5.4. Aufgaben zur Kurvenuntersuchung zusammengesetzter Funktionen

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "5.4. Aufgaben zur Kurvenuntersuchung zusammengesetzter Funktionen"

Transkript

1 5.. Aufgbn zu Kuvnunsuchung zusmmngsz Funkionn Aufgb : Kuvndiskussion von Eponnilfunkionn Unsuch ds Schubild d Funkion f uf Symmi, Achsnschnipunk, Vhln fü ±, Em- und Wndpunk. Skizzi ds Schubild im wsnlichn Bich. ) f() d) f() + g) f() + b) f() ) f() + h) f() c) f() f) f() i) f() ( ) Aufgb : Kuvndiskussion von Eponnilfunkionn mi Pm Unsuch ds Schubild d Funkion f in Abhängigki von > 0 uf Achsnschnipunk, Vhln fü ±, Em- und Wndpunk und skizzi ihn Vluf fü { ; 0; }. Bschib in Won, wi sich ds Schubild mi wchsndn > 0 änd. Bschib ds Wchsumsvhln d Schubild fü : Hndl s sich um lins, ponnills, bschänks od logisischs Wchsum? ) f () b) f () c) f () ( ) d) f () f) f () ) f () Aufgb : Kuvndiskussion von Logihmusfunkionn Unsuch ds Schubild d Funkion f uf Achsnschnipunk, Vhln fü ±, Em- und Wndpunk. Skizzi ds Schubild im wsnlichn Bich. ln ) f() b) f() (ln) c) f() (ln) Aufgb : Kuvndiskussion von ionln Funkionn Unsuch ds Schubild d Funkion f uf Symmi, Achsnschnipunk, Vhln fü ±, Em- und Wndpunk. Skizzi ds Schubild im wsnlichn Bich. ( ) 7 ) f() b) f() c) f() d) f() ( ) 5 Aufgb 5: Kuvndiskussion von ionln Funkionn mi Pm Unsuch di folgndn Funkionn in Abhängigki von R uf Dfiniionsbich, Achsnschnipunk, Vhln fü ±, Em- und Wndpunk und skizzi ihn Vluf fü { ; 0; }. Gib ußdm di Oskuvn d Emund Wndpunk n. ) f () + b) f () + + ( ) c) f () d) f () ( ) ) f () ( ) f) f () + +

2 Aufgb 6: Vmisch Aufgbn zu Funkionnschn ) Ggbn sind di Funkionn f () fü > 0. Bchnn Si di Oskuv d Hochpunk. Gbn Si di Glichung d Pbl n, di jwils duch bid Empunk vläuf und ußdm symmisch zu y-achs is. b) Bchnn Si di Oskuv d Hochpunk und d Wndpunk von f () fü > 0. c) Bchnn Si di Schnipunk und di Schniwinkl d Funkionn f () und g () fü > 0. d) Bchnn Si di Fläch, di di Wndngn von f () fü > 0 mi dn Koodinnchsn inschliß. ) Zign Si, dss di Fläch, di di Wndngn von f () ( + ) fü > 0 mi dn Koodinnchsn inschliß, unbhängig von is. f) Fü wlch W von büh ds Schubild von f () + di -Achs? g) Fü wlch W von h ds Schubild von f () + k (+) inn Wndpunk? Bchnn Si di Koodinn ds Wndpunks. h) Zign Si, dss di Schubild d Funkionn f () fü > 0 ll duch inn gminsmn Punk P ghn. Di Tngnn und di Nomln duch P bgnzn mi d -Achs in Dick. Fü wlchn W von wid d Flächninhl diss Dicks miniml? ln( ) i) Fü wlchs h d Schnipunk von f () mi d Gdn y dn klinsn Absnd von d - Achs? Aufgb 7: Emwufgbn mi Eponnilfunkionn ) Wlchs Rchck zwischn d -Achs und dm Schubild von f() h dn gößn Inhl? b) Wlchs Rchck im. Qudnn un dm Schubild von f() h dn gößn Inhl? c) Wlchs Rchck im. Qudnn un dm Schubild von f() h dn gößn Inhl? Aufgb 8: Tngnn und Nomln n Eponnilfunkionn ) Di Tngn und di Noml m Schubild von f () mi > 0 im Punk P(0 ) bgnzn mi d -Achs in Dick. Fü wlchs wid sin Flächninhl miniml und wi goß is dis? ( ) b) Unsuchn Si ds Schubild von f () mi R + uf Symmi, Achsnschnipunk, Em- und Wndpunk. Di Tngn n ds Schubild von f im Punk A( ) bild zusmmn mi d -Achs und d Gdn g () Flächninhl in Dick. Fü wlchs is d Inhl diss Dicks m gößn? Bchnn Si dn gößn Aufgb 9: Emwufgbn mi ionl Funkionn ) Wlchs Rchck mi dm Inhl A 6 cm h dn klinsn Umfng? b) Wlch Kisuschni mi dm Inhl A 00 cm h dn klinsn Umfng? c) Wlch Punk uf dm Schubild von f() h dn klinsn Absnd zum Uspung? Hinwis: D di Wuzlfunkion monoon sig, is A gnu dnn miniml, wnn A miniml is. 0 d) Wlchs Rchck zwischn d -Achs und dm Schubild von f() h dn gößn Inhl? 5 ) D Quschni ins unidischn Enwässungsknls is in Rchck mi ufgszm Hlbkis und soll in Fläch von 8 m hbn. Bchnn Si sin Abmssungn so, dss d Milvbuch fü di Ausmuung miniml wid. f) Bchnn Si di Abmssungn in Konsvndos us Wißblch, di bi minimlm Milvbuch inn Inhl von inm Li hbn soll. g) Ein Mllgfäß h di Fom ins Zylinds mi ufgsz Hlbkugl und soll inn Inhl von inm Li hbn. Bchnn Si sin Abmssungn so, dss d Milvbuch miniml wid. h) Ein Blchksn soll di Fom ins Quds mi qudisch Gundfläch hbn und inn Inhl von inm Li fssn. Bchnn Si sin Abmssungn so, dss d Milvbuch miniml wid.

3 5.. Lösungn zu dn Aufgbn zu Kuvnunsuchung zusmmngsz Funkionn Aufgb : Kuvndiskussion von Eponnilfunkionn ) f() : kin Symmi, d f( ) ±f(), Achsnschnipunk S(0 0), Asympo y 0, d f() 0 fü. f () ( + ), f () ( + ) und f () ( + ) T( ) T( 0,68) und W( ) W( 0,7) b) f() : kin Symmi, d f( ) ±f(), Achsnschnipunk: S(0 0) doppl Bühpunk und Minimum, d f() 0 fü ll R; Asympo y 0, d f() fü +. f'() ( + ), f''() ( + ) und f'''() ( + 6 6) T(0 0) und H( ) H( 0,5) und W ( f( )) W (0,59 0,9) und W (+ f(+ c) f() )) W (, 0,8) : Symmi zu y-achs, d f( ) f(), Achsnschnipunk S y (0 ), Asympo y 0, d f() fü +. f () und f () ( ) d) f() + +, d f() g() T( 0) H(0 ) und W / (± ) : kin Symmi, d f( ) ±f(), Achsnschnipunk: S y (0 ) und S ( 0), Asympo g() fü 0 fü +. f () und f () ) f() + : kin Symmi, d f( ) ±f(), Achsnschnipunk: S y (0 ) und S ( 0,67 0), Nähungskuv g() fü, d f() g() 0 fü. f'() +, f''() + und f'''() S( ) S(,6) f) f() : kin Symmi, d f( ) ±f(), Achsnschnipunk: S y (0 ) und S ( 0), Asympo: g() fü, d f() g() 0 fü. f (), f () und f () H( 0) g) f() + : kin Symmi, d f( ) ±f(), Achsnschnipunk: S y (0 ) und S ( 0,76 0), Asympo: g() fü ±, d f() g() 0 fü ±. f () und f () ( ) und W / (± ± + ) H( ) h) f() ( ) kin Asympon. f'() i) f() : Symmi zu y-achs, d f( ) f()) und f() > 0 fü ll R, Achsnschnipunk: S y (0 ), ( ) und f''() ( ) f() T(0 ) : kin Symmi, d f( ) ±f(), Achsnschnipunk S y (0 ), Asympon: g () 0 fü : und g () fü +. f () ( ) und f () ( ) W(0 ( ) )

