Frank Weinhold Professur VSR Fakultät für Informatik TU Chemnitz Mai 2011

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Frank Weinhold Professur VSR Fakultät für Informatik TU Chemnitz Mai 2011"

Transkript

1 Rechnernetze Übung 5 Frank Weinhold Professur VSR Fakultät für Informatik TU Chemnitz Mai 2011 Ziel: Nachrichten fehlerfrei übertragen und ökonomisch (wenig Redundanz) übertragen Was ist der Hamming-Abstand? Was ist der minimale Hamming-Abstand? Was kann man über einen Code aussagen, wenn man seinen minimalen Hamming- Abstand kennt? 1

2 Was sind Binärcodes? Was sind Blockcodes? Was sind Systematische Codes? Was sind Lineare Codes? Codieren Sie die Informationen 100 und 111 mit der Generatormatrix G! Handelt es sich bei und um gültige Codeworte des obigen Codes? ja nein 2

3 zyklische Verschiebung eines Codewortes ergibt wieder ein gültiges Codewort (a 0,a 1,,a n-1 ) (a 1,a 2,,a n-1,a 0 ) erkennen Fehlerbündel (Burst-Fehler) gut sind in leicht als Automat zu realisieren man kann Bitfolgen beliebiger Länge absichern keine Festlegung der Anzahl der Informationsbits vor Berechnung zyklische Redundanzprüfung (engl. cyclic redundancy check) systematischer, zyklischer Code beruht auf Polynomdivision 3

4 p(x) Datenpolynom p(x) = u n-1 x n-1 + u n-2 x n u 1 x 1 + u 0 x 0 Bsp.: *x 4 +0*x 3 +0*x 2 +1*x 1 +1*x 0 g(x) Generatorpolynom Bsp.: 1011 x 3 + x +1 Grad des Polynoms r = grad(g) höchste Exponent grad(x 3 + x +1) = 3 Berechnung Codewort c(x) crc = [p(x) * x r ] MOD g(x) C(x) = [p(x) * x r ] +crc 0. Gegeben: p(x) = 0011 x +1 g(x) = 1011 x 3 + x Multiplikation: p(x) * x r (x+1) * x 3 = x 4 + x Polynom-Division: [p(x) * x r ] MOD g(x) Binäre Rechenregeln und Modulo-Arithmetik beachten! 1-1=0, 0-1=1, 1-0=1,0-0=0) Bsp.: 1*x 4 1*x 4 = 0*x 4, da 1 1 = 0 1*x 3 0*x 3 = 1*x 3, da 1-0 = 1 x 4 + x 3 : x 3 + x + 1 = x + 1 -x 4 + x 2 + x x 3 + x 2 + x - x 3 + x + 1 x Rest = CRC-Wert 101 c(x) = =

5 Kein Restwert bei C(x) : g(x) kein Fehler x 4 +x 3 +x 2 +1 x 4 +x 3 +x 2 +1 : x 3 +x+1 = x + 1 x 4 +x 2 +x +1 -x 3 +x +1 -x 3 +x +1 0 Generatorpolynom muss primitives Polynom sein ein Polynom ist primitiv, wenn die Restklasse von x i : g(x) (für i=0,1,...) aus 2 r -1 Elementen besteht Beispiel: g(x)=x 3 + x + 1, grad(g) = 3, = 7 x i Rest 1 1 x x x 2 x 2 x 3 x Elemente x 4 x 2 + x primitives Polynom x 5 x 2 + x + 1 x 6 x

6 Gegenbeispiel: g(x)=x 3 + x 2 + x + 1, grad(g) = 3, = 7 x i Rest 1 1 x x x 2 x 2 x 3 x 2 + x Elemente < 7 x 4 1 kein primitives Polynom x 5 x x 6 x 2 bewährte Generatorpolynome CRC-CCITT (CRC-4) x 4 + x + 1 CRC-CCITT (CRC-16) x 16 + x 12 + x IBM-CRC-16 x 16 + x 15 + x CRC-32 (z.b. IEEE 802.3) x 32 + x 26 + x 23 + x 22 + x 16 + x 12 + x 11 + x 10 + x 8 + x 7 + x 5 + x 4 + x 2 + x + 1 CRC-64 (ISO 3309) x 64 + x 4 + x 3 + x + 1 Bluetooth x 5 + x 4 + x

7 empfängt man ein Polynom p(x) + e(x), so gibt es bestimmte Fehler e(x), die erkannt werden: alle 1-bit-Fehler alle Fehler der Form e(x) = x i + x j = x i (x j-i + 1), so lange g(x) nicht x k + 1 (für alle k i j) ohne Rest teilt alle Fehler mit einer ungeraden Anzahl von Fehlerstellen, sofern das Generatorpolynom (x + 1) als Faktor hat alle Burst-Fehler der Länge k r, r = grad(g) im Fall von Einzelfehlern lässt sich anhand des Divisionsrestes von der Restklasse auf das zu korrigierende Bit schließen für Fall 2 existieren Polynome, die sehr große j-i erlauben z.b. teilt x 15 + x den Term x k + 1 nicht für jedes k kleiner Bündelfehler (Burst-Fehler) Fehler, die abhängig von anderen auftreten, Blockweise Störung des Signals häufig durch Störeinflüsse wie zum Beispiel Blitze, Relaisschaltungen oder auch Kratzer auf einer CD Beispiel Generatorpolynom G(x) = x 16 + x 15 + x (IBM-CRC-16) lässt sich als G(x) = (x 15 + x + 1)(x + 1) faktorisieren durch Faktor (x + 1) werden alle Fehler ungerader Anzahl erkannt die kleinste positive ganze Zahl k bei welcher das Generatorpolynom G(x) nicht x k + 1 teilt ist bedeutet, dass alle beliebig angeordneten, zweifachen Bitfehler sicher erkannt werden, wenn die Blocklänge kleiner als ist alle Bündelfehler der Länge 16 oder kleiner werden erkannt Bündelfehler mit einer Länge von 17 sind mit einer Wahrscheinlichkeit von 0,99997 erkennbar Bündelfehler mit einer Länge von 18 und mehr sind mit einer Wahrscheinlichkeit von 0,99998 erkennbar Quelle: ( ) 7

