineare Unabhängigkeit Sind die folgenden Vektoren linear unabhängig? (a) 1, 2, 3 im Q Vektorraum R (b)

Mehr

Codierungstheorie. Code-Arten und Code-Sicherung

Codierungstheorie. Code-Arten und Code-Sicherung Codierungstheorie Code-Arten und Code-Sicherung Inhaltsübersicht und Literatur Informationstheorie Was ist eine Codierung? Arten von Codes Informationsgehalt und Entropie Shannon'sches Codierungstheorem

Mehr

Algorithmische Kryptographie

Algorithmische Kryptographie Algorithmische Kryptographie Walter Unger Lehrstuhl für Informatik I 16. Februar 2007 Quantenkryptographie 1 Einleitung Grundlagen aus der Physik 2 Datenübertragung 1. Idee 2. Idee Nochmal Physik 3 Sichere

Mehr

Codierungstheorie Rudolf Scharlau, SoSe 2006 9

Codierungstheorie Rudolf Scharlau, SoSe 2006 9 Codierungstheorie Rudolf Scharlau, SoSe 2006 9 2 Optimale Codes Optimalität bezieht sich auf eine gegebene Quelle, d.h. eine Wahrscheinlichkeitsverteilung auf den Symbolen s 1,..., s q des Quellalphabets

Mehr

Codierung. Codierung. EAN Europäische Artikelnummer Ziffern 1 und 2 codieren das Hersteller-Land. Ziffer 2 bis 12 codieren Händler und Ware

Codierung. Codierung. EAN Europäische Artikelnummer Ziffern 1 und 2 codieren das Hersteller-Land. Ziffer 2 bis 12 codieren Händler und Ware Codierung Codierung Haydn: Streichquartett op 54.3 aus Largo, Violine I 1 2 Ziffern 1 und 2 codieren das Hersteller-Land Ziffer 2 bis 12 codieren Händler und Ware Die letzte Ziffer ist eine Prüfziffer

Mehr

Definition 27 Affiner Raum über Vektorraum V

Definition 27 Affiner Raum über Vektorraum V Definition 27 Affiner Raum über Vektorraum V Definition 27 Affiner Raum über Vektorraum V ist die Menge A = Definition 27 Affiner Raum über Vektorraum V ist die Menge A = mit einer Abbildung + : A V A,

Mehr

2 Informationstheorie

2 Informationstheorie 2 Informationstheorie Formale Grundlagen der Informatik I Herbstsemester 2012 Robert Marti Vorlesung teilweise basierend auf Unterlagen von Prof. emer. Helmut Schauer Grundbegriffe Informatik (IT: Information

Mehr

Kurze Geschichte der linearen Algebra

Kurze Geschichte der linearen Algebra Kurze Geschichte der linearen Algebra Dipl.-Inform. Wolfgang Globke Institut für Algebra und Geometrie Arbeitsgruppe Differentialgeometrie Universität Karlsruhe 1 / 20 Entwicklung Die Historische Entwicklung

Mehr

Codierungstheorie. Anton Betten Harald Fripertinger Adalbert Kerber Alfred Wassermann Karl-Heinz Zimmermann. Konstruktion und Anwendung linearer Codes

Codierungstheorie. Anton Betten Harald Fripertinger Adalbert Kerber Alfred Wassermann Karl-Heinz Zimmermann. Konstruktion und Anwendung linearer Codes Anton Betten Harald Fripertinger Adalbert Kerber Alfred Wassermann Karl-Heinz Zimmermann Codierungstheorie Konstruktion und Anwendung linearer Codes Springer-Verlag Berlin Heidelberg New York London Paris

Mehr

JKU Young Scientists Matheseminar

JKU Young Scientists Matheseminar JKU Young Scientists Matheseminar Matheseminar WS 2013/14 Codierung und Information Das grundlegende Problem der Kommunikation besteht darin, an einer Stelle entweder genau oder angenähert eine Nachricht

Mehr

Empfänger. Sender. Fehlererkennung und ggf. Fehlerkorrektur durch redundante Informationen. Längssicherung durch Paritätsbildung (Blockweise)

Empfänger. Sender. Fehlererkennung und ggf. Fehlerkorrektur durch redundante Informationen. Längssicherung durch Paritätsbildung (Blockweise) Datensicherung Bei der digitalen Signalübertragung kann es durch verschiedene Einflüsse, wie induktive und kapazitive Einkopplung oder wechselnde Potentialdifferenzen zwischen Sender und Empfänger zu einer

