Veranstaltung. Logistik und Materialfluss (Lagerlogistik), Sommersemester 2013

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Veranstaltung. Logistik und Materialfluss (Lagerlogistik), Sommersemester 2013"

Transkript

1 Veranstaltung Logistik und Materialfluss (Lagerlogistik), Sommersemester 203 Übung 4: Tema: Statisce Losgröße Andler Modell Los (lot) : Menge eines Produktes, die one Unterbrecung gefertigt wird. Losgröße(lotsize): Größe des Loses Losgrößenplanung(lotsizing): sollen Produktionsmengen zu größeren Losen zusammengefasst werden, um Rüstkosten zu sparen? Zusammenfassung zu größeren Losen: o Vorproduktion auf Lager für späteren Perioden o Rüstkosten gespart, aber zusätzlice Lagerkosten! Bei Losgrößen bzw. Lageraltungskostenmodellen untersceidet man: Deterministisce Modelle (Nacfrage bekannt) Stocastisce Modelle (Warsceinlickeitsverteilungen über die Nacfragemengen bekannt) Statisce Modelle (konstante Nacfrage eine typisce Bestellperiode) Dynamisce Modelle (Nacfrage variiert mit der Zeit) Ein Produktmodelle Mer - Produktmodelle

2 Kategorien von Losgrößenverfaren: 2

3 Deterministisce Ein Produktmodelle Annamen: Felmenge ( negatives Lager ) nict erlaubt, Lieferung beanspruct keine Zeit Bestände werden sofort aufgefüllt Bekannt: Nacfrage d t zu jedem Zeitpunkt t. Statisc Anname, dass der Bedarf in jeder Periode t gleic ist: d t = d. Standardproblem: klassisces Losgrößenmodell Economic Order uantity (EO)! Zielsetzung: Losgröße so wälen, dass ein Abgleic von Auftrags(Rüst-) und Lagerkosten erzielt wird (Summe minimal!) (I max ) 3

4 Es gilt die so genannte Zero Inventory Ordering Policy, d.. eine neue Bestellung wird erst auf- gegeben, wenn der Lagerbestand auf 0 gesunken ist. Gesuct: eine imale Bestellpolitik. Zu Bestimmen: : wie viel soll bestellt werden? T : In welcen Zeitabständen soll bestellt werden? Gilt: = DT und I max Wobei = Bestellmenge = D = konstante Nacfrage pro Zeiteineit I max = max. Lagerbestand T = Bestellzyklus: Zeit zwiscen zwei aufeinander folgenden Bestellungen. T I max d I avg. t Fläce des Dreiecks = 2 T 4

5 Lagerbestand pro Bestellzyklus: T T () ( ) I t dt = D t dt = t D t = T T durcscnittlicer Lagerbestand: Iavg = 2 Durcscnittlice Gesamtkosten pro Zeiteineit: C ( ) = {Kosten pro Bestellzyklus} T = ( K+ T ) T 2 Auftragskosten Lagerbestandskosten K : Auftragskosten pro Bestellung : Lagerbestandskosten pro Mengen und Zeiteineit Bestimme *, welces die Kostenfunktion C ( ) minimiert! C ( ) ist stetig differenzierbar und konvex. C ( ) = K+ T T 2 K D C ( ) = + 2 Setze Ableitung zu Null und löse nac auf: C ( ) K 2 2 * = = + = 2 * = Kostenminimales wird als Economic Order uantity (EO) bezeicnet (Andler Formel). 5

6 Eine kostenminimale Bestellmenge Zeiteineiten mit den Auftragskosten pro Zeiteineit. balanciert die Lagerbestandskosten pro Fremdfertigung: Eigenfertigung: Auftrags-(Bestell)kosten! Rüstkosten! Auftragskosten ist der Scnittpunkt der beiden Kostenfunktionen. Prinzip: Vorteil: Nacteil: Linearer Zusammenang zwiscen Lagerungskosten und Bescaffungsmenge, degressiver Zusammenang zwiscen Auftragskosten und Bescaffungsmenge! relativ unkomplizierte Formel realitätsfremde Annamen. 6

7 Anzal der Bestellungen pro Zeiteineit: D D N = = : Lagerbestandskosten, K : Auftragskosten 2 D K N = D 2 K Zeit zwiscen zwei Bestellungen: 2 K T = = N D Optimale Gesamtkosten K D Gesamtkosten pro Jar: C ( ) = + 2 Einsetzen in die Andler Formel: C ( ) = 2 K D Variable Bestell- oder Herstellkosten beeinflussen nict. 7

8 Beispiel Der Nettobedarf eines Produktes mit den Rüstkosten (K ) von 200 und den Lagerkosten ( ) von pro Produkteineit und Periode sei durc die folgende Zeitreie gegeben: D = {20,60,60,80,20,60,00} D = 00 ME pro Periode a)wie lautet die imale klassisce Losgröße, wenn von dem durcscnittlicen Nettobedarf von 00 ausgegangen wird? 2 D k = = = 200 ME b)um wie viel % vergrößert bzw. verringert sic die imale klassisce Losgröße, wenn sic der durcscnittlice Bedarf um den Faktor,, =, 2 bzw. 0,9 0,9 = 0,8 ändert? D neu =, 2 D neu 2 Dneu K 2, 2 D K = = =, 2 =, D neu 2 = 0,8 D = 0,8 = 0,9 neu2 c)um wie viel % müssten sic die Rüstkosten eröen bzw. verringern, damit man eine Halbierung der imalen klassiscen Losgröße erzielt? 8

9 neu = 0,5 = 0,5 2 D K neu = 2 D (0,25 K) K neu Rüstkosten müssen auf ¼ also um 75% sinken! Beispiel 2: Die CityCar AG benötigt für die Erstausrüstung der von ir ergestellten Automobile järlic Reifen eines ganz bestimmten Typs, die sie von der Rundlauf AG zum Stückpreis von 48 beziet. a) In welcen zeitlicen Intervallen müssen die Reifen bestellt werden, wenn einmalige Kosten je Bestellung in Höe von 600 anfallen, die Lageraltungskosten für einen Reifen 2 pro Jar betragen, die Gesamtkosten minimiert werden sollen? D = zu 48 pro Stück = 2 /jar, K = 600 Andler Formel: 2 K D = = = 8000 Reifen pro Bestellung 2 l D = = = 30 Bestellungen pro Jar alle 2 Tage sollte bestellt werden. 30 = 9

10 b) Wie stark müssten die Kosten je Bestellung reduziert werden, damit wöcentlice Bestellungen imal wären? Anname: 50 Wocen pro Jar 50 Bestellungen D = = = 4800 Stück pro Woce l K D = K = = = D Die Kosten müssen auf 576 sinken, d = 024 Fazit: Reduktion um 024 notwendig! Anwendung der Klassiscen Losgröße bei Mengenrabatten: a. Berecnung der imalen Bestellmenge unter Verwendung des Rabattpreises a. Liegt imale Bestellmenge über Mindestbestellmenge, ist Optimum gefunden, b. Berecnung der Gesamtkosten: K Gesamt K D = + + p D p - Stückpreis 2 b. Ist die errecnete Bestellmenge kleiner als die Mindestbestellmenge, kann sie nict realisiert werden: a. Berecnung der Gesamtkosten bei Preis one Rabatt, b. Berecnung der Gesamtkosten bei Mindeststückzal und Gewärung von Rabatt, c. Auswal der preisgünstigsten Alternative. 0

