Physik GK 12, AB 01 Stromfluss / Elektrostatik Lösung =10 s beträgt 4 na.

Größe: px
Ab Seite anzeigen:

Download "Physik GK 12, AB 01 Stromfluss / Elektrostatik Lösung =10 s beträgt 4 na."

Transkript

1 ufgabe 1: Elektrische Laung un elektrischer Strom 1.1. uf eine Metallkugel weren immer mehr Laungen aufgebracht. Die Menge er Laungen auf er Kugel folgt er Funktion Q(t )=(0,1t 2 s 2 + 2t s 1 )nc. Wir betrachten ie Zeit von t 1 =0 s bis t 2 =10 s Berechne ie urchschnittliche Stromstärke im Zeitraum von 0 s bis 10 s. Q(0 s)=(0,1 (0s) 2 s 2 +2 (0 s)s 1 )nc=0nc Q(10s)=(0,1 (10s) 2 s 2 +2 (10 s)s 1 )nc=(0, )nC=30nC I= Δ Q Δ t s) Q(0s) =Q(10 = 30nC 0nC =3 nc 10s 0s 10s s =3n : Die urchschnittliche Stromstärke beträgt 3 n Berechne ie momentane Stromstärke zum Zeitpunkt t 2 =10 s. I (t)= Q(t)=(0,2 t s 1 +2)n I (10 s)=(0,2 10 s s 1 +2)n=4 n : Die momentane Stromstärke zum Zeitpunkt t 2 =10 s beträgt 4 n Das Diagramm rechts gibt en fiktiven Verlauf er Laungsmenge in einem elektronischen Bauteil an Erkläre mit Hilfe es Diagramms: Zu welchem Zeitpunkt ist ie Stromstärke maximal/minimal? : n er Stelle er höchsten Steigung maximal, also bei 8 sek. n er Stelle er nierigsten Steigung, also bei 0 sek bzw. ca. 5,5 sek Änert er elektrische Strom seine Richtung? Wenn ja, wann? : Dort, wo ie Steigung ihr Vorzeichen wechselt, also bei ca. 5,5 sek Der Laungsverlauf folgt er Funktion Q(t )=sin( 1 nc 20s t2) 2 I (t)= Q(t)= t 10 s ( cos 1 t nc 2 20 s 2) Berechne ie elektrische Stromstärke zum Zeitpunkt t=5 s. I (5 s)= 5 s 10 s cos ( 1 20 s 2 (5s)2) n= 1 2 cos ( 5 4) 0,158n Seite 1 von 7

2 Berechne ie Zeitpunkte, zu enen kein elektrischer Strom fließt. Das sin ie Nullstellen er Stromstärkefunktion 0 nc= t n 10 s ( cos 1 20 s t 2 n 2) nc Der erste Faktor wir 0 für t 1 =0. Der Kosinus wir null für en π Winkel 2 (90 ). lso π 2 = 1 20s t 2 2 n 10 π=t 2 n s 2 t 2 /3 =± 10 π s 2 =±5,60 s Nur ie positive Lösung ist für ie ufgabe relevant, also t 2 =5,60 s. : Zu en Zeitpunkten t 1 =0 s un t 2 =5,60 fließt kein Strom Das folgene Diagramm gibt en fiktiven Verlauf er Stromstärke in einem elektronischen Bauteil an Mache ie transportierte Laung zwischen t 1 =2 s un t 2 =4 s im Diagramm grafisch kenntlich. Erkläre ies kurz im Text Der Stromstärkenverlauf folgt er Funktion I (t)=3 e 1 2 t Berechne ie transportierte Laung im Intervall von t 1 =2 s un t 2 =4 s. 4 4 = (3 e 1 2s t )mt=[ 6e 1 2 4s 2 s t ] 2s : Die transportierte Laung beträgt 1,4 mc. mc= 6 e 2 nc ( 6 e ) mc 1,3953mC Seite 2 von 7

3 ufgabe 2: Millikanversuch Robert Millikan ( ) hat 1923 en Nobelpreis für Physik für ie experimentelle Bestimmung er Elementarlaung e erhalten. Für ie folgenen Teilaufgaben sin folgene Werte zu benutzen: Elementarlaung: e=1, C ; Ortsfaktor: g =9,81 m/s 2 Erläutere as von Millikan urchgeführte Experiment un wie amit ie Elementarlaung bestimmt wure. Fertige azu auch eine beschriftete Skizze an. - Öltröpfchen konstanter Masse weren urch Reibung aufgelaen - Zwischen en Platten eines Konensators weren sie zum Schweben gebracht. - (Dieser ieale Schwebezustan wir in er Realität nicht erreicht. Lösung: Messung er Sink- bzw. Steiggeschwinigkeiten bei Umpolung es elektrischen Feles un araus bleitung er spezifischen Laung) - Die angelegte Spannung im Schwebezustan hängt von er Laung er Tröpfchen ab - Die errechneten Laungen sin immer ganzzahlige Vielfache einer bestimmten Laung. Es muss also eine kleinste, gequantelte Elementarlaung geben. - Der Millikan-Versuch liefert zunächst nur Ergebnisse für ie spezifische Laung.h. ie Masse es Elektrons muss schon bekannt sein. e m e, Wir betrachten ein vierfach gelaenes Öltröpfchen er Masse m im Schwebezustan zwischen en Platten eines Konensators mit em Plattenabstan un er angelegten Konensatorspannung U. Leite eine Formel her, mit welcher für ieses Öltröpfchen ie Elementarlaung e in bhängigkeit von er Masse m, er Spannung U un em Plattenabstan bestimmt weren kann. Zwischen en Konensatorplatten ist Vakuum anzunehmen. Das Öltröpfchen hat ie Masse m=3, kg. F G =F E m g=q E m g=4 e U e= m g 4 U Berechne ie angelegte Spannung für einen Plattenkonensator mit em Plattenabstan =1 cm. (Kontrolle: U=535,81 V ) F G =F E m g=q E m g=4e U U = m g 4e U = 3, kg 9,81 m/s 2 0,01m =535,81 V 4 1, C : Die angelegte Spannung beträgt 536 V. Seite 3 von 7

4 ufgabe 3: Flying Frog II Nehmen wir an, wir laen einen kleinen Frosch (Masse m=40 g ) elektrisch mit q=0,02 C auf. Dieser Frosch soll in einem Plattenkonensator mit zwei waagerecht stehenen Platten zum Schweben gebracht weren. Die kreisförmigen Platten haben einen Durchmesser von 2r=60cm un einen bstan von =30cm. 3.1 Berechne ie Kapazität C es Plattenkonensators. C=ϵ 0 =ϵ 0 π r 2 ( s)2 =8, π (0,30m) 2 N m 2 0,3m =8, C V =8, F=8,34 pf =8, (s)2 N m : Die Kapazität beträgt 8,3 pf. 3.2 Berechne ie Spannung, ie angelegt weren muss, amit er Frosch zum Schweben gebracht weren kann. (Kontrollergebnis: ca. 5,9 V) F G =F E m g=q E E= mg Q U = m g Q U = m g Q 0,3 m 0,04 kg 9,81 N kg 1 U = =5,886 Nm 0,02 C s =5,886V : Die Spannung beträgt ca. 5,9 V. 3.3 Berechne ie Energieichte es elektrischen Feles, in em er Frosch schwebt. ρ e = 1 2 ϵ 0 E 2 ; U =E E= U ρ e = 1 2 ϵ 0 : Die Energieichte beträgt 1,7 J/m³. U 2 = 1 ( s) , N m 2 5,8862 V 2 0,3 2 m 2 =1,7042 J m Der Frosch schwebt in er Mitte zwischen en Platten. Nun wir ie Spannung veroppelt. Berechne ie Zeit, bis er Frosch ie obere Platte berührt. (Der Frosch arf als Massenpunkt betrachtet weren.) F E =Q E=Q U lso F U. Wenn also U veroppelt wir, wir auch F veroppelt, somit ist F E =2 F G un F E F G =F G. Somit wir er Frosch mit a=g nach oben beschleunigt. s= 1 2 g t 2 t= 2 s g = 2 0,15 m =0,1749 s 2 9,81 m s : Nach 175 ms berührt er Frosch ie obere Platte. Seite 4 von 7

