Gruppe. Lineare Block-Codes

Größe: px
Ab Seite anzeigen:

Download "Gruppe. Lineare Block-Codes"

Transkript

1 Thema: Lneare Block-Codes Lneare Block-Codes Zele Mt desen rechnerschen und expermentellen Übungen wrd de prnzpelle Vorgehenswese zur Kanalcoderung mt lnearen Block-Codes erarbetet. De konkrete Anwendung zur Übertragung von Sprache und Bldern über enen gestörten Kanal wrd aufgezegt. Übungsaufgabe 1 a) Bestmmen Se de Generatormatrx enes systematschen, lnearen (7,4)-Blockcodes, be dem de nformatonstragenden Bts als vorderste (lnksstehende) Bts des Codevektors auftreten. De dre Prüfbts enes Codeworts werden so bestmmt, dass das das 5. Bt des Codeworts als Partätsbt fungert und dabe das 2. und 3. und 4. nformatonstragende Bt auf ene gerade Anzahl von Ensen ergänzt ( y5 = x2 x3 x4 ), das 6. Bt des Codeworts als Partätsbt fungert und dabe das 1. und 3. und 4. nformatonstragende Bt auf ene gerade Anzahl von Ensen ergänzt ( y6 = x1 x3 x4 ), das 7. Bt des Codeworts als Partätsbt fungert und dabe das 1. und 2. und 3. nformatonstragende Bt auf ene gerade Anzahl von Ensen ergänzt( y7 = x1 x2 x3 ). G = b) Bestmmen Se mt Hlfe der Multplkaton Y r = X r G alle zu desem Hammng-Code gehörgen Codevektoren. Informatonsvektor X r Codevektor Y r x 1 x 2 x 3 x 2 y 1 y 2 y 3 y 4 y 5 y 6 y 7 H. Günter Hrsch Verson: pa3 Sete 1 (6)

2 Thema: Lneare Block-Codes Expermentelle Aufgabe 1 Zur Kontrolle der n der vorhergen Aufgabe bestmmten Codevektoren steht unter dem Auswahlmenü zur Kanalcoderung ene Oberfläche mt der Bezechnung Generatormatrx zur Verfügung. Darn können zunächst de Zelen- und de Spaltenanzahl ener Matrx vorgegeben werden. Dmensoneren Se de Werte zur Engabe der zuvor bestmmten Generatormatrx und geben Se anschleßend de bnären Werte zelenwese en. Dabe können Se de 0 und 1 Werte ohne Trennzechen unmttelbar hnterenander engeben. Se können nun nachenander de bnären Werte der nformatonstragenden Vektoren und durch Anklcken des entsprechenden Feldes de Multplkaton ausführen. X r engeben Übungsaufgabe 2 a) We groß st de mnmale Hammngdstanz deses Codes : b) We vele Btfehler lassen sch damt maxmal n enem Codewort erkennen: c) We vele Btfehler lassen sch damt maxmal n enem Codewort korrgeren: Können be Verwendung des Codes zur Fehlerkorrektur auch noch Codewörter, be denen mehr als 1 Btfehler auftreten, erkannt werden: d) We groß st de Wahrschenlchket, dass en 7 Bt langes Codewort be Übertragung über enen symmetrschen Bnärkanal mt ener Btfehlerrate von 1 % enen enfachen Btfehler benhaltet: H. Günter Hrsch Verson: pa3 Sete 2 (6)

3 Thema: Lneare Block-Codes e) We groß st de Wahrschenlchket, dass en 7 Bt langes Codewort be Übertragung über enen symmetrschen Bnärkanal mt ener Btfehlerrate von 1 % enen zwefachen Btfehler benhaltet: Expermentelle Aufgabe 2 Geben Se de zu der zuvor bestmmten Generatormatrx gehörge Prüfmatrx an: H t = Ermtteln Se mt Hlfe der Prüfmatrx n der graphschen Oberfläche Generatormatrx de Syndromvektoren S r für de n der folgenden Tabelle angegebenen Fehlervektoren möglchen enfachen Btfehler nnerhalb enes Codeworts beschreben. Fehlervektor Syndrom S r, de alle e 1 e 2 e 3 e 4 e 5 e 6 e 7 s 1 s 2 s We sehen de Bts enes Syndromvektors aus, wenn Se en zulässges Codewort mt der Prüfmatrx multplzeren: s 1 = s 2 = s 3 = H. Günter Hrsch Verson: pa3 Sete 3 (6)

4 Thema: Lneare Block-Codes Übungsaufgabe 3 a) En empfangenes Codewort, das enen enfachen Btfehler behaltet, kann man als ene Modulo-2 Addton enes zulässgen Codevektors Y r und enes n der vorstehenden Tabelle angegebenen Fehlervektors darstellen. Erzeugen Se sch durch Modulo-2 Addton enen fehlerhaft empfangenen Codevektor, n dem Se zu enem belebgen, zulässgen Codevektor Y r den Fehlervektor adderen, der enen Fehler n der 3. Btstelle benhaltet: Y r b) Welcher Syndromvektor resultert aus ener Multplkaton des zuvor bestmmten Codevektors mt der Prüfmatrx t H : s 1 = s 2 = s 3 = c) Von dem Syndromvektor kann man mt Hlfe der n der vorhergen Aufgabe erstellten Syndromtabelle auf de fehlerhafte Btstelle schleßen. Führen Se de Korrektur n der nachstehenden Tabelle aus, n dem Se den empfangenen Codevektor und den aus der Syndromtabelle ermttelten Fehlervektor adderen: Y r korr d) Erzeugen Se sch durch Modulo-2 Addton enen fehlerhaft empfangenen Codevektor, n dem Se zu enem belebgen, zulässgen Codevektor Y r den Fehlervektor adderen, der enen Fehler n der 3. Btstelle und enen weteren Btfehler n der 6. Btstelle benhaltet: Y r H. Günter Hrsch Verson: pa3 Sete 4 (6)

5 Thema: Lneare Block-Codes e) Welcher Syndromvektor resultert aus ener Multplkaton des zuvor bestmmten Codevektors mt der Prüfmatrx t H : s 1 = s 2 = s 3 = f) Von dem Syndromvektor kann man mt Hlfe der n der vorhergen Aufgabe erstellten Syndromtabelle auf de fehlerhafte Btstelle schleßen. Führen Se de Korrektur n der nachstehenden Tabelle aus, n dem Se den empfangenen Codevektor und den aus der Syndromtabelle ermttelten Fehlervektor adderen: Y r korr Verglechen Se den Vektor Y r korr mt dem Vektor Y r, den Se unter d) gewählt haben. In we velen Btstellen unterscheden sch de beden Vektoren:. We lässt sch dese Anzahl fehlerhafter Btstellen erklären:.... Expermentelle Aufgabe 3 Mt Hlfe der graphschen Oberfläche Kanalcoderung kann der Enfluss ener Übertragung enes Sprach- oder Bldsgnals über enen gestörten Kanal mt und ohne Ensatz ener Kanalcoderung untersucht werden. Dabe kann en symmetrscher Bnärkanal durch Angabe ener Nettobtfehlerwahrschenlchket defnert werden. En Sprach- oder Bldsgnal kann über das Sgnal -Menü am oberen Rand ausgewählt und geladen werden. Der Sgnalverlauf des Sprachsgnals bzw. das Bld werden vor und nach der Übertragung dargestellt. Im Auswahlmenü zur Coderung kann ene Übertragung ohne Kanalcoderung bzw. be Ensatz verschedener lnear Block-Codes festgelegt werden. Durch Anklcken des Coderungsfelds kann ene Coderung vorgenommen werden. Da zur Smulaton der Übertragungsfehler en Zufallsgenerator verwendet wrd, st das Ergebns ener wederholten Übertragung über enen gestörten Kanal n der Regel ncht glech. Laden Se das Sprachsgnal artos_ofenrohr_8k.wav, das mt ener Frequenz von 8 khz abgetastet wurde und ene zetlche Länge von etwa 3,35s bestzt. Aus we velen Bts besteht der bnäre Datenstrom, wenn jeder Abtastwert mt 16 Bt quantsert wurde: H. Günter Hrsch Verson: pa3 Sete 5 (6)