11 Beispiel 3: Die Emil Siedentopf KG stellt Hausaltskaffeemascinen er, die dafür benötigten Glaskannen werden von der Paul Deckel KG zu einem Stückpreis von p = 6 bescafft. Die Lagerkosten für die Kaffekannen betragen = /Jar, Bestellkosten (bestellmengenunabängig) belaufen sic auf K = 400 /Bestellung. Die Emil Siedentopf KG get für das kommende Jar von einer Absatzmenge von D = Stück aus. a) Wie groß ist die kostenminimale Bestellmenge? 2 K D = = = 8000 Kaffeekannen b) Wie stark müssten die Bestellkosten gesenkt werden, damit der Übergang zur monatlicen Bestellung zu empfelen ist? Aus Andler-Formel: K ² = l Anzal der Bestellungen 2 D l = 2 Bestellungen/Jar, = D/l = 80000/2 = 6666,67 Bestellungen/Monat K = 278, d.. ΔK = = 22 c) Die Paul Deckel AG biete für Bestellmengen von mind Stück einen 5% Preisnaclass. Lont es sic für die Emil Siedentopf KG (unter den Ausgangsbedingungen) von diesem Angebot Gebrauc zu macen?. = 8000 St.

12 K = = = St. p neu = 0,95*p = 0,95*6 = 5,70 K Rabatt = Fazit: Angebot 2 ist günstiger, daer sollte von diesem Angebot Gebrauc gemact werden! Kontrollfragen:. Was versteen Sie unter einem Los und unter einer Losgröße? 2. Welce Kategorien von Losgrößenmodellen gibt es? 3. Welce Annamen liegen dem Andler Modell zu Grunde? 4. Welce Kostenarten werden beim Auflegen eines Loses berücksictigt? 5. Unter welcer Voraussetzung wird ein Los als imales Los bezeicnet? Literatur:. H. Ermann: Logistik, 7. Aufl., Kiel Verlag, U. Vossebein: Materialwirtscaft und Produktionsteorie, 2. Aufl., Dr. T. Gabler Verlag, G. Geiger, E. Hering, R. Kummer: Kanban: Optimale Steuerung von Prozessen, 3. Aufl., Carl Hanser Verlag GmbH & Co. KG, H.-O. Günter, H. Tempelmeier: Produktion und Logistik, 9. Aufl., Springer Verlag, R. Koeter: Tascenbuc der Logistik, 4. Aufl., Hanser Verlag, 20 2

Jgst. 11/I 1.Klausur

Jgst. 11/I 1.Klausur Jgst. /I.Klausur..00 A. Bestimme den Scnittpunkt und den Scnittwinkel der beiden folgenden Geraden: g : x y = 5 : + y = 5x Zunäcst müssen die beiden Geraden auf Normalform gebract werden: x y = 5 y = x

Mehr

Kostenrechnung. Mengenangaben (Betriebsoptimum, gewinnmaximierende Menge) sind immer auf ganze ME zu runden.

Kostenrechnung. Mengenangaben (Betriebsoptimum, gewinnmaximierende Menge) sind immer auf ganze ME zu runden. Mengenangaben (Betriebsoptimum, gewinnmaximierende Menge) sind immer auf ganze ME zu runden. 1. Berechnen Sie die Gleichung der linearen Betriebskostenfunktion! a. Die Fixkosten betragen 300 GE, die variablen

Mehr

8. Planung optimaler Bestellmengen ausgewählte praxisrelevante Bedingungen

8. Planung optimaler Bestellmengen ausgewählte praxisrelevante Bedingungen 8. Planung optimaler Bestellmengen ausgewählte praxisrelevante Bedingungen Definitionen, Grundsätzliches Fertigungslos (Fertigungsauftrag) Als Losgröße wird die Menge gleichartiger Materialien (z.b. Rohmaterial,

Mehr

Analysis: Klausur Analysis

Analysis: Klausur Analysis Analysis Klausur zu Ableitung, Extrem- und Wendepunkten, Interpretation von Grapen von Ableitungsfunktionen, Tangenten und Normalen (Bearbeitungszeit: 90 Minuten) Gymnasium J Alexander Scwarz www.mate-aufgaben.com

Mehr

Produktionswirtschaft (Teil B) II. Teilbereiche der Produktionsplanung II.1 Lagerhaltung und Losgrößen

Produktionswirtschaft (Teil B) II. Teilbereiche der Produktionsplanung II.1 Lagerhaltung und Losgrößen Produktionswirtschaft (Teil B) II. Teilbereiche der Produktionsplanung II.1 Lagerhaltung und Losgrößen II Teilbereiche der Produktionsplanung...2 II.1 Lagerhaltung und Losgrößen... 2 II.1.1 Einführung

Mehr

Beschaffung. Prof. Dr. Martin Moog. Lehrstuhl für Forstliche Wirtschaftslehre

Beschaffung. Prof. Dr. Martin Moog. Lehrstuhl für Forstliche Wirtschaftslehre Beschaffung Begriffe des Beschaffungswesens Optimierung der Bestellmenge bei kontinuierlichem Verbrauch (Andler sche Formel) Optimierung der Bestellmenge bei diskontinuierlichem Verbrauch (WILO-Verfahren,

Mehr

2.2 Systeme des Bestandsmanagements

2.2 Systeme des Bestandsmanagements . Systeme des Bestandsmanagements Was ist Bestandsmanagement? Grob gesagt, wird im Bestandsmanagement festgelegt, welche Mengen eines Produktes zu welchem Zeitpunkt zu bestellen sind Hierdurch wird der

Mehr

Operations Management. Ulrich Thonemann. Konzepte, Methoden und Anwendungen. 3., aktualisierte Aulage

Operations Management. Ulrich Thonemann. Konzepte, Methoden und Anwendungen. 3., aktualisierte Aulage Operations Management Konzepte, Methoden und Anwendungen 3., aktualisierte Aulage Ulrich Thonemann 5.1 Bestellmengenmodell überprüfen. Diese lautet d 2 dx 2 Z(x) = 2 μ x 3 K und ist für alle positiven

Mehr

6. Die Exponentialfunktionen (und Logarithmen).

6. Die Exponentialfunktionen (und Logarithmen). 6- Funktionen 6 Die Eponentialfunktionen (und Logaritmen) Eine ganz wictige Klasse von Funktionen f : R R bilden die Eponentialfunktionen f() = c ep( ) = c e, ier sind, c feste reelle Zalen (um Trivialfälle