4 Aufgb : Kuvndiskussion von Eponnilfunkionn mi Pm ) f () : Achsnschnipunk S(0 0), Asympo y 0, d f() 0 fü +. f () ( ) und f () ( ) H( ) und W( ). Eponnill Abnhm, di mi signdm Wchsumsfko imm schnll vläuf ( ) ( ) b) f () : Achsnschnipunk S(0 ), Asympo y 0, d f() 0 fü ±. f () ( ) und f () ( ( ) ( ) ) H( ) und W / ( ± ). Eponnill Abnhm, di mi signdm Vschibungspm imm spä insz c) f () : Achsnschnipunk S ( 0) und S y (0 ), Asympo g () fü, d f () g () 0 fü. f () lngsm vläuf. d) f () und f () H( 0). Eponnills Wchsum, ds mi signdm imm : Achsnschnipunk S ( 0) und S y(0 ), Asympo g () fü, d f () g () 0 fü. f () und f () H( 0). Eponnills Wchsum fü +, ds mi signdm Wchsumsfko imm schnll vläuf. ) f () : Achsnschnipunk S(0 0), Asympo g() 00 fü +, d f () g() 00 0 fü +. f () 00 und f () 00. Bschänks Wchsum mi Schnk S 00, ds mi signdm Wchsumsfko imm schnll vläuf. 00 f) f () : Achsnschnipunk S y ( ), Asympon: g () 0 fü, d f () 0 fü und g () 00 fü +, d f () 00 fü +. f () 0000 ( 00 ) und f () 0000 (00 ) ( 00 ) W( ln00 50). Logisischs Wchsum mi Schnk S 00, ds mi signdm Wchsumsfko imm schnll vläuf. Aufgb : Kuvndiskussion von Logihmusfunkionn ln ) f() : Achsnschnipunk: S ( 0), Asympon: ngiv y-achs, d f() fü 0 + und posiiv - Achs, d f() 0 fü +. f () ( ln) und f () (ln ) H( ) und W(,5,5 ),5 W(,8 0,) b) f() (ln) : Achsnschnipunk: S ( 0) (doppl), Asympo: posiiv y-achs, d f() + fü 0 +. f'() ln und f () ( ln) T( 0) und W( ) c) f() (ln) : Achsnschnipunk: S ( 0) (difch), Asympo: ngiv y-achs, d f() fü 0 +. f'() (ln ), f () ln ( ln) W( 0) (Slpunk) und W( 8)

5 Aufgb : Kuvndiskussion von ionln Funkionn ) f() : D R\{ ;}, Punksymmi m Uspung, d f( ) f(), Achsnschnipunk: ( )( ) S(0 0), snkch Asympon bi ±, d NST nu im Nnn, wgch Asympo y 0 fü ±, d Nnngd > Zählgd. f'() ( ) ( ) und f''() 8( ) ( ) W(0 0) ( ) b) f() + : D R\{}, kin Symmi, d f( ) ± f(), Achsnschnipunk S y (0 ) und ( ) ( ) S ( 0), snkch Asympo ohn VZW bi, d zwifch NST nu im Nnn, wgch Asympo y fü ±, d f() fü ±. f'() c) f() ( ) ( ) und f''() 8( ) ( ) T( 0) und W( 9 ) : D R, Symmi zu y-achs, d f( ) f(), Achsnschnipunk S y(0 ) und S / (± 0), wgch Asympo y fü ±, d f() fü ±. f'() T(0 ) und W / (± ). ( ) und f''() ( ) d) f() , D R\{5}, kin Symmi, Achsnschnipunk: S y(0 5 ) und S /( 7 ± 5 0), snkch Asympo bi 5, d NST nu im Nnn, schif Asympo g() fü ±, d f() 0 g() 0 fü ±. f'() und f''() ( 5) ( 5) ( 5) Aufgb 5: Rionl Funkionn mi Pm ) f () + ( ) ( ) und schif Asympo y. f () b) f () H( ) und T(6 5) D R\{}, S y (0 ), S ( 0), snkch Asympo ohn VZW bi ( ) und f () ( ) D R\{}mi S y (0 ), S (± Asympo mi VZW bi und schif Asympo y +. f () H( ) mi Oskuv y 0) ohn VZW nu fü, snkch ( ) und f () ( ) H( ) mi Oskuv y und T( + + ) mi d glichn Oskuv y (!) c) f () D R\{0}mi S ( 0) mi VZW, snkch Asympo ohn VZW bi 0 und wgch 6 6 Asympo y 0. f () + und f () H( ) mi Oskuv y und W( ) mi Oskuv y 9. d) f () D R\{}mi S y (0 0) mi VZW, snkch Asympo ohn VZW bi und wgch ( ) Asympo y 0. f () ( ) Oskuv y 9. und f () ( ) T( ) mi Oskuv y und W( 9 ) mi 5

6 ) f () ( ) D R\{}mi S y (0 ), S ( 0) mi VZW, snkch Asympo ohn VZW bi und wgch Asympo y 0. f () ( ) 5 ) mi Oskuv y 5. f) f () + + ( ) und schif Asympo y +. f () Oskuv y 0 und T( 8) mi Oskuv y 8. und f () 8 ( ) T( 8 ) mi Oskuv y 8 und W( D R\{} mi S y (0 ), S ( 0) ohn VZW, snkch Asympo mi VZW bi ( ) ( ) und f () 8 ( ) H( 0) mi Aufgb 6: Vmisch Aufgbn zu Funkionnschn ) f () ( ) und f () ( + ) T(0 0) und H ( ) Oskuv d Hochpunk y und chsnsymmisch Pbl duch T und H p (). b) f () ( ) und f () ( ) H( ) und W( ) Oskuvn y fü di Hochpunk und y fü di Wndpunk c) Schnipunk S fg (0 ) und Schniwinkl α fg 90 d) f () ( ) und f () ( ) W ( ) Wndngn w () + Achsnschnipunk S y (0 ) und S ( 0) Dicksfläch A g h 8 ) f () und f () ( ) W( ) Wndngn w () ) Dicksfläch A g h 9. f) f () und f () T( + ) lig uf d -Achs fü. + mi S ( 0) und S y(0 g) f () + ( + ) ( + ) und f () + ( + ) ( + ) [ + ( + ) ] Di Glichung f () 0 h di Lösung ln ( ) nu fü > 0. h) All Schubild ghn duch P(0 ). Di Tngnn () + und di Nomln n () + duch P schnidn di -Achs in S ( 0) und S n( 0). Ds Dick S PS n h dn Flächninhl A() g h ( + ) mi A () ( ) und A (). A() h in livs Minimum (A () 0 und A () > 0) fü. Wgn lim A() lim 0 A() hndl s sich uch um in globls Minimum. i) Ansz f (()) + + ln(+) + () mi () und () Minimum von bi, d () 0 und () > 0 mi dn Aufgb 7: Emwufgbn mi Eponnilfunkionn ) A(u) b h u f(u) u mi u > 0, A (u) ( u ) u u und A (u) (u u) l M bi u u mi A( ) und A(u) 0 fü u 0 und u bs M bi u. 6

7 b) A(u) b h u f(u) u u mi u > 0, A (u) ( u) u und A (u) (u ) u l M bi u mi A() und A(0) u lim A(u) 0 bs M bi u. c) A(u) b h u f(u) (u u ) u mi 0 u +, A (u) ( + u u u ) u (u ) ( u u ) u und A (u) ( + u 9u u ) u l M bi u (u / ± < 0 ) mi A() und A(0) 0 und A( + ), <,788 bs M bi u. Aufgb 8: Tngnn und Nomln n Eponnilfunkionn ) Tngn () + mi S ( 0) und Noml n () + mi S ( 0) bildn mi d -Achs in Dick mi d Gundsi g() + und d Höh h. Es h dn Flächninhl A() gh ( + ) mi A () ( ). is miniml fü (VZW d. Abliung von nch +) mi A() FE. ( ) ( ) b) Symmi zum Uspung, f () ( ), f () ( ) H( ), T( ), W / ( ± ) und W (0 0) (infch NST mi VZW bi f!) Dick OPQ mi O(0 0), P( A() b h 7 mi A () 7 8 ( ) A( ) 9, A(0) lim A() 0 bs M bi. 6 0) und Q( l M (NST von A mi VZW von nch +) bi mi Aufgb 9: Emwufgbn mi ionl Funkionn ) U + b mi b 6 U() mi U () 0 ± 6, wobi b DA ]0; [. D U() fü 0 und is bi b 6 cm mi U cm in livs und bsolus Minimum von U b) U + s mi A s 00 U() + mi U () 0 ± 0, wobi b DA ]0; [. D U() fü 0 und is bi 0 cm und s 0 cm mi U 0 cm mi in livs und bsolus Minimum von U. c) A() is gnu dnn miniml, wnn B() 6 + miniml is. Mi B () 5 0 gib sich ± mi D A ]0; [. D B() fü 0 und is bi mi B( ) cm bzw. A( ) cm in livs und bsolus Minimum von B und von A. 0 d) A() f() 5 mi A () 00 0 ( 5) 0 ± 5 mi D A ]0; [. D A() fü 0 und is bi 5 cm mi A( 5 ) 5 cm in livs und bsolus Mimum von A. ) U b + + π mi A b + 8 b U() mi U () + ±,5. Wgn A b + 8 gil 8 ) +,6 m is bi bsolus Minimum. f) πh + π mi V π h 000 cm h 000, lso DU ]0;,5 m mi U( O() π fü ± ] ]0;,6]. D U() fü 0 + und U( ) 0,69 m in livs und mi O () π 0 fü 5, cm, wobi D O ]0; [. D O() fü 0 und is bi 500 5, cm und h 0,86 cm mi O( 500 ) 55,58 cm in livs und bsolus Minimum von O. Zum Vglich: Ein Wüfl mi Li Fssungsvmögn hä in Knnläng von 0 cm und in Obfläch von O W cm! 7