8 g(x) = x 3 + x grad(g) = 3 p(x) = x p(x) grad(g) = (x + 1) x 3 = x 4 + x p(x) grad(g) : g(x) = x 4 + x 3 : x 3 + x : : 1011 = 11 Probe: : 1011 = CRC-Wert 0 Es ist bei der angewendeten Arithmetik zu beachten, dass nur die Anzahl der Stellen von Dividend und Divisor ohne führende Nullen zu beachten sind, nicht der eigentliche Wert. Hat der Dividend mehr oder genau so viel Stellen wie der Divisor, schreibt man im Ergebnis der Division eine 1, sonst eine 0. Die Division ist abgeschlossen, wenn der Dividend weniger Stellen als der Divisor hat. Beispiel: : 1011 = Dividend hat weniger Stellen als der Divisor 8

9 einfach und billig in Hardware zu realisieren Generatorpolynom x 3 + x + 1 in umgekehrter Reihenfolge ( 1 x x x x 3 ) mit XOR-Elementen Zwischenspeicher mit D-Flipflops, enthalten am Ende auch das Restpolynom Dividend wird mit der höchstwertigen Stelle voran in die Schaltung geschoben Divisionsrest ist der Inhalt der Speicherzellen, nachdem die Eingabe vollständig hineingeschoben worden ist 0 XOR a = a, 1 XOR a = NOT a Beispiel Eingabe D 1 D 2 D

10 Mit g(x) = x 4 +x+1 sollen folgende Informationen kodiert werden: x 6 +x 4 +x 2 Realisieren Sie ein Programm in Python, welches per Kommandozeile eine Zeichenkette entgegennimmt und mit Hilfe des Polynoms g(x) = x 4 +x+1 den Divisionsrest berechnet. Schaltung für g(x) = x 4 +x+1 - Zu codierende Information: Erweitert um Stellen für Prüf-Bits: in umgekehrter Reihenfolge reinschieben: D1 D2 D3 D4 2. nachdem alle Bits reingeschoben sind, kann man CRC in den D-FlipFlops ablesen und das Codewort für 1101 bilden: 1101[D4][D3][D2][D1] 10

Frank Weinhold Professur VSR Fakultät für Informatik TU Chemnitz Mai 2012

Frank Weinhold Professur VSR Fakultät für Informatik TU Chemnitz Mai 2012 Rechnernetze Übung 6 Frank Weinhold Professur VSR Fakultät für Informatik TU Chemnitz Mai 2012 Ziel: Nachrichten fehlerfrei übertragen und ökonomisch (wenig Redundanz) übertragen Was ist der Hamming-Abstand?

Mehr

Zyklische Codes Rechnernetze Übung SS2010

Zyklische Codes Rechnernetze Übung SS2010 Zyklische Codes Binärcodes Blockcodes Lineare Codes Nichtlineare Codes Zyklische Codes Systematische Codes Binärcodes Blockcodes Lineare Codes Nichtlineare Codes Zyklische Codes Systematische Codes Durch

Mehr

Codierungsverfahren SS 2011. Reed-Solomon-Codes zur Mehrblock-Bündelfehler-Korrektur

Codierungsverfahren SS 2011. Reed-Solomon-Codes zur Mehrblock-Bündelfehler-Korrektur Reed-Solomon-Codes zur Mehrblock-Bündelfehler-Korrektur Wie die zyklischen BCH-Codes zur Mehrbitfehler-Korrektur eignen sich auch die sehr verwandten Reed-Solomon-Codes (= RS-Codes) zur Mehrbitfehler-Korrektur.

Mehr

Übungen zur Vorlesung Grundlagen der Rechnernetze. Zusätzliche Übungen

Übungen zur Vorlesung Grundlagen der Rechnernetze. Zusätzliche Übungen Übungen zur Vorlesung Grundlagen der Rechnernetze Zusätzliche Übungen Hamming-Abstand d Der Hamming-Abstand d zwischen zwei Codewörtern c1 und c2 ist die Anzahl der Bits, in denen sich die beiden Codewörter

Mehr

Empfänger. Sender. Fehlererkennung und ggf. Fehlerkorrektur durch redundante Informationen. Längssicherung durch Paritätsbildung (Blockweise)

Empfänger. Sender. Fehlererkennung und ggf. Fehlerkorrektur durch redundante Informationen. Längssicherung durch Paritätsbildung (Blockweise) Datensicherung Bei der digitalen Signalübertragung kann es durch verschiedene Einflüsse, wie induktive und kapazitive Einkopplung oder wechselnde Potentialdifferenzen zwischen Sender und Empfänger zu einer

Mehr

Error detection and correction

Error detection and correction Referat Error detection and correction im Proseminar Computer Science Unplugged Dozent Prof. M. Hofmann Referent Pinto Raul, 48005464 Datum 19.11.2004 Error detection and correction 1. Fehlererkennung

Mehr

Rechnernetze Übung 5. Frank Weinhold Professur VSR Fakultät für Informatik TU Chemnitz Mai Wo sind wir?

Rechnernetze Übung 5. Frank Weinhold Professur VSR Fakultät für Informatik TU Chemnitz Mai Wo sind wir? Rechnernetze Übung 5 Frank Weinhold Professur VSR Fakultät für Informatik TU Chemnitz Mai 2012 Wo sind wir? Quelle Nachricht Senke Sender Signal Übertragungsmedium Empfänger Quelle Nachricht Senke Primäres

Mehr

Technische Informatik - Eine Einführung

Technische Informatik - Eine Einführung Martin-Luther-Universität Halle-Wittenberg Fachbereich Mathematik und Informatik Lehrstuhl für Technische Informatik Prof. P. Molitor Technische Informatik - Eine Einführung Darstellung von Zeichen und

Mehr

KANALCODIERUNG AUFGABEN. Aufgabe 1. Aufgabe 2

KANALCODIERUNG AUFGABEN. Aufgabe 1. Aufgabe 2 AUFGABEN KANALCODIERUNG Aufgabe Wir betrachten den Hamming-Code mit m = 5 Prüfbits. a) Wie gross ist die Blocklänge n dieses Codes? b) Wie viele gültige Codewörter umfasst dieser Code? c) Leiten Sie die

Mehr

Theoretische Grundlagen der Informatik WS 09/10

Theoretische Grundlagen der Informatik WS 09/10 Theoretische Grundlagen der Informatik WS 09/10 - Tutorium 6 - Michael Kirsten und Kai Wallisch Sitzung 13 02.02.2010 Inhaltsverzeichnis 1 Formeln zur Berechnung Aufgabe 1 2 Hamming-Distanz Aufgabe 2 3