Mehr

Diagramm 1 Diagramm 2

Diagramm 1 Diagramm 2 Zweijärige zur Prüfung der Facsculreife fürende Berufsfacscule (BFS) Matematik (9) Hauptprüfung 008 Aufgaben Aufgabe 1 A. 1. Bestimmen Sie die Gleicungen der Geraden g und.. Geben Sie die Koordinaten der

Mehr

PN1 Einführung in die Physik für Chemiker 1 Prof. J. Lipfert

PN1 Einführung in die Physik für Chemiker 1 Prof. J. Lipfert PN Einfürung in die Pysik für Cemiker Prof. J. Lipfert en zu Übungsblatt 7 WS 203/4 en zu Übungsblatt 7 Aufgabe Ballscleuder. Zwei Bälle werden übereinander und gleiczeitig fallen gelassen. Die Massen

Mehr

Operations Management

Operations Management Operations Management Supply Chain Management und Lagerhaltungsmanagement Prof. Dr. Helmut Dietl Lernziele Nach dieser Veranstaltung sollen Sie wissen, was man unter Supply Chain Management und Lagerhaltungsmanagement

Mehr

Geometrisch ergibt sich deren Graph als Schnitt von G mit der senkrechten Ebene y = b bzw. x = a:

Geometrisch ergibt sich deren Graph als Schnitt von G mit der senkrechten Ebene y = b bzw. x = a: Fläcen im Raum Grap und Scnittkurven Im ganzen Artikel bezeicnet D eine Teilmenge des R 2 und eine skalarwertige Funktion in zwei Veränderlicen. Der Grap f : D R 2 R : (x, y) z = f(x, y) G = { (x, y, z)

Mehr

( ), und legen deshalb eine Ebene fest. Als Aufpunkt dient ein beliebiger Punkt von g oder h, als Spannvektoren

( ), und legen deshalb eine Ebene fest. Als Aufpunkt dient ein beliebiger Punkt von g oder h, als Spannvektoren Lösungen zur analytiscen Geometrie, Buc S. 9f. a) E in die Parameterform umwandeln: x = x + x + Wäle: x = ; x = x = + E : X = x x x = + + = + In F einsetzen: + + = + = = In E einsetzen: s: X = + + ( )

Mehr

Bestandsplanung. Prof. Dr.-Ing. Bernd Noche

Bestandsplanung. Prof. Dr.-Ing. Bernd Noche Prof. Dr.-Ing. Bernd Noche Bestandsplanung Fakultät für Ingenieurwissenschaften Abteilung Maschinenbau Transportsysteme und -logistik Keetmanstr. 3-9 47058 Duisburg Telefon: 0203 379-2785 Telefax: 0203

Mehr

Realschule Schüttorf November 2006 Mathematik Klasse 10 Wiederholung

Realschule Schüttorf November 2006 Mathematik Klasse 10 Wiederholung 1.) Ein Farradändler verkauft in einer Woce 8 Damen- und 1 Herrenfarräder für 589. Ein Damenfarrad ist 11 günstiger als ein Herrenfarrad. Berecne jeweils den Preis eines Damen- und den Preis eines Herrenfarrades!.)

Mehr

Übungen zum Mathematik-Abitur. Geometrie 1

Übungen zum Mathematik-Abitur. Geometrie 1 Geometrie Übungen zum atematik-abitur -7/8 Übungen zum atematik-abitur Geometrie Gegeben sind die Punkte ( 4 ) und ( 5 6 4) P und die Gerade 7 4 g: x= + r 4 Aufgabe : Die Ebene E entält g und Bestimmen

Mehr

OPERATIONS MANAGEMENT. - Supply Chain Management - SCM: Definition

OPERATIONS MANAGEMENT. - Supply Chain Management - SCM: Definition OPERATIONS MANAGEMENT - Supply Chain Management - SCM: Definition Management des Güterflusses innerhalb eines Zuliefer- und Abnehmernetzwerkes, so dass die richtigen Güter zum richtigen Zeitpunkt in der

Mehr

Formelsammlung Grundlagen der Wirtschaftsmathematik

Formelsammlung Grundlagen der Wirtschaftsmathematik Ausgabe 2007-09 Formelsammlung Grundlagen der Wirtschaftsmathematik 1 Stichwortverzeichnis (mit Seitenzahlen) Abschreibungen 14 Formelzeichen 2 Grenzerlös, Grenzumsatz 6 Grenzfunktionen, weitere 7 Grenzgewinn

Mehr

Bestandsplanung und -steuerung: Die Berechnung der Bestellmengen

Bestandsplanung und -steuerung: Die Berechnung der Bestellmengen Bestandsplanung und -steuerung: Die Berechnung der Bestellmengen Dortmund, Oktober 1998 Prof. Dr. Heinz-Michael Winkels, Fachbereich Wirtschaft FH Dortmund Emil-Figge-Str. 44, D44227-Dortmund, TEL.: (0231)755-4966,

Mehr

Schriftliche Prüfung Schuljahr: 2008/2009 Schulform: Gymnasium. Mathematik

Schriftliche Prüfung Schuljahr: 2008/2009 Schulform: Gymnasium. Mathematik Ministerium für Bildung, Jugend und Sport Prüfungen am Ende der Jargangsstufe 10 Scriftlice Prüfung Sculjar: 2008/2009 Sculform: Matematik Allgemeine Arbeitsinweise Die Prüfungszeit beträgt 160 Minuten.

Mehr

Klausur zur Modulprüfung ABWL1 SoSe14 2. Termin 13. Oktober 2014

Klausur zur Modulprüfung ABWL1 SoSe14 2. Termin 13. Oktober 2014 Klausur zur Modulprüfung ABWL1 SoSe14 2. Termin 13. Oktober 2014 Name: Vorname: Matrikel-Nr.: Studiengang, Abschluss: Hiermit erkläre ich mich nach 39(10) der AllgStuPO prüfungsfähig. Ein Rücktritt bzw.

Mehr

Logistik I. 4 Beschaffungslogistik (Teil c)

Logistik I. 4 Beschaffungslogistik (Teil c) Logistik I Quelle: Ehrmann Logistik I Lagermodell: Darstellung und Begriffe Bestand Max. Bestand Beschaffungsauslösebestand (Meldebest.) Bestellauslösebestand Durchschnittsbestand optimale Bestellmenge

Mehr

Fachhochschule Bochum Fachhochschule Münster Fachhochschule Südwestfalen

Fachhochschule Bochum Fachhochschule Münster Fachhochschule Südwestfalen Fachhochschule Bochum Fachhochschule Münster Fachhochschule Südwestfalen Verbundstudiengang Technische Betriebswirtschaft Prof. Dr. rer. nat. habil. J. Resch Teilprüfung: Mathematik 1 (Modul) Termin: Februar

Mehr

Finanzmarktökonometrie: Zeitreihenanalyse Sommersemester 2010 Dr. Martin Becker

Finanzmarktökonometrie: Zeitreihenanalyse Sommersemester 2010 Dr. Martin Becker Wirtscaftswissenscaftlices Prüfungssekretariat Diplomprüfung Finanzmarktökonometrie: Zeitreienanalyse Sommersemester 2010 Dr. Martin Becker Name, Vorname: Matrikelnummer: B i t t e b e a c t e n S i e