8 g) O Hlbkugl + O Bodn + O Mnl π + π + πh π + πh mi V π + π h 000 cm h O() 5 π mi O () π 0 fü cm 5,76 cm, wobi D O ]0; 500 ] ]0; 0, 5 ] ]0 cm; 7,8 cm[. D O() fü 0 + und O(0, 5 ) 00, 5 cm 575,7 cm is bi 600 cm 000 5,76 cm und h 6, cm mi O( 600 ) 59, cm in livs und bsolus Minimum von O. h) + h mi V h 000 cm 000 h O() mi O () 0 fü 0 cm, wobi D O ]0; [. D O() fü 0 + und, is bi 0 cm und h 0 cm mi O(0) 600 cm in livs und bsolus Minimum von O. 8

5.5. Aufgaben zur Integralrechnung

5.5. Aufgaben zur Integralrechnung .. Aufgn ur Ingrlrchnung Aufg : Smmfunkionn Bsimmn Si jwils ll Smmfunkionn für di folgndn Funkionn: ) f() f) f() k) f() n mi n R\{} p) f() 6 + 7 + ) f() g) f() l) f() + 6 q) f() f() h) f() m) f() + + r)

Mehr

Wie in der letzten Vorlesung besprochen, ergibt die Differenz zwischen den Standardbildungsenthalpien

Wie in der letzten Vorlesung besprochen, ergibt die Differenz zwischen den Standardbildungsenthalpien Vorlsung 0 Spnnungsnrgi dr Cyclolkn Wi in dr ltztn Vorlsung bsprochn, rgibt di Diffrnz zwischn dn Stndrdbildungsnthlpin dr Cyclolkn C n n und dm n-fchn Bitrg für di C - Gruppn [n (-0.) kj mol - ] di Ringspnnung.

Mehr

Kondensator an Gleichspannung

Kondensator an Gleichspannung Musrlösung Übungsbla Elkrochnisch Grundlagn, WS / Musrlösung Übungsbla 2 Prof. aiingr / ammr sprchung: 6..2 ufgab Spul an Glichspannung Ggbn is di Schalung nach bb. -. Di Spannung bräg V. Di Spul ha di

Mehr

5.5. Konkrete Abituraufgaben zu Exponentialfunktionen

5.5. Konkrete Abituraufgaben zu Exponentialfunktionen 5.5. Konkr Abiuraufgabn zu Exponnialfunkionn Aufgab : Kurvnunrsuchung, Ingraion () Übr in Vnil kann das Wassrvolumn in inm Wassrbhälr grgl wrdn. Di Särk ds Wassrsroms durch diss Vnil is ggbn durch in Funkion

Mehr

(3) Sie haben 120 Minuten Zeit und können eine Maximalpunktzahl von 120 erreichen.

(3) Sie haben 120 Minuten Zeit und können eine Maximalpunktzahl von 120 erreichen. Klausur Makroökonomik B Prof. Dr. Klaus Adam 21.12.2009 (Hrbssmsr 2009) Wichig: (1) Erlaub Hilfsmil: Nichprogrammirbarr Taschnrchnr, ausländisch Sudirnd zusäzlich in Wörrbuch nach vorhrigr Übrprüfung durch

Mehr

5.5.Abituraufgaben zu Logarithmusfunktionen

5.5.Abituraufgaben zu Logarithmusfunktionen 5.5.Aiturufgn zu Logrithmusfunktionn Aufg : urvnuntrsuchung mit Prmtr, Intgrtion ohn GTR () Für jds rll t und > 0 sind di Funktionn f t und g ggn durch f t () (ln + t) und g() Ds Schuild von f t hißt t

Mehr

Kryptologie am Voyage 200

Kryptologie am Voyage 200 Mag. Michal Schnidr, Krypologi am Voyag200 Khvnhüllrgymn. Linz Krypologi am Voyag 200 Sinn dr Vrschlüsslung is s, inn Tx (Klarx) so zu vrändrn, dass nur in auorisirr Empfängr in dr Lag is, dn Klarx zu

Mehr

Auswertung P2-60 Transistor- und Operationsverstärker

Auswertung P2-60 Transistor- und Operationsverstärker Auswrtung P2-60 Trnsistor- und Oprtionsrstärkr Michl Prim & Tobis Volknndt 26. Juni 2006 Aufgb 1.1 Einstufigr Trnsistorrstärkr Wir butn di Schltung gmäß Bild 1 uf, wobi wir dn 4,7µ F Kondnstor, sttt ds

Mehr

Schleswig-Holstein 2009 Leistungskurs Mathematik Thema: Analysis. ( x) . (14 P) g mit ( ) Berechnen Sie die Schnittpunkte der Graphen von f a und

Schleswig-Holstein 2009 Leistungskurs Mathematik Thema: Analysis. ( x) . (14 P) g mit ( ) Berechnen Sie die Schnittpunkte der Graphen von f a und Ministrium für Bildung und Frun Schlsig-Holstin 9 Listungskurs Mthmtik Thm: Anlysis Aufg Ggn ist di Funktionnschr f mit f ( ) = (, IR ) ) Untrsuchn Si di Funktionnschr f uf Nullstlln, ds Vrhltn im Unndlichn,

Mehr

Erwartungsbildung, Konsum und Investitionen

Erwartungsbildung, Konsum und Investitionen K A P I T E L 7 Erwarungsbildung, Konsum und Invsiionn Prof. Dr. Ansgar Blk Makroökonomik II Winrsmsr 2009/0 Foli Kapil 7: Erwarungsbildung, Konsum, und Invsiionn Erwarungsbildung, Konsum und Invsiionn

Mehr

Auslegeschrift 23 20 751

Auslegeschrift 23 20 751 Int. CI.2: 09) BUNDESREPUBLIK DEUTSCHLAND DEUTSCHES PATENTAMT G 0 1 K 7 / 0 0 G 01 K 7/30 G 01 K 7/02 f fi \ 1 c r Auslgschrift 23 20 751 Aktnzichn: P23 20 751.4-52 Anmldtag: 25. 4.73 Offnlgungstag: 14.

Mehr

Labor Messtechnik Versuch 5 Operationsverstärker

Labor Messtechnik Versuch 5 Operationsverstärker HS oblnz FB Ingnirwsn F Mschinnb Prof. Dr. röbr Lbor Msstchnik rsch 5 Oprtionsvrstärkr Sit von 5 rsch 5: Oprtionsvrstärkr. rschsfb.. Umfng ds rschs Im rsch wrdn folgnd Thmnkris bhndlt: - Nichtinvrtirndr

Mehr

Messen mit Oszilloskopen

Messen mit Oszilloskopen Fkulä IV - prmn Mschinnbu Mss- und Rglungschnik Mchronik Prof. r.- Ing. Olivr Nlls Msschniklbor Vrsuch 6 Mssn mi Oszilloskopn Or: Brur: PB-H 9 ZESS, UG ipl.-ing. Julin Blz r.-ing. Gri mpmnn PB-A 47 5 Tl.:

Mehr

Digitaltechnik. TI-Tutorium. 17. Januar 2012. Tutorium von K. Renner für die Vorlesung Digitaltechnik und Entwurfsverfahren am KIT

Digitaltechnik. TI-Tutorium. 17. Januar 2012. Tutorium von K. Renner für die Vorlesung Digitaltechnik und Entwurfsverfahren am KIT Digitltchnik I-utorium 17. Jnur 2012 utorium von K. Rnnr für di Vorlsung Digitltchnik und Entwurfsvrfhrn m KI hmn Orgnistorischs Anmrkungn zum Übungsbltt 9 Korrktur inr Foli von ltztr Woch Schltwrk Divrs

Mehr

Hamburg Kernfach Mathematik Zentralabitur 2013 Erhöhtes Anforderungsniveau Analysis 2

Hamburg Kernfach Mathematik Zentralabitur 2013 Erhöhtes Anforderungsniveau Analysis 2 Hmburg Kernfch Mhemik Zenrlbiur 2013 Erhöhes Anforderungsniveu Anlysis 2 Smrphones Die Mrkeinführung eines neuen Smrphones vom Elekronikherseller PEAR wird ses ufgereg erwre. Zur Modellierung der Enwicklung

