Kapitel 2: Algorithmen für CTL und LTL

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Kapitel 2: Algorithmen für CTL und LTL"

Transkript

1 Kapitel 2: Algorithmen ür CTL und LTL Für eine gegebene Kripke-Struktur M = (S, R, L) und eine gegebene temporal-logische Formel ist zu berechnen: {s S M, s = } M ist hier als Graph explizit gegeben. Algorithmus ür CTL-Formeln. Model Checking - Kapitel 2 1

2 Algorithmus ür CTL-Formeln. Erweitere L(s) ür alle s S schrittweise zu label(s), die Menge der Teilormeln von, die in s wahr sind. in Schritt i: alle Teilormeln mit i 1 geschachtelten CT L-Operatoren sind behandelt. also: Rekursion über Schachtelungstiee mit 6 Fällen: Welche Basisormeln von CTL wählen? Clarke Bérard et al Huth & Ryan Gopalakrishnan EX EU EG EX EU AU EX EU AF EX, AX AU AF EG Model Checking - Kapitel 2 2

3 1. atomar: ür Zustände s mit L(s) setzte label(s). s 1 s 2 a = EX(a b) s 3 b Model Checking - Kapitel 2 3

4 1. atomar: ür Zustände s mit L(s) setzte label(s). 2. = 1 : ür Zustände s mit 1 label(s) setzte 1 label(s). b s 1 s 2 a b = EX(a b) s 3 b Model Checking - Kapitel 2 4

5 1. atomar: ür Zustände s mit L(s) setzte label(s). 2. = 1 : ür Zustände s mit 1 label(s) setzte 1 label(s). 3. = 1 2 : ür Zustände s mit 1 label(s) oder 2 label(s) setzte label(s). b s 1 s 2 a a b b a b = EX(a b) s 3 b Model Checking - Kapitel 2 5

6 4. = EX 1 : ür Zustände s mit R(s, t) und 1 label(s). label(t) setzte s EX 1 t 1 b a b EX(a b) s 1 s 2 a b a b = EX(a b) s 3 EX(a b) Model Checking - Kapitel 2 6 b

7 5. = E[ 1 U 2 ]: = E(b U EX(a b)) s 5 b EX(a b) s 1 s 2 a s 3 b s 4 b Model Checking - Kapitel 2 7

8 5. = E[ 1 U 2 ]: ür Zustände s mit 2 label(s) setzte label(s); ür Zustände t mit R(t, s) und 1 label(s) setze label(t); t s 1 2 E[ 1 U 2 ] E[ 1 U 2 ] Model Checking - Kapitel 2 8

9 5. = E[ 1 U 2 ]: ür Zustände s mit 2 label(s) setzte label(s); ür Zustände t mit R(t, s) und 1 label(s) setze label(t); ahre schrittweise in Gegenrichtung der Transitionen ort und setze label(s), alls es einen Pad von s zu einem s mit 2 label(s ) gibt, au dem ür alle Zustände t davor 1 label(t) gilt. Siehe Algorithmus 5.5. t s E[ 1 U 2 ] E[ 1 U 2 ] E[ 1 U 2 ] E[ 1 U 2 ] Model Checking - Kapitel 2 9

10 = E(b U EX(a b)) = E(b U EX(a b)) b s 5 s 1 s 2 EX(a b) = E(b U EX(a b)) s 3 a b = E(b U EX(a b)) s 4 b = E(b U EX(a b)) Model Checking - Kapitel 2 10

11 Algorithmus 5.5 Auszeichnen mit E( 1 U 2 ) PROCEDURE CheckEU( 1, 2 ) T := {s 2 label(s)}; FOR ALL s T DO label(s) := label(s) {E[ 1 U 2 ]}; WHILE T DO CHOOSE s T ; T := T \{s}; FOR ALL t SUCH THAT R(t, s) DO IF E[ 1 U 2 ] label(t) AND 1 label(t) THEN label(t) := label(t) {E[ 1 U 2 ]}; T := T {t}; END IF ; END FOR ALL ; END WHILE ; END PROCEDURE ; Model Checking - Kapitel 2 11

12 EG?? Deinition 5.37 Sei G = (K, R) ein gerichteter Graph, d.h.: R K K: a) A K heißt Zusammenhangskomponente, alls: a, a A : ar a. b) Sie heißt strenge Zusammenhangskomponente (SZK) (strongly connected component: SZK), alls sie maximal ist, d.h.: k K\A. a A : kr a ar k. c) Sie heißt nichttriviale Zusammenhangskomponente, alls: A > 1 oder a A. ar + a. Model Checking - Kapitel 2 12