Mehr

Fehlererkennung. Fehlererkennung

Fehlererkennung. Fehlererkennung Fehlererkennung Seite 1 Prof. Dr. W. Kowalk Datenübertragung über physikalische Signale mehr oder minder hohe Anfälligkeit gegen Verfälschung der Signale Empfänger interpretiert Signal anders als von Sender

Mehr

Angewandte Informationstechnik

Angewandte Informationstechnik Angewandte Informationstechnik im Bachelorstudiengang Angewandte Medienwissenschaft (AMW) Fehlererkennung und -korrektur Dr.-Ing. Alexander Ihlow Fakultät für Elektrotechnik und Informationstechnik FG

Mehr

31 Polynomringe Motivation Definition: Polynomringe

31 Polynomringe Motivation Definition: Polynomringe 31 Polynomringe 31.1 Motivation Polynome spielen eine wichtige Rolle in vielen Berechnungen, einerseits weil oftmals funktionale Zusammenhänge durch Polynome beschrieben werden, andererseits weil Polynome

Mehr

Themen. Sicherungsschicht. Rahmenbildung. Häufig bereitgestellte Dienste. Fehlererkennung. Stefan Szalowski Rechnernetze Sicherungsschicht

Themen. Sicherungsschicht. Rahmenbildung. Häufig bereitgestellte Dienste. Fehlererkennung. Stefan Szalowski Rechnernetze Sicherungsschicht Themen Sicherungsschicht Rahmenbildung Häufig bereitgestellte Dienste Fehlererkennung OSI-Modell: Data Link Layer TCP/IP-Modell: Netzwerk, Host-zu-Netz Aufgaben: Dienste für Verbindungsschicht bereitstellen

Mehr

Organisation. Was kommt zum Test? Buch Informatik Grundlagen bis inkl. Kapitel 7.4 Wissensfragen und Rechenbeispiele

Organisation. Was kommt zum Test? Buch Informatik Grundlagen bis inkl. Kapitel 7.4 Wissensfragen und Rechenbeispiele Organisation Was kommt zum Test? Buch Informatik Grundlagen bis inkl Kapitel 74 Wissensfragen und Rechenbeispiele 3 Vorträge zur Übung Informationstheorie, Huffman-Codierung und trennzeichenfreie Codierung

Mehr

Grundlagen der Technischen Informatik. 2. Übung

Grundlagen der Technischen Informatik. 2. Übung Grundlagen der Technischen Informatik 2. Übung Christian Knell Keine Garantie für Korrekt-/Vollständigkeit Organisatorisches Übungsblätter zuhause vorbereiten! In der Übung an der Tafel vorrechnen! Bei

Mehr

Fehlerkorrektur. Gliederung Kanalstörungen Einfache Verfahren Hamming-Abstand Technische Schaltungen Binäre Arithmetik Matrizenrechnung Typische Codes

Fehlerkorrektur. Gliederung Kanalstörungen Einfache Verfahren Hamming-Abstand Technische Schaltungen Binäre Arithmetik Matrizenrechnung Typische Codes Gliederung Kanalstörungen Einfache Verfahren Hamming-Abstand Technische Schaltungen Binäre Arithmetik Matrizenrechnung Typische Codes Fehlerkorrektur Fehlertypen Merksätze: Alle Fehler sind statistisch

Mehr

Grundlagen der Technischen Informatik. Codierung und Fehlerkorrektur. Kapitel 4.2

Grundlagen der Technischen Informatik. Codierung und Fehlerkorrektur. Kapitel 4.2 Codierung und Fehlerkorrektur Kapitel 4.2 Prof. Dr.-Ing. Jürgen Teich Lehrstuhl für Hardware-Software-Co-Design Technische Informatik - Meilensteine Informationstheorie Claude Elwood Shannon (geb. 1916)

Mehr

Formelsammlung Kanalcodierung

Formelsammlung Kanalcodierung Formelsammlung Kanalcodierung Allgemeines Codewortlänge: N Anzahl der Informationsstellen: K Coderate: R = K/N Hamming-Distanz: D( x i, x j ) = w( x i xj ) Codedistanz: d = min D( x i, x j ); i j Fehlerkorrektur:

Mehr

Fehlerkorrektur. Einzelfehler besitze die Wahrscheinlichkeit p. Es gelte Unabhängigkeit der Fehlereinflüsse Für ein Wort der Länge n gelte noch:

Fehlerkorrektur. Einzelfehler besitze die Wahrscheinlichkeit p. Es gelte Unabhängigkeit der Fehlereinflüsse Für ein Wort der Länge n gelte noch: Gliederung Kanalstörungen Einfache Verfahren Hamming-Abstand Technische Schaltungen Binäre Arithmetik Matrizenrechnung Typische Codes Fehlerkorrektur Fehlertypen Merksätze: Alle Fehler sind statistisch

Mehr

Einführung in die Kodierungstheorie

Einführung in die Kodierungstheorie Einführung in die Kodierungstheorie Einführung Vorgehen Beispiele Definitionen (Code, Codewort, Alphabet, Länge) Hamming-Distanz Definitionen (Äquivalenz, Coderate, ) Singleton-Schranke Lineare Codes Hamming-Gewicht

Mehr

Zyklische Codes & CRC

Zyklische Codes & CRC Zyklische Codes & CRC Copyright 2003 2011 Ralf Hoppe Revision : 257 Inhaltsverzeichnis 1 Einführung 2 2 Grundlagen 2 3 Erzeugung zyklischer Codes 2 4 Verifikation 3 4.1 Prinzip.......................................

Mehr

3 Der Hamming-Code. Hamming-Codes

3 Der Hamming-Code. Hamming-Codes 3 Der Hamming-Code Hamming-Codes Ein binärer Code C heißt ein Hamming-Code Ha s, wenn seine Kontrollmatrix H als Spalten alle Elemente in Z 2 s je einmal hat. Die Parameter eines n-k-hamming-codes sind:

Mehr

Übung zu Drahtlose Kommunikation. 7. Übung

Übung zu Drahtlose Kommunikation. 7. Übung Übung zu Drahtlose Kommunikation 7. Übung 03.12.2012 Aufgabe 1 (Cyclic Redundancy Check) Gegeben ist das Generator-Polynom C(x) = x 4 + x 3 + 1 a) Zeichnen Sie die Hardware-Implementation zum obigen Generator-Polynom

Mehr

Lineare Codes. Dipl.-Inform. Wolfgang Globke. Institut für Algebra und Geometrie Arbeitsgruppe Differentialgeometrie Universität Karlsruhe 1 / 19