Mehr

a) Wie groß ist das Feuchtedefizit D? b) Wie groß ist die Taupunkttemperatur? c) Was bedeutet das Erreichen der Taupunkttemperatur physikalisch?

a) Wie groß ist das Feuchtedefizit D? b) Wie groß ist die Taupunkttemperatur? c) Was bedeutet das Erreichen der Taupunkttemperatur physikalisch? Kluur Ingniurhydrologi I Sptmbr 006 Aufgb 1: Auf inm Grgndch, d 7 m lng und m brit it, oll ich in.5 cm trk ichicht mit inr Dicht ρ=97 kg/m bfindn. Di ichicht oll in Tmprtur von t=0 C hbn. ) Wlch M i ligt

Mehr

N e w s l e t t e r. Die Kita informiert Oktober 2013. Die Hortis berichten

N e w s l e t t e r. Die Kita informiert Oktober 2013. Die Hortis berichten Di Kia infomi Okob 2013 Di Hoi bichn W gabi ha, daf auch auuhn! Wi Hoi fun un üb di Hbfin. Wi buchn oz akm Rgn di A Faani. Bingn dn Rhn, Zign und Widchinn ca.15 kg Eichn und Kaanin mi. Bim Wign habn i

Mehr

1 Kurvendiskussion /40

1 Kurvendiskussion /40 009 Herbst, (Mthemtik) Aufgbenvorschlg B Kurvendiskussion /0 Gegeben ist eine Funktion f mit der Funktionsgleichung: f ( ) 0 6 = ; mit.. Untersuchen Sie ds Verhlten der Funktionswerte von f im Unendlichen.

Mehr

Optimale Absicherung. für gesetzlich Versicherte. Betriebliche Krankenversicherung. f ü r M it. Je tz t ex

Optimale Absicherung. für gesetzlich Versicherte. Betriebliche Krankenversicherung. f ü r M it. Je tz t ex Optimal Absichung fü gstzlich Vsicht Btiblich Kanknvsichung o t il g ba V U n s c h l a a b it!! f ü M it s ic h n k lu s iv J tz t x io K o n d it n n Btiblich Kanknvsichung Kanknzusatzvsichungn fü gstzlich

Mehr

e n e a Chancenzuschaf

e n e a Chancenzuschaf s p a n, um n uch Sp a n, u m n u Chancnzuschaf f n m i al b Li ag Landt Konsol i di ungsst at gi dfdplandt agsf akt i on 2013bi s2017 f dpf akt i onn w. d 2013 2014 2015 2016 2017 in Mio. Euo 1. Mhinnahmn

Mehr

ALLGEMEINE VERKAUFS- UND LIEFERBEDINGUNGEN DER FIRMA OBJECTIVE SOFTWARE GMBH

ALLGEMEINE VERKAUFS- UND LIEFERBEDINGUNGEN DER FIRMA OBJECTIVE SOFTWARE GMBH iv Sofwar GmH Wlnurgr Sr. 70 81677 Münhn Tl. 0 89 / 71 05 01-0 Fax -99 www.oiv.d info@oiv.d ALLGEMEINE VERKAUFS- UND LIEFERBEDINGUNGEN DER FIRMA BJECTIVE SFTWARE GMBH 1 Glungsrih, Awhrklausl Di Firma iv

Mehr

Gegeben sei eine elektromagnetische Welle mit Ausbreitung in z-richtung und einer Amplitude in x-richtung:

Gegeben sei eine elektromagnetische Welle mit Ausbreitung in z-richtung und einer Amplitude in x-richtung: 38. Polaisation 38.1. Einfühung Ggbn si in lktomagntisch Wll mit Ausbitung in z-richtung und in Amplitud in x-richtung: E = E 0 i 0 i... Einhitsvkto in x-richtung Di vollständig mathmatisch Bschibung unt

Mehr

Heizlastberechnung Seite 1 von 5. Erläuterung der Tabellenspalten in den Heizlast-Tabellen nach DIN EN 12831

Heizlastberechnung Seite 1 von 5. Erläuterung der Tabellenspalten in den Heizlast-Tabellen nach DIN EN 12831 Hizlastbrchnung Sit 1 von 5 Erläutrung dr Tabllnspaltn in dn Hizlast-Tablln nach DIN EN 12831 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 3x4x5 6-7 12 + 13 8 x 11 x 14 15 x Θ Orintirung Bautil Anzahl Brit Läng

Mehr

Wärmedurchgang durch Rohrwände

Wärmedurchgang durch Rohrwände ämeuchgng uch Rohwäne δ - L Rohlänge Bl: Sonäe ämeleung uch ene enschchge zylnsche n Fü e ämeleung gl llgemen: λ x Fü ene ünne konzensche Schch es Rohes von e Dcke gl: &Q λ Fläche: f(): 2 π L (Mnelfläche)

Mehr

Übersicht EUROWINGS VERSICHERUNGSSCHUTZ. Leistungsbestandteile im Überblick. Hinweise im Schadenfall:

Übersicht EUROWINGS VERSICHERUNGSSCHUTZ. Leistungsbestandteile im Überblick. Hinweise im Schadenfall: Übrsicht EUROWINGS VERSICHERUNGSSCHUTZ Si intrssirn sich für in HansMrkur Risvrsichrung in gut Wahl! Listungsbstandtil im Übrblick BasicPaktschutz Bstandtil Ihrr Risvrsichrung: BasicSmartRücktrittsschutz

Mehr

Agile Innovation Patterns

Agile Innovation Patterns Th Ail Innoaion Gam Puin h wok in wokshop - Ails Anfodunmanam mi Soy Map und Lan Pojc Canas Ail Innoaion Pans Puin h wok in wokshop - Ails Anfodunmanam mi Soy Map und Lan Poduc Canas Til Zil Rchch & Insihs

Mehr

Für Stadt, Land, Bus & Bahn. Semesterticket. Gültig ab dem Wintersemester. Gültig ab dem. Sommersemester 2014/2015

Für Stadt, Land, Bus & Bahn. Semesterticket. Gültig ab dem Wintersemester. Gültig ab dem. Sommersemester 2014/2015 Für Sad, Land, Bus & Bahn Smsrick Gülig ab dm Winrsmsr Sommrsmsr 014/015 Gülig ab dm 015 Wlchs Smsrick für wn? Das Tick mi dm grünn Srifn rhaln Sudirnd dr Ebrhard-Karls-Univrsiä Tübingn dr Fakulä für Sondrpädagogik

Mehr

Entdecken Sie. in Lostorf. - mit einer schönen Wanderung. - mit dem Auto. - mit den öffentlichen Verkehrsmitteln. Schloss Wartenfels

Entdecken Sie. in Lostorf. - mit einer schönen Wanderung. - mit dem Auto. - mit den öffentlichen Verkehrsmitteln. Schloss Wartenfels Entdckn Si Schlo Wrtnfl in Lotorf - mit inr chönn Wndrung - mit dm Auto - mit dn öffntlichn Vrkhrmittln Schlo W r tn fl Wi rrich ich d Schlo Wrtnfl pr Auto? mit Auto Von Zürich: - Autobhnufhrt Aru Ot Hunznchwil,

Mehr

Grundlagen Elektrotechnik I

Grundlagen Elektrotechnik I Grundlgn Elktrotchnik I borvrsuch I-30 (vorläufig Nullvrsion ) C- und C-Glidr Dipl-Ing lf Schmi, Dr Andrs Sifrt = I C C Idn, Ergänzungn, Kritik usdrücklich rwünscht Bitt n uns prsönlich odr vi E-Mil n:

Mehr

3 Signalabtastung und rekonstruktion

3 Signalabtastung und rekonstruktion - /8-3 Signalabaung und rkonrukion 3. Abaung Di Dikriirung inr zikoninuirlichn unkion durch di Ennahm von unkionwrn zu bimmn Zipunkn bzichn man al Abaung. Erolg di Ennahm in glichn Ziabändn voninandr,

Mehr

Bis zu 20 % Ra. b b. a h

Bis zu 20 % Ra. b b. a h btt! Bis zu 20 % R www.gvb.ch h? ic s b b d d u W s s d ich t lück lo s s u H Ih h ic s W i v Mit us kö Si Ih Hus udum vsich Mit us Zustzvsichug ist Ih Vsichugsschutz i ud Sch W glichzitig i Lück i d Gbäudvsichug

Mehr

mann, Martin Krizischke, Peter Lennartz, Dr. Sebastian Muschter, Stephanie Nolte, Inger

mann, Martin Krizischke, Peter Lennartz, Dr. Sebastian Muschter, Stephanie Nolte, Inger Pkll Uhzi: O: Anwsnd: Ausschussmiglid: a n m a c h 17.00 19.00 Uh c d IHK Blin, Mndlsshn-Saal 0 2 P k Knsiuind Sizung IHK-Ausschuss Digial Wischaf am Dnnsag, 15.05.2014 Sinan Aslan, Ansga Baums, D. Ralf