5 3.5 Der Frosch berührt ie obere Konensatorplatte. Innerhalb von Δ t=0,01 s wir er Frosch entlaen. Berechne ie mittlere Stromstärke. I = Δ Q Δ t = 0,02C 0,01 s =2 C s =2 : Die mittlere Stromstärke beträgt 2 (aua!). ufgabe 4: Elektrisches Raialfel Stellen wir uns ein Universum ohne Gravitation vor. Dennoch umkreist er Mon ie Ere in gewohnter Weise. Dies ist in unserem Geankenuniversum möglich, weil Ere un Mon elektrisch gleich stark gelaen sin. Berechne ie Laung von Ere un Mon. (Masse Ere: m E =5, kg, Masse Mon: m M =7, kg, Umlaufzeit Mon: T =27,322, mittlerer bstan Mon-Ere: r M = km) Zentripetalkraft F Z =m ω 2 ist gleich Elektrostatischer nziehungskraft F E = 1 Q 1 4 π ϵ 0 r 2 m ω 2 = 1 4π ϵ 0 Q 1 r 2 m 4π 2 T 2 = 1 4π ϵ 0 Q 1 r 2 16π 3 ϵ 0 m r 2 T 2 =Q 1 Q 1 =16 π 3 8, sv 1 m 1 7, kg 3, m (27, s) 2 =3, C 2 Weil laut ufgabenstellung Q 1 = : Q 1 = Q 1 = 3, =5, C : Mon un Ere müssen eine Laung von 5, C tragen. ufgabe 5: Elektrische Laungsträger in Metallen Erkläre, wie Tolman un Stewart 1916 nachgewiesen haben, ass ie Laungsträger in metallischen Leitern a) frei sin un b) Elektronen sin. a) - Sin ie Laungsträger frei, so müssen sie er Massenträgheit unterliegen. - Beschleunigt man er Leiter stark in Längsrichtung sollten sich ie Laungsträger an einem Ene sammeln. - Dies sollte eine messbare Spannung bewirken. b) - Im Versuchsaufbau ist nicht ie Laung messbar, sonern nur as Verhältnis aus Laung un Masse, ie sogenannte spezifische Laung. - us aneren Versuchen war ie spezifische Laung von Elektronen bekannt. - Die gemessene spezifische Laung entspricht er bekannten spezifischen Laung er Elektronen. Seite 5 von 7

6 ufgabe 6: Elektrisches Raialfel vs. Gravitation Zwei als Massenpunkte zu betrachtene Körper mit en Massen m 1 un m 2 tragen ie positiven Laungen Q1 un Q2. Die beien Kugeln ziehen sich mit er Gravitationskraft an un stoßen sich mit er elektrischen Kraft ab. 2.1 Erstelle einen Term für en Quotienten aus er elektr. Kraft F el un er Gravitationskraft F grav. F el = 1 Q Q 1 2 F 4πϵ 0 r 2 grav =γ m m 1 2 r 2 F el F grav = 1 4πϵ 0 γ Q 1 m 1 m Berechne en Quotienten für en Spezialfall zweier Protonen. (m p =1, kg) F el F grav = 1 4π ϵ 0 γ Q 1 m 1 m 2 = 1 4πϵ 0 γ e 2 (1, kg ) 2 =1, Welche Schlussfolgerung kann man aus em Ergebnis aus ufgabe 2 für zwei Protonen in einem stabilen tomkern ziehen? Die gravitative nziehung zwischen en Protonen kann nicht ie Ursache afür sein, ass ie Protonen im tomkern zusammenhalten, enn ie elektrostatische bstoßung ist um viele Größenornungen stärker. Es muss also noch eine anere Kraft geben. ufgabe 7: Plattenkonensator Diesen Konensator kann man bei Conra für 6,42 kaufen. (Stan 2013) Er ist mit en ngaben 6800μ F un U R =25V beschriftet. 3.1 Erkläre ie Beeutung ieser ngaben. 6800μ F ist ie Kapazität es Konensators un U R =25V ist ie Grenzspannung, mit welcher er Konensator gelaen weren kann. Ist ie angelegte Spannung größer, kann es zum Durchschlag kommen. 3.2 Erläutere, was man beachten muss, wenn man einen Konensator mit möglichst hoher Kapazität bauen will. Nach er Formel C=ϵ 0 ϵ r gilt: naher Plattenabstan, große Fläche, hohe Dielektrizitätszahl Seite 6 von 7

7 3.3 Berechne en Durchmesser er Platten eines Plattenkonensators gleicher Kapazität mit kreisförmigen Platten un einem Plattenabstan von =10 cm. C=ϵ 0 ϵ r 6800μ F =ϵ 0 10 cm = ϵ μ F 10 cm=7, m 2 0 =2 pi =9888 m : Der Durchmesser müsste fast 10 km betragen! 3.4 Berechne ie Laung auf em Platten es Plattenkonensators aus 3.3, wenn eine Spannung von 500 V angelegt wure. Q=C U = C 500V =3,4C V : Die Laung beträgt 3,4 C. 3.5 Berechne ie Felstärke es elektrischen Feles zwischen en Platten es Plattenkonensators aus 3.4. E= U =500V =5000 V m 1 0,1m : Das elektrische Fel hat ie Felstärke 5000 V/m. 3.6 Berechne ie Energie, ie im Fel es Plattenkonensators aus 3.4 gespeichert ist. W = 1 2 C U 2 = 1 C V (500V )2 =8, s N m =850 N m s : Die Energie beträgt 850 Joule. 3.7 Berechne ie rbeit, ie verrichtet weren muss, wenn er Plattenabstan es Plattenkonensators aus 3.4 von 10 cm auf 15 cm vergrößert wir. W = 1 2 C U 2 = 1 2 ϵ 0 E 2 lso ist W Δ = 1 2 Δ W =W 1 2 =425 J : Die verrichtete rbeit beträgt 425 Joule. Seite 7 von 7

= 1 und der Ladung Q aufgefasst. Die elektrische Feldstärke beträgt 1, N/C, so dass die Entladung durch einen Blitz unmittelbar bevorsteht.

