Lineare Codes. Dipl.-Inform. Wolfgang Globke. Institut für Algebra und Geometrie Arbeitsgruppe Differentialgeometrie Universität Karlsruhe 1 / 19
|
|
- Helmut Thomas
- vor 2 Jahren
- Abrufe
Transkript
1 Lineare Codes Dipl.-Inform. Wolfgang Globke Institut für Algebra und Geometrie Arbeitsgruppe Differentialgeometrie Universität Karlsruhe 1 / 19
2 Codes Ein Code ist eine eindeutige Zuordnung von Zeichen aus einem gegebenen Zeichenvorrat zu einem Codewort aus einem anderen Zeichenvorrat. Matrikelnummern codieren Studenten. ASCII-Zeichen codieren das lateinische Alphabet (und etliche weitere Zeichen). Bitfolgen codieren im Rechner natürliche Zahlen und mit etwas Geschick auch einige rationale Zahlen. 2 / 19
3 Achtung Code Chiffre 3 / 19
4 Binäre Codes Wir konzentrieren uns nun auf die Codierung durch endliche Bitfolgen fester Länge k: 0, 1, 0, 1, 0, 0, 1, 0 } {{ } k In diesem Fall sprechen wir von einem binären Code. 4 / 19
5 Binäre Arithmetik Die Bits gehorchen bestimmten Regeln: AND XOR Was hat das mit dem Körper F2 = Z/2Z zu tun? / 19
6 Binäre Codes Und wenn wir gerade dabei sind... 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, c = ( ) F n 2 Wir können eine Bitfolge c der Länge n als Vektor im Vektorraum F n 2 auffassen. 6 / 19
7 Lineare Codes Ein linearer Code C ist ein Untervektorraum von F n 2. C enthält 2 k Codeworte für dim C = k n. 7 / 19
8 Nachrichtenübertragung Rauschen Nachricht x c v Codierer Kanal Decodierer e decodierte Nachricht 8 / 19
9 Effizienz vs. Fehlerkorrektur Bei der Konstruktion von Codes hat man zwei Ziele im Auge: 1 Effizienz der Darstellung. 2 Möglichkeiten zur Fehlerkorrektur. Dies sind zwei gegensätzliche Ziele: Korrekturfähigkeit wird verbessert, wenn man zusätzliche Bits zur Darstellung hinzufügt (also die Redundanz erhöht). Dadurch wird die Darstellung weniger effizient. 9 / 19
10 Fehlerkorrektur Wir betrachten die Fehlerkorrektur. Hinzufügen redundanter Bits geschieht durch Einbetten des Codes C der Dimension k in F n 2 mit n > k. Der Hamming-Abstand zweier Codeworte c = (c 1... c n ), c = (c 1... c n) ist die Anzahl der Stellen, an denen sich die beiden unterscheiden: dist(c, c ) = #{j c j c j }. Die Minimaldistanz d ist der minimale Abstand zwischen zwei Codeworten aus C, d = min{dist(c, c ) c, c C}. Sie ist entscheidend für die Fehlerkorrekturfähigkeit des Codes. 10 / 19
11 Fehlerkorrektur Die Minimaldistanz d bestimmt, wieviele Fehler erkannt bzw. korrigiert werden können. dd 1 cccc d 1 2 d 1 2 d 1 d 2 dist(c, dcc c )=5 vc C c ccc Es können bis zu d 1 Fehler erkannt oder d 1 2 Fehler korrigiert werden (hängt vom Übertragungskanal ab). 11 / 19
12 Lineare Codes vs. beliebige Codes Nutze die Vektorraumstruktur des linearen Codes: Ein beliebiger Code B ist eine Teilmenge von F n 2. Ein linearer Code C ist ein Untervektorraum von F n 2. Ein beliebiger Code B hat keine Struktur, es müssen alle Codeworte separat gespeichert werden. linearer Speicheraufwand. Ist C ein k-dimensionaler Unterraum, so reichen k Basisvektoren, um alle 2 k Codeworte darzustellen. logarithmischer Speicheraufwand. 12 / 19
13 Codierungsabbildung Nutze die Vektorraumstruktur des linearen Codes: Wir haben 2 k Informationsworte x F k 2, die wir durch Bitfolgen c der Länge n > k codieren wollen. Codierung erfolgt durch die lineare Codierungsabbildung Γ : F k 2 F n 2, x c = x G. Sie ist durch die Erzeugermatrix G definiert, deren Zeilen eine Basis unseres Codes C sind. Es ist also C = Bild Γ F n / 19
14 Fehlererkennung Nutze die Vektorraumstruktur des linearen Codes: Problem: Sender schickt ein Codewort c F n 2 Empfänger erhält v F n 2. Ein Fehler liegt vor, wenn v c gilt. Wie kann man Fehler erkennen? Prüfe, ob v ein Codewort aus C ist: Löse das LGS v = x G nach x F k 2. über den Kanal, 14 / 19
15 Fehlererkennung Der Code C ist als Untervektorraum die Lösungsmenge eines homogenen LGS. Es gibt also eine Prüfmatrix H mit G H = O. Mit H kann man ein empfangenes v auf Fehler prüfen: v C v H = / 19