6 Thema: Lneare Block-Codes We vele Bts des Datenstroms werden be den nachstehend angeführten Nettobtfehlerraten gestört werden: Nettobtfehlerrate / % Anzahl gestörter Bts Hören Se sch das Sgnal nach ener Übertragung ohne Kanalcoderung für de zuvor angegebenen Btfehlerraten an. Bestmmen Se be Ensatz enes (7,4)-Hammngcodes, der zur Fehlerkorrektur verwendet wrd, de Restbtfehlerraten für de n der nachstehenden Tabelle angegebenen Nettobtfehlerraten: Nettobtfehlerrate / % Restbtfehlerrate / % Warum wrd de Restbtfehlerrate ab enem gewssen Wert größer als de Nettobtfehlerrate: Laden Se enes der Blder smley_lucky.bmp oder smley_devl.bmp. Dabe wrd jeder Bldpunkt durch de 3 Intenstätswerte für de Grundfarben rot, grün und blau beschreben. Jeder Intenstätswert wrd mt 8 Bt quantsert. Aus we velen Bts besteht der bnäre Datenstrom, der zur Übertragung enes Blds benötgt wrd: Bts Im Folgenden sollen verglechend en (7,4)-Hammngcode, en (15,11)-Hammngcode und en (31,26)-Hammngcode zur Übertragung des Blds verwendet werden. Aus we velen Bts besteht der zu übertragende, bnäre Datenstrom be Verwendung des (7,4)-Hammngcodes: (15,11)-Hammngcodes: (31,26)-Hammngcodes: Bestmmen Se de Restbtfehlerraten für de n der nachstehenden Tabelle angegebenen Nettobtfehlerraten: Nettobtfehlerrate / % Restbtfehlerrate / % (15,11)-Code (7,4)-Code (31,26)-Code Welcher Code bestzt de besten Korrekturegenschaften: H. Günter Hrsch Verson: pa3 Sete 6 (6)

Spiele und Codes. Rafael Mechtel

Spiele und Codes. Rafael Mechtel Spele und Codes Rafael Mechtel Koderungstheore Worum es geht Über enen Kanal werden Informatonen Übertragen. De Informatonen werden dabe n Worte über enem Alphabet Q übertragen, d.h. als Tupel w = (w,,

Mehr

Übung zur Vorlesung. Informationstheorie und Codierung

Übung zur Vorlesung. Informationstheorie und Codierung Übung zur Vorlesung Informatonstheore und Coderung Prof. Dr. Lla Lajm März 25 Ostfala Hochschule für angewandte Wssenschaften Hochschule Braunschweg/Wolfenbüttel Postanschrft: Salzdahlumer Str. 46/48 3832

Mehr

Funktionsgleichungen folgende Funktionsgleichungen aus der Vorlesung erhält. = e

Funktionsgleichungen folgende Funktionsgleichungen aus der Vorlesung erhält. = e Andere Darstellungsformen für de Ausfall- bzw. Überlebens-Wahrschenlchket der Webull-Vertelung snd we folgt: Ausfallwahrschenlchket: F ( t ) Überlebenswahrschenlchket: ( t ) = R = e e t t Dabe haben de

Mehr

AUFGABEN ZUR INFORMATIONSTHEORIE

AUFGABEN ZUR INFORMATIONSTHEORIE AUFGABEN ZUR INFORMATIONSTHEORIE Aufgabe Wr betrachten das folgende Zufallsexperment: Ene fare Münze wrd so lange geworfen, bs erstmals Kopf erschent. De Zufallsvarable X bezechne de Anzahl der dazu notwendgen

Mehr

Methoden der innerbetrieblichen Leistungsverrechnung

Methoden der innerbetrieblichen Leistungsverrechnung Methoden der nnerbetreblchen Lestungsverrechnung In der nnerbetreblchen Lestungsverrechnung werden de Gemenosten der Hlfsostenstellen auf de Hauptostenstellen übertragen. Grundlage dafür snd de von den

Mehr

4. Musterlösung. Problem 1: Kreuzende Schnitte **

4. Musterlösung. Problem 1: Kreuzende Schnitte ** Unverstät Karlsruhe Algorthmentechnk Fakultät für Informatk WS 05/06 ITI Wagner 4. Musterlösung Problem 1: Kreuzende Schntte ** Zwe Schntte (S, V \ S) und (T, V \ T ) n enem Graph G = (V, E) kreuzen sch,

Mehr

Bildverarbeitung Herbstsemester 2012. Bildspeicherung

Bildverarbeitung Herbstsemester 2012. Bildspeicherung Bldverarbetung Herbstsemester 2012 Bldspecherung 1 Inhalt Bldformate n der Überscht Coderung m Überblck Huffman-Coderung Datenredukton m Überblck Unterabtastung Skalare Quantserung 2 Lernzele De wchtgsten

Mehr

Kreditpunkte-Klausur zur Lehrveranstaltung Projektmanagement (inkl. Netzplantechnik)

Kreditpunkte-Klausur zur Lehrveranstaltung Projektmanagement (inkl. Netzplantechnik) Kredtpunkte-Klausur zur Lehrveranstaltung Projektmanagement (nkl. Netzplantechnk) Themensteller: Unv.-Prof. Dr. St. Zelewsk m Haupttermn des Wntersemesters 010/11 Btte kreuzen Se das gewählte Thema an:

Mehr

Fallstudie 4 Qualitätsregelkarten (SPC) und Versuchsplanung

Fallstudie 4 Qualitätsregelkarten (SPC) und Versuchsplanung Fallstude 4 Qualtätsregelkarten (SPC) und Versuchsplanung Abgabe: Lösen Se de Aufgabe 1 aus Abschntt I und ene der beden Aufgaben aus Abschntt II! Aufgabentext und Lösungen schrftlch bs zum 31.10.2012

Mehr

Statistik und Wahrscheinlichkeit

Statistik und Wahrscheinlichkeit Regeln der Wahrschenlchketsrechnung tatstk und Wahrschenlchket Regeln der Wahrschenlchketsrechnung Relatve Häufgket n nt := Eregnsalgebra Eregnsraum oder scheres Eregns und n := 00 Wahrschenlchket Eregnsse

Mehr

Ionenselektive Elektroden (Potentiometrie)

Ionenselektive Elektroden (Potentiometrie) III.4.1 Ionenselektve Elektroden (otentometre) Zelstellung des Versuches Ionenselektve Elektroden gestatten ene verhältnsmäßg enfache und schnelle Bestmmung von Ionenkonzentratonen n verschedenen Meden,

Mehr

Wie eröffne ich als Bestandskunde ein Festgeld-Konto bei NIBC Direct?