= 1 und der Ladung Q aufgefasst. Die elektrische Feldstärke beträgt 1, N/C, so dass die Entladung durch einen Blitz unmittelbar bevorsteht. Aufgaben Konensator 57. Zwei kreisförmige Metallplatten mit em Raius 0 cm, ie parallel im Abstan von 0 cm angeornet sin, bilen einen Plattenkonensator. In er Mitte zwischen en Platten hängt an einem ünnen

Mehr

Das elektrische Feld als Energiespeicher

Das elektrische Feld als Energiespeicher Laungsquantelung Das elektrische Fel als Energiespeicher 79. Das elektrische Fel als Energiespeicher a) Welche Beobachtung legt nahe, ass in einem elektrischen Fel Energie gespeichert ist? b) Zeigen Sie,

Mehr

Abituraufgaben: Statische elektrische Felder. 1 Aus Abiturprüfung 1990, Grundkurs - Plattenkondensator im Vakuum. Aufgabe

Abituraufgaben: Statische elektrische Felder. 1 Aus Abiturprüfung 1990, Grundkurs - Plattenkondensator im Vakuum. Aufgabe Abituraufgaben: Statische elektrische Feler 1 Aus Abiturprüfung 1990, Grunkurs - Plattenkonensator im Vakuum Aufgabe An einem Plattenkonensator mit er Plattenfläche A = 80cm 2 un em Plattenabstan = 25mm

Mehr

da U E d W. Stark; Berufliche Oberschule Freising W12 U12

da U E d W. Stark; Berufliche Oberschule Freising  W12 U12 .4 Zusammenhang von elektrischer Felstärke un Spannung eines Plattenkonensators n ie positive Platte eins Konensators, er mit einer Stromquelle er Spannung verbunen ist, wir ein zunächst elektrisch neutrales

Mehr

4. Zusammenhang von elektrischer Feldstärke und Spannung eines Kondensators; Kapazität eines Kondensators

4. Zusammenhang von elektrischer Feldstärke und Spannung eines Kondensators; Kapazität eines Kondensators 4. Zusammenhang von elektrischer Felstärke un Spannung eines Konensators; Kapazität eines Konensators Zusammenhang von elektrischer Felstärke un Spannung eines Plattenkonensators Überlegung: Eine positive

Mehr

Vorlesung 2: Elektrostatik

Vorlesung 2: Elektrostatik Vorlesung 2: Elektrostatik, georg.steinbrueck@esy.e Folien/Material zur Vorlesung auf: www.esy.e/~steinbru/physikzahnme georg.steinbrueck@esy.e 1 WS 217/18 Potentielle Energie un rbeit im elektrischen

Mehr

2. Stegreifaufgabe aus der Physik Lösungshinweise

2. Stegreifaufgabe aus der Physik Lösungshinweise 2. Stegreifaufgabe aus er Physik Lösungshinweise Gruppe A Aufgabe 1 (a) Die Einheit er Kapazität ist [C] = 1 C V = 1As V = 1 F (Fara) (2 Punkte) (b) Versuchsaufbau: Ein Konensator wir mit Hilfe einer bei

Mehr

Q C U C U Q C U C U. gilt dann: Q Q Q Q C U C U C U C C C U C U. Ges Ges. Ges n

Q C U C U Q C U C U. gilt dann: Q Q Q Q C U C U C U C C C U C U. Ges Ges. Ges n .6 chaltung von Konensatoren. Parallelschaltung von Konensatoren Bei er Parallelschaltung ist ie an en Konensatoren anliegene pannung konstant. s gilt: Die Konensatorgleichung Q C liefert ie sich auf en

Mehr

Vorlesung 2: Elektrostatik

Vorlesung 2: Elektrostatik Vorlesung 2: Elektrostatik, georg.steinbrueck@esy.e Folien/Material zur Vorlesung auf: www.esy.e/~steinbru/physikzahnme georg.steinbrueck@esy.e 1 WS 216/17 Potentielle Energie un Arbeit im elektrischen

Mehr

Physik LK 12, Klausur 04 Induktion - Lösung

Physik LK 12, Klausur 04 Induktion - Lösung Physik LK 12, Klausur 4 Inuktion - Lösung 2.5.211 Die echnungen bitte vollstänig angeben un ie Einheiten mitrechnen. ntwortsätze schreiben, wenn Zahlenwerte zu berechnen sin. Die eibung ist bei allen ufgaben

Mehr

Zusammenfassung: Elektrische Felder

Zusammenfassung: Elektrische Felder LGÖ Ks Ph 11 -stünig Schuljahr 15/16 Zusammenfassung: Elektrische eler Inhaltsverzeichnis Wieerholung: Elektrische Grunschaltungen... Blatt Elektrische Laung... 1 Elektrische eler un elektrische elstärke...

Mehr

1.1.8 Radialsymmetrisches elektrisches Feld, Coulomb-Gesetz; Kapazität des Kugelkondensators

1.1.8 Radialsymmetrisches elektrisches Feld, Coulomb-Gesetz; Kapazität des Kugelkondensators 8 Raialsymmetrisches elektrisches Fel, Coulomb-Gesetz; Kapazität es Kugelkonensators Die Felstärke im raialen Fel - as Coulombsche Gesetz Am Ene es letzten Kapitels wure ie Grungleichung es elektrischen

Mehr

Physik LK 12, Klausur 02 Elektrisches Feld und Kondensator Lösung

Physik LK 12, Klausur 02 Elektrisches Feld und Kondensator Lösung Konstanten: Elementarladung e=,602 0 9 2 As 2 C. Elektrische Feldkonstante: 8,8542 0 N m 2 Dielektrizitätszahl: r Luft = Aufgabe : Eine studentische Hilfskraft wurde eingestellt, um acht Stunden lang Ladungen

Mehr

Felder und Wellen WS 2017/2018 C = U = φ(2) φ(1)

Felder und Wellen WS 2017/2018 C = U = φ(2) φ(1) Feler un Wellen WS 017/018 Musterlösung zum 6. Tutorium 1. Aufgabe (**) Kapazität kann für jee beliebige Leiteranornung efiniert weren C = εe = f E s s }{{} φ() φ(1) Sin mehrere Leiter vorhanen, befinen

Mehr

Umgestellt nach der Ladung erhält man: Der Zusammenhang der Einheiten ist:

Umgestellt nach der Ladung erhält man: Der Zusammenhang der Einheiten ist: Das Elektrische Fel Jeer Körper un jee Materie besteht aus Atomen. Das haben schon ie Griechen vor etwa 2500 Jahren vermutet. Demokrit, etwa 460-371 v.chr., ist erjenige, auf en ie Iee vom atomaren Aufbau

Mehr

Physik II Übung 10 - Lösungshinweise

Physik II Übung 10 - Lösungshinweise Physik II Übung 0 - Lösungshinweise Stefan Reutter SoSe 202 Moritz Kütt Stan: 04.07.202 Franz Fujara Aufgabe Lolli Die kleine Carla hat von einem netten Onkel einen großen, runen Lolli geschenkt bekommen.

Mehr

Physik LK 12, 2. Kursarbeit Magnetismus Lösung A: Nach 10 s beträgt ist der Kondensator praktisch voll aufgeladen. Es fehlen noch 4μV.

Physik LK 12, 2. Kursarbeit Magnetismus Lösung A: Nach 10 s beträgt ist der Kondensator praktisch voll aufgeladen. Es fehlen noch 4μV. Physik LK 2, 2. Kursarbeit Magnetismus Lösung 07.2.202 Konstante Wert Konstante Wert Elementarladung e=,602 0 9 C. Masse Elektron m e =9,093 0 3 kg Molmasse Kupfer M Cu =63,55 g mol Dichte Kupfer ρ Cu

Mehr

Musterloesung. Name:... Vorname:... Matr.-Nr.:...