16 Fehlerkorrektur Das Fehlersyndrom s von v ist s = v H F n k 2. Es hängt nur von einem additiven Fehler e ab, nicht von c: v = c + e v H = c } {{ H } +e H = e H = s. =0 Aus v kann man also das ursprüngliche Codewort c rekonstruieren, wenn man eine Lösung e des LGS findet. e H = s Zur Fehlerkorrektur finde Vektor e mit möglichst kleinem Hamming-Gewicht. Dieses Problem ist NP-schwer. 16 / 19
17 Weitere Eigenschaften und Problemstellungen Systematische Codierung: Durch geeigneten Basiswechsel S die Erzeugermatrix G auf eine einfachere Form S G bringen. Zyklische Codes: Periodische Struktur der Erzeugermatrix liefert Abschätzungen für Minimaldistanz d. Bestimmung der Minimaldistanz d bei gegebener Erzeugermatrix G. Bestimmung der maximalen Anzahl der Codeworte bei gegebener Minimaldistanz. Aufzählen aller Codeworte. 17 / 19
18 Codierungstheorie in Karlsruhe IKS (vormals IAKS Beth) Institut für Kryptographie und Sicherheit (Leitung Dr. Jörn Müller-Quade) Vorlesung: Signale, Codes und Chiffren I - II Vorlesung: Grundlagen der Computersicherheit Vorlesung: Public Key Kryptographie Vorlesung: Embedded Security diverse Praktika zur Computersicherheit 18 / 19
19 G. Goos Vorlesungen über Informatik, Band 1 (Springer) M. Grassl, W. Globke Algorithmen für Gruppen und Codes K. Jacobs, D. Jungnickel Einführung in die Kombinatorik (de Gruyter) F.J. MacWilliams, N.J.A. Sloane The Theory of Error-Correcting Codes (North-Holland) 19 / 19
Einführung in die Kodierungstheorie
Einführung in die Kodierungstheorie Einführung Vorgehen Beispiele Definitionen (Code, Codewort, Alphabet, Länge) Hamming-Distanz Definitionen (Äquivalenz, Coderate, ) Singleton-Schranke Lineare Codes Hamming-Gewicht
1. Woche Einführung in die Codierungstheorie, Definition Codes, Präfixcode, kompakte Codes
1 Woche Einführung in die Codierungstheorie, Definition Codes, Präfixcode, kompakte Codes 1 Woche: Einführung in die Codierungstheorie, Definition Codes, Präfixcode, kompakte Codes 5/ 44 Unser Modell Shannon
Vorlesung Theoretische Grundlagen
Vorlesung Theoretische Grundlagen Fehlerkorrigierende Jörn Müller-Quade 4. Februar 2010 INSTITUT FÜR KRYPTOGRAPHIE UND SICHERHEIT KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum
Die Mathematik in der CD
Lehrstuhl D für Mathematik RWTH Aachen Lehrstuhl D für Mathematik RWTH Aachen St.-Michael-Gymnasium Monschau 14. 09. 2006 Codes: Definition und Aufgaben Ein Code ist eine künstliche Sprache zum Speichern
Modul Diskrete Mathematik WiSe 2011/12
Modul Diskrete Mathematik WiSe / Ergänzungsskript zum Kapitel 3.4. Hinweis: Dieses Manuskript ist nur verständlich und von Nutzen für Personen, die regelmäßig und aktiv die zugehörige Vorlesung besuchen
6 Fehlerkorrigierende Codes
R. Reischuk, ITCS 35 6 Fehlerkorrigierende Codes Wir betrachten im folgenden nur Blockcodes, da sich bei diesen das Decodieren und auch die Analyse der Fehlertoleranz-Eigenschaften einfacher gestaltet.
Codierung. H.-G. Hopf
Codierung H.-G. Hopf Inhalt Informationsübermittlung Codierung von Zeichen GDI: Codierung / 2 Inhalt Informationsübermittlung Codierung von Zeichen GDI: Codierung / 3 Ideale Kommunikation Übertragungskanal
Grundbegrie der Codierungstheorie
Grundbegrie der Codierungstheorie Pia Lackamp 12. Juni 2017 Inhaltsverzeichnis 1 Einleitung 2 2 Hauptteil 3 2.1 Blockcodes............................ 3 2.1.1 Beispiele.......................... 3 2.2
Mathematik II für Studierende der Informatik Kapitel. Kodierungstheorie
Mathematik II für Studierende der Informatik Kapitel Kodierungstheorie Markus Junker Sommersemester 2011 (korrigierte Version vom Sommersemester 2012) Einführung, Beispiele, Definitionen Ausgangspunkt
4. Woche Decodierung; Maximale, Perfekte und Optimale Codes. 4. Woche: Decodierung; Maximale, Perfekte und Optimale Codes 69/ 140
4 Woche Decodierung; Maximale, Perfekte und Optimale Codes 4 Woche: Decodierung; Maximale, Perfekte und Optimale Codes 69/ 140 Szenario für fehlerkorrigierende Codes Definition (n, M)-Code Sei C {0, 1}
Frank Weinhold Professur VSR Fakultät für Informatik TU Chemnitz Mai 2011
Rechnernetze Übung 5 Frank Weinhold Professur VSR Fakultät für Informatik TU Chemnitz Mai 2011 Ziel: Nachrichten fehlerfrei übertragen und ökonomisch (wenig Redundanz) übertragen Was ist der Hamming-Abstand?