Wie eröffne ich als Bestandskunde ein Festgeld-Konto bei NIBC Direct? We eröffne ch als Bestandskunde en Festgeld-Konto be NIBC Drect? Informatonen zum Festgeld-Konto: Be enem Festgeld-Konto handelt es sch um en Termnenlagenkonto, be dem de Bank enen festen Znssatz für de

Mehr

Mobile Sicherheit durch effiziente Public-Key-Verschlüsselung

Mobile Sicherheit durch effiziente Public-Key-Verschlüsselung Moble cherhet durch effzente ublc-key-verschlüsselung Hagen loog Drk Tmmermann Unverstät Rostock, Insttut für Angewandte Mkroelektronk und Datenverarbetung Rchard-Wagner-tr., 9 Rostock Hagen.loog@un-rostock.de

Mehr

Klasse : Name1 : Name 2 : Datum : Nachweis des Hookeschen Gesetzes und Bestimmung der Federkonstanten

Klasse : Name1 : Name 2 : Datum : Nachweis des Hookeschen Gesetzes und Bestimmung der Federkonstanten Versuch r. 1: achwes des Hook schen Gesetzes und Bestmmung der Federkonstanten achwes des Hookeschen Gesetzes und Bestmmung der Federkonstanten Klasse : ame1 : ame 2 : Versuchszel: In der Technk erfüllen

Mehr

binäre Suchbäume Informatik I 6. Kapitel binäre Suchbäume binäre Suchbäume Rainer Schrader 4. Juni 2008 O(n) im worst-case Wir haben bisher behandelt:

binäre Suchbäume Informatik I 6. Kapitel binäre Suchbäume binäre Suchbäume Rainer Schrader 4. Juni 2008 O(n) im worst-case Wir haben bisher behandelt: Informatk I 6. Kaptel Raner Schrader Zentrum für Angewandte Informatk Köln 4. Jun 008 Wr haben bsher behandelt: Suchen n Lsten (lnear und verkettet) Suchen mttels Hashfunktonen jewels unter der Annahme,

Mehr

3. Lineare Algebra (Teil 2)

3. Lineare Algebra (Teil 2) Mathematk I und II für Ingeneure (FB 8) Verson /704004 Lneare Algebra (Tel ) Parameterdarstellung ener Geraden Im folgenden betrachten wr Geraden m eukldschen Raum n, wobe uns hauptsächlch de Fälle n bzw

Mehr

Wie eröffne ich als Bestandskunde ein Festgeld-Konto bei NIBC Direct?

Wie eröffne ich als Bestandskunde ein Festgeld-Konto bei NIBC Direct? We eröffne ch als Bestandskunde en Festgeld-Konto be NIBC Drect? Informatonen zum Festgeld-Konto: Be enem Festgeld-Konto handelt es sch um en Termnenlagenkonto, be dem de Bank enen festen Znssatz für de

Mehr

Wechselstrom. Dr. F. Raemy Wechselspannung und Wechselstrom können stets wie folgt dargestellt werden : U t. cos (! t + " I ) = 0 $ " I

Wechselstrom. Dr. F. Raemy Wechselspannung und Wechselstrom können stets wie folgt dargestellt werden : U t. cos (! t +  I ) = 0 $  I Wechselstrom Dr. F. Raemy Wechselspannung und Wechselstrom können stets we folgt dargestellt werden : U t = U 0 cos (! t + " U ) ; I ( t) = I 0 cos (! t + " I ) Wderstand m Wechselstromkres Phasenverschebung:!"

Mehr

12 LK Ph / Gr Elektrische Leistung im Wechselstromkreis 1/5 31.01.2007. ω Additionstheorem: 2 sin 2 2

12 LK Ph / Gr Elektrische Leistung im Wechselstromkreis 1/5 31.01.2007. ω Additionstheorem: 2 sin 2 2 1 K Ph / Gr Elektrsche estng m Wechselstromkres 1/5 3101007 estng m Wechselstromkres a) Ohmscher Wderstand = ˆ ( ω ) ( t) = sn ( ω t) t sn t ˆ ˆ P t = t t = sn ω t Momentane estng 1 cos ( t) ˆ ω = Addtonstheorem:

Mehr

Projektmanagement / Netzplantechnik Sommersemester 2005 Seite 1

Projektmanagement / Netzplantechnik Sommersemester 2005 Seite 1 Projektmanagement / Netzplantechnk Sommersemester 005 Sete 1 Prüfungs- oder Matrkel-Nr.: Themenstellung für de Kredtpunkte-Klausur m Haupttermn des Sommersemesters 005 zur SBWL-Lehrveranstaltung Projektmanagement

Mehr

Multilineare Algebra und ihre Anwendungen. Nr. 6: Normalformen. Verfasser: Yee Song Ko Adrian Jenni Rebecca Huber Damian Hodel

Multilineare Algebra und ihre Anwendungen. Nr. 6: Normalformen. Verfasser: Yee Song Ko Adrian Jenni Rebecca Huber Damian Hodel ultlneare Algebra und hre Anwendungen Nr. : Normalformen Verfasser: Yee Song Ko Adran Jenn Rebecca Huber Daman Hodel 9.5.7 - - ultlneare Algebra und hre Anwendungen Jordan sche Normalform Allgemene heore

Mehr

6. Modelle mit binären abhängigen Variablen

6. Modelle mit binären abhängigen Variablen 6. Modelle mt bnären abhänggen Varablen 6.1 Lneare Wahrschenlchketsmodelle Qualtatve Varablen: Bnäre Varablen: Dese Varablen haben genau zwe möglche Kategoren und nehmen deshalb genau zwe Werte an, nämlch

Mehr

Flußnetzwerke - Strukturbildung in der natürlichen Umwelt -

Flußnetzwerke - Strukturbildung in der natürlichen Umwelt - Flußnetzwerke - Strukturbldung n der natürlchen Umwelt - Volkhard Nordmeer, Claus Zeger und Hans Joachm Schlchtng Unverstät - Gesamthochschule Essen Das wohl bekannteste und größte exsterende natürlche

Mehr

Grundlagen der Technischen Informatik. 9. Übung

Grundlagen der Technischen Informatik. 9. Übung Grundlagen der Technschen Informatk 9. Übung Chrstan Knell Kene Garante für Korrekt-/Vollständgket 9. Übungsblatt Themen Aufgabe 1: Aufgabe 2: Aufgabe 3: Komparator Adderer/Subtraherer Mehr-Operanden-Adderer

Mehr

UNIVERSITÄT STUTTGART INSTITUT FÜR THERMODYNAMIK UND WÄRMETECHNIK Professor Dr. Dr.-Ing. habil. H. Müller-Steinhagen P R A K T I K U M.