Musterloesung. Name:... Vorname:... Matr.-Nr.:... 2. Klausur Grunlagen er Elektrotechnik I-B 16. Juni 2003 berlin Name:... Vorname:... Matr.-Nr.:... Bearbeitungszeit: 90 Minuten Trennen Sie en Aufgabensatz nicht auf. Benutzen Sie für ie Lösung er Aufgaben

Mehr

2.5 Kondensatoren und Feldenergie

2.5 Kondensatoren und Feldenergie 30 KAPITEL 2. ELEKTOSTATIK 2.5 Konensatoren un Felenergie Aus en echnungen für eine unenlich ausgeehnte Platte mit homogener Laungsichte, ie wir in en Abschnitten 2.2 un 2.4 vorgenommen haben, können wir

Mehr

Trainingsblatt 04a (freiwillig)

Trainingsblatt 04a (freiwillig) Trainingsblatt 04a (freiwillig) Elektrizitätslehre un Magnetismus Bachelor Physik Bachelor Wirtschaftsphysik Lehramt Physik 5.05.2008 Aufgaben. Ein Konensator, zwischen essen Platten sich Eis befinet,

Mehr

Übungsblatt 5 ( )

Übungsblatt 5 ( ) Experimentalphysik für Naturwissenschaftler 2 Universität Erlangen Nürnberg SS 20 Übungsblatt 5 (08.07.20) ) Magnetische Fellinien Welche er folgenen Fellinienbiler sin richtig un welche nicht? a) richtig

Mehr

Physik für Bauingenieure

Physik für Bauingenieure Fachbereich Physik Prof. Dr. Ruolf Feile Dipl. Phys. Markus Domschke Sommersemester 00 4. 8. Juni 00 Physik für Bauingenieure Übungsblatt 9 Gruppenübungen. Konensator Zwei quaratische Metallplatten mit

Mehr

Klausur 12/1 Physik LK Elsenbruch Di (4h) Thema: elektrische und magnetische Felder Hilfsmittel: Taschenrechner, Formelsammlung

Klausur 12/1 Physik LK Elsenbruch Di (4h) Thema: elektrische und magnetische Felder Hilfsmittel: Taschenrechner, Formelsammlung Klausur 12/1 Physik LK Elsenbruch Di 18.01.05 (4h) Thema: elektrische und magnetische Felder Hilfsmittel: Taschenrechner, Formelsammlung 1) Ein Kondensator besteht aus zwei horizontal angeordneten, quadratischen

Mehr

Der Millikan-Versuch. Einstiegsfragen. Theorie. betreffenden Feldstärken?

Der Millikan-Versuch. Einstiegsfragen. Theorie. betreffenden Feldstärken? Der Millikan-Versuch Einstiegsfragen 1. Welche Körper untersuchte Millikan in seinem Versuch? 2. Welche Felder ließ er darauf wirken? Wie "erzeugte" er sie? Welche Richtungen hatten die betreffenden Feldstärken?

Mehr

Millikan-Experiment. η: Viskosität von Luft r: Tröpfchenradius v 1 : Tröpfchengeschwindigkeit. = π erhält man. 4 r

Millikan-Experiment. η: Viskosität von Luft r: Tröpfchenradius v 1 : Tröpfchengeschwindigkeit. = π erhält man. 4 r A09 Millikan-Experiment Mit em Versuchsaufbau nach Millikan sollen ie Quantisierung er elektrischen Laung nachgewiesen un ie Größe er Elementarlaung bestimmt weren. 1. Theoretische Grunlagen 1.1 Grunsätzliche

Mehr

3.5 RL-Kreise und Impedanz

3.5 RL-Kreise und Impedanz 66 KAPITEL 3. ELEKTRISCHE SCHALTUNGEN 3.5 RL-Kreise un Impeanz Neues Element: Spule Spannung an einer Spule: V = L Q Selbstinuktivität (Einheit: Henry) [L] = 1 V s A Ursache für as Verhalten einer Spule:

Mehr

2.2 Elektrisches Feld

2.2 Elektrisches Feld 2.2. ELEKTRISCHES FELD 9 2.2 Elektrisches Fel Coulomb Gesetz: F i Q i F i = Q i 1 Q j Rij 2 R i R j R ij 4π ɛ j+i 0 }{{} elektrisches Fel am Ort R i Das elektrische Fel, as ie Laung am Ort R i spürt -

Mehr

2.4. GAUSSSCHER SATZ π ε 0 r 2. π r 2)

2.4. GAUSSSCHER SATZ π ε 0 r 2. π r 2) 2.4. GAUSSSCHER SATZ 23 2.4 Gaußscher Satz Das Fel einer Punktlaung genügt er Gleichung: E = 1 4 π ε 0 Q r 2 Desweiteren berechnet sich ie Oberfläche einer Kugel, eren Punkte vom Mittelpunkt en Abstan

Mehr

Kraft zwischen zwei Ladungen Q 1 und Q 2 / Coulomb'sches Gesetz

Kraft zwischen zwei Ladungen Q 1 und Q 2 / Coulomb'sches Gesetz KRG NW, Physik Klasse 10, Kräfte auf Ladungen, Kondensator, Fachlehrer Stahl Seite 1 Kraft zwischen zwei Ladungen Q 1 und Q 2 / Coulomb'sches Gesetz Kraft auf eine Probeladung q im elektrischen Feld (homogen,

Mehr

2.6 Elektrische Felder und Ladungen in Materie

2.6 Elektrische Felder und Ladungen in Materie 2.6. ELEKTRISCHE FELDER UND LADUNGEN IN MATERIE 37 2.6 Elektrische Feler un Laungen in Materie Aus Erfahrung wissen wir, ass unterschieliche Materialien unterschielich auf externe Feler reagieren. Klassifizierung

Mehr

Klausur 12/1 Physik LK Elsenbruch Di (4h) Thema: elektrische und magnetische Felder Hilfsmittel: Taschenrechner, Formelsammlung

Klausur 12/1 Physik LK Elsenbruch Di (4h) Thema: elektrische und magnetische Felder Hilfsmittel: Taschenrechner, Formelsammlung Klausur 12/1 Physik LK Elsenbruch Di 18.01.05 (4h) Thema: elektrische und magnetische Felder Hilfsmittel: Taschenrechner, Formelsammlung 1) Elektronen im elektrischen Querfeld. Die nebenstehende Skizze

Mehr

Übungsblatt 03 Grundkurs IIIb für Physiker

Übungsblatt 03 Grundkurs IIIb für Physiker Übungsblatt 03 Grundkurs IIIb für Physiker Othmar Marti, (othmar.marti@physik.uni-ulm.de) 8.. 2002 oder 25.. 2002 Aufgaben für die Übungsstunden Elektrostatisches Potential,. Zwei identische, ungeladene,

Mehr

Schriftliche Prüfung zur Feststellung der Hochschuleignung

Schriftliche Prüfung zur Feststellung der Hochschuleignung Freie Universität Berlin Schriftliche Prüfung zur Feststellung der Hochschuleignung T-Kurs Fach Physik (Musterklausur) Von den vier Aufgabenvorschlägen sind drei vollständig zu bearbeiten. Bearbeitungszeit:

Mehr

Übungen zu Experimentalphysik 2

Übungen zu Experimentalphysik 2 Pysik Department, Tecnisce Universität Müncen, PD Dr. W. Scinler Übungen zu Experimentalpysik 2 SS 13 - Lösungen zu Übungsblatt 2 1 Kapazitive Füllstansmessung Zur Messung es Füllstan eines Heizöltanks

Mehr

Tutorium Physik 2. Elektrizität

Tutorium Physik 2. Elektrizität 1 Tutorium Physik 2. Elektrizität SS 16 2.Semester BSc. Oec. und BSc. CH 2 Themen 7. Fluide 8. Rotation 9. Schwingungen 10. Elektrizität 11. Optik 12. Radioaktivität 3 10. ELEKTRIZITÄT 4 10.1 Coulombkraft:

Mehr

Prüfungsaufgaben der schriftlichen Matura 2010 in Physik (Profilfach)

Prüfungsaufgaben der schriftlichen Matura 2010 in Physik (Profilfach) Prüfungsaufgaben der schriftlichen Matura 2010 in Physik (Profilfach) Klasse 7Na (Daniel Oehry) Name: Diese Arbeit umfasst vier Aufgaben Hilfsmittel: Dauer: Hinweise: Formelsammlung, Taschenrechner (nicht

Mehr

VORANSICHT. Multiple-Choice-Tests zur Elektrizitätslehre. Multiple-Choice-Test: einfache und objektive Auswertungsmöglichkeiten!

VORANSICHT. Multiple-Choice-Tests zur Elektrizitätslehre. Multiple-Choice-Test: einfache und objektive Auswertungsmöglichkeiten! 21. Multiple-hoice-Tests zur lektrizitätslehre 1 von 20 Multiple-hoice-Tests zur lektrizitätslehre r. Wolfgang Tews, erlin Mit diesen Tests, die viele Themenbereiche der lektrizitätslehre in der Sek I

Mehr

Millikan-Versuch. Einleitung

Millikan-Versuch. Einleitung Millikan-Versuch Einleitung Schon der Name Quantenphysik drückt aus, dass auf der Ebene der kleinsten physikalischen Objekte (z.b. Atome, Protonen, Neutronen oder Elektronen), bestimmte physikalische Gröÿen

Mehr

3.1. Elektrostatik Elektrische Ladungen Atome und Elementarteilchen

3.1. Elektrostatik Elektrische Ladungen Atome und Elementarteilchen 3.1. Elektrostatik 3.1.1. Elektrische Laungen Luftballon mit Styropor, Wasserstrahl, Haaren, OHPFolien un Papier, Katzenfell un Gummistab, Selbstgebautes Elektroskop aus Plastikbecher, lufolie, Büroklammer

Mehr

S. 11 Aufg. A1. S. 11 Aufg. A2

S. 11 Aufg. A1. S. 11 Aufg. A2 S. 11 Aufg. A1 Bestimmen Sie die Stromstärke, die ein Drehspulinstrument anzeigt. Ein Drehspulinstrument ist bei der Anzeige der Stromstärke recht träge. D.h. es zeigt nicht sofort die genaue Stromstärke

Mehr

Übungen zu Experimentalphysik 2

Übungen zu Experimentalphysik 2 Physik Department, Technische Universität München, PD Dr. W. Schindler Übungen zu Experimentalphysik 2 SS 13 - Lösungen zu Übungsblatt 4 1 Schiefe Ebene im Magnetfeld In einem vertikalen, homogenen Magnetfeld

Mehr

Systematisierung Felder und Bewegung von Ladungsträgern in Feldern

Systematisierung Felder und Bewegung von Ladungsträgern in Feldern Systematisierung Felder und Bewegung von Ladungsträgern in Feldern Systematisierung Feld Unterschiede: Beschreibung Ursache Kräfte auf elektrisches Feld Das elektrische Feld ist der besondere Zustand des

Mehr

Übungen zur Klassischen Theoretischen Physik III (Theorie C Elektrodynamik) WS 12-13

Übungen zur Klassischen Theoretischen Physik III (Theorie C Elektrodynamik) WS 12-13 Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Übungen zur Klassischen Theoretischen Physik III Theorie C Elektrodynamik WS 2-3 Prof. Dr. Alexander Mirlin Blatt Dr.

Mehr

2. Klausur in K1 am

2. Klausur in K1 am Name: Punkte: Note: Ø: Physik Kursstufe Abzüge für Darstellung: Rundung:. Klausur in K am 7.. 00 Achte auf die Darstellung und vergiss nicht Geg., Ges., Formeln, Einheiten, Rundung...! Angaben: e =,60

Mehr

K l a u s u r N r. 2 Gk Ph 12

K l a u s u r N r. 2 Gk Ph 12 0.2.2009 K l a u s u r N r. 2 Gk Ph 2 ) Leiten Sie die Formel für die Gesamtkapazität von drei in Serie geschalteten Kondensatoren her. (Zeichnung, Formeln, begründender Text) 2) Berechnen Sie die Gesamtkapazität

Mehr

Grundkurs Physik (2ph2) Klausur

Grundkurs Physik (2ph2) Klausur 1. Ernest O. Lawrence entwickelte in den Jahren 1929-1931 den ersten ringförmigen Teilchenbeschleuniger, das Zyklotron. Dieses Zyklotron konnte Protonen auf eine kinetische Energie von 80 kev beschleunigen.

Mehr

1. Klausur LK Q1 Physik

1. Klausur LK Q1 Physik 1. Aufgabe - Der Versuch von Millikan (40 Punkte) Millikan Robert Andrews, amerikanischer Physiker, *Morrison (Illinois) 22.3.1868, Pasadena (Kalifornien) 19.12.1953; bestimmte ab 1911 in mehreren Versuchen

Mehr

Elektrisches Potenzial Kapitel 25

Elektrisches Potenzial Kapitel 25 Elektrisches Potenzial Kapitel 25 Zusammenfassung Coulomb (22) gleiche Ladungen stoßen sich ab ungleiche Ladungen ziehen sich an Das elektrische Feld (23) Ein geladener Körper beeinflusst einen anderen

Mehr

1. Klausur in K1 am

1. Klausur in K1 am Name: Punkte: Note: Ø: Kernfach Physik Abzüge für Darstellung: Rundung:. Klausur in K am 4. 0. 0 Achte auf die Darstellung und vergiss nicht Geg., Ges., Formeln, Einheiten, Rundung...! Angaben: e =,60

Mehr

(2 π f C ) I eff Z = 25 V

(2 π f C ) I eff Z = 25 V Physik Induktion, Selbstinduktion, Wechselstrom, mechanische Schwingung ösungen 1. Eine Spule mit der Induktivität = 0,20 mh und ein Kondensator der Kapazität C = 30 µf werden in Reihe an eine Wechselspannung

Mehr

Aufgabenblatt zum Seminar 09 PHYS70357 Elektrizitätslehre und Magnetismus (Physik, Wirtschaftsphysik, Physik Lehramt, Nebenfach Physik)