Mehr

Fachhochschule Bochum Fachhochschule Südwestfalen

Fachhochschule Bochum Fachhochschule Südwestfalen Fachhochschule Bochum Fachhochschule Südwestfalen Verbundstudiengang Wirtschaftsingenieurwesen Prof. Dr. rer. nat. habil. J. Resch Prüfung: Mathematik Termin: August 2008 Bearbeitungszeit: 180 Minuten

Mehr

WHB11 - Mathematik Klausur Nr. 3 AFS 3 Ökonomische Anwendungen linearer Funktionen

WHB11 - Mathematik Klausur Nr. 3 AFS 3 Ökonomische Anwendungen linearer Funktionen Name: Note: Punkte: von 50 (in %: ) Unterschrift des Lehrers : Zugelassene Hilfsmittel: Taschenrechner, Geodreieck, Lineal Wichtig: Schreiben Sie Ihren Namen oben auf das Klausurblatt und geben Sie dieses

Mehr

Skriptteufel Klausurvorbereitung

Skriptteufel Klausurvorbereitung Skriptteufel Klausurvorbereitung Workshop Produktion Was haben wir vor? Möglichst zielgenaue Klausurvorbereitung Erklären der Aufgabentypen und zugehöriger Lösungswege Aufteilung in fünf große Blöcke:

Mehr

Ressourceneinsatzplanung in der Fertigung

Ressourceneinsatzplanung in der Fertigung Fakultät Informatik, Institut für Angewandte Informatik, Professur Modellierung und Simulation Ressourceneinsatzplanung in der Fertigung Dr. Christoph Laroque Sommersemester 2012 Dresden, Ressourceneinsatzplanung

Mehr

Übungsaufgaben zur Kursarbeit

Übungsaufgaben zur Kursarbeit Übungsaufgaben zur Kursarbeit I) Tema Funktionen. Gib jeweils die maximale Definitionsmenge der Funktion an f(x) = (x ) D f = R (x) = x D = {x R /x } g(x) = (x ) D = {x R /x } g k(x) = x D = {x R /x >

Mehr

Zentrale schriftliche Abiturprüfungen im Fach Mathematik

Zentrale schriftliche Abiturprüfungen im Fach Mathematik Aufgabe 2 Wetterstation Aufgabe aus der scriftlicen Abiturprüfung Hamburg 05. In einer Wetterstation wird die Aufzeicnung eines Niedersclagmessgeräts vom Vortag (im Zeitraum von 0 Ur bis Ur) ausgewertet.

Mehr

Aufgaben und Lösungen Ausarbeitung der Übungsstunde zur Vorlesung Analysis I

Aufgaben und Lösungen Ausarbeitung der Übungsstunde zur Vorlesung Analysis I Aufgaben und en Ausarbeitung der Übungsstunde zur Vorlesung Analysis I Wintersemester 008/009 Anweseneitsaufgaben Übung 4 Einleitung Es soll darauf ingewiesen werden, daß es in der Woce vor der Klausur

Mehr

Operations Management

Operations Management Operations Management Supply Chain Management und Lagerhaltungsmanagement Prof. Dr. Helmut Dietl Lernziele Nach dieser Veranstaltung sollen Sie wissen, was man unter Supply Chain Management und Lagerhaltungsmanagement

Mehr

Differentialrechnung. Kapitel 7. Differenzenquotient. Graphische Interpretation des Differentialquotienten. Differentialquotient

Differentialrechnung. Kapitel 7. Differenzenquotient. Graphische Interpretation des Differentialquotienten. Differentialquotient Differenzenquotient Sei f : R R eine Funktion. Der Quotient Kapitel 7 Differentialrecnung f f 0 + f 0 f f 0 0 eißt Differenzenquotient an der Stelle 0. f, f Sekante 0, f 0 f 0 Josef Leydold Matematik für

Mehr

Aussage: richtig falsch

Aussage: richtig falsch Aufgabe 1 (15 Minuten) Folgende Aussagen sind entweder richtig oder falsch! Kreuzen Sie jeweils direkt hinter der Aussage eines der Kästchen an! Stimmt Ihre Bewertung einer Aussage so gibt es einen Punkt.

Mehr

Informationen zur Kennzahlenanalyse und Unternehmensbewertung

Informationen zur Kennzahlenanalyse und Unternehmensbewertung Informationen zur Kennzalenanalyse und Unternemensbewertung Liquidität Kennzal Formel Sollwert Kommentar Cas Ratio (Liquiditätsgrad 1) ü 20-30% Widerspiegelt die Bezieung zwiscen Flüssigen Mitteln (inkl

Mehr

Numerisches Programmieren, Übungen

Numerisches Programmieren, Übungen Tecnisce Universität Müncen SoSe 2013 Institut für Informatik Prof. Dr. Tomas Huckle Dipl.-Inf. Cristop Riesinger Dipl.-Mat. Jürgen Bräckle Numerisces Programmieren, Übungen 2. Übungsblatt: Kondition,

Mehr

Skulptur. 0,25 m. 1,65 m 1,7 m Sockel. 0,6 m 0,6 m 10 m. Aufgabe 1: Die Skulptur

Skulptur. 0,25 m. 1,65 m 1,7 m Sockel. 0,6 m 0,6 m 10 m. Aufgabe 1: Die Skulptur Aufgabe 1: Die Skulptur Um die Höe einer Skulptur zu bestimmen, die auf einem Sockel stet, stellt sic eine Person (Augenöe 1,70 m) in einer Entfernung von 10 m mit dem Rücken zur Skulptur und ält sic einen

Mehr

KOSTEN- UND PREISTHEORIE

KOSTEN- UND PREISTHEORIE KOSTEN- UND PREISTHEORIE Fikosten, variable Kosten und Grenzkosten Jedes Unternehmen hat einerseits Fikosten (Kf, sind immer gleich und hängen nicht von der Anzahl der produzierten Waren ab, z.b. Miete,

Mehr

3.2 Systeme des Bestandsmanagements. Wie kommt es zu Lagerbeständen? 3.2.1 Klassisches Bestellmengenproblem. Gründe für Lagerbestände

3.2 Systeme des Bestandsmanagements. Wie kommt es zu Lagerbeständen? 3.2.1 Klassisches Bestellmengenproblem. Gründe für Lagerbestände 3. Systeme des Bestandsmanagements Was st Bestandsmanagement? Grob gesagt, wrd m Bestandsmanagement festgelegt, welce Mengen enes Produktes zu welcem Zetpunkt zu bestellen snd Herdurc wrd der Bestand enes

Mehr

Übungsblatt 07. Es gibt eine Reihe weitere Kausalitäten, die hier nicht abschliessend genannt werden können. Wichtig ist, daß die Antwort Sinn macht.