UNIVERSITÄT STUTTGART INSTITUT FÜR THERMODYNAMIK UND WÄRMETECHNIK Professor Dr. Dr.-Ing. habil. H. Müller-Steinhagen P R A K T I K U M. UNIVERSITÄT STUTTGART INSTITUT FÜR THERMODYNAMIK UND WÄRMETECHNIK Professor Dr. Dr.-Ing. habl. H. Müller-Stenhagen P R A K T I K U M Versuch 9 Lestungsmessung an enem Wärmeübertrager m Glech- und Gegenstrombetreb

Mehr

Franzis Verlag, 85586 Poing ISBN 978-3-7723-4046-8 Autor des Buches: Leonhard Stiny

Franzis Verlag, 85586 Poing ISBN 978-3-7723-4046-8 Autor des Buches: Leonhard Stiny eseproben aus dem Buch "n mt en zur Elektrotechnk" Franzs Verlag, 85586 Pong ISBN 978--77-4046-8 Autor des Buches: eonhard Stny Autor deser eseprobe: eonhard Stny 005/08, alle echte vorbehalten. De Formaterung

Mehr

Quant oder das Verwelken der Wertpapiere. Die Geburt der Finanzkrise aus dem Geist der angewandten Mathematik

Quant oder das Verwelken der Wertpapiere. Die Geburt der Finanzkrise aus dem Geist der angewandten Mathematik Quant der das Verwelken der Wertpapere. De Geburt der Fnanzkrse aus dem Gest der angewandten Mathematk Dmensnen - de Welt der Wssenschaft Gestaltung: Armn Stadler Sendedatum: 7. Ma 2012 Länge: 24 Mnuten

Mehr

Ich habe ein Beispiel ähnlich dem der Ansys-Issue [ansys_advantage_vol2_issue3.pdf] durchgeführt. Es stammt aus dem Dokument Rfatigue.pdf.

Ich habe ein Beispiel ähnlich dem der Ansys-Issue [ansys_advantage_vol2_issue3.pdf] durchgeführt. Es stammt aus dem Dokument Rfatigue.pdf. Ich habe en Bespel ähnlch dem der Ansys-Issue [ansys_advantage_vol_ssue3.pdf durchgeführt. Es stammt aus dem Dokument Rfatgue.pdf. Abbldung 1: Bespel aus Rfatgue.pdf 1. ch habe es manuell durchgerechnet

Mehr

Seminar Analysis und Geometrie Professor Dr. Martin Schmidt - Markus Knopf - Jörg Zentgraf. - Fixpunktsatz von Schauder -

Seminar Analysis und Geometrie Professor Dr. Martin Schmidt - Markus Knopf - Jörg Zentgraf. - Fixpunktsatz von Schauder - Unverstät Mannhem Fakultät für Mathematk und Informatk Lehrstuhl für Mathematk III Semnar Analyss und Geometre Professor Dr. Martn Schmdt - Markus Knopf - Jörg Zentgraf - Fxpunktsatz von Schauder - Ncole

Mehr

ERP Cloud Tutorial. E-Commerce ECM ERP SFA EDI. Backup. Preise erfassen. www.comarch-cloud.de

ERP Cloud Tutorial. E-Commerce ECM ERP SFA EDI. Backup. Preise erfassen. www.comarch-cloud.de ERP Cloud SFA ECM Backup E-Commerce ERP EDI Prese erfassen www.comarch-cloud.de Inhaltsverzechns 1 Zel des s 3 2 Enführung: Welche Arten von Presen gbt es? 3 3 Beschaffungsprese erfassen 3 3.1 Vordefnerte

Mehr

3.3 Lineare Abbildungen und Matrizen

3.3 Lineare Abbildungen und Matrizen 33 LINEARE ABBILDUNGEN UND MATRIZEN 87 33 Lneare Abbldungen und Matrzen Wr wollen jetzt de numersche Behandlung lnearer Abbldungen zwschen Vektorräumen beschreben be der vorgegebene Basen de Hauptrolle

Mehr

Wir betrachten in diesem Abschnitt Matrixspiele in der Maximierungsform, also endliche 2 Personen Nullsummenspiele der Gestalt

Wir betrachten in diesem Abschnitt Matrixspiele in der Maximierungsform, also endliche 2 Personen Nullsummenspiele der Gestalt Kaptel 3 Zwe Personen Spele 3.1 Matrxspele 3.2 Matrxspele n gemschten Strategen 3.3 B Matrxspele und quadratsche Programme 3.4 B Matrxspele und lneare Komplementartätsprobleme 3.1 Matrxspele Wr betrachten

Mehr

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007 Lehrstuhl für Emprsche Wrtschaftsforschung und Ökonometre Dr Roland Füss Statstk II: Schleßende Statstk SS 007 5 Mehrdmensonale Zufallsvarablen Be velen Problemstellungen st ene solerte Betrachtung enzelnen

Mehr

Polygonalisierung einer Kugel. Verfahren für die Polygonalisierung einer Kugel. Eldar Sultanow, Universität Potsdam, sultanow@gmail.com.

Polygonalisierung einer Kugel. Verfahren für die Polygonalisierung einer Kugel. Eldar Sultanow, Universität Potsdam, sultanow@gmail.com. Verfahren für de Polygonalserung ener Kugel Eldar Sultanow, Unverstät Potsdam, sultanow@gmal.com Abstract Ene Kugel kann durch mathematsche Funktonen beschreben werden. Man sprcht n desem Falle von ener

Mehr

wird auch Spannweite bzw. Variationsbreite genannt ist definiert als die Differenz zwischen dem größten und kleinsten Messwert einer Verteilung:

wird auch Spannweite bzw. Variationsbreite genannt ist definiert als die Differenz zwischen dem größten und kleinsten Messwert einer Verteilung: Streuungswerte: 1) Range (R) ab metrschem Messnveau ) Quartlabstand (QA) und mttlere Quartlabstand (MQA) ab metrschem Messnveau 3) Durchschnttlche Abwechung (AD) ab metrschem Messnveau 4) Varanz (s ) ab

Mehr

Diskrete Mathematik 1 WS 2008/09

Diskrete Mathematik 1 WS 2008/09 Ruhr-Unverstät Bochum Lehrstuhl für Kryptologe und IT-Scherhet Prof. Dr. Alexander May M. Rtzenhofen, M. Mansour Al Sawad, A. Meurer Lösungsblatt zur Vorlesung Dskrete Mathematk 1 WS 2008/09 Blatt 7 /

Mehr

18. Dynamisches Programmieren

18. Dynamisches Programmieren 8. Dynamsches Programmeren Dynamsche Programmerung we gerge Algorthmen ene Algorthmenmethode, um Optmerungsprobleme zu lösen. We Dvde&Conquer berechnet Dynamsche Programmerung Lösung enes Problems aus

Mehr

Beim Wiegen von 50 Reispaketen ergaben sich folgende Gewichte X(in Gramm):

Beim Wiegen von 50 Reispaketen ergaben sich folgende Gewichte X(in Gramm): Aufgabe 1 (4 + 2 + 3 Punkte) Bem Wegen von 0 Respaketen ergaben sch folgende Gewchte X(n Gramm): 1 2 3 4 K = (x u, x o ] (98,99] (99, 1000] (1000,100] (100,1020] n 1 20 10 a) Erstellen Se das Hstogramm.