13 EG?? SZK Model Checking - Kapitel 2 13

14 EG?? nichttriviale SZK triviale SZK Model Checking - Kapitel 2 14

15 Nun betrachten wir wieder die Formel: = EG 1 : Aus M = (S, R, L) konstruiere M = (S, R, L ) mit: S = {s S M, s = 1 } R = R S S L = L S d.h. die Einschränkung von M, in der 1 gilt. Model Checking - Kapitel 2 15

16 Lemma 5.38 M, s = EG 1 gdw. 1. s S 2. Es gibt einen Pad in M, der von s zu einer nichttrivialen starken Zusamenhangskomponente in (S, R ) ührt. s 1 SZK 1 SZK 2 SZK 3 Abbildung 5.17: Strenge Zusammenhangskomponenten mit 1 Model Checking - Kapitel 2 16

17 Daraus Algorithmus zur Entscheidung von EG 1 : 1. Konstruiere M = (S, R, L ) 2. Konstruiere alle SZK von M. (Algorithmus von Tarjan mit O( S + R ) Zeitkomplexität). 3. Finde Zustände in nichttrivialen SZK. 4. Suche von diesen rückwärts alle Zustände die dorthin ühren. insgesamt: O( S + R ). Siehe Algorithmus 5.6. Model Checking - Kapitel 2 17

18 Algorithmus 5.6 Auszeichnen mit EG 1 PROCEDURE CheckEG 1 S := {s 1 label(s)}; SCC := {C C a nontrivial SCC o S }; T := C SCC {s s C}; FOR ALL s T DO label(s) := label(s) {EG 1 }; WHILE T DO CHOOSE s T ; T := T \{s}; FOR ALL t SUCH THAT t S AND R(t, s) DO IF EG 1 label(t) THEN label(t) := label(t) {EG 1 }; T := T {t}; END IF ; END FOR ALL ; END WHILE ; END PROCEDURE ; Model Checking - Kapitel 2 18

19 Satz 5.39 Es gibt einen Algorithmus, der ür eine Struktur M = (S, R, L) und eine Formel CT L in O( ( S + R )) Zeitkomplexität entscheidet, ob ür M gilt. Beweis: Wende obiges Verahren au die Atome von an und ahre induktiv ort mit den Teilormeln von, austeigend mit deren Schachtelung. Model Checking - Kapitel 2 19

20 = AG( AF Heat) Es gilt immer: nach einem Zustand mit wird später ein Zustand mit Heat erreicht. 2 Error oven 1 3 close done 4 Heat cook Beispiel: Mikrowe#enoen close reset oven cooking Heat Error Model Checking - Kapitel 2 warmup 20

21 2 Error oven 1 3 close = AG( AF Heat) EF ( EG) done 4 Heat cook close reset oven cooking 5 Error 6 warmup Model Checking - Kapitel Heat

22 1 Umschreibung von : = AG( AF Heat) AG 1 = EF ( ) 1 = EF ( ( AF Heat)) = EF ( AF Heat) (AF = EG( )) = EF ( EG) (EF E[T rue U]) Model Checking - Kapitel 2 22

23 2 Error oven 1 3 close EF ( EG) done 4 Heat cook close reset oven cooking 5 Error Model Checking - Kapitel 2 6 warmup 7 Heat 23

24 S() = {1, 2, 3, 5, 6} 2 oven SZK ür S() Error 1 3 close EF ( EG) done 4 Heat cook close reset oven cooking 5 Error 6 warmup Model Checking - Kapitel Heat

25 S() = {2, 5, 6, 7} 2 Error oven 1 3 close EF ( EG) done 4 Heat Durchschnitt?? cook close reset oven cooking 5 6 Heat Error warmup Model Checking - Kapitel

26 S(EF ( EG)) = {1, 2, 3, 4, 5, 6, 7} 2 1 S( EF ( EG)) = Error oven 3 close done 4 Heat Durchschnitt?? cook close reset oven cooking 5 Error 6 warmup Model Checking - Kapitel Heat

27 Was wurde bewiesen? 2 Error oven 1 3 close done = AG( AF Heat) Es gilt immer: nach einem Zustand mit wird später ein Zustand mit Heat erreicht. gilt nicht! 4 Heat EF ( EG) S( EF ( EG)) = cook Gegenbeispiel: 1, 3, 1, (2,5) ω close reset oven cooking Error Model Checking - Kapitel 2 warmup 27 Heat

28 Model Checking - Kapitel 2 28

29 Model Checking - Kapitel 2 29

30 Model Checking - Kapitel 2 30

31 Model Checking - Kapitel 2 31

32 q = A(Ug) : h = A(Ug) g a) q = g b 1 ) q = b 2 ) q :(q, q ) R b 3 ) q :(q, q ) R q = A(Ug) h = A(Ug) A(Ug) A(Ug) A(Ug) Model Checking - Kapitel 2 32