Aufgabenblatt zum Seminar 09 PHYS70357 Elektrizitätslehre und Magnetismus (Physik, Wirtschaftsphysik, Physik Lehramt, Nebenfach Physik) Aufgabenblatt zum Seminar 9 PHYS7357 Elektrizitätslehre und Magnetismus Physik, Wirtschaftsphysik, Physik Lehramt, Nebenfach Physik) Othmar Marti, othmar.marti@uni-ulm.de) 7. 6. 9 Aufgaben. Durch eine

Mehr

Coulomb, el. Feld, Potenzial

Coulomb, el. Feld, Potenzial Klasse / Vier gleich große Ladungen Q < Q < Q3 < Q4 < Q sitzen verteilt in den Ecken eines Quadrats mit der Seitenlänge a und der Diagonalen d< a Bestimmen Sie in allgemeiner Form den Betrag der resultierenden

Mehr

623 Wärmeleitung. Arbeitsauftrag. Anwendung

623 Wärmeleitung. Arbeitsauftrag. Anwendung 63 Wärmeleitung Die Zusammenhänge bei er Wärmeämmung eines Hauses sin im üblichen gymnasialen Physikunterricht ein relatives Stiefkin. Wenn man ie Literatur zu ieser Thematik liest, muss man en Einruck

Mehr

Abschlussprüfung an Fachoberschulen im Schuljahr 2004/2005

Abschlussprüfung an Fachoberschulen im Schuljahr 2004/2005 Abschlussprüfung an Fachoberschulen im Schuljahr 200/200 Haupttermin: Nach- bzw Wiederholtermin: 0909200 Fachrichtung: Technik Fach: Physik Prüfungsdauer: 210 Minuten Hilfsmittel: - Formelsammlung/Tafelwerk

Mehr

Reihen- und Parallelschaltung von Kondensatoren

Reihen- und Parallelschaltung von Kondensatoren Ladung Spannung Kapazität Skizze wir-sind-klasse.jimdo.com Das elektrische Feld Energie des Kondensators Die Energie sitzt nach Faradays Feldvorstellung nicht bei den Ladungen auf den Platten sondern zwischen

Mehr

Moderne Physik: Elemente der Festkörperphysik Wintersemester 2010/11 Übungsblatt 5 für den

Moderne Physik: Elemente der Festkörperphysik Wintersemester 2010/11 Übungsblatt 5 für den Moderne Physik: Elemente der Festkörperphysik Wintersemester 21/11 Übungsblatt 5 für den 14.1.211 14. Fermi-Energie von Elektronen in Metallen Bei T = K besitzt ein freies Elektronengas der Ladungsträgerdichte

Mehr

Lösungen zum Aufgabenblatt 4:

Lösungen zum Aufgabenblatt 4: Lösungen zum Aufgabenblatt 4: $XIJDE Berechnen Sie die Kapazität eines Plattenkondensators mit der Fläche A 1cm, einem Abstand zwischen den Platten von d 5mm und einem Isoliermaterial mit der Dielektrizitätszahl

Mehr

Praktikum I PP Physikalisches Pendel

Praktikum I PP Physikalisches Pendel Praktikum I PP Physikalisches Pendel Hanno Rein Betreuer: Heiko Eitel 16. November 2003 1 Ziel der Versuchsreihe In der Physik lassen sich viele Vorgänge mit Hilfe von Schwingungen beschreiben. Die klassische

Mehr

+DXVDUEHLW $XIJDEH / VXQJ / VXQJ

+DXVDUEHLW $XIJDEH / VXQJ / VXQJ +DXVDUEHLW $XIJDEH Wie groß muß der Abstand der Platten eines Plattenkondensators sein, wenn seine Kapazität 100pF betragen soll. Gegeben ist der Durchmesser der runden Platten (d = 5 cm) und das Isoliermaterial

Mehr

Aufgabenblatt Z/ 01 (Physikalische Größen und Einheiten)

Aufgabenblatt Z/ 01 (Physikalische Größen und Einheiten) Aufgabenblatt Z/ 01 (Physikalische Größen und Einheiten) Aufgabe Z-01/ 1 Welche zwei verschiedenen physikalische Bedeutungen kann eine Größe haben, wenn nur bekannt ist, dass sie in der Einheit Nm gemessen

Mehr

Grundpraktikum I Fernrohr

Grundpraktikum I Fernrohr Grunpraktikum I Fernrohr 6.Versuch Datum: 08.05.2006 Thomas Hemmelmayr (#0455761 un Michael Drack (#0457224 1. Keplersches (astronomisches Fernrohr 1.1. Versuchsaufbau us zwei Sammellinsen soll ein Fernrohr,

Mehr

Abhängigkeiten der Kapazität eines Kondensators

Abhängigkeiten der Kapazität eines Kondensators Abhängigkeiten der Kapazität eines Kondensators Themen der häuslichen, schriftlichen Vorbereitung: Klärung der Begriffe Ladung und Spannung, Definition der Kapazität als Proportionalitätskonstante zwischen

Mehr

10. Vorlesung Wintersemester

10. Vorlesung Wintersemester 10. Vorlesung Wintersemester 1 Existenz von Potentialen Für einimensionale Bewegungen unter er Einwirkung einer Kraft, ie nur vom Ort abhängt, existiert immer ein Potential, a man immer eine Stammfunktion

Mehr

Das resultierende elektrische Feld mehrerer Punktladungen? Superpositionsprinzip

Das resultierende elektrische Feld mehrerer Punktladungen? Superpositionsprinzip Elektrisches Potenzial Kapitel 25 Zusammenfassung Coulomb (22) gleiche Ladungen stoßen sich ab ungleiche Ladungen ziehen sich an Das elektrische Feld (23) Ein geladener Körper beeinflusst einen anderen

Mehr

Besprechung am

Besprechung am PN2 Einführung in die Physik für Chemiker 2 Prof. T. Weitz SS 207 Übungsblatt 4 Übungsblatt 4 Besprechung am 29.05.207 Aufgabe Ohmsches Gesetz. a) Ein Lautsprecherkabel aus Kupfer mit einer Länge von 5,0

Mehr

Abbildung 1: Zu Aufgabe 1. (a) Geben Sie das Potential der Ladungsverteilung im Punkt P mit dem Ortsvektor r an.

Abbildung 1: Zu Aufgabe 1. (a) Geben Sie das Potential der Ladungsverteilung im Punkt P mit dem Ortsvektor r an. Aufgabe 1 (6 Pkt.) Vier positive Punktladungen im Vakuum gleicher Größe Q sitzen in der Ebenze z = 0 eines kartesischen Koordinatensystems auf den Ecken eines Quadrats, nämlich in den Punkten a x = a e

Mehr

Übungen zu Stromstärke und Spannung

Übungen zu Stromstärke und Spannung Übungen zu Stromstärke und Spannung Aufgaben 1.) und 2.) beziehen sich auf die untere Abbildung: B + A 1.) Eine Ladung von 2C wird von A nach B gebracht. Die Spannung zwischen den Punkten beträgt 4V. a)

Mehr

2 Übungen und Lösungen

2 Übungen und Lösungen ST ING Elektrotechnik 0-2 - 2 Übungen und Lösungen 2. Übungen. ELEKTISCHES FELD a b α 2 Zwischen zwei metallischen Platten mit dem bstand a = 5 mm herrsche eine elektrische Feldstärke von E = 500 kvm -.