CODIERUNGSTHEORIE KURS ZELL AN DER PRAM, FEBRUAR 2005
CODIERUNGSTHEORIE KURS ZELL AN DER PRAM, FEBRUAR 2005. Das Problem.. Quellcodierung und Datenkompression. Wir wollen eine Nachricht über einen digitalen Kanal, der nur 0 oder übertragen kann, schicken.
Organisation. Was kommt zum Test? Buch Informatik Grundlagen bis inkl. Kapitel 7.4 Wissensfragen und Rechenbeispiele
Organisation Was kommt zum Test? Buch Informatik Grundlagen bis inkl Kapitel 74 Wissensfragen und Rechenbeispiele 3 Vorträge zur Übung Informationstheorie, Huffman-Codierung und trennzeichenfreie Codierung
2.1 Codes: einige Grundbegriffe
Gitter und Codes c Rudolf Scharlau 2. Mai 2009 51 2.1 Codes: einige Grundbegriffe Wir stellen die wichtigsten Grundbegriffe für Codes über dem Alphabet F q, also über einem endlichen Körper mit q Elementen
Fachschaft Mathematik und Informatik (FIM) LA I VORKURS. Herbstsemester 2015. gehalten von Harald Baum
Fachschaft Mathematik und Informatik (FIM) LA I VORKURS Herbstsemester 2015 gehalten von Harald Baum 2. September 2015 Inhaltsverzeichnis 1. Stichpunkte zur Linearen Algebra I 2. Körper 3. Vektorräume
Grundlagen der Technischen Informatik. 2. Übung
Grundlagen der Technischen Informatik 2. Übung Christian Knell Keine Garantie für Korrekt-/Vollständigkeit Organisatorisches Übungsblätter zuhause vorbereiten! In der Übung an der Tafel vorrechnen! Bei
Einführung in die Kodierungstheorie
Anton Malevich Einführung in die Kodierungstheorie Skript zu einer im Februar 2013 gehaltenen Kurzvorlesung Fakultät für Mechanik und Mathematik Belorussische Staatliche Universität Institut für Algebra
Theoretische Grundlagen der Informatik WS 09/10
Theoretische Grundlagen der Informatik WS 09/10 - Tutorium 6 - Michael Kirsten und Kai Wallisch Sitzung 13 02.02.2010 Inhaltsverzeichnis 1 Formeln zur Berechnung Aufgabe 1 2 Hamming-Distanz Aufgabe 2 3
Codierungstheorie Rudolf Scharlau, SoSe 2006 9
Codierungstheorie Rudolf Scharlau, SoSe 2006 9 2 Optimale Codes Optimalität bezieht sich auf eine gegebene Quelle, d.h. eine Wahrscheinlichkeitsverteilung auf den Symbolen s 1,..., s q des Quellalphabets
Single Parity check Codes (1)
Single Parity check Codes (1) Der Single Parity check Code (SPC) fügt zu dem Informationsblock u = (u 1, u 2,..., u k ) ein Prüfbit (englisch: Parity) p hinzu: Die Grafik zeigt drei Beispiele solcher Codes
Grundlagen der Technischen Informatik. Codierung und Fehlerkorrektur. Kapitel 4.2
Codierung und Fehlerkorrektur Kapitel 4.2 Prof. Dr.-Ing. Jürgen Teich Lehrstuhl für Hardware-Software-Co-Design Technische Informatik - Meilensteine Informationstheorie Claude Elwood Shannon (geb. 1916)
CODIERUNGSTHEORIE KURS ZELL AN DER PRAM, FEBRUAR 2005
CODIERUNGSTHEORIE KURS ZELL AN DER PRAM, FEBRUAR 2005 1. Das Problem 1.1. Kanalcodierung und Fehlerkorrektur. Wir wollen eine Nachricht über einen digitalen Kanal, der nur 0 oder 1 übertragen kann, schicken.