Mehr

Ι. Einführung in die Codierungstheorie

Ι. Einführung in die Codierungstheorie 1. Allgemeines Ι. Einführung in die Codierungstheorie Codierung: Sicherung von Daten und Nachrichten gegen zufällige Fehler bei der Übertragung oder Speicherung. Ziel der Codierung: Möglichst viele bei

Mehr

Einführung in die Codierungstheorie. Rudolf Schürer

Einführung in die Codierungstheorie. Rudolf Schürer Einführung in die Codierungstheorie Rudolf Schürer 8. Februar 2008 Vorwort Dieses Skript entstand im Zuge der gleichnamigen Vorlesung, die ich im Wintersemester 2007/08 am Fachbereich Mathematik der Universität

Mehr

Basen von Schnitt und Summe berechnen

Basen von Schnitt und Summe berechnen Basen von Schnitt und Summe berechnen 1 / 8 Voraussetzung Es seien U 1, U 2 Untervektorräume von K n. Wir wollen Basen des Schnittes U 1 U 2 und der Summe bestimmen. U 1 + U 2 2 / 8 Bezeichnung Der Einfachheit

Mehr

* % $. $ * % (.( * $ %, - $ - " -*%%( % - $ %% $ ( - $ % % $" $* * % ( *% $ ( * *(% - %% $$ * % + %( *% % # $ $ % %% *%! $(, ( $ $ -*$ $!! * ( $ (%" )//& ( *, $ %% " +$ % % $ (" $ " $ * # & (# & ## ( +

Mehr

Kodierungsalgorithmen

Kodierungsalgorithmen Kodierungsalgorithmen Komprimierung Verschlüsselung Komprimierung Zielsetzung: Reduktion der Speicherkapazität Schnellere Übertragung Prinzipien: Wiederholungen in den Eingabedaten kompakter speichern

Mehr

u + v = v + u. u + (v + w) = (u + v) + w. 0 V + v = v + 0 V = v v + u = u + v = 0 V. t (u + v) = t u + t v, (t + s) u = t u + s u.

u + v = v + u. u + (v + w) = (u + v) + w. 0 V + v = v + 0 V = v v + u = u + v = 0 V. t (u + v) = t u + t v, (t + s) u = t u + s u. Universität Stuttgart Fachbereich Mathematik Prof. Dr. C. Hesse PD Dr. P. H. Lesky Dipl. Math. D. Zimmermann Msc. J. Köllner FAQ 3 Höhere Mathematik I 4..03 el, kyb, mecha, phys Vektorräume Vektorräume

Mehr

Grundlagen Digitaler Systeme (GDS)

Grundlagen Digitaler Systeme (GDS) Grundlagen Digitaler Systeme (GDS) Prof. Dr. Sven-Hendrik Voß Sommersemester 2015 Technische Informatik (Bachelor), Semester 1 Termin 10, Donnerstag, 18.06.2015 Seite 2 Binär-Codes Grundlagen digitaler

Mehr

Code-Arten und Code-Sicherung. Literatur: Blieberger et.al.: Informatik (Kap. 3 und 4), Springer-Verlag R.-H. Schulz: Codierungstheorie, Vieweg

Code-Arten und Code-Sicherung. Literatur: Blieberger et.al.: Informatik (Kap. 3 und 4), Springer-Verlag R.-H. Schulz: Codierungstheorie, Vieweg Codierungstheorie Code-Arten und Code-Sicherung Inhaltsübersicht und Literatur Informationstheorie Was ist eine Codierung? Arten von Codes Informationsgehalt und Entropie Shannon'sches Codierungstheorem

Mehr

Codierungstheorie, Vorlesungsskript

Codierungstheorie, Vorlesungsskript Codierungstheorie, Vorlesungsskript Irene I. Bouw Sommersemester 2014 Inhaltsverzeichnis 1 Lineare Codes 2 1.1 Einführung.............................. 2 1.2 Eigenschaften linearer Codes....................