Lineare Codes. Dipl.-Inform. Wolfgang Globke. Institut für Algebra und Geometrie Arbeitsgruppe Differentialgeometrie Universität Karlsruhe 1 / 19 Lineare Codes Dipl.-Inform. Wolfgang Globke Institut für Algebra und Geometrie Arbeitsgruppe Differentialgeometrie Universität Karlsruhe 1 / 19 Codes Ein Code ist eine eindeutige Zuordnung von Zeichen

Mehr

Single Parity check Codes (1)

Single Parity check Codes (1) Single Parity check Codes (1) Der Single Parity check Code (SPC) fügt zu dem Informationsblock u = (u 1, u 2,..., u k ) ein Prüfbit (englisch: Parity) p hinzu: Die Grafik zeigt drei Beispiele solcher Codes

Mehr

Codierung zur Fehlerkorrektur und Fehlererkennung

Codierung zur Fehlerkorrektur und Fehlererkennung Codierung zur Fehlerkorrektur und Fehlererkennung von Dr.-techn. Joachim Swoboda Mit 39 Bildern und 24 Tafeln R. OLDENBOURG VERLAG MÜNCHEN WIEN 1973 Inhalt Vorwort 9 1. Einführung 11 1.1 Redundante Codierung

Mehr

Übung 14: Block-Codierung

Übung 14: Block-Codierung ZHW, NTM, 26/6, Rur Übung 4: Block-Codierung Aufgabe : Datenübertragung über BSC. Betrachten Sie die folgende binäre Datenübertragung über einen BSC. Encoder.97.3.3.97 Decoder Für den Fehlerschutz stehen

Mehr

6 Fehlerkorrigierende Codes

6 Fehlerkorrigierende Codes R. Reischuk, ITCS 35 6 Fehlerkorrigierende Codes Wir betrachten im folgenden nur Blockcodes, da sich bei diesen das Decodieren und auch die Analyse der Fehlertoleranz-Eigenschaften einfacher gestaltet.

Mehr

Übungen zu Architektur Eingebetteter Systeme. Teil 1: Grundlagen. Blatt : Grundlagen des Cyclic redundancy code (CRC)

Übungen zu Architektur Eingebetteter Systeme. Teil 1: Grundlagen. Blatt : Grundlagen des Cyclic redundancy code (CRC) Übungen zu Architektur Eingebetteter Systeme Blatt 4 22.05.2009 Teil 1: Grundlagen 1.1: Grundlagen des Cyclic redundancy code (CRC) Im Gegensatz zum Parity-Check, der nur einfache Bit-Fehler erkennen kann,

Mehr

Kapitel 3 Kanalcodierung

Kapitel 3 Kanalcodierung Kapitel 3 Kanalcodierung Prof. Dr. Dirk W. Hoffmann Hochschule Karlsruhe w University of Applied Sciences w Fakultät für Informatik Übersicht Quelle Senke Kompression Huffman-, Arithmetische-, Lempel-Ziv

Mehr

Codierungstheorie Rudolf Scharlau, SoSe 2006 9

Codierungstheorie Rudolf Scharlau, SoSe 2006 9 Codierungstheorie Rudolf Scharlau, SoSe 2006 9 2 Optimale Codes Optimalität bezieht sich auf eine gegebene Quelle, d.h. eine Wahrscheinlichkeitsverteilung auf den Symbolen s 1,..., s q des Quellalphabets

Mehr

Grundlagen Digitaler Systeme (GDS)

Grundlagen Digitaler Systeme (GDS) Grundlagen Digitaler Systeme (GDS) Prof. Dr. Sven-Hendrik Voß Sommersemester 2015 Technische Informatik (Bachelor), Semester 1 Termin 10, Donnerstag, 18.06.2015 Seite 2 Binär-Codes Grundlagen digitaler

Mehr

Übung zur Vorlesung. Informationstheorie und Codierung

Übung zur Vorlesung. Informationstheorie und Codierung Übung zur Vorlesung Informationstheorie und Codierung Prof. Dr. Lilia Lajmi Juni 25 Ostfalia Hochschule für angewandte Wissenschaften Hochschule Braunschweig/Wolfenbüttel Postanschrift: Salzdahlumer Str.

Mehr

Hauptdiplomklausur Informatik Juni 2008: Computer Networks

Hauptdiplomklausur Informatik Juni 2008: Computer Networks Universität Mannheim Fakultät für Mathematik und Informatik Lehrstuhl für Praktische Informatik IV Prof. Dr.-Ing. W. Effelsberg Hauptdiplomklausur Informatik Juni 2008: Computer Networks Name: Matrikel-Nr.:

Mehr

, 2016W Übungstermin: Fr.,

, 2016W Übungstermin: Fr., VU Technische Grundlagen der Informatik Übung 2: Numerik, Codierungstheorie 183.579, 2016W Übungstermin: Fr., 28.10.2016 Allgemeine Hinweise: Versuchen Sie beim Lösen der Beispiele keine elektronischen

Mehr

Binärdarstellung von Fliesskommazahlen

Binärdarstellung von Fliesskommazahlen Binärdarstellung von Fliesskommazahlen 1. IEEE 754 Gleitkommazahl im Single-Format So sind in Gleitkommazahlen im IEEE 754-Standard aufgebaut: 31 30 24 23 0 S E E E E E E E E M M M M M M M M M M M M M

Mehr

Fehlererkennende und fehlerkorrigierende Codes

Fehlererkennende und fehlerkorrigierende Codes Fehlererkennende und fehlerkorrigierende Codes Claudiu-Vlad URSACHE, 5AHITN Inhalt 1. Codes... 2 2. Hammingdistanz... 3 3. Fehlererkennende Codes... 4 4. Fehlerkorrigierende Codes... 5 1. Codes a 2 a 00

Mehr

Grundlagen der Technischen Informatik. Hamming-Codes. Kapitel 4.3

Grundlagen der Technischen Informatik. Hamming-Codes. Kapitel 4.3 Hamming-Codes Kapitel 4.3 Prof. Dr.-Ing. Jürgen Teich Lehrstuhl für Hardware-Software-Co-Design Inhalt Welche Eigenschaften müssen Codes haben, um Mehrfachfehler erkennen und sogar korrigieren zu können?