Übungen zum Ferienkurs Lineare Algebra WS 14/15
Übungen zum Ferienkurs Lineare Algebra WS 14/15 Linearkombinationen, Basen, Lineare Abbildungen 2.1 Lineare Unabhängigkeit Sind die folgenden Vektoren linear unabhängig? (a) 1, 2, 3 im Q Vektorraum R (b)
3 Der Hamming-Code. Hamming-Codes
3 Der Hamming-Code Hamming-Codes Ein binärer Code C heißt ein Hamming-Code Ha s, wenn seine Kontrollmatrix H als Spalten alle Elemente in Z 2 s je einmal hat. Die Parameter eines n-k-hamming-codes sind:
Codes und Codegitter. Katharina Distler. 27. April 2015
Codes und Codegitter Katharina Distler 7. April 015 Inhaltsverzeichnis 1 Codes 4 Codegitter 14 Einleitung Die folgende Seminararbeit behandelt das Konzept von Codes und Codegittern. Da sie bei der Informationsübertragung
Codierung. Codierung. EAN Europäische Artikelnummer Ziffern 1 und 2 codieren das Hersteller-Land. Ziffer 2 bis 12 codieren Händler und Ware
Codierung Codierung Haydn: Streichquartett op 54.3 aus Largo, Violine I 1 2 Ziffern 1 und 2 codieren das Hersteller-Land Ziffer 2 bis 12 codieren Händler und Ware Die letzte Ziffer ist eine Prüfziffer
Übungen zur Vorlesung Grundlagen der Rechnernetze. Zusätzliche Übungen
Übungen zur Vorlesung Grundlagen der Rechnernetze Zusätzliche Übungen Hamming-Abstand d Der Hamming-Abstand d zwischen zwei Codewörtern c1 und c2 ist die Anzahl der Bits, in denen sich die beiden Codewörter
Rechnernetze Übung 5. Frank Weinhold Professur VSR Fakultät für Informatik TU Chemnitz Mai Wo sind wir?
Rechnernetze Übung 5 Frank Weinhold Professur VSR Fakultät für Informatik TU Chemnitz Mai 2012 Wo sind wir? Quelle Nachricht Senke Sender Signal Übertragungsmedium Empfänger Quelle Nachricht Senke Primäres
(Network) Coding und Verbindungen zur Systemtheorie
(Network) Coding und Verbindungen zur Systemtheorie Anna-Lena Horlemann-Trautmann Algorithmics Laboratory, EPFL, Schweiz 10. Februar 2016 Elgersburg Workshop Klassische Codierungstheorie Einführung Klassische
Definition 27 Affiner Raum über Vektorraum V
Definition 27 Affiner Raum über Vektorraum V Definition 27 Affiner Raum über Vektorraum V ist die Menge A = Definition 27 Affiner Raum über Vektorraum V ist die Menge A = mit einer Abbildung + : A V A,
Index. Chien-Suche, 220 CIRC, 234 Code, 2, 9 äquidistanter, 81
Index Abelsche Gruppe, 140 Abgeschlossenheit, 47, 140, 143 Abhängigkeit lineare, 53 Abtastfolge, 226 ACS-Operation, 279 Addition, 46, 163 Alphabet, 1 ARQ, 6, 174 Assoziativität, 47, 52, 140, 143 Audio-CD,
Basis und Dimension. Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren.
Basis und Dimension Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren. Definition. Sei V ein K-Vektorraum und (v i ) i I eine Familie von Vektoren
KANALCODIERUNG AUFGABEN. Aufgabe 1. Aufgabe 2
AUFGABEN KANALCODIERUNG Aufgabe Wir betrachten den Hamming-Code mit m = 5 Prüfbits. a) Wie gross ist die Blocklänge n dieses Codes? b) Wie viele gültige Codewörter umfasst dieser Code? c) Leiten Sie die
Grundlagen exakter Methoden zur Verschlüsselung von Codewörtern mittels linearer Codes*
Grundlagen exakter Methoden zur Verschlüsselung von Codewörtern mittels linearer Codes* Andrea Kraft andreakraft@gmx.at Elisabeth Pilgerstorfer elisabeth_pilg@hotmail.com Johannes Kepler Universität Linz
Algebraische Codierungstheorie
Algebraische Codierungstheorie Grundeigenschaften der Codes und ihre wichtigsten Parameterschranken Iryna Feurstein Inhaltsverzeichnis 1 Gegenstand und Aufgabe der Codierungstheorie 1 2 Blockcode 1 2.1
Übung 14: Block-Codierung
ZHW, NTM, 26/6, Rur Übung 4: Block-Codierung Aufgabe : Datenübertragung über BSC. Betrachten Sie die folgende binäre Datenübertragung über einen BSC. Encoder.97.3.3.97 Decoder Für den Fehlerschutz stehen
u + v = v + u. u + (v + w) = (u + v) + w. 0 V + v = v + 0 V = v v + u = u + v = 0 V. t (u + v) = t u + t v, (t + s) u = t u + s u.
Universität Stuttgart Fachbereich Mathematik Prof. Dr. C. Hesse PD Dr. P. H. Lesky Dipl. Math. D. Zimmermann Msc. J. Köllner FAQ 3 Höhere Mathematik I 4..03 el, kyb, mecha, phys Vektorräume Vektorräume
Übung zur Vorlesung. Informationstheorie und Codierung
Übung zur Vorlesung Informationstheorie und Codierung Prof. Dr. Lilia Lajmi Juni 25 Ostfalia Hochschule für angewandte Wissenschaften Hochschule Braunschweig/Wolfenbüttel Postanschrift: Salzdahlumer Str.