Übungsblatt 07. Es gibt eine Reihe weitere Kausalitäten, die hier nicht abschliessend genannt werden können. Wichtig ist, daß die Antwort Sinn macht. Übungsblatt 07 Aufgabe 1 Jeder Investor will stets mindestens sein eingesetztes Kapital zuzüglich einer Verzinsung zurück bekommen. Mathematisch ergibt sich aus der Formel: Je höher die Verzinsung, desto

Mehr

ANALYSIS Differenzialrechnung Kapitel 1 5

ANALYSIS Differenzialrechnung Kapitel 1 5 TELEKOLLEG MULTIMEDIAL ANALYSIS Differenzialrecnung Kapitel 5 Ferdinand Weber BRmedia Service GmbH Inaltsverzeicnis Jedes Kapitel beginnt mit der Seitenzal.. Das Tangentenproblem. Steigung einer Geraden

Mehr

r 11 r 12 r 13 0 r 22 r r 33 l ik r kj die Gleichungen: k= (II) 2 (I) = 3 2 1

r 11 r 12 r 13 0 r 22 r r 33 l ik r kj die Gleichungen: k= (II) 2 (I) = 3 2 1 Tecnisce Universität Berlin Wintersemester 004/005 Fakultät II; Institut für Matematik Prof. Dr. G. Bärwolff/C. Mense.0.005 Probeklausur zur LV Numerik für Informatiker en Aufgabe a Berecnen Sie die LU-Zerlegung

Mehr

Physik I Übung 7, Teil 2 - Lösungshinweise

Physik I Übung 7, Teil 2 - Lösungshinweise Pysik I Übung 7, Teil - Lösungsinweise Stefan Reutter SoSe 0 Moritz Kütt Stand:.06.0 Franz Fujara Aufgabe Clausius- Klappermann Clapeyron Revisited (Vorsict, Aufgabe vom Cef!) Da sic Prof. Fujara wie immer

Mehr

Linear. Halbkreis. Parabel

Linear. Halbkreis. Parabel Vom Parabolspiegel zur Ableitungsfunktion Im Folgenden get es darum erauszufinden, was ein Parabolspiegel ist und wie er funktioniert. Das fürt uns auf wictige Fragen eines Teilgebietes der Matematik,

Mehr

ZUKUNFT BILDEN. Die Bildungsinitiative der Region. Februar 2015. Journalistische Darstellungsformen. Teil 3

ZUKUNFT BILDEN. Die Bildungsinitiative der Region. Februar 2015. Journalistische Darstellungsformen. Teil 3 ZUKUNFT Februar 2015 Journalistisce Darstellungsformen Teil 3 Das Projekt zur Bildungsförderung für Auszubildende getragen von starken Partnern Initiatoren: Förderer und Stiftungspartner: INHALT Journalistisce

Mehr

Tangenten an Funktionsgraphen (Differenzialrechnung) Aufgaben ab Seite 4

Tangenten an Funktionsgraphen (Differenzialrechnung) Aufgaben ab Seite 4 Klasse / Augaben ab Seite 4 rundlagen und Begrie der Dierenzialrecnung Die Zeicnungen und Erklärungen sind etwas ausürlicer als notwendig u versciedene Screibweisen und Darstellungen auzuzeigen. Steigung

Mehr

Teil 1. 2 Gleichungen mit 2 Unbekannten mit Textaufgaben. und 3 Gleichungen mit 2 Unbekannten. Datei Nr. 12180. Friedrich Buckel. Stand 11.

Teil 1. 2 Gleichungen mit 2 Unbekannten mit Textaufgaben. und 3 Gleichungen mit 2 Unbekannten. Datei Nr. 12180. Friedrich Buckel. Stand 11. Teil Gleicungen mit Unbekannten mit Textaufgaben und 3 Gleicungen mit Unbekannten Datei Nr. 80 Stand. April 0 Lineare Gleicungssysteme INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK 80 Gleicungssysteme Vorwort

Mehr

Extrema von Funktionen in zwei Variablen

Extrema von Funktionen in zwei Variablen Wirtschaftswissenschaftliches Zentrum Universität Basel Mathematik für Ökonomen 1 Dr. Thomas Zehrt Extrema von Funktionen in zwei Variablen Literatur: Gauglhofer, M. und Müller, H.: Mathematik für Ökonomen,

Mehr

Bestimmung der optimalen Bestellmenge

Bestimmung der optimalen Bestellmenge Attributname Beschreibung Name des Lernobjekts Autor/en Zielgruppe Bestimmung der optimalen Bestellmenge FH Vorarlberg: Erne/Gasser Studierende der Wirtschaftsinformatik Vorwissen Lernziel Beschreibung

Mehr

Bestellmengenplanung

Bestellmengenplanung Bestellmengenplanung Ziel: Ermittlung der optimalen Bestellmenge durch Minimierung der Kosten Anstieg der Lagerkosten K L mit zunehmender Bestellmenge, anderseits Abnahme der bestellfixen Kosten K B durch

Mehr

Prüfungsfach: Wahlfach Steuerlehre Punktzahl: 100. Prüfer: Prof. Dr. Volker Breithecker Bearbeitungszeit: 240 Min.

Prüfungsfach: Wahlfach Steuerlehre Punktzahl: 100. Prüfer: Prof. Dr. Volker Breithecker Bearbeitungszeit: 240 Min. Facbereic Wirtscaftswissescaft PO 95 D I P L O M P R Ü F U N G Prüfugstermi: Sommersemester 2002 Studiescwerpukt: - - - Prüfugsfac: Walfac Steuerlere Puktzal: 100 Prüfer: Prof. Dr. Volker Breitecker Bearbeitugszeit:

Mehr

Aufgabe 6: Beschaffung und Lagerhaltung

Aufgabe 6: Beschaffung und Lagerhaltung ufgabe 6: escaffung und Lageraltung Sie sind Leiter einer Montageabteilung und werden von irer Gescäftsleitung aufgefordert in irem ereic die osten zu senken, da Ir Unternemen in artem Wettbewerb mit der

Mehr

Was ich höre, das vergesse ich. Was ich sehe, daran erinnere ich mich. Was ich tue, das verstehe ich. Konfuzius (angebl.)