Mehr

Gegeben ist ein systematischer (7,3)-Cod. Die drei seiner Codewörter lauten:

Gegeben ist ein systematischer (7,3)-Cod. Die drei seiner Codewörter lauten: Prof. Dr.-Ing. H.G. Musmann INSTITUT FÜR THEORETISCHE NACHRICHTENTECHNIK UND INFORMATIONSVERARBEITUNG UNIVERSITÄT HANNOVER Appelstraße 9A 67 Hannover Gegeben ist ein systematischer (7,)-Cod. Die drei seiner

Mehr

1. Woche Einführung in die Codierungstheorie, Definition Codes, Präfixcode, kompakte Codes

1. Woche Einführung in die Codierungstheorie, Definition Codes, Präfixcode, kompakte Codes 1 Woche Einführung in die Codierungstheorie, Definition Codes, Präfixcode, kompakte Codes 1 Woche: Einführung in die Codierungstheorie, Definition Codes, Präfixcode, kompakte Codes 5/ 44 Unser Modell Shannon

Mehr

Code-Arten und Code-Sicherung. Literatur: Blieberger et.al.: Informatik (Kap. 3 und 4), Springer-Verlag R.-H. Schulz: Codierungstheorie, Vieweg

Code-Arten und Code-Sicherung. Literatur: Blieberger et.al.: Informatik (Kap. 3 und 4), Springer-Verlag R.-H. Schulz: Codierungstheorie, Vieweg Codierungstheorie Code-Arten und Code-Sicherung Inhaltsübersicht und Literatur Informationstheorie Was ist eine Codierung? Arten von Codes Informationsgehalt und Entropie Shannon'sches Codierungstheorem

Mehr

Kongruenz modulo g definiert auf K[x] eine Äquivalenzrelation g : h g f h f ist durch g teilbar, und [f] g ist die Äquivalenzklasse von f.

Kongruenz modulo g definiert auf K[x] eine Äquivalenzrelation g : h g f h f ist durch g teilbar, und [f] g ist die Äquivalenzklasse von f. 3 Kongruenz modulo g definiert auf K[x] eine Äquivalenzrelation g : h g f h f ist durch g teilbar, und [f] g ist die Äquivalenzklasse von f 4 Auf der Menge aller Restklassen [f] g kann man Addition und

Mehr

Netzwerkprozessoren und CRC-Zeichen

Netzwerkprozessoren und CRC-Zeichen 12 Netzwerkprozessoren und CRC-Zeichen Peter Marwedel Informatik 12 TU Dortmund 2013/04/13 2.3 Befehle von Netzwerkprozessoren Viele aktive Komponenten in heutigen LAN/WANs Extrem hohe Anforderungen an

Mehr

Fehlererkennung und -behandlung. Paritätsverfahren

Fehlererkennung und -behandlung. Paritätsverfahren Fehlererkennung und -behandlung Gründe Thermische Elektronenbewegung in Halbleitern oder Leitungen Elektromagnetische Einstrahlung (Motoren, Blitze, benachbarte Leitungen) Bitfehlerrate ist die Wahrscheinlichkeit,

Mehr

, 2015W Übungstermin: Do.,

, 2015W Übungstermin: Do., VU Technische Grundlagen der Informatik Übung 2: Numerik, Codierungstheorie 183.579, 2015W Übungstermin: Do., 29.10.2015 Allgemeine Hinweise: Versuchen Sie beim Lösen der Beispiele keine elektronischen

Mehr

Praktikum Digitaltechnik

Praktikum Digitaltechnik dig A) Vorbereitungsaufgaben: 1) Ermitteln Sie anhand der gegebenen zwei Blockschaltbilder die Schaltgleichungen und vereinfachen Sie weitmöglich! y 1 =(/(/(x 0 x 1 )/(x 0 +x 1 )))+(/(/(x 0 x 1 )+/(x 0

Mehr

Repräsentation von Daten: Binär-, Oktal- u. Hexadezimalcodierung von ganzen und rationalen Zahlen

Repräsentation von Daten: Binär-, Oktal- u. Hexadezimalcodierung von ganzen und rationalen Zahlen Großübung 1: Zahlensysteme Repräsentation von Daten: Binär-, Oktal- u. Hexadezimalcodierung von ganzen und rationalen Zahlen Lehrender: Dr. Klaus Richter, Institut für Informatik; E-Mail: richter@informatik.tu-freiberg.de

Mehr

6. Lösungsblatt

6. Lösungsblatt TECHNISCHE UNIVERSITÄT DARMSTADT FACHGEBIET THEORETISCHE INFORMATIK PROF. JOHANNES BUCHMANN DR. JULIANE KRÄMER Einführung in die Kryptographie WS 205/ 206 6. Lösungsblatt 9..205 Ankündigung Es besteht

Mehr

7 Rechnen mit Polynomen

7 Rechnen mit Polynomen 7 Rechnen mit Polynomen Zu Polynomfunktionen Satz. Zwei Polynomfunktionen und f : R R, x a n x n + a n 1 x n 1 + a 1 x + a 0 g : R R, x b n x n + b n 1 x n 1 + b 1 x + b 0 sind genau dann gleich, wenn

Mehr

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema 2x 4 + x 3 + x + 3 div x 2 + x 1 = 2x 2 x + 3 (2x 4 + 2x 3 2x 2 ) x 3 + 2x 2 + x + 3 ( x

Mehr

183.580, WS2012 Übungsgruppen: Mo., 22.10.

183.580, WS2012 Übungsgruppen: Mo., 22.10. VU Grundlagen digitaler Systeme Übung 2: Numerik, Boolesche Algebra 183.580, WS2012 Übungsgruppen: Mo., 22.10. Aufgabe 1: Binäre Gleitpunkt-Arithmetik Addition & Subtraktion Gegeben sind die Zahlen: A

Mehr

RSA Verfahren. Kapitel 7 p. 103

RSA Verfahren. Kapitel 7 p. 103 RSA Verfahren RSA benannt nach den Erfindern Ron Rivest, Adi Shamir und Leonard Adleman war das erste Public-Key Verschlüsselungsverfahren. Sicherheit hängt eng mit der Schwierigkeit zusammen, große Zahlen

Mehr

Informationstheorie und Codierung

Informationstheorie und Codierung Informationstheorie und Codierung 5. Fehlerkorrigierende Codierung Grundlagen Fehlererkennung, Fehlerkorrektur Linearcodes, Hamming-Codes Zyklische Codes und technische Realisierung Burstfehlerkorrektur