Zusammenfassung zu Codierungstheorie
Zusammenfassung zu Codierungstheorie Proseminar Mathematische Modelle in den Naturwissenschaften WS 09/10 Thomas Holzer 0755600 Sandra Sampl 0755049 Kathrin Oberradter 0755123 1 Inhaltsverzeichnis 1. Einführung
4.0.2 Beispiel (Einfacher Wiederholungscode). Im einfachsten Fall wird die Nachricht einfach wiederholt. D.h. man verwendet die Generatorabbildung
Wir beschäftigen uns mit dem Problem, Nachrichten über einen störungsanfälligen Kanal (z.b. Internet, Satelliten, Schall, Speichermedium) zu übertragen. Wichtigste Aufgabe in diesem Zusammenhang ist es,
Fehlerkorrigierende Codes
Fehlerkorrigierende Codes SS 2013 Gerhard Dorfer 2 Inhaltsverzeichnis 1 Fehlerkorrigierende Codes 4 1.1 Einführende Beispiele................................. 4 1.2 Mathematische Grundlagen..............................
Einführung in die Codierungstheorie
11. Dezember 2007 Ausblick Einführung und Definitionen 1 Einführung und Definitionen 2 3 Einführung und Definitionen Code: eindeutige Zuordnung von x i X = {x 1,.., x k } und y j Y = {y 1,..., y n } Sender
(Prüfungs-)Aufgaben zur Codierungstheorie
(Prüfungs-)Aufgaben zur Codierungstheorie 1) Gegeben sei die folgende CCITT2-Codierung der Dezimalziffern: Dezimal CCITT2 0 0 1 1 0 1 1 1 1 1 0 1 2 1 1 0 0 1 3 1 0 0 0 0 4 0 1 0 1 0 5 0 0 0 0 1 6 1 0 1
Lösungen zum 3. Aufgabenblatt
SS, Lineare Algebra Die Lösungen wurden erstellt von: Isabel Voigt, Vanessa Lamm und Matthias Rehder Hinweis: Eine Liste der zur Bearbeitung verwendeten Literatur ist unter www.mathematiwelt.com aufrufbar.
Kapitel 3. Codierung von Text (ASCII-Code, Unicode)
Kapitel 3 Codierung von Text (ASCII-Code, Unicode) 1 Kapitel 3 Codierung von Text 1. Einleitung 2. ASCII-Code 3. Unicode 2 1. Einleitung Ein digitaler Rechner muss jede Information als eine Folge von 0
Algorithmische Kryptographie
Algorithmische Kryptographie Walter Unger Lehrstuhl für Informatik I 16. Februar 2007 Quantenkryptographie 1 Einleitung Grundlagen aus der Physik 2 Datenübertragung 1. Idee 2. Idee Nochmal Physik 3 Sichere
Einführung in die Codierungstheorie
Einführung in die Codierungstheorie Monika König 11.12.2007 Inhaltsverzeichnis 1 Einführung und Definitionen 2 2 Fehlererkennende Codes 3 2.1 Paritycheck - Code............................... 3 2.2 Prüfziffersysteme................................
Codierung zur Fehlerkorrektur und Fehlererkennung
Codierung zur Fehlerkorrektur und Fehlererkennung von Dr.-techn. Joachim Swoboda Mit 39 Bildern und 24 Tafeln R. OLDENBOURG VERLAG MÜNCHEN WIEN 1973 Inhalt Vorwort 9 1. Einführung 11 1.1 Redundante Codierung
Kapitel 1: Codierungstheorie. 1.2 Quellcodierung 1.3 Fehlererkennende Codes 1.4 Fehlerkorrigierende Codes
Inhalt: 1.1 Einführung 1.2 Quellcodierung 1.3 Fehlererkennende Codes 1.4 Fehlerkorrigierende Codes 1.1 Einführung In In der der Codierungstheorie unterscheidet man man Quellcodierung und und Kanalcodierung.