Mehr

Netzwerkstrukturen. Entfernung in Kilometer:

Netzwerkstrukturen. Entfernung in Kilometer: Netzwerkstrukturen 1) Nehmen wr an, n enem Neubaugebet soll für 10.000 Haushalte en Telefonnetz nstallert werden. Herzu muss von jedem Haushalt en Kabel zur nächstgelegenen Vermttlungsstelle gezogen werden.

Mehr

1 Definition und Grundbegriffe

1 Definition und Grundbegriffe 1 Defnton und Grundbegrffe Defnton: Ene Glechung n der ene unbekannte Funkton y y und deren Abletungen bs zur n-ten Ordnung auftreten heßt gewöhnlche Dfferentalglechung n-ter Ordnung Möglche Formen snd:

Mehr

tutorial N o 1a InDesign CS4 Layoutgestaltung Erste Schritte - Anlegen eines Dokumentes I a (Einfache Nutzung) Kompetenzstufe keine Voraussetzung

tutorial N o 1a InDesign CS4 Layoutgestaltung Erste Schritte - Anlegen eines Dokumentes I a (Einfache Nutzung) Kompetenzstufe keine Voraussetzung Software Oberkategore Unterkategore Kompetenzstufe Voraussetzung Kompetenzerwerb / Zele: InDesgn CS4 Layoutgestaltung Erste Schrtte - Anlegen enes Dokumentes I a (Enfache Nutzung) kene N o 1a Umgang mt

Mehr

1 Mehrdimensionale Analysis

1 Mehrdimensionale Analysis 1 Mehrdmensonale Analyss Bespel: De Gesamtmasse der Erde st ene Funton der Erddchte ρ Erde und des Erdradus r Erde De Gesamtmasse der Erde st dann m Erde = V Erde ρ Erde Das Volumen ener Kugel mt Radus

Mehr

ω 0 = Protokoll zu Versuch E6: Elektrische Resonanz

ω 0 = Protokoll zu Versuch E6: Elektrische Resonanz Protokoll zu Versuch E6: Elektrsche esonanz. Enletung En Schwngkres st ene elektrsche Schaltung, de aus Kapaztät, Induktvtät und ohmschen Wderstand besteht. Stmmt de Frequenz der anregenden Wechselspannung

Mehr

Nomenklatur - Übersicht

Nomenklatur - Übersicht Nomenklatur - Überscht Name der synthetschen Varable Wert der synthetschen Varable durch synth. Varable erklärte Gesamt- Streuung durch synth. Varable erkl. Streuung der enzelnen Varablen Korrelaton zwschen

Mehr

Netzsicherheit I, WS 2008/2009 Übung 3. Prof. Dr. Jörg Schwenk 27.10.2008

Netzsicherheit I, WS 2008/2009 Übung 3. Prof. Dr. Jörg Schwenk 27.10.2008 Netzscherhet I, WS 2008/2009 Übung Prof. Dr. Jörg Schwenk 27.10.2008 1 Das GSM Protokoll ufgabe 1 In der Vorlesung haben Se gelernt, we sch de Moble Staton (MS) gegenüber dem Home Envroment (HE) mt Hlfe

Mehr

FORMELSAMMLUNG STATISTIK (I)

FORMELSAMMLUNG STATISTIK (I) Statst I / B. Zegler Formelsammlng FORMELSAMMLUG STATISTIK (I) Statstsche Formeln, Defntonen nd Erläterngen A a X n qaltatves Mermal Mermalsasprägng qanttatves Mermal Mermalswert Anzahl der statstschen

Mehr

Boost-Schaltwandler für Blitzgeräte

Boost-Schaltwandler für Blitzgeräte jean-claude.feltes@educaton.lu 1 Boost-Schaltwandler für Bltzgeräte In Bltzgeräten wrd en Schaltwandler benutzt um den Bltzkondensator auf ene Spannung von engen 100V zu laden. Oft werden dazu Sperrwandler

Mehr

Einführung in geostatistische Methoden der Datenauswertung

Einführung in geostatistische Methoden der Datenauswertung MUC 2.3 und MC 2.1.1 Praktkum Umweltanalytk II Enführung n geostatstsche Methoden der Datenauswertung Enführung n geostatstsche Methoden der Datenauswertung Zel: Anwendung der geostatstschen Methoden Semvarogrammanalyse

Mehr

Versuch C2: Monte-Carlo Simulationen eines Ferromagneten im Rahmen des Ising-Modells

Versuch C2: Monte-Carlo Simulationen eines Ferromagneten im Rahmen des Ising-Modells Versuch C2: Monte-Carlo Smulatonen enes Ferromagneten m Rahmen des Isng-Modells 15. November 2010 1 Zelstellung Es glt de Temperatur des Phasenüberganges zwschen dem ferro- und paramagnetschen Verhalten

Mehr

6.5. Rückgewinnung des Zeitvorgangs: Rolle der Pole und Nullstellen

6.5. Rückgewinnung des Zeitvorgangs: Rolle der Pole und Nullstellen 196 6.5. Rückgewnnung des Zetvorgangs: Rolle der Pole und Nullstellen We n 6.2. und 6.. gezegt wurde, st de Übertragungsfunkton G( enes lnearen zetnvaranten Systems mt n unabhänggen Spechern ene gebrochen

Mehr

NSt. Der Wert für: x= +1 liegt, erkennbar an dem zugehörigen Funktionswert, der gesuchten Nullstelle näher.

NSt. Der Wert für: x= +1 liegt, erkennbar an dem zugehörigen Funktionswert, der gesuchten Nullstelle näher. PV - Hausaugabe Nr. 7.. Berechnen Se eakt und verglechen Se de Werte ür de Nullstelle, de mttels dem Verahren von Newton, der Regula als und ener Mttelung zu erhalten snd von der! Funkton: ( ) Lösungs

Mehr

Einführung in die Finanzmathematik

Einführung in die Finanzmathematik 1 Themen Enführung n de Fnanzmathematk 1. Znsen- und Znsesznsrechnung 2. Rentenrechnung 3. Schuldentlgung 2 Defntonen Kaptal Betrag n ener bestmmten Währungsenhet, der zu enem gegebenen Zetpunkt fällg

Mehr

Kennlinienaufnahme des Transistors BC170

Kennlinienaufnahme des Transistors BC170 Kennlnenufnhme des Trnsstors 170 Enletung polre Trnsstoren werden us zwe eng benchbrten pn-übergängen gebldet. Vorrusetzung für ds Funktonsprnzp st de gegensetge eenflussung beder pn-übergänge, de nur

Mehr

Auswertung von Umfragen und Experimenten. Umgang mit Statistiken in Maturaarbeiten Realisierung der Auswertung mit Excel 07

Auswertung von Umfragen und Experimenten. Umgang mit Statistiken in Maturaarbeiten Realisierung der Auswertung mit Excel 07 Auswertung von Umfragen und Expermenten Umgang mt Statstken n Maturaarbeten Realserung der Auswertung mt Excel 07 3.Auflage Dese Broschüre hlft bem Verfassen und Betreuen von Maturaarbeten. De 3.Auflage