33 EG EG AF A(true U ) h = A(true U ) h h h h h h h h = A(Ug) h = A(Ug) g A(Ug) A(Ug) A(Ug) Model Checking - Kapitel 2 33

34 Huth & Ryan EX EU AF EG Model Checking - Kapitel 2 34

35 Huth & Ryan EX EU AF EG Model Checking - Kapitel 2 35

36 Huth & Ryan EX EU AF EG Model Checking - Kapitel

37 EG EG EG EG EG EG EG EG EG EG EG EG Huth & Ryan EX EU AF EG EG EG Model Checking - Kapitel

Gliederung. Definition Wichtige Aussagen und Sätze Algorithmen zum Finden von Starken Zusammenhangskomponenten

Gliederung. Definition Wichtige Aussagen und Sätze Algorithmen zum Finden von Starken Zusammenhangskomponenten Gliederung Zusammenhang von Graphen Stark Zusammenhängend K-fach Zusammenhängend Brücken Definition Algorithmus zum Finden von Brücken Anwendung Zusammenhangskomponente Definition Wichtige Aussagen und

Mehr

Das Briefträgerproblem

Das Briefträgerproblem Das Briefträgerproblem Paul Tabatabai 30. Dezember 2011 Inhaltsverzeichnis 1 Problemstellung und Modellierung 2 1.1 Problem................................ 2 1.2 Modellierung.............................

Mehr

Satz. Für jede Herbrand-Struktur A für F und alle t D(F ) gilt offensichtlich

Satz. Für jede Herbrand-Struktur A für F und alle t D(F ) gilt offensichtlich Herbrand-Strukturen und Herbrand-Modelle Sei F eine Aussage in Skolemform. Dann heißt jede zu F passende Struktur A =(U A, I A )eineherbrand-struktur für F, falls folgendes gilt: 1 U A = D(F ), 2 für jedes

Mehr

Kapitel 7: Formaler Datenbankentwurf

Kapitel 7: Formaler Datenbankentwurf 7. Formaler Datenbankentwurf Seite 1 Kapitel 7: Formaler Datenbankentwurf Die Schwierigkeiten der konzeptuellen Modellierung sind zu einem großen Teil dadurch begründet, dass sich die relevanten Strukturen

Mehr

Bisher. Wiederholung NFA Modellierung durch NFA Kripke-Struktur

Bisher. Wiederholung NFA Modellierung durch NFA Kripke-Struktur Bisher Wiederholung NFA Modellierung durch NFA Kripke-Struktur Model-Checking Modell beschrieben durch Kripke-Struktur A Spezifikation ϕ in einer Temporallogik Verifikation: Nachweis, dass die Struktur

Mehr

2. Vorlesung. Slide 40

2. Vorlesung. Slide 40 2. Vorlesung Slide 40 Knobelaufgabe Was tut dieses Programm? Informell Formal Wie stellt man dies sicher? knobel(a,b) { Wenn a = 0 dann return b sonst { solange b 0 wenn a > b dann { a := a - b sonst b

Mehr

3.1 Konstruktion von minimalen Spannbäumen Es gibt zwei Prinzipien für die Konstruktion von minimalen Spannbäumen (Tarjan): blaue Regel rote Regel

3.1 Konstruktion von minimalen Spannbäumen Es gibt zwei Prinzipien für die Konstruktion von minimalen Spannbäumen (Tarjan): blaue Regel rote Regel 3.1 Konstruktion von minimalen Spannbäumen Es gibt zwei Prinzipien für die Konstruktion von minimalen Spannbäumen (Tarjan): blaue Regel rote Regel EADS 3.1 Konstruktion von minimalen Spannbäumen 16/36

Mehr

Guten Morgen und Willkommen zur Saalübung!

Guten Morgen und Willkommen zur Saalübung! Guten Morgen und Willkommen zur Saalübung! 1 Wie gewinnt man ein Spiel? Was ist ein Spiel? 2 Verschiedene Spiele Schach, Tic-Tac-Toe, Go Memory Backgammon Poker Nim, Käsekästchen... 3 Einschränkungen Zwei

Mehr

8 Diskrete Optimierung

8 Diskrete Optimierung 8 Diskrete Optimierung Definition 8.1. Ein Graph G ist ein Paar (V (G), E(G)) besteh aus einer lichen Menge V (G) von Knoten (oder Ecken) und einer Menge E(G) ( ) V (G) 2 von Kanten. Die Ordnung n(g) von

Mehr

Grundlagen der Künstlichen Intelligenz

Grundlagen der Künstlichen Intelligenz Grundlagen der Künstlichen Intelligenz 27. Aussagenlogik: Logisches Schliessen und Resolution Malte Helmert Universität Basel 28. April 2014 Aussagenlogik: Überblick Kapitelüberblick Aussagenlogik: 26.