Mehr

Codierungstheorie Teil 1: Fehlererkennung und -behebung

Codierungstheorie Teil 1: Fehlererkennung und -behebung Codierungstheorie Teil 1: Fehlererkennung und -behebung von Manuel Sprock 1 Einleitung Eine Codierung ist eine injektive Abbildung von Wortmengen aus einem Alphabet A in über einem Alphabet B. Jedem Wort

Mehr

Definition 153 Sei n eine fest gewählte ganze Zahl 0. Für jedes l Z heißt die Menge

Definition 153 Sei n eine fest gewählte ganze Zahl 0. Für jedes l Z heißt die Menge 3.6 Restklassen in Polynomringen 3.6.1 Einführung und Definitionen Der Begriff der Restklasse stammt ursprünglich aus der Teilbarkeitslehre in Z; (Z = Z, +, ist ein kommutativer Ring). Definition 153 Sei

Mehr

Codierungstheorie. Code-Arten und Code-Sicherung

Codierungstheorie. Code-Arten und Code-Sicherung Codierungstheorie Code-Arten und Code-Sicherung Inhaltsübersicht und Literatur Informationstheorie Was ist eine Codierung? Arten von Codes Informationsgehalt und Entropie Shannon'sches Codierungstheorem

Mehr

Index. Chien-Suche, 220 CIRC, 234 Code, 2, 9 äquidistanter, 81

Index. Chien-Suche, 220 CIRC, 234 Code, 2, 9 äquidistanter, 81 Index Abelsche Gruppe, 140 Abgeschlossenheit, 47, 140, 143 Abhängigkeit lineare, 53 Abtastfolge, 226 ACS-Operation, 279 Addition, 46, 163 Alphabet, 1 ARQ, 6, 174 Assoziativität, 47, 52, 140, 143 Audio-CD,

Mehr

Das Kryptosystem von McEliece. auf der Basis von linearen Codes

Das Kryptosystem von McEliece. auf der Basis von linearen Codes Das Kryptosystem von McEliece auf der Basis von linearen Codes Anforderungen Public-Key Kryptosysteme E e (m) = c Verschlüsselung D d (c) = m Entschlüsselung mit Schl. effizient effizient 2/25 Anforderungen

Mehr

Informationstheorie und Codierung. Prof. Dr.-Ing. Lilia Lajmi l.lajmi@ostfalia.de

Informationstheorie und Codierung. Prof. Dr.-Ing. Lilia Lajmi l.lajmi@ostfalia.de Informationstheorie und Codierung Prof. Dr.-Ing. Lilia Lajmi l.lajmi@ostfalia.de Inhaltsverzeichnis 3. Kanalcodierung 3.1 Nachrichtentheorie für gestörte Kanäle 3.1.1 Transinformation 3.1.2 Kanalkapazität

Mehr

Ein (7,4)-Code-Beispiel

Ein (7,4)-Code-Beispiel Ein (7,4)-Code-Beispiel Generator-Polynom: P(X) = X 3 + X 2 + 1 Bemerkung: Es ist 7 = 2^3-1, also nach voriger Überlegung sind alle 1-Bit-Fehler korrigierbar Beachte auch d min der Codewörter ist 3, also

Mehr

Bitübertragungsschicht

Bitübertragungsschicht Bitübertragungsschicht Sicherungsschicht Digitale Basisband Modulation Beispiel: EIA-232 Bitübertragungsschicht 1 / 50 Kommunikationsnetze I 21.10.2009 Bitübertragungsschicht Sicherungsschicht Digitale

Mehr

Galoiskörper GF(2 n ) (Teschl/Teschl 4)

Galoiskörper GF(2 n ) (Teschl/Teschl 4) Galoiskörper GF(2 n ) (Teschl/Teschl 4) auch Galois-Felder (englisch Galois elds), benannt nach Evariste Galois (18111832). Körper (in der Mathematik) allgemein: Zahlenbereich, in dem die vier Grundrechenarten

Mehr

Bemerkungen. Gilt m [l] n, so schreibt man auch m l mod n oder m = l mod n und spricht. m kongruent l modulo n.

Bemerkungen. Gilt m [l] n, so schreibt man auch m l mod n oder m = l mod n und spricht. m kongruent l modulo n. 3.6 Restklassen in Polynomringen 3.6.1 Einführung und Definitionen Der Begriff der Restklasse stammt ursprünglich aus der Teilbarkeitslehre in Z; (Z = Z, +, ist ein kommutativer Ring). Definition 153 Sei

Mehr

Gleichungen Aufgaben und Lösungen

Gleichungen Aufgaben und Lösungen Gleichungen Aufgaben und Lösungen http://www.fersch.de Klemens Fersch 6. Januar 3 Inhaltsverzeichnis Lineare Gleichung. a x + b = c....................................................... Aufgaben....................................................

Mehr

Dienste der Sicherungsschicht

Dienste der Sicherungsschicht Einleitung Dienste der Sicherungsschicht Unbestätigter, verbindungsloser Dienst Bestätigter, verbindungsloser Dienst Betsätigter, verbindungsorientierter Dienst Einleitung Methoden in der Sicherungsschicht

Mehr

Die Mathematik in der CD

Die Mathematik in der CD Lehrstuhl D für Mathematik RWTH Aachen Lehrstuhl D für Mathematik RWTH Aachen St.-Michael-Gymnasium Monschau 14. 09. 2006 Codes: Definition und Aufgaben Ein Code ist eine künstliche Sprache zum Speichern

Mehr

Übung zu Drahtlose Kommunikation. 1. Übung

Übung zu Drahtlose Kommunikation. 1. Übung Übung zu Drahtlose Kommunikation 1. Übung 22.10.2012 Termine Übungen wöchentlich, Montags 15 Uhr (s.t.), Raum B 016 Jede Woche 1 Übungsblatt http://userpages.uni-koblenz.de/~vnuml/drako/uebung/ Bearbeitung

Mehr

Galoiskörper GF(2 n ) (Teschl/Teschl 4)

Galoiskörper GF(2 n ) (Teschl/Teschl 4) Galoiskörper GF(2 n ) (Teschl/Teschl 4) auch Galois-Felder (englisch Galois elds), benannt nach Evariste Galois (18111832). Körper (in der Mathematik) allgemein: Zahlenbereich, in dem die vier Grundrechenarten

Mehr

Decodierung von Faltungscode- und Turbocode-basierten 2D-Barcodes unter Ausnutzung des Matched-Filter Ansatzes