Mehr

Vordiplomsklausur Physik

Vordiplomsklausur Physik Institut für Physik und Physikalische Technologien der TU-Clausthal; Prof. Dr. W. Schade Vordiplomsklausur Physik 22.Februar 2006, 9:00-11:00 Uhr für die Studiengänge Mb, Inft, Ciw, E+R/Bach. (bitte deutlich

Mehr

PP Physikalisches Pendel

PP Physikalisches Pendel PP Physikalisches Pendel Blockpraktikum Frühjahr 2007 (Gruppe 2) 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Ungedämpftes physikalisches Pendel.......... 2 2.2 Dämpfung

Mehr

Übungen zur Einführung in die Physik II (Nebenfach)

Übungen zur Einführung in die Physik II (Nebenfach) Übungen zur Einführung in ie Physik Nebenfach --- Muserlösung --- Aufgabe: Konensaorenlaung Ein mi Glimmer ε r = 8 gefüller Plaenkonensaor mi er Fläche A=6 cm un einem Plaenabsan = 5 μm enlä sich wegen

Mehr

Übungsblatt 03 (Hausaufgaben)

Übungsblatt 03 (Hausaufgaben) Übungsblatt 03 Hausaufgaben Elektrizitätslehre und Magnetismus Bachelor Physik Bachelor Wirtschaftsphysik Lehramt Physik 0.05.008 Aufgaben. Gegeben sind Ladungen + am Orte a; 0; 0 und a; 0; 0: a Berechnen

Mehr

Einführung in die theoretische Physik 1

Einführung in die theoretische Physik 1 Mathey Einführung in ie theor. Physik 1 Einführung in ie theoretische Physik 1 Prof. Dr. L. Mathey Dienstag 15:45 16:45 un Donnerstag 1:45 12: Beginn: 23.1.12 Jungius 9, Hörs 2 1 Mathey Einführung in ie

Mehr

d(m v) dt = m v beinhaltet einen Kraftterm aufgrund der angelegten Felder (Lorentzkraft) F = e E + v B

d(m v) dt = m v beinhaltet einen Kraftterm aufgrund der angelegten Felder (Lorentzkraft) F = e E + v B Festkörperphysik I Prof Klaus Ensslin HS 216 Verteilung: 23 November 216 Nachbesprechung: 3 November / 1 Dezember 216 1 Übungsblatt: Lösungen Aufgabe 1: Der Hall-Effekt im Drue-Moell a) Die Gleichung für

Mehr

2 Elektrostatik. 2.1 Coulomb-Kraft und elektrische Ladung. 2.1 Coulomb-Kraft und elektrische Ladung

2 Elektrostatik. 2.1 Coulomb-Kraft und elektrische Ladung. 2.1 Coulomb-Kraft und elektrische Ladung 2.1 Coulomb-Kraft und elektrische Ladung 2 Elektrostatik 2.1 Coulomb-Kraft und elektrische Ladung Abb. 2.1 Durch Reiben verschiedener Stoffe aneinander verbleiben Elektronen der Atomhüllen überwiegend

Mehr

INSTITUT FÜR ANGEWANDTE PHYSIK Physikalisches Praktikum für Studierende der Ingenieurswissenschaften Universität Hamburg, Jungiusstraße 11

INSTITUT FÜR ANGEWANDTE PHYSIK Physikalisches Praktikum für Studierende der Ingenieurswissenschaften Universität Hamburg, Jungiusstraße 11 INSIU FÜR NGENDE HYSI hysikalisches rakikum für Suierene er Ingenieurswissenschafen Universiä Hamburg, Jungiussraße 11 elier-ärmepumpe 1 Ziel äleleisung, ärmeleisung un ie Leisungsziffer einer elier-ärmepumpe

Mehr

Mathematischer Vorkurs zum Studium der Physik

Mathematischer Vorkurs zum Studium der Physik Universität Heielberg Mathematischer Vorkurs zum Stuium er Physik Übungen Aufgaben zu Kapitel 5 aus: K. Hefft, Mathematischer Vorkurs zum Stuium er Physik, sowie Ergänzungen Aufgabe 5.: Differenzierbarkeit

Mehr

Kinematik & Dynamik. Über Bewegungen und deren Ursache Die Newton schen Gesetze. Physik, Modul Mechanik, 2./3. OG

Kinematik & Dynamik. Über Bewegungen und deren Ursache Die Newton schen Gesetze. Physik, Modul Mechanik, 2./3. OG Kinematik & Dynamik Über Bewegungen und deren Ursache Die Newton schen Gesetze Physik, Modul Mechanik, 2./3. OG Stiftsschule Engelberg, Schuljahr 2016/2017 1 Einleitung Die Mechanik ist der älteste Teil

Mehr

f x n ) 2 1 Gleichung (*) f' x 1 f'' x 1

f x n ) 2 1 Gleichung (*) f' x 1 f'' x 1 Das Newtonsche Näherungsverfahren, Teil Theorie - Konvergenzkriterium f x n Allgemeine Lösung: x n = x n f' x f' x n n 0 Nach er Fachliteratur (Bronstein/Semenjajew) arf man hier von einer Cauchy-Folge

Mehr

Cluster 1: Kabelverlauf

Cluster 1: Kabelverlauf Teil B Seite 1 / 6 Doris Schönorfer Cluster 1: Kabelverlauf zum Menü Hinweis: Cluster 1 bezieht sich auf Höhere Technische Lehranstalten (HTL) für ie Ausbilungsrichtungen Bautechnik, Holztechnik & Innenraumgestaltung

Mehr

PHYSIK. 2. Klausur - Lösung

PHYSIK. 2. Klausur - Lösung EI PH3 2010-11 PHYSIK 2. Klausur - Lösung 1. Aufgabe (2 Punkte) Unten befindet sich ein Proton im elektrischen Feld zwischen einer ortsfesten positiven sowie einer ortsfesten negativen Ladung. a) Beschreibe,

Mehr

Maßeinheiten der Elektrizität und des Magnetismus

Maßeinheiten der Elektrizität und des Magnetismus Maßeinheiten der Elektrizität und des Magnetismus elektrische Stromstärke I Ampere A 1 A ist die Stärke des zeitlich unveränderlichen elektrischen Stromes durch zwei geradlinige, parallele, unendlich lange

Mehr

Federkraft: F 1 = -bx (b = 50 N/m) Gravitationskraft: F 2 = mg (g = 9,8 m/s 2 )

Federkraft: F 1 = -bx (b = 50 N/m) Gravitationskraft: F 2 = mg (g = 9,8 m/s 2 ) Aufgabe: Schwingung An eine Stahlfeder wird eine Kugel mit der Masse 500g gehängt. Federkraft: F 1 -b (b 50 N/m) Gravitationskraft: F mg (g 9,8 m/s ) m 500g F ma W 1 F( ) d W kin 1 mv b ( t + ϕ ) Acos(

Mehr

Übungen zum Ferienkurs Theoretische Mechanik

Übungen zum Ferienkurs Theoretische Mechanik Übungen zum Ferienkurs Theoretische Mechanik Lagrange un Hamilton Mechanik Übungen, ie mit einem Stern markiert sin, weren als besoners wichtig erachtet. 2.1 3D Faenpenel Betrachten Sie ein Faenpenel er

Mehr

Das statische elektrische Feld

Das statische elektrische Feld Das statische elektrische Feld M. Jakob Gymnasium Pegnitz 10. Dezember 2014 Inhaltsverzeichnis 1 Darstellung eines elektrischen Feldes (6 Std.) Wiederholung Die elektrische Ladung Das elektrische Feld