Verschlüsselungs- und Codierungstheorie PD Dr. Thomas Timmermann Westfälische Wilhelms-Universität Münster Sommersemester 2017
Verschlüsselungs- und Codierungstheorie PD Dr. Thomas Timmermann Westfälische Wilhelms-Universität Münster Sommersemester 2017 Lineare Codes (Ausarbeitung von Benjamin Demes) 1) Was sind lineare Codes
Fehlererkennung und Fehlerkorrektur in Codes
Fehlererkennung und Fehlerkorrektur in Codes Blockcodes und Hamming Abstand Untersuchungen zu Codierungen von Informationen, die über einen Nachrichtenkanal übertragen werden sollen, konzentrieren sich
Einführung in die Informatik I
Einführung in die Informatik I Das Rechnen in Zahlensystemen zur Basis b=2, 8, 10 und 16 Prof. Dr. Nikolaus Wulff Zahlensysteme Neben dem üblichen dezimalen Zahlensystem zur Basis 10 sind in der Informatik
Prüfung Lineare Algebra , B := ( ), C := 1 1 0
1. Es seien 1 0 2 0 0 1 3 0 A :=, B := ( 1 2 3 4 ), C := 1 1 0 0 1 0. 0 0 0 1 0 0 1 0 0 0 0 Welche der folgenden Aussagen ist richtig? A. A und C haben Stufenform, B nicht. B. A und B haben Stufenform,
6. Woche: Lineare Codes, Syndrom, Gilbert-Varshamov Schranke. 6. Woche: Lineare Codes, Syndrom, Gilbert-Varshamov Schranke 107/ 238
6 Woche: Lineare Codes, Syndrom, Gilbert-Varshamov Schranke 6 Woche: Lineare Codes, Syndrom, Gilbert-Varshamov Schranke 107/ 238 Erinnerung: Der Vektorraum F n 2 Schreiben {0, 1} n als F n 2 Definition
Mathematik ist überall
Mathematik ist überall Prof. Dr. Wolfram Koepf Universität Kassel http://www.mathematik.uni-kassel.de/~koepf Tag der Mathematik 15. Februar 2008 Universität Kassel Inhaltsangabe Sichere Verschlüsselung
Projektive Räume und Unterräume
Projektive Räume und Unterräume Erik Slawski Proseminar Analytische Geometrie bei Prof. Dr. Werner Seiler und Marcus Hausdorf Wintersemester 2007/2008 Fachbereich 17 Mathematik Universität Kassel Inhaltsverzeichnis
Grundlagen Digitaler Systeme (GDS)
Grundlagen Digitaler Systeme (GDS) Prof. Dr. Sven-Hendrik Voß Sommersemester 2015 Technische Informatik (Bachelor), Semester 1 Termin 10, Donnerstag, 18.06.2015 Seite 2 Binär-Codes Grundlagen digitaler
Einleitung. Kapitel 1
Kapitel 1 Einleitung In diesem Abschnitt geben wir einen kurzen Überblick über den Inhalt der Vorlesung. Wir werden kurz die wesentlichen Probleme erläutern, die wir ansprechen wollen. Wir werden auch
3.3 Eigenwerte und Eigenräume, Diagonalisierung
3.3 Eigenwerte und Eigenräume, Diagonalisierung Definition und Lemma 3.3.1. Sei V ein K-Vektorraum, φ End K (V ), λ K. Wir defnieren den zu λ gehörigen Eigenraum von φ als Dies ist ein Unterraum von V.
Lehreinheit E V2 Verschlüsselung mit symmetrischen Schlüsseln
V-Verschlüsslung Lehreinheit Verschlüsselung mit symmetrischen Schlüsseln Zeitrahmen 70 Minuten Zielgruppe Sekundarstufe I Sekundarstufe II Inhaltliche Voraussetzung V1 Caesar-Chiffre Für Punkt 2: Addieren/Subtrahieren
Lineare Algebra I (WS 13/14)
Lineare Algebra I (WS 13/14) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 03.12.2013 Alexander Lytchak 1 / 16 Wiederholung und Beispiele Der Spaltenrang einer Matrix ist gleich ihrem Zeilenrang.
Codierungstheorie. Code-Arten und Code-Sicherung
Codierungstheorie Code-Arten und Code-Sicherung Inhaltsübersicht und Literatur Informationstheorie Was ist eine Codierung? Arten von Codes Informationsgehalt und Entropie Shannon'sches Codierungstheorem
Harm Pralle. Codierungstheorie WS 2005/06. Institut Computational Mathematics Technische Universität Braunschweig
Harm Pralle Codierungstheorie WS 2005/06 Institut Computational Mathematics Technische Universität Braunschweig II Literatur: A. Beutelspacher und U. Rosenbaum. Projektive Geometrie. Vieweg, Wiesbaden
2 Informationstheorie
2 Informationstheorie Formale Grundlagen der Informatik I Herbstsemester 2012 Robert Marti Vorlesung teilweise basierend auf Unterlagen von Prof. emer. Helmut Schauer Grundbegriffe Informatik (IT: Information
Formelsammlung. Wahrscheinlichkeit und Information
Formelsammlung Wahrscheinlichkeit und Information Ein Ereignis x trete mit der Wahrscheinlichkeit p(x) auf, dann ist das Auftreten dieses Ereignisses verbunden mit der Information I( x): mit log 2 (z)
Einfache kryptographische Verfahren
Einfache kryptographische Verfahren Prof. Dr. Hagen Knaf Studiengang Angewandte Mathematik 26. April 2015 c = a b + a b + + a b 1 11 1 12 2 1n c = a b + a b + + a b 2 21 1 22 2 2n c = a b + a b + + a b
Grundlagen der Technischen Informatik. Hamming-Codes. Kapitel 4.3
Hamming-Codes Kapitel 4.3 Prof. Dr.-Ing. Jürgen Teich Lehrstuhl für Hardware-Software-Co-Design Inhalt Welche Eigenschaften müssen Codes haben, um Mehrfachfehler erkennen und sogar korrigieren zu können?