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Kapitel 6: Induktives Vorgehen Thomas Worsch KIT, Institut für Theoretische Informatik Wintersemester 2015/2016 GBI Grundbegriffe der Informatik KIT, Institut für Theoretische

Mehr

Abschnitt: Algorithmendesign und Laufzeitanalyse

Abschnitt: Algorithmendesign und Laufzeitanalyse Abschnitt: Algorithmendesign und Laufzeitanalyse Definition Divide-and-Conquer Paradigma Divide-and-Conquer Algorithmen verwenden die Strategien 1 Divide: Teile das Problem rekursiv in Subproblem gleicher

Mehr

Algorithmentheorie. 13 - Maximale Flüsse

Algorithmentheorie. 13 - Maximale Flüsse Algorithmentheorie 3 - Maximale Flüsse Prof. Dr. S. Albers Prof. Dr. Th. Ottmann . Maximale Flüsse in Netzwerken 5 3 4 7 s 0 5 9 5 9 4 3 4 5 0 3 5 5 t 8 8 Netzwerke und Flüsse N = (V,E,c) gerichtetes Netzwerk

Mehr

I. Aussagenlogik. Aussagenlogik untersucht Verknüpfungen wie "und", "oder", "nicht", "wenn... dann" zwischen atomaren und komplexen Sätzen.

I. Aussagenlogik. Aussagenlogik untersucht Verknüpfungen wie und, oder, nicht, wenn... dann zwischen atomaren und komplexen Sätzen. I. Aussagenlogik 2.1 Syntax Aussagenlogik untersucht Verknüpfungen wie "und", "oder", "nicht", "wenn... dann" zwischen atomaren und komplexen Sätzen. Sätze selbst sind entweder wahr oder falsch. Ansonsten

Mehr

Kapitel 4: Dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2012/13. Prof. Dr. Sándor Fekete

Kapitel 4: Dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2012/13. Prof. Dr. Sándor Fekete Kapitel 4: Dynamische Datenstrukturen Algorithmen und Datenstrukturen WS 2012/13 Prof. Dr. Sándor Fekete 4.4 Binäre Suche Aufgabenstellung: Rate eine Zahl zwischen 100 und 114! Algorithmus 4.1 INPUT: OUTPUT:

Mehr

Grundlagen der Künstlichen Intelligenz

Grundlagen der Künstlichen Intelligenz Grundlagen der Künstlichen Intelligenz 22. Constraint-Satisfaction-Probleme: Kantenkonsistenz Malte Helmert Universität Basel 14. April 2014 Constraint-Satisfaction-Probleme: Überblick Kapitelüberblick

Mehr

Foundations of Systems Development

Foundations of Systems Development Foundations of Systems Development Vergleich und Zusammenfassung Martin Wirsing in Zusammenarbeit mit Moritz Hammer und Axel Rauschmayer WS 2007/08 2 Ziele Wichtige Aspekte von algebraischen Spezikationen

Mehr

Punktbeschriftung in Dynamischen Karten

Punktbeschriftung in Dynamischen Karten Vorlesung Algorithmische Kartografie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Benjamin Niedermann Martin Nöllenburg 28.05.2015 1 Übungen Nachtrag 1) Überlegen Sie sich, wie man den

Mehr

Kapitel 4: (Einige) Andere Logiken

Kapitel 4: (Einige) Andere Logiken Kapitel 4: (Einige) Andere Logiken 4.1: Modale Logiken Grundgedanke Nicht alles stimmt unabhängig vom Zeitpunkt es schneit unabhängig vom Ort man kann das Meer sehen unabhängig vom Sprecher ich bin müde

Mehr

Formeln. Signatur. aussagenlogische Formeln: Aussagenlogische Signatur

Formeln. Signatur. aussagenlogische Formeln: Aussagenlogische Signatur Signatur Formeln Am Beispiel der Aussagenlogik erklären wir schrittweise wichtige Elemente eines logischen Systems. Zunächst benötigt ein logisches System ein Vokabular, d.h. eine Menge von Namen, die

Mehr

Was bisher geschah. Aufgaben: Diagnose, Entscheidungsunterstützung Aufbau Komponenten und Funktion

Was bisher geschah. Aufgaben: Diagnose, Entscheidungsunterstützung Aufbau Komponenten und Funktion Was bisher geschah Daten, Information, Wissen explizites und implizites Wissen Wissensrepräsentation und -verarbeitung: Wissensbasis Kontextwissen Problemdarstellung fallspezifisches Wissen repräsentiert

Mehr

Information Systems Engineering Seminar

Information Systems Engineering Seminar Information Systems Engineering Seminar Algorithmische Prüfung der Planarität eines Graphen Marcel Stüttgen, 22.10.2012 FH AACHEN UNIVERSITY OF APPLIED SCIENCES 1 Planarität - Definition Ein Graph heißt

Mehr

Universität Koblenz-Landau, Abteilung Koblenz FB 4 Informatik. Seminar Entscheidungsverfahren für logische Theorien. Endliche Modelle.