Mehr

Fehler-korrigierende Codes

Fehler-korrigierende Codes Fehler-korrigierende Codes Prof. Dr. Thomas Risse Institut für Informatik & Automation, IIA Fakultät E&I, Hochschule Bremen, HSB 8. April 2013 Nummerierung der Kapitel und Abschnitte in [15] sind beibehalten,

Mehr

3 Quellencodierung. 3.1 Einleitung

3 Quellencodierung. 3.1 Einleitung Source coding is what Alice uses to save money on her telephone bills. It is usually used for data compression, in other words, to make messages shorter. John Gordon 3 Quellencodierung 3. Einleitung Im

Mehr

Kapitel 5 Schaltungen mit Delays. Kapitel 5: Schaltungen mit Delays Seite 1 / 68

Kapitel 5 Schaltungen mit Delays. Kapitel 5: Schaltungen mit Delays Seite 1 / 68 Kapitel 5 Schaltungen mit Delays Kapitel 5: Schaltungen mit Delays Seite 1 / 68 Schaltungen mit Delays Inhaltsverzeichnis 5.1 Addierwerke 5.2 Lineare Schaltkreise und Schieberegister (LSR) 5.3 Anwendungen

Mehr

Seminar Kryptographie und Datensicherheit

Seminar Kryptographie und Datensicherheit Seminar Kryptographie und Datensicherheit Einfache Kryptosysteme und ihre Analyse Christoph Kreitz 1. Grundlagen von Kryptosystemen 2. Buchstabenorientierte Systeme 3. Blockbasierte Verschlüsselung 4.

Mehr

Kapitel 1: Einführung. Was ist Informatik? Begriff und Grundprobleme der Informatik. Abschnitt 1.1 in Küchlin/Weber: Einführung in die Informatik

Kapitel 1: Einführung. Was ist Informatik? Begriff und Grundprobleme der Informatik. Abschnitt 1.1 in Küchlin/Weber: Einführung in die Informatik Was ist Informatik? Begriff und Grundprobleme der Informatik Abschnitt 1.1 in Küchlin/Weber: Einführung in die Informatik Was ist Informatik? Informatik = computer science? Nach R. Manthey, Vorlesung Informatik

Mehr

Problem: Finde für Alphabet mit n Zeichen einen Binärcode, der die Gesamtlänge eines Textes (über diesem Alphabet) minimiert.

Problem: Finde für Alphabet mit n Zeichen einen Binärcode, der die Gesamtlänge eines Textes (über diesem Alphabet) minimiert. Anwendungen von Bäumen 4.3.2 Huffman Code Problem: Finde für Alphabet mit n Zeichen einen Binärcode, der die Gesamtlänge eines Textes (über diesem Alphabet) minimiert. => nutzbar für Kompression Code fester

Mehr

Stefan Lucks Krypto und Mediensicherheit (2009) 4: Stromchiffren

Stefan Lucks Krypto und Mediensicherheit (2009) 4: Stromchiffren 4: Stromchiffren Zwei Grundbausteine der symmetrischen Kryptographie: Stromchiffren Verschlüsseln beliebig langer Klartexte, interner Zustand Blockchiffren Verschlüsseln von Blocks einer festen Größe,

Mehr

Repräsentation von Daten Binärcodierung von rationalen Zahlen und Zeichen

Repräsentation von Daten Binärcodierung von rationalen Zahlen und Zeichen Kapitel 4: Repräsentation von Daten Binärcodierung von rationalen Zahlen und Zeichen Einführung in die Informatik Wintersemester 2007/08 Prof. Bernhard Jung Übersicht Codierung von rationalen Zahlen Konvertierung

Mehr

Lösungen zum 3. Aufgabenblatt

Lösungen zum 3. Aufgabenblatt SS, Lineare Algebra Die Lösungen wurden erstellt von: Isabel Voigt, Vanessa Lamm und Matthias Rehder Hinweis: Eine Liste der zur Bearbeitung verwendeten Literatur ist unter www.mathematiwelt.com aufrufbar.

Mehr

9 Codes. Hochschule für Angewandte Wissenschaften Hamburg FACHBEREICH ELEKTROTECHNIK UND INFORMATIK DIGITALTECHNIK 9-1

9 Codes. Hochschule für Angewandte Wissenschaften Hamburg FACHBEREICH ELEKTROTECHNIK UND INFORMATIK DIGITALTECHNIK 9-1 9 Codes 9.1 Charakterisierung und Klassifizierung Definition: Das Ergebnis einer eindeutigen Zuordnung zweier Zeichen- bzw. Zahlenmengen wird Code genannt. Die Zuordnung erfolgt über eine arithmetische

Mehr

Basis und Dimension. Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren.