, 2016W Übungstermin: Fr.,
VU Technische Grundlagen der Informatik Übung 2: Numerik, Codierungstheorie 183.579, 2016W Übungstermin: Fr., 28.10.2016 Allgemeine Hinweise: Versuchen Sie beim Lösen der Beispiele keine elektronischen
Grundbegriffe der Informatik
Grundbegriffe der Informatik Einheit 3: Alphabete (und Relationen, Funktionen, Aussagenlogik) Thomas Worsch Universität Karlsruhe, Fakultät für Informatik Oktober 2008 1/18 Überblick Alphabete ASCII Unicode
Kapitel 1: Einführung. Was ist Informatik? Begriff und Grundprobleme der Informatik. Abschnitt 1.1 in Küchlin/Weber: Einführung in die Informatik
Was ist Informatik? Begriff und Grundprobleme der Informatik Abschnitt 1.1 in Küchlin/Weber: Einführung in die Informatik Was ist Informatik? Informatik = computer science? Nach R. Manthey, Vorlesung Informatik
FEHLERKORRIGIERENDE CODES
FEHLERKORRIGIERENDE CODES Inhalt der Vorlesung Jürgen Koslowski @ Institut für Theoretische Informatik Technische Universität Braunschweig Juli 2009 INHALTSVERZEICHNIS -1 Inhaltsverzeichnis 0 Einführung
Modul 114. Zahlensysteme
Modul 114 Modulbezeichnung: Modul 114 Kompetenzfeld: Codierungs-, Kompressions- und Verschlüsselungsverfahren einsetzen 1. Codierungen von Daten situationsbezogen auswählen und einsetzen. Aufzeigen, welche
5 Analytische Geometrie
5 Analytische Geometrie Die Grundidee der analytischen Geometrie ist es, geometrische Objekte in Räumen mittels linearer Algebra zu beschreiben 51 Affine Räume Definition 511 Ein affiner Raum (AR) über
Kapitel 3: Etwas Informationstheorie
Stefan Lucks 3: Informationstheorie 28 orlesung Kryptographie (SS06) Kapitel 3: Etwas Informationstheorie Komplexitätstheoretische Sicherheit: Der schnellste Algorithmus, K zu knacken erfordert mindestens
(Allgemeine) Vektorräume (Teschl/Teschl 9)
(Allgemeine) Vektorräume (Teschl/Teschl 9) Sei K ein beliebiger Körper. Ein Vektorraum über K ist eine (nichtleere) Menge V, auf der zwei Operationen deniert sind, die bestimmten Rechenregeln genügen:
9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83
9.. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 Die Grundfrage bei der Anwendung des Satzes über implizite Funktionen betrifft immer die folgende Situation: Wir haben eine Funktion f : V W und eine Stelle x
Kodierungstheorie: Lineare Kodes
Kodierungstheorie: Lineare Kodes Seminararbeit Sommersemester 2015 Bearbeitet von: Sebastian Gombocz (Matrikelnummer: 48947) Christian Löhle (Matrikelnummer: 48913) Betreuer: Prof. Dr. Thomas Thierauf
Codierungsverfahren SS 2011. Reed-Solomon-Codes zur Mehrblock-Bündelfehler-Korrektur
Reed-Solomon-Codes zur Mehrblock-Bündelfehler-Korrektur Wie die zyklischen BCH-Codes zur Mehrbitfehler-Korrektur eignen sich auch die sehr verwandten Reed-Solomon-Codes (= RS-Codes) zur Mehrbitfehler-Korrektur.
Übertragungstechnik. Übertragungstechnik. Copyright Chr. Schaffer, Fachhochschule Hagenberg, MTD 1
Übertragungstechnik Copyright Chr. Schaffer, Fachhochschule Hagenberg, MTD 1 Allgemeines Schema einer Nachrichtenübertragung Modulator Sender Störungen Strecke Nachrichtenquelle Nachrichtensenke Demodulator
Codierungstheorie. Anton Betten Harald Fripertinger Adalbert Kerber Alfred Wassermann Karl-Heinz Zimmermann. Konstruktion und Anwendung linearer Codes
Anton Betten Harald Fripertinger Adalbert Kerber Alfred Wassermann Karl-Heinz Zimmermann Codierungstheorie Konstruktion und Anwendung linearer Codes Springer-Verlag Berlin Heidelberg New York London Paris
KLAUSUR ZUR LINEAREN ALGEBRA I MUSTERLÖSUNG 15. Dezember 2007
KLAUSUR ZUR LINEAREN ALGEBRA I MUSTERLÖSUNG 5. Dezember 007 Name: Studiengang: Aufgabe 3 4 5 Summe Punktzahl /40 Allgemeine Hinweise: Bitte schreiben Sie Ihre Lösungen jeweils unter die Aufgabenstellung
Problem: Finde für Alphabet mit n Zeichen einen Binärcode, der die Gesamtlänge eines Textes (über diesem Alphabet) minimiert.