Mehr

SIMULATION VON HYBRIDFAHRZEUGANTRIEBEN MIT

SIMULATION VON HYBRIDFAHRZEUGANTRIEBEN MIT Smulaton von Hybrdfahrzeugantreben mt optmerter Synchronmaschne 1 SIMULATION VON HYBRIDFAHRZEUGANTRIEBEN MIT OPTIMIERTER SYNCHRONMASCHINE H. Wöhl-Bruhn 1 EINLEITUNG Ene Velzahl von Untersuchungen hat sch

Mehr

Auswertung univariater Datenmengen - deskriptiv

Auswertung univariater Datenmengen - deskriptiv Auswertung unvarater Datenmengen - desrptv Bblografe Prof. Dr. Küc; Statst, Vorlesungssrpt Abschntt 6.. Bleymüller/Gehlert/Gülcher; Statst für Wrtschaftswssenschaftler Verlag Vahlen Bleymüller/Gehlert;

Mehr

Daten sind in Tabellenform gegeben durch die Eingabe von FORMELN können mit diesen Daten automatisierte Berechnungen durchgeführt werden.

Daten sind in Tabellenform gegeben durch die Eingabe von FORMELN können mit diesen Daten automatisierte Berechnungen durchgeführt werden. Ene kurze Enführung n EXCEL Daten snd n Tabellenform gegeben durch de Engabe von FORMELN können mt desen Daten automatserte Berechnungen durchgeführt werden. Menüleste Symbolleste Bearbetungszele aktve

Mehr

Datenträger löschen und einrichten

Datenträger löschen und einrichten Datenträger löschen und enrchten De Zentrale zum Enrchten, Löschen und Parttoneren von Festplatten st das Festplatten-Denstprogramm. Es beherrscht nun auch das Verklenern von Parttonen, ohne dass dabe

Mehr

Stochastische Prozesse

Stochastische Prozesse INSTITUT FÜR STOCHASTIK SS 2009 UNIVERSITÄT KARLSRUHE Blatt 2 Prv.-Doz. Dr. D. Kadelka Dpl.-Math. W. Lao Übungen zur Vorlesung Stochastsche Prozesse Musterlösungen Aufgabe 7: (B. Fredmans Urnenmodell)

Mehr

Fähigkeitsuntersuchungen beim Lotpastendruck

Fähigkeitsuntersuchungen beim Lotpastendruck Fakultät Elektrotechnk und Informatonstechnk Insttut für Aufbau- und Verbndungstechnk der Elektronk Fähgketsuntersuchungen bem Lotpastendruck Dr.-Ing. H. Wohlrabe Ottobrunn, 2. Februar 2009 Qualtätsmerkmale

Mehr

Operations Research II (Netzplantechnik und Projektmanagement)

Operations Research II (Netzplantechnik und Projektmanagement) Operatons Research II (Netzplantechnk und Projektmanagement). Aprl Frank Köller,, Hans-Jörg von Mettenhem & Mchael H. Bretner.. # // ::: Gute Vorlesung:-) Danke! Feedback.. # Netzplantechnk: Überblck Wchtges

Mehr

Auswertung univariater Datenmengen - deskriptiv

Auswertung univariater Datenmengen - deskriptiv Auswertung unvarater Datenmengen - desrptv Bblografe Prof. Dr. Küc; Statst, Vorlesungssrpt Abschntt 6.. Bleymüller/Gehlert/Gülcher; Statst für Wrtschaftswssenschaftler Verlag Vahlen Bleymüller/Gehlert;

Mehr

nonparametrische Tests werden auch verteilungsfreie Tests genannt, da sie keine spezielle Verteilung der Daten in der Population voraussetzen

nonparametrische Tests werden auch verteilungsfreie Tests genannt, da sie keine spezielle Verteilung der Daten in der Population voraussetzen arametrsche vs. nonparametrsche Testverfahren Verfahren zur Analyse nomnalskalerten Daten Thomas Schäfer SS 009 1 arametrsche vs. nonparametrsche Testverfahren nonparametrsche Tests werden auch vertelungsfree

Mehr

Universität Karlsruhe (TH)

Universität Karlsruhe (TH) Unverstät Karlsruhe (TH) Forschungsunverstät gegründet 825 Parallele Algorthmen I Augaben und Lösungen Pro. Dr. Walter F. Tchy Dr. Vctor Pankratus Davd Meder Augabe () Gegeben se en N-elementger Zahlenvektor

Mehr

j 2 j b i =2 f g Grenzfrequenz des Tiefpaßes 1 a i j b i j 2 = e j2 i arctan a i

j 2 j b i =2 f g Grenzfrequenz des Tiefpaßes 1 a i j b i j 2 = e j2 i arctan a i 6. Versuch AlIpaßflter (Phasenschebegled) (Durchführung Sete J- 8). Her handelt es sch um ene Schaltung, deren Verstärkung konstant und deren Phasenverschebung zwschen En- und Ausgangsspannung annähernd

Mehr

Lösungen zum 3. Aufgabenblock

Lösungen zum 3. Aufgabenblock Lösungen zum 3. Aufgabenblock 3. Aufgabenblock ewerber haben n enem Test zur sozalen Kompetenz folgende ntervallskalerte Werte erhalten: 96 131 11 1 85 113 91 73 7 a) Zegen Se für desen Datensatz, dass

Mehr

Prof. Dr.- Ing. Herzig Vorlesung "Grundlagen der Elektrotechnik 1" 1etv3-4

Prof. Dr.- Ing. Herzig Vorlesung Grundlagen der Elektrotechnik 1 1etv3-4 Prof. Dr.- ng. Herzg.6 Spezelle erechnungsverfahren lnearer Netzwerke.6. Überlagerungsverfahren Der Lernende kann - den Überlagerungssatz und das darauf beruhende erechnungsprnzp lnearer Netzwerke erklären

Mehr

Lernsituation: Eine Leuchtstofflampe an Wechselspannung untersuchen. Arbeitsauftrag 1: Errechnen von Spannungswerten und Zeichnen einer Sinuslinie

Lernsituation: Eine Leuchtstofflampe an Wechselspannung untersuchen. Arbeitsauftrag 1: Errechnen von Spannungswerten und Zeichnen einer Sinuslinie 8 Elektroenergeversorgng nd cherhet von Betrebsmtteln gewährlesten ernstaton: Ene echtstofflampe an Wechselspannng nterschen Ihr Betreb soll n ener chle de veraltete Deckenbelechtng enger Unterrchtsräme

Mehr

Standardnormalverteilung / z-transformation

Standardnormalverteilung / z-transformation Standardnormalvertelung / -Transformaton Unter den unendlch velen Normalvertelungen gbt es ene Normalvertelung, de sch dadurch ausgeechnet st, dass se enen Erwartungswert von µ 0 und ene Streuung von σ

Mehr

Vermessungskunde für Bauingenieure und Geodäten

Vermessungskunde für Bauingenieure und Geodäten Vermessungskunde für Baungeneure und Geodäten Übung 4: Free Statonerung (Koordnatentransformaton) und Flächenberechnung nach Gauß Mlo Hrsch Hendrk Hellmers Floran Schll Insttut für Geodäse Fachberech 13