Basis und Dimension. Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren. Basis und Dimension Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren. Definition. Sei V ein K-Vektorraum und (v i ) i I eine Familie von Vektoren

Mehr

Minimale Anzahl von Hinweisen bei Sudoku

Minimale Anzahl von Hinweisen bei Sudoku Minimale Anzahl von Hinweisen bei Sudoku Sascha Kurz sascha.kurz@uni-bayreuth.de (basierend auf Arbeiten von Ariane Papke und Gary McGuire et al.) Oberseminar Effizienz dezentraler Strukturen, Bayreuth,

Mehr

Informationstheorie und Codierung. Prof. Dr.-Ing. Lilia Lajmi l.lajmi@ostfalia.de

Informationstheorie und Codierung. Prof. Dr.-Ing. Lilia Lajmi l.lajmi@ostfalia.de Informationstheorie und Codierung Prof. Dr.-Ing. Lilia Lajmi l.lajmi@ostfalia.de Inhaltsverzeichnis 3. Kanalcodierung 3.1 Nachrichtentheorie für gestörte Kanäle 3.1.1 Transinformation 3.1.2 Kanalkapazität

Mehr

DIPLOMARBEIT. Titel der Diplomarbeit. Die Golay Codes. Verfasser. Daniel Eiwen. angestrebter akademischer Grad

DIPLOMARBEIT. Titel der Diplomarbeit. Die Golay Codes. Verfasser. Daniel Eiwen. angestrebter akademischer Grad DIPLOMARBEIT Titel der Diplomarbeit Die Golay Codes Verfasser Daniel Eiwen angestrebter akademischer Grad Magister der Naturwissenschaften (Mag.rer.nat) Wien, im Mai 2008 Studienkennzahl lt. Studienblatt:

Mehr

Mathematik ist überall

Mathematik ist überall Mathematik ist überall Prof. Dr. Wolfram Koepf Universität Kassel http://www.mathematik.uni-kassel.de/~koepf Tag der Mathematik 15. Februar 2008 Universität Kassel Inhaltsangabe Sichere Verschlüsselung

Mehr

12 Kryptologie. ... immer wichtiger. Militär (Geheimhaltung) Telebanking, Elektronisches Geld E-Commerce WWW...

12 Kryptologie. ... immer wichtiger. Militär (Geheimhaltung) Telebanking, Elektronisches Geld E-Commerce WWW... 12 Kryptologie... immer wichtiger Militär (Geheimhaltung) Telebanking, Elektronisches Geld E-Commerce WWW... Kryptologie = Kryptographie + Kryptoanalyse 12.1 Grundlagen 12-2 es gibt keine einfachen Verfahren,

Mehr

Kapitel 4 Leitungscodierung

Kapitel 4 Leitungscodierung Kapitel 4 Leitungscodierung Prof. Dr. Dirk W. Hoffmann Hochschule Karlsruhe w University of Applied Sciences w Fakultät für Informatik Übersicht Quelle Senke Kompression Huffman-, Arithmetische-, Lempel-Ziv

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN. Abzählbarkeit, Injektivität, Sürjektivität und Bijektivität

TECHNISCHE UNIVERSITÄT MÜNCHEN. Abzählbarkeit, Injektivität, Sürjektivität und Bijektivität TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Prof. Dr. Friedrich Roesler Ralf Franken, PhD Max Lein Lineare Algebra 1 WS 26/7 en Blatt 4 13.11.26 Abzählbarkeit, Injektivität, Sürjektivität und Bijektivität

Mehr

Thema: Hamming-Codes. Titelblatt anonymisiert

Thema: Hamming-Codes. Titelblatt anonymisiert Thema: Hamming-Codes Titelblatt anonymisiert Hamming-Codes.Einführung in die Kodierungstheorie... 3. Grundlegendes über Codewörter... 3. Matrizen... 4.3 Die maßgebliche Stelle... 5.Grundlegende Ideen...5

Mehr

Lehreinheit E V2 Verschlüsselung mit symmetrischen Schlüsseln

Lehreinheit E V2 Verschlüsselung mit symmetrischen Schlüsseln V-Verschlüsslung Lehreinheit Verschlüsselung mit symmetrischen Schlüsseln Zeitrahmen 70 Minuten Zielgruppe Sekundarstufe I Sekundarstufe II Inhaltliche Voraussetzung V1 Caesar-Chiffre Für Punkt 2: Addieren/Subtrahieren