Decodierung von Faltungscode- und Turbocode-basierten 2D-Barcodes unter Ausnutzung des Matched-Filter Ansatzes Decodierung von Faltungscode- und Turbocode-basierten 2D-Barcodes unter Ausnutzung des Matched-Filter Ansatzes Andreas Weinand 1, Wolfgang Sauer-Greff 2, Hans D. Schotten 1 1 Lehrstuhl für Funkkommunikation

Mehr

Kodierung. Kodierung von Zeichen mit dem ASCII-Code

Kodierung. Kodierung von Zeichen mit dem ASCII-Code Kodierung Kodierung von Zeichen mit dem ASCII-Code Weiterführende Aspekte zur Kodierung: Speicherplatzsparende Codes Fehlererkennende und -korrigierende Codes Verschlüsselnde Codes Spezielle Codes, Beispiel

Mehr

Kapitel 4 Leitungscodierung

Kapitel 4 Leitungscodierung Kapitel 4 Leitungscodierung Prof. Dr. Dirk W. Hoffmann Hochschule Karlsruhe w University of Applied Sciences w Fakultät für Informatik Übersicht Quelle Senke Kompression Huffman-, Arithmetische-, Lempel-Ziv

Mehr

1. Das dekadische Ziffernsystem (Dezimalsystem) Eine ganze Zahl z kann man als Summe von Potenzen zur Basis 10 darstellen:

1. Das dekadische Ziffernsystem (Dezimalsystem) Eine ganze Zahl z kann man als Summe von Potenzen zur Basis 10 darstellen: Zahlensysteme. Das dekadische Ziffernsystem (Dezimalsystem) Eine ganze Zahl z kann man als Summe von Potenzen zur Basis darstellen: n n n n z a a... a a a Dabei sind die Koeffizienten a, a, a,... aus der

Mehr

CRC Cyclic Redundancy Check Analyseverfahren mit Bitfiltern

CRC Cyclic Redundancy Check Analyseverfahren mit Bitfiltern CRC Cyclic Redundancy Check Analyseverfahren mit Bitfiltern Prof. Dr. W. Kowalk Universität Oldenburg Fachbereich Informatik 05.09.06 Copyright Prof. Dr. W. P. Kowalk, Oldenburg, 2006 Sie erreichen den

Mehr

Grundlagen der Informatik III Wintersemester 2010/ Vorlesung Dr.-Ing. Wolfgang Heenes

Grundlagen der Informatik III Wintersemester 2010/ Vorlesung Dr.-Ing. Wolfgang Heenes Grundlagen der Informatik III Wintersemester 2010/2011 18. Vorlesung Dr.-Ing. Wolfgang Heenes int main() { printf("hello, world!"); return 0; } msg: main:.data.asciiz "Hello, world!".text.globl main la

Mehr

Formelsammlung. Wahrscheinlichkeit und Information

Formelsammlung. Wahrscheinlichkeit und Information Formelsammlung Wahrscheinlichkeit und Information Ein Ereignis x trete mit der Wahrscheinlichkeit p(x) auf, dann ist das Auftreten dieses Ereignisses verbunden mit der Information I( x): mit log 2 (z)

Mehr

9 Codes. Hochschule für Angewandte Wissenschaften Hamburg FACHBEREICH ELEKTROTECHNIK UND INFORMATIK DIGITALTECHNIK 9-1

9 Codes. Hochschule für Angewandte Wissenschaften Hamburg FACHBEREICH ELEKTROTECHNIK UND INFORMATIK DIGITALTECHNIK 9-1 9 Codes 9.1 Charakterisierung und Klassifizierung Definition: Das Ergebnis einer eindeutigen Zuordnung zweier Zeichen- bzw. Zahlenmengen wird Code genannt. Die Zuordnung erfolgt über eine arithmetische

Mehr

Netzwerkprozessoren und CRC-Zeichen

Netzwerkprozessoren und CRC-Zeichen 12 Netzwerkprozessoren und CRC-Zeichen Peter Marwedel Informatik 12 TU Dortmund 2012/04/10 2.3 Befehle von Netzwerkprozessoren Viele aktive Komponenten in heutigen LAN/WANs Extrem hohe Anforderungen an

Mehr

Codes (1) Beispiele für die Bedeutung eines n-bit-wortes:

Codes (1) Beispiele für die Bedeutung eines n-bit-wortes: Codes () Beispiele für die Bedeutung eines n-bit-wortes: Befehl (instruction) Zahl (number) Zeichen (character) Bildelement (pixel) Vorlesung Rechnerarchitektur und Rechnertechnik SS 24 Codes (2) ASCII

Mehr

Rechnernetze 1 Vorlesung im SS 07

Rechnernetze 1 Vorlesung im SS 07 Rechnernetze 1 Vorlesung im SS 07 Roland Wismüller roland.wismueller@uni-siegen.de Tel.: 740-4050, H-B 8404 Zusammenfassung: Protokollhierarchie Schichten, Protokolle und Dienste ISO-OSI Referenzmodell

Mehr

13. Algorithmus der Woche Fehlererkennende Codes Was ist eigentlich ISBN?

13. Algorithmus der Woche Fehlererkennende Codes Was ist eigentlich ISBN? 13. Algorithmus der Woche Fehlererkennende Codes Was ist eigentlich ISBN? Autor Alexander Souza, Universität Freiburg Schon faszinierend, was man so alles mit Algorithmen machen kann: CDs schnell in Regalen

Mehr

Codierung. Codierung. EAN Europäische Artikelnummer Ziffern 1 und 2 codieren das Hersteller-Land. Ziffer 2 bis 12 codieren Händler und Ware

Codierung. Codierung. EAN Europäische Artikelnummer Ziffern 1 und 2 codieren das Hersteller-Land. Ziffer 2 bis 12 codieren Händler und Ware Codierung Codierung Haydn: Streichquartett op 54.3 aus Largo, Violine I 1 2 Ziffern 1 und 2 codieren das Hersteller-Land Ziffer 2 bis 12 codieren Händler und Ware Die letzte Ziffer ist eine Prüfziffer

Mehr

Modul 114. Zahlensysteme

Modul 114. Zahlensysteme Modul 114 Modulbezeichnung: Modul 114 Kompetenzfeld: Codierungs-, Kompressions- und Verschlüsselungsverfahren einsetzen 1. Codierungen von Daten situationsbezogen auswählen und einsetzen. Aufzeigen, welche

Mehr

Cyclic Redundancy Code (CRC)

Cyclic Redundancy Code (CRC) .3..3 Cyclic Redundancy Code (CRC) Hat die Receive Machine die MAC PDU empfangen, ist nicht garantiert, daß alle Bits unbeschädigt angekommen sind. So ist die hardware-basierte Fehlererkennung durch den

Mehr

CRC Einführung. Version: Datum: Autor: Werner Dichler

CRC Einführung. Version: Datum: Autor: Werner Dichler CRC Einführung Version: 0.0.1 Datum: 04.03.2013 Autor: Werner Dichler Inhalt Inhalt... 2 Polynom-Division... 3 Allgemein... 3 Beispiel... 3 CRC Grundlagen... 4 Allgemein... 4 Dyadische Polynom-Division...