Universität Koblenz-Landau, Abteilung Koblenz FB 4 Informatik. Seminar Entscheidungsverfahren für logische Theorien. Endliche Modelle. Universität Koblenz-Landau, Abteilung Koblenz FB 4 Informatik Seminar Entscheidungsverfahren für logische Theorien Tobias Hebel Koblenz, am 18.02.2005 Inhaltsverzeichnis 1 Einleitung... 3 2 Grundlagen...

Mehr

2. Lernen von Entscheidungsbäumen

2. Lernen von Entscheidungsbäumen 2. Lernen von Entscheidungsbäumen Entscheidungsbäume 2. Lernen von Entscheidungsbäumen Gegeben sei eine Menge von Objekten, die durch Attribut/Wert- Paare beschrieben sind. Jedes Objekt kann einer Klasse

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 3 30.04.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Letztes Mal Aussagenlogik Syntax: welche Formeln? Semantik:

Mehr

Planen als Model Checking

Planen als Model Checking Otto-Friedrich-Universität Bamberg Lehrstuhl Angewandte Informatik Kognitive Systeme Seminararbeit Planen als Model Checking Svetlana Balinova Januar 2007 Inhaltsverzeichnis 1 Einführung 1 2 Explicit Model

Mehr

Kapitel MK:IV. IV. Modellieren mit Constraints

Kapitel MK:IV. IV. Modellieren mit Constraints Kapitel MK:IV IV. Modellieren mit Constraints Einführung und frühe Systeme Konsistenz I Binarization Generate-and-Test Backtracking-basierte Verfahren Konsistenz II Konsistenzanalyse Weitere Analyseverfahren

Mehr

Algorithmen II Vorlesung am 15.11.2012

Algorithmen II Vorlesung am 15.11.2012 Algorithmen II Vorlesung am 15.11.2012 Kreisbasen, Matroide & Algorithmen INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg und Algorithmen nationales

Mehr

Algorithmen und Datenstrukturen (WS 2007/08) 63

Algorithmen und Datenstrukturen (WS 2007/08) 63 Kapitel 6 Graphen Beziehungen zwischen Objekten werden sehr oft durch binäre Relationen modelliert. Wir beschäftigen uns in diesem Kapitel mit speziellen binären Relationen, die nicht nur nur besonders

Mehr

1 Transitionssysteme. 1.1 Motivation: Model-Checking

1 Transitionssysteme. 1.1 Motivation: Model-Checking 1 Transitionssysteme Thema dieser Vorlesung sind temporale und modale Logiken sowie damit zusammenhängende Verfahren aus der Automaten- und Spieltheorie. Die Motivation für viele der hier behandelten Methoden

Mehr

Temporale Logiken: CTL und LTL

Temporale Logiken: CTL und LTL Westfälische Wilhelms-Universität Münster usarbeitung Temporale Logiken: CTL und LTL im Rahmen des Seminars Formale Spezifikation im WS 2005/06 Thorsten Bruns Themensteller: Prof. Dr. Herbert Kuchen Betreuer:

Mehr

Effiziente Algorithmen und Datenstrukturen I. Kapitel 9: Minimale Spannbäume

Effiziente Algorithmen und Datenstrukturen I. Kapitel 9: Minimale Spannbäume Effiziente Algorithmen und Datenstrukturen I Kapitel 9: Minimale Spannbäume Christian Scheideler WS 008 19.0.009 Kapitel 9 1 Minimaler Spannbaum Zentrale Frage: Welche Kanten muss ich nehmen, um mit minimalen

Mehr

Mächtigkeit von WHILE-Programmen

Mächtigkeit von WHILE-Programmen Mächtigkeit von WHILE-Programmen Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 26. November 2009 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit

Mehr

Praktikum Diskrete Optimierung (Teil 11) 17.07.2006 1

Praktikum Diskrete Optimierung (Teil 11) 17.07.2006 1 Praktikum Diskrete Optimierung (Teil 11) 17.07.2006 1 1 Primzahltest 1.1 Motivation Primzahlen spielen bei zahlreichen Algorithmen, die Methoden aus der Zahlen-Theorie verwenden, eine zentrale Rolle. Hierzu

Mehr

Erfüllbarkeit und Allgemeingültigkeit

Erfüllbarkeit und Allgemeingültigkeit Theoretische Informatik: Logik, M. Lange, FB16, Uni Kassel: 3.3 Aussagenlogik Erfüllbarkeit 44 Erfüllbarkeit und Allgemeingültigkeit Def.: eine Formel ϕ heißt erfüllbar, wennesein I gibt, so dass I = ϕ