Mehr

Fehlerkorrektur in der Datenübertragung

Fehlerkorrektur in der Datenübertragung oder Was machen Irving Reed und Gustave Solomon auf dem Ochsenkopf? Alfred Wassermann Universität Bayreuth 28. November 2008 Hamming- WirlebenineinerInformationsgesellschaft FehlerfreieNachrichtenübertragungistvongrosser

Mehr

4. Vektorräume und Gleichungssysteme

4. Vektorräume und Gleichungssysteme technische universität dortmund Dortmund, im Dezember 2011 Fakultät für Mathematik Prof Dr H M Möller Lineare Algebra für Lehramt Gymnasien und Berufskolleg Zusammenfassung der Abschnitte 41 und 42 4 Vektorräume

Mehr

Informatikgrundlagen I Grundlagen der Informatik I

Informatikgrundlagen I Grundlagen der Informatik I Informatikgrundlagen I Grundlagen der Informatik I Dipl.-Inf. Michael Wilhelm Hochschule Harz FB Automatisierung und Informatik mwilhelm@hs-harz.de Raum 2.202 Tel. 03943 / 659 338 Fachbereich Automatisierung

Mehr

Datensicherung Richard Eier

Datensicherung Richard Eier Datensicherung Richard Eier Stand vom 25.01.01. Kapitel 5 Bewertung der Sicherungsverfahren 5.3 Entscheidungsbaum für die Fehlerbehandlung 18.01.02 14:46 Inhaltsverzeichnis 5 Bewertung der Sicherungsverfahren

Mehr

2. Digitale Codierung und Übertragung

2. Digitale Codierung und Übertragung 2. Digitale Codierung und Übertragung 2.1 Informationstheoretische Grundlagen 2.2 Speicherbedarf und Kompression 2.3 Digitalisierung, Digitale Medien Ludwig-Maximilians-Universität München Prof. Hußmann

Mehr

Codierungstheorie. Skript zur Vorlesung im WS 2005/06

Codierungstheorie. Skript zur Vorlesung im WS 2005/06 Codierungstheorie Skript zur Vorlesung im WS 2005/06 Prof. Peter Hauck Arbeitsbereich Diskrete Mathematik Wilhelm-Schickard-Institut Universität Tübingen L A TEX-Fassung von Daniel Raible 2 Inhaltsverzeichnis

Mehr

Angewandte Informationstechnik

Angewandte Informationstechnik Angewandte Informationstechnik im Bachelorstudiengang Angewandte Medienwissenschaft (AMW) Fehlererkennung und -korrektur Dr.-Ing. Alexander Ihlow Fakultät für Elektrotechnik und Informationstechnik FG

Mehr

Codierung, Codes (variabler Länge)

Codierung, Codes (variabler Länge) Codierung, Codes (variabler Länge) A = {a, b, c,...} eine endliche Menge von Nachrichten (Quellalphabet) B = {0, 1} das Kanalalphabet Eine (binäre) Codierung ist eine injektive Abbildung Φ : A B +, falls

Mehr

Post-quantum cryptography

Post-quantum cryptography Post-quantum cryptography Post-quantum cryptography 1. Komplexität & Quantencomputer 2. Kryptografie in Gittern 3. FHE Eine Revolution im Datenschutz? WIESO? KOMPLEXITÄT Public-Key-Kryptografie Grafiken:

Mehr

BITte ein BIT. Vom Bit zum Binärsystem. A Bit Of Magic. 1. Welche Werte kann ein Bit annehmen? 2. Wie viele Zustände können Sie mit 2 Bit darstellen?

BITte ein BIT. Vom Bit zum Binärsystem. A Bit Of Magic. 1. Welche Werte kann ein Bit annehmen? 2. Wie viele Zustände können Sie mit 2 Bit darstellen? BITte ein BIT Vom Bit zum Binärsystem A Bit Of Magic 1. Welche Werte kann ein Bit annehmen? 2. Wie viele Zustände können Sie mit 2 Bit darstellen? 3. Gegeben ist der Bitstrom: 10010110 Was repräsentiert