Mehr

2.6! Sicherheit, Zuverlässigkeit, Verfügbarkeit

2.6! Sicherheit, Zuverlässigkeit, Verfügbarkeit .6! Sihrhi, Zuvrlässigki, Vrfügbarki Sihrhi! EN ISO 9:5! Sihrhi safy is in Zusand, in dm das Risiko ins Prsonn- odr Sahshadns auf inn annhmbarn Wr bgrnz is. Sihrhi is nih bwsnhi von Risiko Wi hoh is in

Mehr

Ausgewählte Beispiele zu BIST

Ausgewählte Beispiele zu BIST usgwält ispil zu IST Vkszin Ds nnstnd Vkszin dutt, dss in Stß i 100 m wgt Entfnung um 12 m nstigt. Pt uptt: Ein Stigung von 100% wüd dutn, dss di Stß snkt wi in Flswnd nstigt! Wl zwi d folgndn gündungn

Mehr

LEISTUNGSPROFIL F.EE INFORMATIK + SYSTEME FIRMENPORTRÄT F.EE INFORMATIK + SYSTEME DAS SYSTEMHAUS DER F.EE-FIRMENGRUPPE

LEISTUNGSPROFIL F.EE INFORMATIK + SYSTEME FIRMENPORTRÄT F.EE INFORMATIK + SYSTEME DAS SYSTEMHAUS DER F.EE-FIRMENGRUPPE 04/2013 FIRMENPORTRÄT F.EE INFORMATIK + SYSTEME DAS SYSTEMHAUS DER F.EE-FIRMENGRUPPE LEISTUNGEN UND PRODUKTE ANFAHRT AUGEN UNSERER KUNDEN Clint- / Svlösungn Fax- und Mail-Systm Ka tz d o Industistaß 6

Mehr

Abiturprüfung Mathematik 2004 (Baden-Württemberg) Wahlteil Analysis Aufgabe I, 3

Abiturprüfung Mathematik 2004 (Baden-Württemberg) Wahlteil Analysis Aufgabe I, 3 www.mah-aufgabn.com Abiurprüfung Mahmai 4 (Badn-Würmbrg) Wahlil Analysis Aufgab I, 3 Aufgab I 3. Für jds > is in Funion f ggbn durch Ihr Schaubild si C. f 3 () mi R a) Sizzirn Si für dri slbs gwähl Wr

Mehr

chemisches Fortgeschrittenenpraktikum SS 2000

chemisches Fortgeschrittenenpraktikum SS 2000 Physikalisch-chmischs chmischs Fortgschrittnnpraktikum SS Vrsuch F- 3: UV/VIS-Spktroskopi Vrsuchstag: 7.6. Svn Entrlin Grupp 3 18 97 36 174 Vrsuch F-3: UV/VIS-Spktroskopi PC-Fortgschrittnnpraktikum Glidrung:

Mehr

1 9 5 2-2 0 1 2. 6 0 J a h r e E r f a h r u n g

1 9 5 2-2 0 1 2. 6 0 J a h r e E r f a h r u n g 1 9 5 2-2 0 1 2 6 0 J h r E r f h r u n g 60 Jhr innoviv Tchnik... und wir gbn wir Gs! 60 Jhr Dibod Firmngründr Hmu & Id Dibod 195 2 Fir Firmngr M m H ündu sä chni mu ng sch WDibo rk d - 1965 Di dmig Frigung

Mehr

Grundlagen der Energietechnik. Netze und Betriebsmittel. Netzformen

Grundlagen der Energietechnik. Netze und Betriebsmittel. Netzformen Pof. D. n. Post tz und Btibsitt Gundn d Enitchnik tz und Btibsitt tzfon EEG. Sp. 7 unächst so noch in duf hinwisn wdn, dß Vsounsntz Dhstontz (Ausnh HGÜ) sind. Di Ausnhn sind in. Aus nitchnisch Sicht intssit

Mehr

[Arbeitsblatt Trainingszonen]

[Arbeitsblatt Trainingszonen] [Arbitsblatt Trainingszonn] H r z f r q u n z 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 RHF spazirn walkn lockrs zügigs MHF Jogging Jogging Gsundhits -brich Rohdatn

Mehr

Die weitere Umsetzung der BaustellV

Die weitere Umsetzung der BaustellV Di witr Umstzung dr BaustllV 7. Erfahrungsaustausch dr Koordinatorn Magdburg, 17. Novmbr 2004 Michal Jägr 1. Vorsitzndr ds Zntralvrbands dr Koordinatorn nach Baustllnvrordnung Dutschlands ZVKD.V. Di witr

Mehr

Bedienungsanleitung. DSLT (Vorabversion vom 29.01.2001)

Bedienungsanleitung. DSLT (Vorabversion vom 29.01.2001) Bdinungsnlitung für DSLT (Vorbvrsion vom 29.01.2001) Inhlt pprtnsichtn...2 llgmins Löschn von Funktionn...3 nrufumlitung / nrufwitrlitung...3 nruf Bntwortn (xtrn)...4 nruf Bntwortn (intrn)...5 Extrn Gspräch

Mehr

Derivative Finanzinstrumente

Derivative Finanzinstrumente Drivaiv Finanzinsrumn Finanzinsrumn, das von inr undrlying curiy abhäng und dssn Wr durch inn bdingn Anspruch ngl. coningn claim dfinir is. bhandl Bispil drivaiv Finanzkonrak im ngrn inn: Forward bzw.

Mehr

BÜROZENTRUM FALKENBRUNNEN. Chemnitzer-Str. 48, 48a, 48b, 50 / Würzburger Str. 35 01187 Dresden

BÜROZENTRUM FALKENBRUNNEN. Chemnitzer-Str. 48, 48a, 48b, 50 / Würzburger Str. 35 01187 Dresden BÜROZENTRUM FALKENBRUNNEN Chmnitz-. 48, 48a, 48b, 50 / Wüzbug. 35 01187 Dsdn OBJEKT OBJEKT INDIVIDUELLES UND GROSSZÜGIGES BÜRO- UND EINZELHANDELS-ENSEMBLE Das Büozntum Falknbunnn bitt modn und funk- nn

Mehr

Makroökonomie I/Grundlagen der Makroökonomie

Makroökonomie I/Grundlagen der Makroökonomie Makroökonomi I/Grundzüg dr Makroökonomi Pag Makroökonomi I/Grundlagn dr Makroökonomi Kapitl 5 Finanzmärkt und Erwartungn Güntr W. Bck Makroökonomi I/Grundzüg dr Makroökonomi Pag 2 2 Übrblick Kurs und Rnditn

Mehr

Ein herzliches Grüß Gott in Memmelsdorf! www.drei-kronen.de

Ein herzliches Grüß Gott in Memmelsdorf! www.drei-kronen.de Ein hzlichs Güß Gott in Mmmlsdof! www.di-konn.d Güß Gott! In Fankn stht das bst Witshaus imm ggnüb d Kich. So wi auch uns Bauigasthof: Di Di Konn bfindn sich sit mh als 555 Jahn ggnüb dm Mmmlsdof Gottshaus.

Mehr

I MECHANIK. 1. EINFÜHRUNG Grundlagen, Kinematik, Dynamik (Wiederholung der Schulphysik)

I MECHANIK. 1. EINFÜHRUNG Grundlagen, Kinematik, Dynamik (Wiederholung der Schulphysik) Physik EI1 Mechnik - Einfühung Seie I MECHNIK 1. EINÜHRUNG Gundlgen, Kinemik, Dynmik (Wiedeholung de Schulphysik) _Mechnik_Einfuehung1_Bneu.doc - 1/9 Die einfühenden Kpiel weden wi zunächs uf dem Niveu

Mehr

Bürger-Energie für Schwalm-Eder. Bürger-Energie für Schwalm-Eder! Die FAIR-Merkmale der kbg! Leben. Sparen. Dabeisein. Einfach fair. h c.