Mehr

Aufgabe 8 (Gewinnmaximierung bei vollständiger Konkurrenz):

Aufgabe 8 (Gewinnmaximierung bei vollständiger Konkurrenz): LÖSUNG AUFGABE 8 ZUR INDUSTRIEÖKONOMIK SEITE 1 VON 6 Aufgabe 8 (Gewnnmaxmerung be vollständger Konkurrenz): Betrachtet wrd en Unternehmen, das ausschleßlch das Gut x produzert. De m Unternehmen verwendete

Mehr

"Zukunft der Arbeit" Arbeiten bis 70 - Utopie - oder bald Realität? Die Arbeitnehmer der Zukunft

Zukunft der Arbeit Arbeiten bis 70 - Utopie - oder bald Realität? Die Arbeitnehmer der Zukunft "Zukunft der Arbet" Arbeten bs 70 - Utope - oder bald Realtät? De Arbetnehmer der Zukunft Saldo - das Wrtschaftsmagazn Gestaltung: Astrd Petermann Moderaton: Volker Obermayr Sendedatum: 7. Dezember 2012

Mehr

Anwendungsmöglichkeiten von Lernverfahren

Anwendungsmöglichkeiten von Lernverfahren Künstlche Neuronale Netze Lernen n neuronalen Netzen 2 / 30 Anwendungsmöglcheten von Lernverfahren Prnzpelle Möglcheten Verbndungsorentert 1 Hnzufügen neuer Verbndungen 2 Löschen bestehender Verbndungen

Mehr

Finanzwirtschaft. Kapitel 3: Simultane Investitions- und Finanzplanung. Lehrstuhl für Finanzwirtschaft - Universität Bremen 1

Finanzwirtschaft. Kapitel 3: Simultane Investitions- und Finanzplanung. Lehrstuhl für Finanzwirtschaft - Universität Bremen 1 Fnanzwrtschaft Kaptel 3: Smultane Investtons- und Fnanzplanung Prof. Dr. Thorsten Poddg Lehrstuhl für Allgemene Betrebswrtschaftslehre, nsbes. Fnanzwrtschaft Unverstät Bremen Hochschulrng 4 / WW-Gebäude

Mehr

Praktikum Physikalische Chemie I (C-2) Versuch Nr. 6

Praktikum Physikalische Chemie I (C-2) Versuch Nr. 6 Praktkum Physkalsche Cheme I (C-2) Versuch Nr. 6 Konduktometrsche Ttratonen von Säuren und Basen sowe Fällungsttratonen Praktkumsaufgaben 1. Ttreren Se konduktometrsch Schwefelsäure mt Natronlauge und

Mehr

Klassische Gatter und Logikelemente. Seminarvortrag zu Ausgewählte Kapitel der Quantentheorie Quantenalgorithmen

Klassische Gatter und Logikelemente. Seminarvortrag zu Ausgewählte Kapitel der Quantentheorie Quantenalgorithmen Klasssche Gatter und Logkelemente Semnarvortrag zu Ausgewählte Kaptel der Quantentheore Quantenalgorthmen Gerd Ch. Krzek WS 2003 I. Grundlagen und Methoden der Logk: Im folgenden soll de Konstrukton und

Mehr

IGDT: Image Processing Advanced Übungsteil 2

IGDT: Image Processing Advanced Übungsteil 2 IGDT: Imae Processn Advanced Übunstel 2 Raner Schubert Insttut für Bomednsche Bldanalse Vsualserun Ist de alorthmsche Nachbldun dessen was en Maler be der Ereuun enes realstschen Bldes tut! Grundlaen Beleuchtun

Mehr

Die Ausgangssituation... 14 Das Beispiel-Szenario... 14

Die Ausgangssituation... 14 Das Beispiel-Szenario... 14 E/A Cockpt Für Se als Executve Starten Se E/A Cockpt........................................................... 2 Ihre E/A Cockpt Statusüberscht................................................... 2 Ändern

Mehr

Eine kurze Einführung in die Dichtefunktionaltheorie (DFT)

Eine kurze Einführung in die Dichtefunktionaltheorie (DFT) Ene kurze Enführung n de Dchtefunktonaltheore (DFT) Mchael Martns Lteratur: W. Koch, M.C. Holthausen A Chemst s Gude to Densty Functonal Theory Wley-VCH 2001 Dchtefunktonaltheore p.1 Enletung Im Falle

Mehr

1.1 Das Prinzip von No Arbitrage

1.1 Das Prinzip von No Arbitrage Fnanzmärkte H 2006 Tr V Dang Unverstät Mannhem. Das Prnzp von No Arbtrage..A..B..C..D..E..F..G..H Das Framework Bespele Das Fundamental Theorem of Fnance Interpretaton des Theorems und Zustandsprese No

Mehr

Wahl auf Bäumen: FireWire

Wahl auf Bäumen: FireWire Wahl auf Bäumen: FreWre IEEE 94 Hgh Performance Seral Bus (FreWre) Internatonaler Standard Hochgeschwndgketsbus Transport von dgtalen Audo- und Vdeo-Daten 400 Mbps (94b: 800 MBps... 3200 Mbps) Hot-pluggable

Mehr

Versicherungstechnischer Umgang mit Risiko

Versicherungstechnischer Umgang mit Risiko Verscherungstechnscher Umgang mt Rsko. Denstlestung Verscherung: Schadensdeckung von für de enzelne Person ncht tragbaren Schäden durch den fnanzellen Ausglech n der Zet und m Kollektv. Des st möglch über

Mehr

Neuronale Netze. M. Gruber (1) ausgeloste Reiz ist x (1) = (1) (s (1) ) mit (1) (s) = 1 sgn(s 1 ) sgn(s 2 ) T. .

Neuronale Netze. M. Gruber (1) ausgeloste Reiz ist x (1) = (1) (s (1) ) mit (1) (s) = 1 sgn(s 1 ) sgn(s 2 ) T. . Neuronale Netze M. Gruber 7.11.015 Begnnen wr mt enem Bespel. Bespel 1 Wr konstrueren enen Klasskator auf der Menge X = [ 1; 1], dessen Wrkung man n Abb.1 rechts sehen kann. Auf der blauen Telmenge soll

Mehr

1.1 Grundbegriffe und Grundgesetze 29

1.1 Grundbegriffe und Grundgesetze 29 1.1 Grundbegrffe und Grundgesetze 9 mt dem udrtschen Temperturkoeffzenten 0 (Enhet: K - ) T 1 d 0. (1.60) 0 dt T 93 K Betrchtet mn nun den elektrschen Wderstnd enes von enem homogenen elektrschen Feld

Mehr

wissenschaftliche Einrichtung elektronik

wissenschaftliche Einrichtung elektronik wssenscaftlce Enrctung elektronk Oberscwngungen, Begrffe und Defntonen Prof.. Burgolte Labor Elektromagnetsce Verträglcket Facberec ngeneurwssenscaften Begrff Störgröße (dsturbance) Störfestgket (mmunty)

Mehr

Lineare Regression (1) - Einführung I -

Lineare Regression (1) - Einführung I - Lneare Regresson (1) - Enführung I - Mttels Regressonsanalysen und kompleeren, auf Regressonsanalysen aserenden Verfahren können schenar verschedene, jedoch nenander üerführare Fragen untersucht werden:

Mehr

Z Z, kurz { } Zählt die Reihenfolge der Buchstaben (ja/nein) Daraus ergeben sich wiederum vier Möglichkeiten, Wörter der Länge k zu bilden.