Mehr

Elektrisches und magnetisches Feld. Elektrostatik Das elektrische Feld Kondensator Magnetische Felder Induktion

Elektrisches und magnetisches Feld. Elektrostatik Das elektrische Feld Kondensator Magnetische Felder Induktion Elektrisches und magnetisches Feld Elektrostatik Das elektrische Feld Kondensator Magnetische Felder Induktion Elektrostatik Elektrostatische Grundbegriffe Zusammenhang zwischen Ladung und Stromstärke

Mehr

Ferienkurs Experimentalphysik 3

Ferienkurs Experimentalphysik 3 Ferienkurs Experimentalphysik 3 Übung Qi Li, Bernhard Loitsch, Hannes Schmeiduch Donnerstag, 08.03.2012 1 Schwarzer Körper Außerhalb der Erdatmosphäre misst man das Maximum des Sonnenspektrums bei einer

Mehr

A. v = 8.9 m/s B. v = 6.3 m/s C. v = 12.5 m/s D. v = 4.4 m/s E. v = 1.3 m/s

A. v = 8.9 m/s B. v = 6.3 m/s C. v = 12.5 m/s D. v = 4.4 m/s E. v = 1.3 m/s Aufgabe 1: Wie schnell muss ein Wagen in einem Looping mit 8 m Durchmesser am höchsten Punkt sein, damit er gerade nicht herunterfällt? (im Schwerefeld der Erde) A. v = 8.9 m/s B. v = 6.3 m/s C. v = 12.5

Mehr

Klausur Grundlagen der Elektrotechnik II (MB, EUT, LUM) Seite 1 von 5

Klausur Grundlagen der Elektrotechnik II (MB, EUT, LUM) Seite 1 von 5 Klausur 15.08.2011 Grundlagen der Elektrotechnik II (MB, EUT, LUM) Seite 1 von 5 Vorname: Matr.-Nr.: Nachname: Aufgabe 1 (6 Punkte) Gegeben ist folgende Schaltung aus Kondensatoren. Die Kapazitäten der

Mehr

Leistungskurs Physik (Bayern): Abiturprüfung 2004 Aufgabe V Elektrische Feldkonstante, Lichtgitter, Vielfachreflexionen

Leistungskurs Physik (Bayern): Abiturprüfung 2004 Aufgabe V Elektrische Feldkonstante, Lichtgitter, Vielfachreflexionen Leistungsurs Physi (Bayern): biturprüfung 004 ufgabe V Eletrische Felonstante, Lichtgitter, Vielfachreflexionen 1. Eletrische Felonstante In eine Pratiusversuch wir ein Plattenonensator (Kapazität C) it

Mehr

Alte Physik III. 10. Februar 2011

Alte Physik III. 10. Februar 2011 D-MATH/D-PHYS Prof. R. Monnier Studienjahr HS11 ETH Zürich Alte Physik III 10. Februar 2011 Füllen Sie als erstes den untenstehenden Kopf mit Name und Legi-Nummer aus, und kreuzen Sie Ihre Studienrichtung

Mehr

MS Michelson-Interferometer

MS Michelson-Interferometer MS Michelson-Interferometer Blockpraktikum Herbst 2007 (Gruppe 2b) 24. Oktober 2007 Inhaltsverzeichnis 1 Grunlagen 2 1.1 Aufbau.................................... 2 1.2 Interferenzmuster...............................

Mehr

Probeklausur. Bitte schreiben Sie Ihren Namen auf jede Seite und legen Sie Ihren Lichtbildausweis bereit.

Probeklausur. Bitte schreiben Sie Ihren Namen auf jede Seite und legen Sie Ihren Lichtbildausweis bereit. PN2 Einführung in die Physik für Chemiker 2 Prof. J. Lipfert SS 2016 Probeklausur Probeklausur Name: Matrikelnummer: Bitte schreiben Sie Ihren Namen auf jede Seite und legen Sie Ihren Lichtbildausweis

Mehr

Diese Lösung wurde erstellt von Cornelia Sanzenbacher. Sie ist keine offizielle Lösung des Bayerischen Staatsministeriums für Unterricht und Kultus.

Diese Lösung wurde erstellt von Cornelia Sanzenbacher. Sie ist keine offizielle Lösung des Bayerischen Staatsministeriums für Unterricht und Kultus. bschlussprüfung 013 an en Realschulen in ayern athematik II usterlösung Lösung iese Lösung wure erstellt von ornelia anzenbacher. ie ist keine offizielle Lösung es ayerischen taatsministeriums für Unterricht

Mehr

ABITURPRÜFUNG 2006 GRUNDFACH PHYSIK

ABITURPRÜFUNG 2006 GRUNDFACH PHYSIK ABITURPRÜFUNG 2006 GRUNDFACH PHYSIK (HAUPTTERMIN) Arbeitszeit: Hilfsmittel: 210 Minuten Wörterbuch zur deutschen Rechtschreibung Taschenrechner (nicht programmierbar, nicht grafikfähig) (Schüler, die einen

Mehr

E q q 4. Die elektrische Feldstärke ist eigentlich ein Vektor der in Richtung der Coulombkraft zeigt falls eine (positive) Ladung q vorhanden wäre.

E q q 4. Die elektrische Feldstärke ist eigentlich ein Vektor der in Richtung der Coulombkraft zeigt falls eine (positive) Ladung q vorhanden wäre. 11.3 Elektrische Feldstärke Hat man eine Ladung Q und bringt in deren Nähe eine zweite Ladung q so erfährt die zweite Ladung eine abstoßende bzw. anziehende Kraft F C. Da diese Kraft an jeder Stelle in

Mehr

Geometrische Ortslinien und Ortsbereiche

Geometrische Ortslinien und Ortsbereiche Geometrische Ortslinien und Ortsbereiche 1. Ermittle alle mit griechischen uchstaben gekennzeichneten Winkelmaße. δ o 45 E ψ ε o 6,57 Lösung: δ = 90 = 45 ε = 16,86 = 63,43 ψ = 81,86. Gegeben ist ein Kreis

Mehr

Kostenfunktion - Der Cournotsche Punkt

Kostenfunktion - Der Cournotsche Punkt Kostenfunktion Seite 1 von 8 Wilfrie Rohm Kostenfunktion - Der Cournotsche Punkt Der Cournotsche Punkt C beschreibt ie gewinnmaximale Preis-Mengen-Kombination mit en Koorinaten C(p c ; x c ). Er sagt aus,

Mehr

8.1. Das unbestimmte Integral

8.1. Das unbestimmte Integral 8 Das unbestimmte Integral So wie ie Bilung von Reihen, also Summenfolgen, ein zur Bilung er Differenzenfolgen inverser Prozess ist, kann man ie Integration als Umkehrung er Differentiation ansehen Stammfunktionen

Mehr

Infos: Buffons Nadel 05/2013

Infos:  Buffons Nadel 05/2013 Mathematik- Unterrichts- Einheiten- Datei e. V. Klasse 7; LK 05/013 Buffons Nael Infos: www.mue.e Im 18. Jahrhunert beteiligten sich eine Reihe von Aeligen an er Weiterentwicklung er Naturwissenschaften

Mehr