Mehr

Theoretische Grundlagen des Software Engineering

Theoretische Grundlagen des Software Engineering Theoretische Grundlagen des Software Engineering 7: Einführung Aussagenlogik schulz@eprover.org Logisches Schließen 2 gold +1000, 1 per step, Beispiel: Jage den Wumpus Performance measure death 1000 10

Mehr

4. Lernen von Entscheidungsbäumen. Klassifikation mit Entscheidungsbäumen. Entscheidungsbaum

4. Lernen von Entscheidungsbäumen. Klassifikation mit Entscheidungsbäumen. Entscheidungsbaum 4. Lernen von Entscheidungsbäumen Klassifikation mit Entscheidungsbäumen Gegeben sei eine Menge von Objekten, die durch /Wert- Paare beschrieben sind. Jedes Objekt kann einer Klasse zugeordnet werden.

Mehr

Datenstrukturen und Algorithmen SS07

Datenstrukturen und Algorithmen SS07 Datenstrukturen und Algorithmen SS07 Datum: 27.6.2007 Michael Belfrage mbe@student.ethz.ch belfrage.net/eth Programm von Heute Online Algorithmen Update von Listen Move to Front (MTF) Transpose Approximationen

Mehr

VHDL Verhaltensmodellierung

VHDL Verhaltensmodellierung VHDL Verhaltensmodellierung Dr.-Ing. Volkmar Sieh Lehrstuhl für Informatik 3 (Rechnerarchitektur) Friedrich-Alexander-Universität Erlangen-Nürnberg SS 2013 VHDL Verhaltensmodellierung 1/18 2013-01-11 Inhalt

Mehr

1) Einführung in die formale Verifikation

1) Einführung in die formale Verifikation 1) Einführung in die formale Verifikation GPS: Einführung in die formale Verifikation Fehlerbehaftete Systeme 9 Wofür formale Verifikation? steigender Einsatz von Computertechnologie im Alltag Internet,

Mehr

4 Greedy-Algorithmen (gierige Algorithmen)

4 Greedy-Algorithmen (gierige Algorithmen) Greedy-Algorithmen (gierige Algorithmen) Greedy-Algorithmen werden oft für die exakte oder approximative Lösung von Optimierungsproblemen verwendet. Typischerweise konstruiert ein Greedy-Algorithmus eine

Mehr

22. Algorithmus der Woche Partnerschaftsvermittlung Drum prüfe, wer sich ewig bindet

22. Algorithmus der Woche Partnerschaftsvermittlung Drum prüfe, wer sich ewig bindet 22. Algorithmus der Woche Partnerschaftsvermittlung Drum prüfe, wer sich ewig bindet Autor Volker Claus, Universität Stuttgart Volker Diekert, Universität Stuttgart Holger Petersen, Universität Stuttgart

Mehr

Muster für die Verifikation von Formeln in Temporaler Logik

Muster für die Verifikation von Formeln in Temporaler Logik INSTITUT FÜR INFORMATIK Softwaretechnik und Programmiersprachen Universitätsstr. 1 D 40225 Düsseldorf Muster für die Verifikation von Formeln in Temporaler Logik Philipp Kantner Masterarbeit Beginn der

Mehr

Literatur. Dominating Set (DS) Dominating Sets in Sensornetzen. Problem Minimum Dominating Set (MDS)

Literatur. Dominating Set (DS) Dominating Sets in Sensornetzen. Problem Minimum Dominating Set (MDS) Dominating Set 59 Literatur Dominating Set Grundlagen 60 Dominating Set (DS) M. V. Marathe, H. Breu, H.B. Hunt III, S. S. Ravi, and D. J. Rosenkrantz: Simple Heuristics for Unit Disk Graphs. Networks 25,

Mehr

11. Primfaktorzerlegungen

11. Primfaktorzerlegungen 78 Andreas Gathmann 11 Primfaktorzerlegungen Euch ist sicher aus der Schule bekannt, dass sich jede positive ganze Zahl a als Produkt a = p 1 p n von Primzahlen schreiben lässt, und dass diese Darstellung

Mehr

Datenbankanwendung. Prof. Dr.-Ing. Sebastian Michel TU Kaiserslautern. Wintersemester 2014/15. smichel@cs.uni-kl.de

Datenbankanwendung. Prof. Dr.-Ing. Sebastian Michel TU Kaiserslautern. Wintersemester 2014/15. smichel@cs.uni-kl.de Datenbankanwendung Wintersemester 2014/15 Prof. Dr.-Ing. Sebastian Michel TU Kaiserslautern smichel@cs.uni-kl.de Wiederholung: Anfragegraph Anfragen dieses Typs können als Graph dargestellt werden: Der