Anwendungen von Bäumen 4.3.2 Huffman Code Problem: Finde für Alphabet mit n Zeichen einen Binärcode, der die Gesamtlänge eines Textes (über diesem Alphabet) minimiert. => nutzbar für Kompression Code fester
Die Größe A(n, d) und optimale Codes
Die Größe A(n, d) und optimale Codes Definition Optimaler Code Wir definieren A(n, d) = max{m binärer (n, M, d) Code} Ein (n, M, d)-code heißt optimal, falls M = A(n, d). Bestimmung von A(n, d) ist offenes
BinärCode. Codealphabet: 0 ; 1 Codeworte : Dualzahlen
Codes Vorschrift für die eindeutige Zuordnung (= Codierung) der Zeichen eine Zeichenvorrats (Objektmenge) zu den Zeichen eines anderen Zeichenvorrats (Bildmenge). Zweck der Codierung: Anpassung der Nachricht
Theoretische Informatik SS 04 Übung 1
Theoretische Informatik SS 04 Übung 1 Aufgabe 1 Es gibt verschiedene Möglichkeiten, eine natürliche Zahl n zu codieren. In der unären Codierung hat man nur ein Alphabet mit einem Zeichen - sagen wir die
Grundbegriffe der Informatik
Grundbegriffe der Informatik Einheit 15: Reguläre Ausdrücke und rechtslineare Grammatiken Thomas Worsch Universität Karlsruhe, Fakultät für Informatik Wintersemester 2008/2009 1/25 Was kann man mit endlichen
Lineare Gleichungssysteme
Lineare Gleichungssysteme Sei K ein Körper, a ij K für 1 i m, 1 j n. Weiters seien b 1,..., b m K. Dann heißt a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... + a 2n x n = b 2... a m1
Lineare Algebra I. - 9.Vorlesung - Prof. Dr. Daniel Roggenkamp & Falko Gauß. Korrektur: 2. Klausurtermin:
Lineare Algebra I - 9.Vorlesung - rof. Dr. Daniel Roggenkamp & Falko Gauß Korrektur: 2. Klausurtermin: 09.02.2017 Linearkombination von Vektoren lineare Hülle Erzeugendensystem S lineare Unabhängigkeit
Codierungstheorie Teil 1: Fehlererkennung und -behebung
Codierungstheorie Teil 1: Fehlererkennung und -behebung von Manuel Sprock 1 Einleitung Eine Codierung ist eine injektive Abbildung von Wortmengen aus einem Alphabet A in über einem Alphabet B. Jedem Wort
JKU Young Scientists Matheseminar
JKU Young Scientists Matheseminar Matheseminar WS 2013/14 Codierung und Information Das grundlegende Problem der Kommunikation besteht darin, an einer Stelle entweder genau oder angenähert eine Nachricht
Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016
und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 18. April 2016 Übersicht über die Methoden Seien v 1,..., v r Vektoren in K n. 1. Um zu prüfen, ob die Vektoren v 1,...,
Übungen zur Linearen Algebra 1
Übungen zur Linearen Algebra 1 Wintersemester 014/015 Universität Heidelberg - IWR Prof. Dr. Guido Kanschat Dr. Dörte Beigel Philipp Siehr Blatt 7 Abgabetermin: Freitag, 05.1.014, 11 Uhr Aufgabe 7.1 (Vektorräume
Codierungstheorie, Vorlesungsskript
Codierungstheorie, Vorlesungsskript Irene I. Bouw Sommersemester 2014 Inhaltsverzeichnis 1 Lineare Codes 2 1.1 Einführung.............................. 2 1.2 Eigenschaften linearer Codes....................
Datensicherung Richard Eier
Datensicherung Richard Eier Stand vom 25.01.01. Kapitel 5 Bewertung der Sicherungsverfahren 5.3 Entscheidungsbaum für die Fehlerbehandlung 18.01.02 14:46 Inhaltsverzeichnis 5 Bewertung der Sicherungsverfahren
3 Quellencodierung. 3.1 Einleitung
Source coding is what Alice uses to save money on her telephone bills. It is usually used for data compression, in other words, to make messages shorter. John Gordon 3 Quellencodierung 3. Einleitung Im
Codierung, Codes (variabler Länge)
Codierung, Codes (variabler Länge) A = {a, b, c,...} eine endliche Menge von Nachrichten (Quellalphabet) B = {0, 1} das Kanalalphabet Eine (binäre) Codierung ist eine injektive Abbildung Φ : A B +, falls
BITte ein BIT. Vom Bit zum Binärsystem. A Bit Of Magic. 1. Welche Werte kann ein Bit annehmen? 2. Wie viele Zustände können Sie mit 2 Bit darstellen?
BITte ein BIT Vom Bit zum Binärsystem A Bit Of Magic 1. Welche Werte kann ein Bit annehmen? 2. Wie viele Zustände können Sie mit 2 Bit darstellen? 3. Gegeben ist der Bitstrom: 10010110 Was repräsentiert
Codierung. Auszug aus dem Skript von Maciej Liśkiewicz und Henning Fernau
Codierung Auszug aus dem Skript von Maciej Liśkiewicz und Henning Fernau Ein bisschen Informationstheorie Betrachten wir das folgende Problem: Wie lautet eine sinnvolle Definition für das quantitative