Z Z, kurz { } Zählt die Reihenfolge der Buchstaben (ja/nein) Daraus ergeben sich wiederum vier Möglichkeiten, Wörter der Länge k zu bilden. Kombnator. Problemstellung Ausgangspunt be ombnatorschen Fragestellungen st mmer ene endlche Menge M, aus deren Elementen man endlche Zusammenstellungen von Elementen aus M bldet. Formal gesprochen bedeutet

Mehr

Analytische Chemie. LD Handblätter Chemie. Bestimmung der chemischen Zusammensetzung. mittels Röntgenfluoreszenz C3.6.5.2

Analytische Chemie. LD Handblätter Chemie. Bestimmung der chemischen Zusammensetzung. mittels Röntgenfluoreszenz C3.6.5.2 SW-214-3 Analytsche Cheme Angewandte Analytk Materalanalytk LD andblätter Cheme Bestmmung der chemschen Zusammensetzung ener Messngprobe mttels Röntgenfluoreszenz Versuchszele Mt enem Röntgengerät arbeten.

Mehr

Lineare Optimierung Dualität

Lineare Optimierung Dualität Kaptel Lneare Optmerung Dualtät D.. : (Dualtät ) Folgende Aufgaben der lnearen Optmerung heßen symmetrsch dual zuenander: und { z = c x Ax b x } max, 0 { Z b A c } mn =, 0. Folgende Aufgaben der lnearen

Mehr

2. Spiele in Normalform (strategischer Form)

2. Spiele in Normalform (strategischer Form) 2. Spele n Normalform (strategscher Form) 2.1 Domnante Strategen 2.2 Domnerte Strategen 2.3 Sukzessve Elmnerung domnerter Strategen 2.4 Nash-Glechgewcht 2.5 Gemschte Strategen und Nash-Glechgewcht 2.6

Mehr

Für jeden reinen, ideal kristallisierten Stoff ist die Entropie am absoluten Nullpunkt gleich

Für jeden reinen, ideal kristallisierten Stoff ist die Entropie am absoluten Nullpunkt gleich Drtter Hauptsatz der Thermodynamk Rückblck auf vorherge Vorlesung Methoden zur Erzeugung tefer Temperaturen: - umgekehrt laufende WKM (Wärmepumpe) - Joule-Thomson Effekt bs 4 K - Verdampfen von flüssgem

Mehr

Digitalrechner Festverdrahtete Mikroprogrammsteuerung

Digitalrechner Festverdrahtete Mikroprogrammsteuerung Dgtalrechner Festverdrahtete Mkroprogrammsteuerung Versuch 3 Aufgabenstellung zum Versuch Unverstät Hannover Insttut für Informatk Verson 1.0 Dpl.-Math. Chrstof Graß-de-Iuls Insttut für Systems Engneerng

Mehr

Erwartungswert, Varianz, Standardabweichung

Erwartungswert, Varianz, Standardabweichung RS 24.2.2005 Erwartungswert_Varanz_.mcd 4) Erwartungswert Erwartungswert, Varanz, Standardabwechung Be jedem Glücksspel nteresseren den Speler vor allem de Gewnnchancen. 1. Bespel: Setzen auf 1. Dutzend

Mehr

Entscheidungsprobleme der Marktforschung (1)

Entscheidungsprobleme der Marktforschung (1) Prof. Dr. Danel Baer. Enführung 2. Informatonsbedarf 3. Datengewnnung 2. Informatonsbedarf Entschedungsprobleme der () Informatonsbedarf Art Qualtät Menge Informatonsbeschaffung Methodk Umfang Häufgket

Mehr

Grundlagen Modul 4. Internet. Im Internet etwas suchen. Seite 1 GM4

Grundlagen Modul 4. Internet. Im Internet etwas suchen. Seite 1 GM4 Klene Schule Grundlagen Modul 4 Internet Im Internet etwas suchen Sete 1 De Schulungsunterlagen Der Aufbau De Schulungsunterlagen snd n verschedene Module aufgetelt. Enersets n Grundlagen Module, welche

Mehr

Backup- und Restore-Systeme implementieren. Technische Berufsschule Zürich IT Seite 1

Backup- und Restore-Systeme implementieren. Technische Berufsschule Zürich IT Seite 1 Modul 143 Backup- und Restore-Systeme mplementeren Technsche Berufsschule Zürch IT Sete 1 Warum Backup? (Enge Zahlen aus Untersuchungen) Wert von 100 MByte Daten bs CHF 1 500 000 Pro Vorfall entstehen

Mehr

18. Vorlesung Sommersemester

18. Vorlesung Sommersemester 8. Vorlesung Sommersemester Der Drehmpuls des starren Körpers Der Drehmpuls des starren Körpers st etwas komplzerter. Wenn weder de Wnkelgeschwndgket um de feste Rotatonsachse st, so wrd mt Hlfe des doppelten

Mehr

Determinanten - I. den i-ten Zeilenvektor der n n-matrix A bezeichnet.

Determinanten - I. den i-ten Zeilenvektor der n n-matrix A bezeichnet. Determnanten - I Ene Determnante st ene Abbldung, welche ener quadratschen (!) Matrx ene Zahl zuordnet. Wr verwenden n desem Zusammenhang de Schrebwese A = a 2, wobe den -ten Zelenvektor der n n-matrx

Mehr

Vorlesung 1. Prof. Dr. Klaus Röder Lehrstuhl für BWL, insb. Finanzdienstleistungen Universität Regensburg. Prof. Dr. Klaus Röder Folie 1

Vorlesung 1. Prof. Dr. Klaus Röder Lehrstuhl für BWL, insb. Finanzdienstleistungen Universität Regensburg. Prof. Dr. Klaus Röder Folie 1 Vorlesung Entschedungslehre h SS 205 Prof. Dr. Klaus Röder Lehrstuhl für BWL, nsb. Fnanzdenstlestungen Unverstät Regensburg Prof. Dr. Klaus Röder Fole Organsatorsches Relevante Informatonen önnen Se stets

Mehr

Einführung in die Wahrscheinlichkeitsrechnung. Wahrscheinlichkeitsrechnung. Übersicht. Wahrscheinlichkeitsrechnung. bedinge Wahrscheinlichkeit

Einführung in die Wahrscheinlichkeitsrechnung. Wahrscheinlichkeitsrechnung. Übersicht. Wahrscheinlichkeitsrechnung. bedinge Wahrscheinlichkeit Enführung n de bednge Wahrschenlchket Laplace-Wahrschenlchket p 0.56??? Zufallsexperment Randwahrschenlchket Überscht Was st Wahrschenlchket? Rechenregeln Der Multplkatonssatz Axomatsche Herletung Unabhänggket

Mehr