Mehr

Steinerbäume. Seminarausarbeitung Hochschule Aalen Fakultät für Elektronik und Informatik Studiengang Informatik Schwerpunkt Software Engineering

Steinerbäume. Seminarausarbeitung Hochschule Aalen Fakultät für Elektronik und Informatik Studiengang Informatik Schwerpunkt Software Engineering Steinerbäume Seminarausarbeitung Hochschule Aalen Fakultät für Elektronik und Informatik Studiengang Informatik Schwerpunkt Software Engineering Verfasser Flamur Kastrati Betreuer Prof. Dr. habil. Thomas

Mehr

16. All Pairs Shortest Path (ASPS)

16. All Pairs Shortest Path (ASPS) . All Pairs Shortest Path (ASPS) All Pairs Shortest Path (APSP): Eingabe: Gewichteter Graph G=(V,E) Ausgabe: Für jedes Paar von Knoten u,v V die Distanz von u nach v sowie einen kürzesten Weg a b c d e

Mehr

1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage:

1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage: Zählen und Zahlbereiche Übungsblatt 1 1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage: Für alle m, n N gilt m + n = n + m. in den Satz umschreiben:

Mehr

Beispiel. Bsp.: Betrachte Schlussweise in: (3) folgt aus (1) und (2), siehe z.b. Resolutionsregel. was ist mit folgender Schlußweise:

Beispiel. Bsp.: Betrachte Schlussweise in: (3) folgt aus (1) und (2), siehe z.b. Resolutionsregel. was ist mit folgender Schlußweise: Theoretische Informatik: Logik, M. Lange, FB16, Uni Kassel: 5.4 Prädikatenlogik mit Gleichheit Resolution 192 Beispiel Bsp.: Betrachte Schlussweise in: 1 Wenn es regnet, dann wird die Straße nass. R N

Mehr

VHDL Verhaltensmodellierung

VHDL Verhaltensmodellierung VHDL Verhaltensmodellierung Dr.-Ing. Matthias Sand Lehrstuhl für Informatik 3 (Rechnerarchitektur) Friedrich-Alexander-Universität Erlangen-Nürnberg WS 2008/2009 VHDL Verhaltensmodellierung 1/26 2008-10-20

Mehr

Vorlesung Algorithmische Geometrie. Streckenschnitte. Martin Nöllenburg 19.04.2011

Vorlesung Algorithmische Geometrie. Streckenschnitte. Martin Nöllenburg 19.04.2011 Vorlesung Algorithmische Geometrie LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 19.04.2011 Überlagern von Kartenebenen Beispiel: Gegeben zwei

Mehr

Binärer Entscheidungsbaum. für Boole sche Funktionen. (binary decision tree: BDT) Kapitel 4: Binäre Entscheidungsdiagramme

Binärer Entscheidungsbaum. für Boole sche Funktionen. (binary decision tree: BDT) Kapitel 4: Binäre Entscheidungsdiagramme Kapitel 4: Binäre Entscheidungsdiagramme (BDDs) BDDs (binary decision diagrams) wurden aus binären Entscheidungsbäumen für boole sche Funktionen entwickelt. Binärer Entscheidungsbaum (binary decision tree:

Mehr

13. Abzählen von Null- und Polstellen

13. Abzählen von Null- und Polstellen 13. Abzählen von Null- und Polstellen 77 13. Abzählen von Null- und Polstellen Als weitere Anwendung des Residuensatzes wollen wir nun sehen, wie man ot au einache Art berechnen kann, wie viele Null- bzw.

Mehr

Algorithmische Methoden zur Netzwerkanalyse

Algorithmische Methoden zur Netzwerkanalyse Algorithmische Methoden zur Netzwerkanalyse Juniorprof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund für Theoretische

Mehr

Deutsche Rentenversicherung Deutsche Sozialversicherung und Europarecht im H inb lick auf und ausländische d ie A l terssicherung W anderarb eitnehm er/ innen m o b il er W issenscha f tl er Aktuelle Entwicklungen

Mehr

1 F r e q u e n t l y A s k e d Q u e s t i o n s Was ist der Global Partner Event Calendar (GPEC)? D e r g l o b a l e V e r a n s t a l t u n g s k a l e n d e r f ü r P a r t n e r i s t e i n w i c

Mehr

Theoretische Informatik 1

Theoretische Informatik 1 Theoretische Informatik 1 Bernhard Nessler Institut für Grundlagen der Informationsverabeitung TU Graz SS 2007 Übersicht 1 Allgemein Teilgebiete der Informatik ohne Theoretische Grundlagen 2 Fragen an

Mehr

Grundlagen der Theoretischen Informatik - Sommersemester 2012. Übungsblatt 1: Lösungsvorschläge

Grundlagen der Theoretischen Informatik - Sommersemester 2012. Übungsblatt 1: Lösungsvorschläge Lehrstuhl für Softwaretechnik und Programmiersprachen Professor Dr. Michael Leuschel Grundlagen der Theoretischen Informatik - Sommersemester 2012 Übungsblatt 1: Lösungsvorschläge Disclaimer: Bei Folgendem

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Einheit 15: Reguläre Ausdrücke und rechtslineare Grammatiken Thomas Worsch Universität Karlsruhe, Fakultät für Informatik Wintersemester 2008/2009 1/25 Was kann man mit endlichen

Mehr

Das Dilemma des Einbrechers Wer die Wahl hat, hat die Qual!