Was ich höre, das vergesse ich. Was ich sehe, daran erinnere ich mich. Was ich tue, das verstehe ich. Konfuzius (angebl.) Produktions- und Logistikmanagement II Wintersemester 2007/2008 Lehrstuhl für BWL, insbesondere Produktion und Logistik 1 Produktions- und Logistikmanagement II Wintersemester 2007/2008 KAPITEL 1 2 Vorlesungsziel

Mehr

2. Aufgabe Die Berechnung der optimalen Bestellmenge mittels der Andler'schen Formel basiert auf den vier Parametern

2. Aufgabe Die Berechnung der optimalen Bestellmenge mittels der Andler'schen Formel basiert auf den vier Parametern 1. Aufgabe (a) Welches Ziel verfolgt die Berechnung der optimalen Bestellmenge? (b) In welchen betrieblichen Situationen sollte von der optimalen Bestellmenge abgewichen werden? (c) Nennen und erläutern

Mehr

Geschäftsbuchführung

Geschäftsbuchführung Inhaltsverzeichnis Geschäftsbuchführung Seite 1. Aufbau und Gliederung von Bilanz sowie Gewinn- und Verlustrechnung (GuV) 2 2. Aufbau und Funktion des Industriekontenrahmens 4 3. Von der Eröffnungs- zur

Mehr

Analysis: Ableitung, Änderungsrate,Tangente 1 Analysis Ableitung, Änderungsrate, Tangente Teil 1 Gymnasium Klasse 10

Analysis: Ableitung, Änderungsrate,Tangente 1 Analysis Ableitung, Änderungsrate, Tangente Teil 1 Gymnasium Klasse 10 www.mate-aufgaben.com Analysis: Ableitung, Änderungsrate,Tangente Analysis Ableitung, Änderungsrate, Tangente Teil Gymnasium Klasse 0 Alexander Scwarz www.mate-aufgaben.com April 0 www.mate-aufgaben.com

Mehr

Harris mit Abwandlungen. Materialwirtschaft

Harris mit Abwandlungen. Materialwirtschaft 41 4.1. - Harris mit Abwandlungen Materialwirtschaft Welche Annahmen werden im HARRIS-Modell getroffen? Zeigen Sie, dass im HARRIS-Modell im Optimum der ostenausgleich vollzogen wird, d.h. dass die Beschaffungskosten

Mehr

Analysis in der Ökonomie (Teil 1) Aufgaben

Analysis in der Ökonomie (Teil 1) Aufgaben Analysis in der Ökonomie (Teil 1) Aufgaben 1 In einer Fabrik, die Farbfernseher produziert, fallen monatlich fie Kosten in Höhe von 1 Mio an Die variablen Kosten betragen für jeden produzierten Fernseher

Mehr

Frau Lembke. Bisphenol A. Pfui Teufel: Eigenhufe & Brouët

Frau Lembke. Bisphenol A. Pfui Teufel: Eigenhufe & Brouët Fra Lembke Pfi Tefel: Bispenol A Eigenfe & Broët r g Die andelnden Personen ir #1 Fra Lembke ª #3 Der nee glaborant #5 Unsere Umwelt #2 Professor Stabmantel #4 Bispenol A #6 Elvira Lembke T 2 Im Hasflr:

Mehr

1.06 Druck an gekrümmten Flächen y y = f(x) p = γ. (h-y) h y

1.06 Druck an gekrümmten Flächen y y = f(x) p = γ. (h-y) h y 1.06 Druck an gekrümmten läcen f() p γ. (-) p p ds p 0 0 Es andelt sic um ein zweidimensionales Problem in der -- Ebene. ür die Ermittlung von Kräften muss auc die Dimension senkrect zur Tafelebene berücksictigt

Mehr

Zentrale schriftliche Abiturprüfungen im Fach Mathematik

Zentrale schriftliche Abiturprüfungen im Fach Mathematik Zentrale schriftliche Abiturprüfungen im Fach Mathematik Analysis Leistungskurs Aufgabe 1 Produktionsumstellung Aufgabe aus der schriftlichen Abiturprüfung Hamburg 005. Hinweis: Für die zu zeichnenden

Mehr

Ein- und mehrstufige Lagerhaltung

Ein- und mehrstufige Lagerhaltung Hubert Fratzl Ein- und mehrstufige Lagerhaltung Mit 25 Abbildungen Physica-Verlag Heidelberg Ein Unternehmen des Springer-Verlags INHALT Einleitung 1 Abschnitt I: Die Bedeutung der Lagerhaltung in der

Mehr

Manfred Burghardt. Allgemeine Hochschulreife und Fachhochschulreife in den Bereichen Erziehung, Gesundheit und Soziales

Manfred Burghardt. Allgemeine Hochschulreife und Fachhochschulreife in den Bereichen Erziehung, Gesundheit und Soziales Manfred Burgardt Allgemeine Hocsculreife und Facocsculreife in den Bereicen Erzieung, Gesundeit und Soziales Version /4 Inaltsverzeicnis I Inaltsverzeicnis Inaltsverzeicnis... I Die Ableitungsfunktion

Mehr

Übungsklausur. Bitte wählen Sie fünf Aufgaben aus! Aufgabe 1. Übungsklausur zu Mathematik I für BWL und VWL (WS 2008/09) PD Dr.

Übungsklausur. Bitte wählen Sie fünf Aufgaben aus! Aufgabe 1. Übungsklausur zu Mathematik I für BWL und VWL (WS 2008/09) PD Dr. Übungsklausur zu Mathematik I für BWL und VWL (WS 2008/09) PD Dr. Gert Zöller Übungsklausur Hilfsmittel: Taschenrechner, Formblatt mit Formeln. Lösungswege sind stets anzugeben. Die alleinige Angabe eines

Mehr

Weitere Anwendungen von ganzrationalen Funktionen

Weitere Anwendungen von ganzrationalen Funktionen Weitere Anwendungen von ganzrationalen Funktionen 1.0 Um Obstkisten aus Pappe erzustellen, werden aus recteckigen Kartonplatten (Länge 16 dm, Breite 1 dm) an den vier Ecken jeweils Quadrate abgescnitten.

Mehr

Kostenfunktionen. Der Stückpreis (Preis pro Einheit) beträgt 4 Geldeinheiten. Die durch Verkauf zu erzielenden Gesamteinnahmen heißen Umsatz.

Kostenfunktionen. Der Stückpreis (Preis pro Einheit) beträgt 4 Geldeinheiten. Die durch Verkauf zu erzielenden Gesamteinnahmen heißen Umsatz. Kostenfunktionen 1. Ein Unternehmen stellt ein Produkt her. Die Produktion eines Wirtschaftsgutes verursacht Kosten. Die Gesamtkostenfunktion lautet: K(x) = 512+0,44x+0,005x 2. Um x Einheiten des Produkts

Mehr

Zeitplan Abitur. März/Mai des 13. Schuljahres: Mündliche Prüfungen zur besonderen Lernleistung und zur Präsentationsprüfung (jeweils P5).

Zeitplan Abitur. März/Mai des 13. Schuljahres: Mündliche Prüfungen zur besonderen Lernleistung und zur Präsentationsprüfung (jeweils P5). Zeitplan Abitur Nac jedem Halbjareszeugnis: Überprüfung der erbracten Halbjaresleistungen und der recneriscen Möglickeit das Abitur zu besteen durc Sculleitung bzw. APK (Abiturprüfungskommission). Ab April

Mehr

Tangentensteigung. Gegeben ist die Funktion f(x) = x 2.