Mehr

Grundlagen der Technischen Informatik. Codierung und Fehlerkorrektur. Kapitel 4.2. Codewörter. Codewörter. Strukturierte Codes

Grundlagen der Technischen Informatik. Codierung und Fehlerkorrektur. Kapitel 4.2. Codewörter. Codewörter. Strukturierte Codes Codewörter Grundlagen der Technischen Informatik Codierung und Fehlerkorrektur Kapitel 4.2 Allgemein: Code ist Vorschrift für eindeutige Zuordnung (Codierung) Die Zuordnung muss nicht umkehrbar eindeutig

Mehr

Übungsblatt 8. Aufgabe 1 Datentransferrate und Latenz

Übungsblatt 8. Aufgabe 1 Datentransferrate und Latenz Übungsblatt 8 Abgabe: 15.12.2011 Aufgabe 1 Datentransferrate und Latenz Der Preußische optische Telegraf (1832-1849) war ein telegrafisches Kommunikationssystem zwischen Berlin und Koblenz in der Rheinprovinz.

Mehr

Mathematischer Vorkurs Dr. Thomas Zehrt Funktionen 2. 1 Translationen 2. 2 Skalierungen 4. 3 Die Wurzelfunktion 6

Mathematischer Vorkurs Dr. Thomas Zehrt Funktionen 2. 1 Translationen 2. 2 Skalierungen 4. 3 Die Wurzelfunktion 6 Universität Basel Wirtschaftswissenschaftliches Zentrum Abteilung Quantitative Methoden Mathematischer Vorkurs Dr. Thomas Zehrt Funktionen 2 Inhaltsverzeichnis 1 Translationen 2 2 Skalierungen 4 3 Die

Mehr

4. Woche Decodierung; Maximale, Perfekte und Optimale Codes. 4. Woche: Decodierung; Maximale, Perfekte und Optimale Codes 69/ 140

4. Woche Decodierung; Maximale, Perfekte und Optimale Codes. 4. Woche: Decodierung; Maximale, Perfekte und Optimale Codes 69/ 140 4 Woche Decodierung; Maximale, Perfekte und Optimale Codes 4 Woche: Decodierung; Maximale, Perfekte und Optimale Codes 69/ 140 Szenario für fehlerkorrigierende Codes Definition (n, M)-Code Sei C {0, 1}

Mehr

3 Rechnen und Schaltnetze

3 Rechnen und Schaltnetze 3 Rechnen und Schaltnetze Arithmetik, Logik, Register Taschenrechner rste Prozessoren (z.b. Intel 4004) waren für reine Rechenaufgaben ausgelegt 4 4-Bit Register 4-Bit Datenbus 4 Kbyte Speicher 60000 Befehle/s

Mehr

Informationstheorie und Codierung Schriftliche Prüfung am 8. Mai 2006

Informationstheorie und Codierung Schriftliche Prüfung am 8. Mai 2006 Informationstheorie und Codierung Schriftliche Prüfung am 8. Mai 2006 Institut für Nachrichtentechnik und Hochfrequenztechnik Bitte beachten Sie: Sie dürfen das Vorlesungsskriptum, einen Taschenrechner

Mehr

2 Restklassenringe und Polynomringe

2 Restklassenringe und Polynomringe 2 Restklassenringe und Polynomringe Sei m > 1 ganz und mz := {mx x Z}. Nach I. 5.3 gilt: Die verschiedenen Restklassen von Z modulo m sind mz, 1 + mz,..., (m 1) + mz. Für die Gesamtheit aller Restklassen

Mehr

4 Binäres Zahlensystem

4 Binäres Zahlensystem Netzwerktechnik achen, den 08.05.03 Stephan Zielinski Dipl.Ing Elektrotechnik Horbacher Str. 116c 52072 achen Tel.: 0241 / 174173 zielinski@fh-aachen.de zielinski.isdrin.de 4 inäres Zahlensystem 4.1 Codieren

Mehr

bereits in A,3 und A.4: Betrachtung von Addierschaltungen als Beispiele für Schaltnetze und Schaltwerke

bereits in A,3 und A.4: Betrachtung von Addierschaltungen als Beispiele für Schaltnetze und Schaltwerke Rechnerarithmetik Rechnerarithmetik 22 Prof. Dr. Rainer Manthey Informatik II Übersicht bereits in A,3 und A.4: Betrachtung von Addierschaltungen als Beispiele für Schaltnetze und Schaltwerke in diesem

Mehr

Binäre Division. Binäre Division (Forts.)

Binäre Division. Binäre Division (Forts.) Binäre Division Umkehrung der Multiplikation: Berechnung von q = a/b durch wiederholte bedingte Subtraktionen und Schiebeoperationen in jedem Schritt wird Divisor b testweise vom Dividenden a subtrahiert:

Mehr

Theoretische Informatik SS 04 Übung 1

Theoretische Informatik SS 04 Übung 1 Theoretische Informatik SS 04 Übung 1 Aufgabe 1 Es gibt verschiedene Möglichkeiten, eine natürliche Zahl n zu codieren. In der unären Codierung hat man nur ein Alphabet mit einem Zeichen - sagen wir die

Mehr

2 Polynome und rationale Funktionen

2 Polynome und rationale Funktionen Gleichungen spielen auch in der Ingenieurmathematik eine große Rolle. Sie beschreiben zum Beispiel Bedingungen, unter denen Vorgänge ablaufen, Gleichgewichtszustände, Punktmengen. Gleichungen für eine

Mehr

Partialbruchzerlegung

Partialbruchzerlegung Partialbruchzerlegung Eine rationale Funktion r mit n verschiedenen Polstellen z j der Ordnung m j, r = p q, lässt sich in der Form r(z) = f (z) + n j=1 q(z) = c(z z 1) m1 (z z n ) mn r j (z), r j (z)

Mehr