Bürger-Energie für Schwalm-Eder. Bürger-Energie für Schwalm-Eder! Die FAIR-Merkmale der kbg! Leben. Sparen. Dabeisein. Einfach fair. h c. Di FAIR-Mrkmal dr kbg! Bürgr-Enrgi für Schwalm-Edr! Unsr Stromtarif transparnt, günstig, fair! Di kbg ist in in dr Rgion sit 1920 vrwurzlt Gnossnschaft mit übr 1.400 Mitglidrn und in ihrm Wirkn fri von

Mehr

Makroökonomie I/Grundlagen der Makroökonomie

Makroökonomie I/Grundlagen der Makroökonomie Makroökonomi I/Grundzüg dr Makroökonomi Pag 1 1 Makroökonomi I/Grundlagn dr Makroökonomi Kapitl 14 Erwartungn: Di Grundlagn Güntr W. Bck 1 Makroökonomi I/Grundzüg dr Makroökonomi Pag 2 2 Übrblick Nominal-

Mehr

Fachhochschule Bingen

Fachhochschule Bingen Fachhochschul Bingn Mikrowllnchnik SS 211 Vrsuch M2.3 Unrsuchungn am Rlxklysron BINEN Masr Elkrochnik ROF. DR.-IN. F. REISDORF rupp: Daum: Nam: Marikl Nr.: Tsa: 1 Mssung dr Ausgangslisung und Schwingungsrqunz

Mehr

Analysen und Ergebnisse der Qualifizierungsberater im III. Quartal 2010

Analysen und Ergebnisse der Qualifizierungsberater im III. Quartal 2010 Analysn d Egbniss d Qualifizigsbat im III. Quatal 2 III. Quatal 2 Batgn d Analysn d Qualifizigsbat Im 3. Quatal ds Jahs 2 wudn 83 Btib bzw. Untnhmn batn. In 38 Untnhmn wud in Qualifizigsbdaf fü.3 Mitabit

Mehr

6. Elektromagnetische Wellen 6.1. Entstehung elektromagnetischer Wellen

6. Elektromagnetische Wellen 6.1. Entstehung elektromagnetischer Wellen 6. lkomagnish Wlln 6.. nshung lkomagnish Wlln - Wi bahn RLC-Sinshwingkis mi Inukiviä (Sul) L un Kaaziä (Konnsao) C Rsonanzfqunz: Inukiviä: L LC N l A S Kaaziä: A C l C - Vklinung von L un C suli in Vgößung

Mehr

Vernetztes Laden eine Herausforderung

Vernetztes Laden eine Herausforderung Vntzts Ldn in Husfodun NTT DATA Mobilitätskonfnz 2. Oktob 2014, Win Jün Hiß, Lit Pilotiun & Klinsin EnBW Options Ws ist ds Zilbild in d E-Mobilität? Vntzts Ldn in Husfodun 2 E-Mobilität ist Til ds vntztn

Mehr

Veranstaltungen der Landesjugendringe Brandenburg und Berlin

Veranstaltungen der Landesjugendringe Brandenburg und Berlin ü f o g s g Foildu h c i l m h E d Hup- u i s d v i d Jugd Vslug d Ldsjugdig Bdug ud Bli 1. Hljh 2015 Ifo ud Kok Bdug: Ldsjugdig Bdug Bi S. 7 14467 Posdm Tlfo: 0331 / 620 75-30 Fx: 0331 / 6 20 75-38 E-Mil:

Mehr

ev. Jugend Böckingen Freizeit Programm 2015

ev. Jugend Böckingen Freizeit Programm 2015 v. Jugd Böckig Fzt Poga 2015 Zltlag fü 9-13 Jähig 2. - 15. August 2015 Wi sog fü gaos ud uvgsslich Fzt i Mt ds Hohloh Walds, i Etthaus kl gütlich Dof. Dikt vo Bauhof ba gibt s täglich fischst Milch du

Mehr

Methodenkompetenz-Curriculum

Methodenkompetenz-Curriculum Mthodnkomptnz-Curricuum Mthodn, Arbit- und Drtungformn Ertt vom Arbitkri Mthodn und Nin Engr Stnd: Sptmbr 0 Mthodnkomptnz-Curricuum dr Gmtchu Gummrbch Stnd: Sptmbr 0 (Mthodn, Arbit- und Drtungformn) orgniirn

Mehr

Kontaktlinsen Sehminare Visualtraining. Die neue Dimension des Sehens

Kontaktlinsen Sehminare Visualtraining. Die neue Dimension des Sehens Kontaktlinsn Shminar Visualtraining Di nu Dimnsion ds Shns Willkommn in dn Shräumn Erlbn Si in nu Dimnsion ds Shns. Mit dn Shräumn rwitrn wir unsr Angbot rund um das Aug bträchtlich. Wir bitn anspruchsvolln

Mehr

Durchführungsbestimmungen zum Großen Wiener Faschingsumzug 2016

Durchführungsbestimmungen zum Großen Wiener Faschingsumzug 2016 An l äs s l i c h 2 5 0J a h r Wi n rpr a t r! Großr Faschingsumzugs 2016 im Winr Pratr Lib Frund ds Großn Faschingsumzugs 2016 im Winr Pratr! Es ist mir in bsondr Frud, Euch di Ausschribungsuntrlagn zum

Mehr

NEU. für Ih. PPL 10.0 PASCHAL-Plan light. Jetzt in 3D und mit kompletter Bauhofverwaltung

NEU. für Ih. PPL 10.0 PASCHAL-Plan light. Jetzt in 3D und mit kompletter Bauhofverwaltung Jtzt t stn! 60 40 O nlin -T w w w.p stzugng u ntr pl- clo ud.co m 40 60 45 135 135 135 45 135 l r t n z Di g n u s ö L r n w t f b o S g f u l h c S r für Ih 25 25 75 40 40 75 NEU PPL 10.0 PASCHAL-Pln

Mehr

Bericht zur Prüfung im Oktober 2006 über Finanzmathematik und Investmentmanagement

Bericht zur Prüfung im Oktober 2006 über Finanzmathematik und Investmentmanagement Berich zur Prüfung im Okober 006 über Finnzmhemik und Invesmenmngemen Grundwissen Peer Albrech Mnnheim Am 07. Okober 006 wurde zum ersen Ml eine Prüfung im Fch Finnzmhemik und Invesmenmngemen nch PO III

Mehr

8. Abtastung. Kontinuierliches Signal: Signalspektrum: Abgetastetes Signal: ( t) Abtastfunktion: 1 f a. Spektrum der Abtastfunktion:

8. Abtastung. Kontinuierliches Signal: Signalspektrum: Abgetastetes Signal: ( t) Abtastfunktion: 1 f a. Spektrum der Abtastfunktion: Pro. Dr.-In. W.-P. Buchwld Sinl- und Sysemheorie 8. Absun Koninuierliches Sinl: u() Sinlspekrum: U() Abesees Sinl: ( ) = u( ) ( ) u Absunkion: + n= ( ) = δ ( n ) Spekrum der Absunkion: + n= Spekrum des

Mehr

I. Haushaltslage der NRW-Kommunen

I. Haushaltslage der NRW-Kommunen P s s g sp äc hmi t s p a n, u m n mi t u KaiAb uszat Sp chf ükommunal s m i al b Li ag Landt Kommunal f i nanz n f dpf akt i onn w. d I. Haushaltslag d NRW-Kommunn Haushaltslag d NRW-Kommunn damatisch.

Mehr

Vorschlag des Pädagogischen Beirats für IKT Angelegenheiten im SSR für Wien zur Umsetzung der "Digitalen Kompetenzen" am Ende der Grundstufe II

Vorschlag des Pädagogischen Beirats für IKT Angelegenheiten im SSR für Wien zur Umsetzung der Digitalen Kompetenzen am Ende der Grundstufe II Vorschlag ds Pädagogischn Birats für IKT Anglgnhitn im SSR für Win zur Umstzung dr "Digitaln Komptnzn" am End dr Grundstuf II Dis Komptnzlist ntstand untr Vrwndung dr "Digitaln Komptnzn für di 8. Schulstuf"

Mehr

4 ARBEIT UND LEISTUNG

4 ARBEIT UND LEISTUNG 10PS/TG - MECHANIK P. Rendulić 2008 ARBEIT UND LEISTUNG 27 4 ARBEIT UND LEISTUNG 4.1 Mehnihe Abei 4.1.1 Definiion de Abei enn ein Köpe une de Einwikung eine konnen Kf die Seke in egihung zuükleg, dnn wid

Mehr

& im Einklang. HUGO-Bergkräuterochsen-Paß

& im Einklang. HUGO-Bergkräuterochsen-Paß HUGO-Bgkäutochs-Paß Hugo-Bgkäutochsflisch Hugo-Bgkäutochs-Wüst Hugo-Bgkäutochsislig (Wlschislig) Hugo-Bgkäutochsblut (blau Potugis) Oigial-Schobmühl-Schapsl (Nuß) Oigial-Bgkäut-Schapsl (Zib) & im Eiklag

Mehr

Aufgabe 4: 7-Segmentanzeige

Aufgabe 4: 7-Segmentanzeige Au : 7-Smntnzi G. Kmnitz, C. Gismnn, TU Clusthl, Institut ür Inormtik 7. Juni 25 Di Vrsuhsurupp ht in -stlli 7-Smnt-Anzi mit vrunnn Kthonsinln un minsmr Ano j Zir, so ss zu jm Zitpunkt nur in Zir nzit

Mehr

X B. Gleichrichtwert u oder i u = i = Nur bei sinusförmigem Wechselstrom! Formelsammlung Wechselstrom - Seite 1 von 10