Tangentensteigung. Gegeben ist die Funktion f(x) = x 2. Tangentensteigung Gegeben ist die Funktion () =. Um die Steigung der Tangente im Punkt P( ) zu bestimmen, ermitteln wir zunäcst die Steigung der Sekante durc P( ) und Q( ). Q soll so beweglic sein, dass

Mehr

4.2.1 Das Verfahren von Wagner und Whitin

4.2.1 Das Verfahren von Wagner und Whitin 4.2.1 Das Verfahren von Wagner und Whitin I) Annahmen und Anwendungsgebiete Wann verwendet man typischerweise dynamische Verfahren der Bestellmengenplanung? Dynamische Verfahren der Bestellmengenplanung

Mehr

Vitamine auf Weltreise

Vitamine auf Weltreise Konzipiert vom Förderverein NaturGut Opoven Vitamine auf Weltreise Zielgruppe: Klasse 2-3 Fac: Dauer: Sacunterrict 90 Minuten Temenbereic: Zusammenang Ernärung und Klimawandel 20 % der Kinder sind zu dick,

Mehr

Klasse 9 a/b/c 4. Schulaufgabe aus der Mathematik

Klasse 9 a/b/c 4. Schulaufgabe aus der Mathematik Klasse 9 a/b/c 4. Sculaufgabe aus der Matematik 14. 06. 00 (WWG) Gruppe A 1. Von einem Würfel der Kantenlänge a wird wie unten eingezeicnet eine Pyramide abgescnitten. Berecne das Volumen der Pyramide.

Mehr

Übung Grundlagen der computergestützten Produktion und Logistik W1332

Übung Grundlagen der computergestützten Produktion und Logistik W1332 Übung Grundlagen der computergestützten Produktion und Logistik W1332 Fakultät für Wirtschaftswissenschaften S. Lauck Exkurs Andlersche Losgrößenformel Exkurs Andlersche Losgrößenformel Gesucht: Optimale

Mehr

Übung zur Vorlesung Einführung in die Betriebswirtschaftliche Steuerlehre

Übung zur Vorlesung Einführung in die Betriebswirtschaftliche Steuerlehre Mercator Scool of Management Prof. Dr. Volker Breitecker, StB Dr. Marco Tönnes, StB SS 2007 Übung zur Vorlesung Einfürung in die Betriebswirtscaftlice Steuerlere Grundlagen: 1. Zur Erzielung von Einnamen

Mehr

Exakte Differenzialgleichungen

Exakte Differenzialgleichungen Exakte Differenzialleicunen In der nacfolenden Diskussion benötien wir die so. symmetrisce Darstellun einer Dl 1. Ordnun. Diese lautet (x, y) + (x, y)dy = 0. Dies entsprict im Falle (x, y) 0 der Dl y (x)

Mehr

Kosten- & Preistheorie Grundlagen

Kosten- & Preistheorie Grundlagen Grundlagen Die Funktionen (Gesamt)Kostenfunktion Beschreibt die anfallenden gesamten Kosten bei einer Produktionsmenge. Stückkostenfunktion / Durchschnittskostenfunktion Beschreibt die durchschnittlichen

Mehr

Prüfungsklausur Mathematik II für Wirtschaftsingenieure,

Prüfungsklausur Mathematik II für Wirtschaftsingenieure, HTWD, Fakultät Informatik/Mathematik Prof. Dr. M. Voigt Prüfungsklausur Mathematik II für Wirtschaftsingenieure, 15.7.2014 A Name, Vorname Matr. Nr. Sem. gr. Aufgabe 1 2 3 4 5 6 gesamt erreichbare P. 10

Mehr

Spezielle BWL II Teil: Materialwirtschaft

Spezielle BWL II Teil: Materialwirtschaft Skript zur Vorlesung Spezielle BWL II Teil: Materialwirtschaft IT Kompaktkurs Wintersemester 2000/2001 Prof. Dr. Herbert Fischer Fachhochschule Deggendorf Empfohlene Literatur: Horst Hartmann: Materialwirtschaft

Mehr

1 Analytische Geometrie und Grundlagen

1 Analytische Geometrie und Grundlagen $Id: vektor.tex,v 1.41 2018/05/08 15:50:54 k Exp $ 1 Analytisce Geometrie und Grundlagen 1.5 Abstände und Winkel Am Ende der letzten Sitzung atten wir eine metrisce Form des Stralensatzes ergeleiten, gegeben

Mehr

Das zweites Gesetz von Newton in einem rotierenden Bezugssystem Geostropische Bewegung Druckkoordinaten

Das zweites Gesetz von Newton in einem rotierenden Bezugssystem Geostropische Bewegung Druckkoordinaten Näcster Abscnitt => Das zweites Gesetz von Newton in einem rotierenden Bezugssystem Geostropisce Bewegung Druckkoordinaten Matematisce Herleitung der Coriolisbescleunigung Darstellung eines beliebigen

Mehr

Mathematik für Chemiker I

Mathematik für Chemiker I Universität D U I S B U R G E S S E N Campus Essen, Matematik PD Dr. L. Strüngmann WS 007/08 Übungsmaterial sowie andere Informationen zur Veranstaltung unter: ttp://www.uni-due.de/algebra-logic/struengmann.stml

Mehr

RWTH Aachen, Lehrstuhl für Informatik IX Kapitel 3: Suchen in Mengen - Datenstrukturen und Algorithmen - 51

RWTH Aachen, Lehrstuhl für Informatik IX Kapitel 3: Suchen in Mengen - Datenstrukturen und Algorithmen - 51 RWTH Aacen, Lerstul für Informatik IX Kapitel 3: Sucen in Mengen - Datenstrukturen und Algoritmen - 51 Sucbäume Biser betractete Algoritmen für Suce in Mengen Sortierte Arrays A B C D - Nur sinnvoll für

Mehr

Gewinn + Fremdkapitalzinsen 4000 + 800. Gesamtkapital 40000

Gewinn + Fremdkapitalzinsen 4000 + 800. Gesamtkapital 40000 Klausur BWL Dauer 1h 30 min Nr. 1) Das Gesamtkapital einer Unternehmung soll 40 000, das Fremdkapital 10 000 betragen. Ein Gewinn ist in Höhe von 4000 erwirtschaftet. Auf das Fremdkapital sind 8% Zinsen

Mehr

Die Symbole Die folgenden Symbole erleichtern Ihnen die Arbeit mit diesem Buch.