Mehr

BinärCode. Codealphabet: 0 ; 1 Codeworte : Dualzahlen

BinärCode. Codealphabet: 0 ; 1 Codeworte : Dualzahlen Codes Vorschrift für die eindeutige Zuordnung (= Codierung) der Zeichen eine Zeichenvorrats (Objektmenge) zu den Zeichen eines anderen Zeichenvorrats (Bildmenge). Zweck der Codierung: Anpassung der Nachricht

Mehr

Identifikationssysteme und Automatisierung

Identifikationssysteme und Automatisierung VDI-Buch Identifikationssysteme und Automatisierung Bearbeitet von Michael Hompel, Hubert Büchter, Ulrich Franzke 1. Auflage 2007. Buch. x, 310 S. Hardcover ISBN 978 3 540 75880 8 Format (B x L): 15,5

Mehr

Beziehungen zwischen Vektorräumen und ihren Dimensionen

Beziehungen zwischen Vektorräumen und ihren Dimensionen Beziehungen zwischen Vektorräumen und ihren Dimensionen Lineare Algebra I Kapitel 9 20. Juni 2012 Logistik Dozent: Olga Holtz, MA 378, Sprechstunden Freitag 14-16 Webseite: www.math.tu-berlin.de/ holtz

Mehr

Karl-Heinz Zimmermann. Diskrete Mathematik. Books on Demand

Karl-Heinz Zimmermann. Diskrete Mathematik. Books on Demand Diskrete Mathematik Karl-Heinz Zimmermann Diskrete Mathematik Books on Demand Prof. Dr. Karl-Heinz Zimmermann TU Hamburg-Harburg 21071 Hamburg Germany Bibliografische Information der Deutschen Bibliothek

Mehr

Besser sehen, besser hören! Fehlerkorrigierende Codes

Besser sehen, besser hören! Fehlerkorrigierende Codes Besser sehen, besser hören! Fehlerkorrigierende Codes Ringvorlesung Technische Mathematik 20. Mai 2010 Hermann Kautschitsch Institut für Mathematik Universität Klagenfurt Vorwort Der stetig zunehmende

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Sei K ein Körper, a ij K für 1 i m, 1 j n. Weiters seien b 1,..., b m K. Dann heißt a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... + a 2n x n = b 2... a m1

Mehr

Modul 114. Zahlensysteme

Modul 114. Zahlensysteme Modul 114 Modulbezeichnung: Modul 114 Kompetenzfeld: Codierungs-, Kompressions- und Verschlüsselungsverfahren einsetzen 1. Codierungen von Daten situationsbezogen auswählen und einsetzen. Aufzeigen, welche

Mehr

Affine und projektive Räume

Affine und projektive Räume Affine und projektive Räume W. Kühnel Literatur hierzu: G.Fischer, Analytische Geometrie, 7. Aufl., Vieweg 2001 Zur Motivation: Wenn man in einem Vektorraum die Elemente nicht als Vektoren, sondern als

Mehr

Kapitel 4: Flusschiffren

Kapitel 4: Flusschiffren Stefan Lucks 4: Flusschiffren 52 orlesung Kryptographie (SS06) Kapitel 4: Flusschiffren Als Basis-Baustein zur Verschlüsselung von Daten dienen Fluss- und Blockchiffren. Der Unterschied: Flusschiffren

Mehr

Die Schicht unterhalb von GSM/UMTS, DSL, WLAN & DVB

Die Schicht unterhalb von GSM/UMTS, DSL, WLAN & DVB Die Schicht unterhalb von GSM/UMTS, DSL, WLAN & DVB Wie kommen die Bits überhaupt vom Sender zum Empfänger? (und welche Mathematik steckt dahinter) Vergleichende Einblicke in digitale Übertragungsverfahren

Mehr

Einführung. Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (3) Vorlesungen zur Komplexitätstheorie. K-Vollständigkeit (1/5)

Einführung. Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (3) Vorlesungen zur Komplexitätstheorie. K-Vollständigkeit (1/5) Einführung 3 Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (3) Univ.-Prof. Dr. Christoph Meinel Hasso-Plattner-Institut Universität Potsdam, Deutschland Hatten den Reduktionsbegriff

Mehr

Kryptographie und Codierung für den Mathematikunterricht

Kryptographie und Codierung für den Mathematikunterricht Kryptographie und Codierung für den Mathematikunterricht Pädagogische Hochschule Karlsruhe University of Education École Supérieure de Pédagogie Institut für Mathematik und Informatik Th. Borys Was verstehst

Mehr