X B. Gleichrichtwert u oder i u = i = Nur bei sinusförmigem Wechselstrom! Formelsammlung Wechselstrom - Seite 1 von 10 Formlsammlung Wchslstrom Allgmin: Komplx tromstärk i Komplxr Widrstand (mpdanz) chinwidrstand (trag dr mpdanz) odr Wirkwidrstand (sistanz) ( ) { } lindwidrstand (aktanz) sin ( ) m{ } hasnwinkl Komplxr

Mehr

0.5 16 25 ka 30 ka 20 40 20 ka 20 ka 50, 63 15 ka 15 ka PLSM-B(C)...(/...) 0.5 16 25 ka 30 ka. 50, 63 15 ka 15 ka

0.5 16 25 ka 30 ka 20 40 20 ka 20 ka 50, 63 15 ka 15 ka PLSM-B(C)...(/...) 0.5 16 25 ka 30 ka. 50, 63 15 ka 15 ka 10/106 Projktirn Litungsshutz, Bkup-Shutz NZM1, NZM2, NZM3 Mollr HPL0211-2007/2008 http://tlog.mollr.nt Listungsshltr, Lsttrnnshltr Shutz von PVC-isolirtn Litungn ggn thrmish Übrlstung bi Kurzshluss Nh

Mehr

Musterlösungen (ohne Gewähr) Aufgabe 1 ( 7 Punkte) Geben Sie die Koordinaten des Flächenschwerpunktes des dargestellten Querschnitts an!

Musterlösungen (ohne Gewähr) Aufgabe 1 ( 7 Punkte) Geben Sie die Koordinaten des Flächenschwerpunktes des dargestellten Querschnitts an! Seite 1/15 Aufgbe 1 ( 7 Punkte) Geben Sie die Koordinten des lächenschwerpunktes des drgestellten Querschnitts n! 2 Gegeben:. 4 ΣA i = y 2 x Σx i A i = x s = Σy i A i = y s = ΣA i = 8 2 Σx i A i = 13 3

Mehr

Teilfachprüfung Mathematik Studiengang: Wirtschaft Neue Diplomprüfungsordnung (NPO)

Teilfachprüfung Mathematik Studiengang: Wirtschaft Neue Diplomprüfungsordnung (NPO) Fchhochschule Düsseldorf SS 2007 Teilfchprüfung Mthemtik Studiengng: Wirtschft Neue Diplomprüfungsordnung (NPO) Prüfungsdtum: 29..2007 Prüfer: Prof. Dr. Horst Peters / Dipl. Volkswirt Lothr Schmeink Prüfungsform:

Mehr

Wälzlagertoleranzen. Definitionen/Messprinzipien

Wälzlagertoleranzen. Definitionen/Messprinzipien Wälzlgerolernzen Definiionen/Messprinzipien Zeichnungseinrg n eispielen Messprinzip Merkml IN/FG (bisher) Scheffler Gruppe (neu) ds (ds) Ds (Ds) dmp (dmp) Dmp (Dmp) Vdp/2 Vp/2 VDp/2 ØD ØD (Dmp) 1 500 Welligkei

Mehr

Kostenlosen Zugriff auf den Downloadbereich für ELOoffice bekommen Sie, wenn Sie Ihre Lizenz registrieren (Siehe Kapitel 5.2, Seite 28).

Kostenlosen Zugriff auf den Downloadbereich für ELOoffice bekommen Sie, wenn Sie Ihre Lizenz registrieren (Siehe Kapitel 5.2, Seite 28). 21 Si solltn nach Möglichkit immr di aktullstn Vrsionn intzn, bvor Si dn ELO-Support kontaktirn. Oft sind Prlm bi inm nun Updat schon bhn. 21.1 ELOoffic Downloads und Programmaktualisirungn Kostnlon Zugriff

Mehr

WEGEN Umbau. Renovierung des letzten Teilstücks der Herbesthaler Straße. Auch mit Baustelle ohne Probleme in die Eupener Innenstadt! Wir für Eupen!

WEGEN Umbau. Renovierung des letzten Teilstücks der Herbesthaler Straße. Auch mit Baustelle ohne Probleme in die Eupener Innenstadt! Wir für Eupen! Wir für Eupn! WEGEN Umbau... göffnt! Wir für Eupn! Wir für Eupn! Auch mit Baustll ohn Problm in di Eupnr Innnstadt! Rnovirung ds ltztn Tilstücks dr Lib Bürgrinnn und Bürgr, wir möchtn Si informirn, dass

Mehr

Grundlagen Hubstapler

Grundlagen Hubstapler Thoms Wittich Grndlgn Hbstplr ch wnn ds Fhrn mit Hbstplrn inf ch rschint, mss dis Tätigkit mit großr Sorgf lt sgübt wrdn, d Fhlr grvirnd Folgn mit sich zihn kö nnn G mäß Fchknntnisnchwis-Vrordnng ist f

Mehr

Ein MOSFET ist ein spannungsgesteuertes Bauelement. Schaltzeichen: n-kanal MOSFET p-kanal MOSFET

Ein MOSFET ist ein spannungsgesteuertes Bauelement. Schaltzeichen: n-kanal MOSFET p-kanal MOSFET 4.4 ER MOFET r MO-Fldffkttrnsistor (kurz MOFET Mtll Oxid miconductor Fild Effct Trnsistor) ist in Obrflächnbulmnt, dssn Funktion im wsntlichm durch nvrsion n dr Obrfläch ds Hlblitrs ggbn ist. Hirbi rfolgt

Mehr

Aufgaben zur Vorlesung Analysis II Prof. Dr. Holger Dette SS 2012 Lösungen zu Blatt 6

Aufgaben zur Vorlesung Analysis II Prof. Dr. Holger Dette SS 2012 Lösungen zu Blatt 6 Aufgben zur Vorlesung Anlysis II Prof. Dr. Holger Dette SS 0 Lösungen zu Bltt 6 Aufgbe. Die Funktion f : [, ) R sei in jedem endlichen Teilintervll von [, ) Riemnnintegrierbr. Für n N sei I n := f() d.

Mehr

Nützliche Tastenkombinationen

Nützliche Tastenkombinationen Nützlich Tastnkombinationn Nützlich Tastnkombinationn Nutzn von Tastnkombinationn Tastnkombinationn könnn Si vrwnn, um Winows 10 schnllr zu binn. Wichtig Systmprogramm zigt Winows 10 an, wnn Si rückn.

Mehr

Formeln zu Mathematik für die Fachhochschulreife

Formeln zu Mathematik für die Fachhochschulreife Fomeln zu Mtemtik fü die Fcocsculeife Beeitet von B. Gimm und B. Sciemnn 3. Auflge VERLAG EUROPA-LEHRMITTEL Nouney, Vollme GmH & Co. KG Düsselege Stße 3 4781 Hn-Guiten Euop-N.: 8519 Autoen: Bend Gimm Bend

Mehr

SPARSETS 150 Teile! eile! 72 od. 144 T

SPARSETS 150 Teile! eile! 72 od. 144 T 62 SPARSETS v i s u l k n I s l v i s u l k n I s All Baumwolltaschn Sparst, 150-tlg. Baumwolltaschn Wrbartikl St: 150 naturfärbig Wrbtaschn inklusiv infarbigr Bdruckung auf inr Sit Maß: ca. 38 x 42 cm.

Mehr

Operationsverstärker Grundlagen 071210 hb9tyx@clustertec.com. Operationsverstärker Grundlagen. Geschrieben 2007 Manfred Dietrich hb9tyx@clustertec.

Operationsverstärker Grundlagen 071210 hb9tyx@clustertec.com. Operationsverstärker Grundlagen. Geschrieben 2007 Manfred Dietrich hb9tyx@clustertec. 070 hb9tyx@clustrtc.com Oprtionsvrstärkr Grundlgn Gschribn 007 Mnfrd Ditrich hb9tyx@clustrtc.com Ausgb 0.. Einlitung...3 Zilpublikum und Vorusstzungn...3 Aufbu ds Kurss... Di Vrsuch...5 Oprtionsvrstärkr

Mehr

Nachstehende Studien- und Prüfungsordnung wurde geprüft und in der 348. Sitzung des Senats am 15.07.2015 verabschiedet.