Die Symbole Die folgenden Symbole erleichtern Ihnen die Arbeit mit diesem Buch. Benutzerhinweis Der Aufbau der Trainingsmodule Die Trainingsmodule für Industriekaufleute folgen einem völlig neuen Lernkonzept. Durch die Zerlegung des gesamten Stoffs der dreijährigen Ausbildung in einzelne

Mehr

A 46: Bestellpolitik (1)

A 46: Bestellpolitik (1) A 46: Bestellpolitik (1) Der Weinhändler Pierre Notus in Münster hat sich in den letzten Jahren zunehmend auf den Verkauf badischer Weine spezialisiert. Er kann diese Weine günstiger als die Konkurrenz

Mehr

Eigenschaften von Prismen

Eigenschaften von Prismen gnz klr: Mtemtik - Ds Ferieneft mit Erfolgsnzeiger Eigenscften von Ein gerdes Prism t immer eine rund- und eine Deckfläce, die deckungsgleic (kongruent) und prllel zueinnder sind. Den Astnd zwiscen rund-

Mehr

400 FACHHOCHSCHULE STRALSUND Seite 1

400 FACHHOCHSCHULE STRALSUND Seite 1 400 FACHHOCHSCHULE STRALSUND Seite 1 Prüfung im Fach: Prüfungsdauer: Materialwirtschaft Logistik 120 Minuten Semester: SS 2008 WI4 / WI2ERG / WI4FR Prüfer: Prof. Dr. W. Petersen Erreichbare Punktzahl:

Mehr

Analyse wirtschaftlicher Zusammenhänge

Analyse wirtschaftlicher Zusammenhänge Analyse wirtschaftlicher Zusammenhänge 24 Aufgaben Bearbeitungszeit: 60 Minuten Instruktion: In dieser Aufgabengruppe wird Ihre Fähigkeit erfasst, Zusammenhänge aus dem Bereich der Wirtschaft zu verstehen,

Mehr

Gründe für Lagerbestände. 3.2 Systeme des Bestandsmanagements. Wie kommt es zu Lagerbeständen? 3.2.1 Klassisches Bestellmengenproblem.

Gründe für Lagerbestände. 3.2 Systeme des Bestandsmanagements. Wie kommt es zu Lagerbeständen? 3.2.1 Klassisches Bestellmengenproblem. 3. Systeme des Bestandsmanagements Was st Bestandsmanagement? Grob gesagt, wrd m Bestandsmanagement festgelegt, welce Mengen enes Produktes zu welcem Zetpunkt zu bestellen snd Herdurc wrd der Bestand enes

Mehr

Analysis: Ableitung, Änderungsrate,Tangente Analysis Klausur zu Ableitung, Änderungsrate, Tangente Gymnasium Klasse 10

Analysis: Ableitung, Änderungsrate,Tangente Analysis Klausur zu Ableitung, Änderungsrate, Tangente Gymnasium Klasse 10 Analysis Klausur zu Ableitung, Änderungsrate, Tangente Gymnasium Klasse 10 Aleander Scwarz www.mate-aufgaben.com Dezember 01 1 Teil 1: one Hilfsmittel Aufgabe 1: Ermittle die Steigung von f() = + 4 an

Mehr

Aufgaben zu Teil I 1. 1 Aus: Götze, U.: Kostenrechnung und Kostenmanagement, 5. Aufl., Berlin u. a. 2010, S. 23 ff.

Aufgaben zu Teil I 1. 1 Aus: Götze, U.: Kostenrechnung und Kostenmanagement, 5. Aufl., Berlin u. a. 2010, S. 23 ff. Aufgaben zu Teil I 1 1 Aus: Götze, U.: Kostenrechnung und Kostenmanagement, 5. Aufl., Berlin u. a. 2010, S. 23 ff. Kontrollfragen 1 1) Was versteht man unter dem Betriebswirtschaftlichen Rechnungswesen,

Mehr

ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN

ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN CHRISTIAN HARTFELDT. Zweiter Mittelwertsatz Der Mittelwertsatz Satz VI.3.4) lässt sich verallgemeinern zu Satz.. Seien f, g : [a, b] R auf [a,

Mehr

Lösungen E: Gutenberg-Produktionsmodell

Lösungen E: Gutenberg-Produktionsmodell Craskrs Aktiitätsanalyse nd Kostenbeertng SS 00.ni-nacilfe.de Lösngen E: Gtenberg-Prodktionsmodell E.a) As den gegebenen Daten kann direkt die kostenfnktion übernommen erden: k a+ a + a33 ( 0, ² +,9) +

Mehr

Bearbeitungshinweise. (20 Punkte)

Bearbeitungshinweise. (20 Punkte) Bearbeitungshinweise - Es sind alle Aufgaben zu bearbeiten. - Als Hilfsmittel sind lediglich nicht programmierbare Taschenrechner erlaubt. - Die Klausur darf nicht auseinander genommen werden. - Sämtliche

Mehr

unabhängigen Variablen Eine Funktion dient der Beschreibung von Zusammenhängen zwischen mehreren verschiedenen Faktoren.

unabhängigen Variablen Eine Funktion dient der Beschreibung von Zusammenhängen zwischen mehreren verschiedenen Faktoren. Funktionsbegriff 2.1 2 Funktionen mit einer unabhängigen Variablen 2.1 Funktionsbegriff Eine Funktion dient der Beschreibung von Zusammenhängen zwischen mehreren verschiedenen Faktoren. In den Wirtschaftswissenschaften

Mehr

Überholen mit konstanter Beschleunigung

Überholen mit konstanter Beschleunigung HTL Überolen mit konstanter Seite 1 von 7 Nietrost Bernard bernard.nietrost@tl-steyr.ac.at Überolen mit konstanter Bescleunigung Matematisce / Faclice Inalte in Sticworten: Modellieren kinematiscer Vorgänge;

Mehr

Übungen zu Aktivitätsanalyse und Kostenbewertung im Sommer Aufgabenblatt 5

Übungen zu Aktivitätsanalyse und Kostenbewertung im Sommer Aufgabenblatt 5 Übungen zu Aktivitätsanalyse und Kostenbewertung im Sommer 2013 Aufgabenblatt 5 Aufgabe 1: Relative Deckungsbeitragsrechnung Ein Unternehmen fertigt die Produkte A, B, C und D. Für die Herstellung der

Mehr

Basiswissen Kostenrechnung

Basiswissen Kostenrechnung Beck-Wirtschaftsberater im dtv 50811 Basiswissen Kostenrechnung Kostenarten, Kostenstellen, Kostenträger, Kostenmanagement von Prof. Dr. Germann Jossé German Jossé, ist Diplom-Informationswissenschaftler

Mehr

Aufgabenzettel. Löse rechnerisch mit Hilfe geeigneter Funktionsgleichungen. Überprüfe deine Lösung mit einer Zeichnung.

Aufgabenzettel. Löse rechnerisch mit Hilfe geeigneter Funktionsgleichungen. Überprüfe deine Lösung mit einer Zeichnung. Matematik Klasse 11 1 Zylinder Zwei Zylinderförmige Gefäße werden mit Wasser gefüllt (siee unten). Jedes Gefäß at einen Grundfläceninalt von 1dm 2 und ist 85cm oc. Erreict der Wasserspiegel des zweiten

Mehr

Zahlen, Technik und Produktion. Wirtschaftsingenieurwesen Elektrotechnik und Informationstechnik Bachelor

Zahlen, Technik und Produktion. Wirtschaftsingenieurwesen Elektrotechnik und Informationstechnik Bachelor Zalen, Tecnik und Produktion Wirtscaftsingenieurwesen Elektrotecnik und Informationstecnik Bacelor Inaltsverzeicnis Bescreibung des Faces... 3 Studienvoraussetzungen... 4 Empfolene Fäigkeiten... 4 Tätigkeitsfelder

Mehr