Nachstehende Studien- und Prüfungsordnung wurde geprüft und in der 348. Sitzung des Senats am 15.07.2015 verabschiedet. Nachsthnd Studin- und Prüfungsordnung wurd gprüft und in dr 348. Sitzung ds Snats am 15.07.2015 vrabschidt. Nur dis Studin- und Prüfungsordnung ist dahr vrbindlich! Prof. Dr. Rainald Kasprik Prorktor Studium,

Mehr

Interpneu Komplettradlogistik

Interpneu Komplettradlogistik Zwi Highlights in Pris Montag kostnlos! ab S Informationn Tchnisch Hintrgründ und Lösungn PLAT P 54 Transparnts Priskonzpt: PLAT P 64 Rifnpris + Flgnpris = omplttradpris PLAT P 69 All Rädr fix und frtig

Mehr

Abitur - Leistungskurs Mathematik. Sachsen-Anhalt 1999

Abitur - Leistungskurs Mathematik. Sachsen-Anhalt 1999 Abitur - Leistungskurs Mthemtik Schsen-Anhlt 999 Gebiet L - Anlysis Augbe.. y, D, R,. Die Funktionenschr sei gegeben durch Die Grphen der Funktionen der Schr werden mit G bezeichnet. ) Ermitteln Sieden

Mehr

Lektion 14 Test Lösungen

Lektion 14 Test Lösungen Lktion 14 Grmmtik 1 Ws ist rihtig? Kruzn Si n. Lktion 14 Tst Lösungn X Jr J Js Jn Jm Pilot ruht vil Erhrung. Glust u, ss jr j X js jn jm Angymnsium gut ist? Wir kommn jr j js X jn jm Mont pünktlih unsr

Mehr

Kapitalkosten und die Besteuerung von Kursgewinnen

Kapitalkosten und die Besteuerung von Kursgewinnen Nr. 489 apitalkostn und di Bsturung von ursgwinnn Ptr Nippl * Oktobr 998 Abstract Untrsucht wird di Auswirkung dr Bsturung von Aktinkursgwinnn auf di ntschidungsorintirt zu rittlndn ignkapitalkostn von

Mehr

Vorbereitung. Geometrische Optik. Stefan Schierle. Versuchsdatum: 22. November 2011

Vorbereitung. Geometrische Optik. Stefan Schierle. Versuchsdatum: 22. November 2011 Vorbritung Gomtrisch Optik Stfan Schirl Vrsuchsdatum: 22. Novmbr 20 Inhaltsvrzichnis Einführung 2. Wllnnatur ds Lichts................................. 2.2 Vrschidn Linsn..................................

Mehr

MACHEN SIE MIT beim innovativen e-health Projekt der Apotheken

MACHEN SIE MIT beim innovativen e-health Projekt der Apotheken MACHEN SIE MIT bim innovaiv -Halh Projk dr Apohk - di Mdikam-App mi vil Zusazlisung für Apohk und Pai V3.00_11_2013 Unsr ak ull Wrbung : i d m m o k Jz p p A s i h Gsund! k h o p A für Ihr Ihr Pai: Di

Mehr

Herleitung und Umstellung der allgemeinen Zinseszinsformel

Herleitung und Umstellung der allgemeinen Zinseszinsformel Hrlung und Usllung dr allgnn Znssznsforl. Hrlung dr Znssznsforl Ggbn s n apal von, das zu Znssaz anglg wrd. Nach wls n Jahr wrdn d Znsn d apal zugschlagn. W hoch s das apal nach Jahrn? Jährlch Znsn wrdn

Mehr

LHG - ein starker Partner für den Lebensmitteleinzelhandel

LHG - ein starker Partner für den Lebensmitteleinzelhandel ng Ausbildu adt... bi dr iblst E n i G LH tion in flich Z din bru vsti n I t u g Ein ukunft! LHG - in starkr Partnr für dn Lbnsmittlinzlhandl Di Lbnsmittlhandlsgsllschaft (LHG) ist di größt inhabrgführt

Mehr

TI II. Sommersemester 2008 Prof. Dr. Mesut Güneş 5. Exercise with Solutions

TI II. Sommersemester 2008 Prof. Dr. Mesut Güneş 5. Exercise with Solutions Distributd mbddd 5. Exrcis with olutions Problm 1: Glitkomma-Darstllung (2+2+2+2+2+2=12) Ghn i bi dr binärn Glitkommadarstllung von 2-Byt großn Zahln aus. Dr Charaktristik sthn 4 Bit zur Vrfügung, dr Mantiss

Mehr

Qualität, auf die Sie bauen können. Quality Living im lebenswerten Mariahilf. 1060 Wien, Gumpendorfer Straße 123 www.gumpendorferstrasse123.

Qualität, auf die Sie bauen können. Quality Living im lebenswerten Mariahilf. 1060 Wien, Gumpendorfer Straße 123 www.gumpendorferstrasse123. Qulität, uf di Si bun könnn. Qulity Livi i lbnswrtn rihilf 1060 Win, upndorfr Strß 123 www.gupndorfrstrs123.t JAJA In City-Näh it ttrktivn Nhvrsorn, bstr Vrkhrsnbindu und Infrtruktur D ist Qulity Livi

Mehr

Wir sind Ihr kompetenter Partner für Netzwerke IT-Dienstleistungen und IT-Security

Wir sind Ihr kompetenter Partner für Netzwerke IT-Dienstleistungen und IT-Security ...and your n works Wir sind Ihr kompnr Parnr für Nzwrk IT-Dinslisungn und IT-Scuriy Profil Als profssionllr Sysmhaus-Parnr für IT-Sysm vrwirklichn wir abgsimm Lösungn aus dn Brichn Nzwrk, IT-Srvics und

Mehr

EBA. Schlussprüfung 2010. Punkte. Kandidatennummer. Name. Vorname. Datum der Prüfung. Punkte und Bewertung Erreichte Punkte / Maximum.

EBA. Schlussprüfung 2010. Punkte. Kandidatennummer. Name. Vorname. Datum der Prüfung. Punkte und Bewertung Erreichte Punkte / Maximum. Schlussprüfung 2010 büroassistntin und büroassistnt Schulischs Qualifikationsvrfahrn 1 EBA information kommunikation IKA administration Sri 1/2 Kandidatnnummr Nam Vornam Datum dr Prüfung und Bwrtung Erricht

Mehr

Quick-Guide für das Aktienregister

Quick-Guide für das Aktienregister Quick-Guid für das Aktinrgistr pord by i ag, spritnbach sitzrland.i.ch/aktinrgistr Quick-Guid Sit 2 von 7 So stign Si in Nach dm Si auf dr Hompag von.aktinrgistr.li auf das Flash-Intro gklickt habn, rschint

Mehr

Telephones JACOB JENSEN

Telephones JACOB JENSEN Tlphons JACOB JENSEN Mhr als nur in Tlfon... Das Jacob Jnsn Tlfon 80 kann wand- odr tischmontirt wrdn. Es ist in drahtloss, digitals DECT Phon mit inr Vilzahl übrragndr Funktionn wi digital Klangschärf,

Mehr

Die Lagrangepunkte im System Erde-Mond

Die Lagrangepunkte im System Erde-Mond Die Lgngepunkte i Syste Ede-ond tthis Bochdt Tnnenbusch-ynsiu Bonn bochdt.tthis@t-online.de Einleitung: Welche Käfte spüt eine Rusonde, die sich ntiebslos in de Nähe von Ede und ond ufhält? Zunächst sind

Mehr

Exkurs: Portfolio Selection Theory

Exkurs: Portfolio Selection Theory : Litetu: Reinhd Schmidt und Ev Tebege (1997): Gundzüge de Investitions- und Finnzieungstheoie, 4. Auflge, Wiesbden: Gble Velg BA-Mikoökonomie II Pofesso D. Mnfed Königstein 1 Aktien und Aktienenditen

Mehr

Entry Voice Mail für HiPath-Systeme. Bedienungsanleitung für Ihr Telefon

Entry Voice Mail für HiPath-Systeme. Bedienungsanleitung für Ihr Telefon Entry Voic Mail für HiPath-Systm Bdinunsanlitun für Ihr Tlfon Zur vorlindn Bdinunsanlitun Zur vorlindn Bdinunsanlitun Dis Bdinunsanlitun richtt sich an di Bnutzr von Entry Voic Mail und an das Fachprsonal,

Mehr

EBA. Schlussprüfung 2010. Punkte. Kandidatennummer. Name. Vorname. Datum der Prüfung. Punkte und Bewertung Erreichte Punkte / Maximum.

EBA. Schlussprüfung 2010. Punkte. Kandidatennummer. Name. Vorname. Datum der Prüfung. Punkte und Bewertung Erreichte Punkte / Maximum. Schlussprüfung 2010 büroassistntin und büroassistnt Schulischs Qualifikationsvrfahrn 1 EBA information kommunikation IKA administration Sri 2/2 Kandidatnnummr Nam Vornam Datum dr Prüfung und Bwrtung Erricht

Mehr

In der Mathematik werden Wachstumsprozesse graphisch durch steigende Graphen dargestellt. Diese können linear oder kurvenförmig verlaufen.

In der Mathematik werden Wachstumsprozesse graphisch durch steigende Graphen dargestellt. Diese können linear oder kurvenförmig verlaufen. Vorbmrkungn Wachstum und Zrall (Jochn Pllatz 2013) Das Thma Eponntialunktionn ist in ignständigs Gbit in dr Mathmatik und wird in dr Schul in vrschidnn Stun untrrichtt. Einach Eponntialunktionn (Kapitl

Mehr