Das Dilemma des Einbrechers Wer die Wahl hat, hat die Qual! Das Dilemma des Einbrechers Wer die Wahl hat, hat die Qual! 0kg 4000 Euro Luster 5,5 kg, 430.- Laptop 2,0 kg, 000.- Schatulle 3,2 kg, 800.- Uhr 3,5 kg, 70.- Schwert,5 kg, 850.- Bild 3,4 kg, 680.- Besteck

Mehr

Suchen und Sortieren Sortieren. Heaps

Suchen und Sortieren Sortieren. Heaps Suchen und Heaps (Folie 245, Seite 63 im Skript) 3 7 21 10 17 31 49 28 14 35 24 42 38 Definition Ein Heap ist ein Binärbaum, der die Heapeigenschaft hat (Kinder sind größer als der Vater), bis auf die

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN. Abzählbarkeit, Injektivität, Sürjektivität und Bijektivität

TECHNISCHE UNIVERSITÄT MÜNCHEN. Abzählbarkeit, Injektivität, Sürjektivität und Bijektivität TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Prof. Dr. Friedrich Roesler Ralf Franken, PhD Max Lein Lineare Algebra 1 WS 26/7 en Blatt 4 13.11.26 Abzählbarkeit, Injektivität, Sürjektivität und Bijektivität

Mehr

Beschreibungslogiken. Daniel Schradick 1schradi@informatik.uni-hamburg.de

Beschreibungslogiken. Daniel Schradick 1schradi@informatik.uni-hamburg.de Beschreibungslogiken Daniel Schradick 1schradi@informatik.uni-hamburg.de Was sind Beschreibungslogiken? Definition: Formalisms that represent knowledge of some problem domain (the world ) by first defining

Mehr

Einfache Ausdrücke Datentypen Rekursive funktionale Sprache Franz Wotawa Institut für Softwaretechnologie wotawa@ist.tugraz.at

Einfache Ausdrücke Datentypen Rekursive funktionale Sprache Franz Wotawa Institut für Softwaretechnologie wotawa@ist.tugraz.at Inhalt SWP Funktionale Programme (2. Teil) Einfache Ausdrücke Datentypen Rekursive funktionale Sprache Franz Wotawa Institut für Softwaretechnologie wotawa@ist.tugraz.at Interpreter für funktionale Sprache

Mehr

Die in den Suchverfahren konstruierten Graphen waren zusammenhängend und enthielten keine Kreise. Also vereinbaren wir:

Die in den Suchverfahren konstruierten Graphen waren zusammenhängend und enthielten keine Kreise. Also vereinbaren wir: Kapitel 4 Bäume und Matchings Wir haben im letzten Kapitel Bäume implizit als Ergebnis unserer Suchverfahren kennengelernt. In diesem Kapitel wollen wir diese Graphenklasse ausführlich untersuchen. 4.1

Mehr

Zeichnen von Graphen. graph drawing

Zeichnen von Graphen. graph drawing Zeichnen von Graphen graph drawing WS 2006 / 2007 Gruppe: D_rot_Ala0607 Christian Becker 11042315 Eugen Plischke 11042351 Vadim Filippov 11042026 Gegeben sei ein Graph G = (V; E) Problemstellung V E =

Mehr

Formale Methoden III - Tutorium

Formale Methoden III - Tutorium Formale Methoden III - Tutorium Daniel Jettka 19.06.06 Inhaltsverzeichnis 1. Logische Eigenschaften von Merkmalsstrukturen 1. Logische Eigenschaften von MS Ausgangspunkt: Unterscheidung von: Linguistische

Mehr

Institut für Informatik. Rheinische Friedrich-Wilhelms-Universität Bonn

Institut für Informatik. Rheinische Friedrich-Wilhelms-Universität Bonn Institut für Informatik Rheinische Friedrich-Wilhelms-Universität Bonn Hauptseminar: Schnelle Parallele Algorithmen Leitung: Prof. Dr. M. Karpinksi, P. Wegner, M. Hauptmann Sommersemester 2000 Ausarbeitung

Mehr

3.2 Binäre Suche. Usr/local/www/ifi/fk/menschen/schmid/folien/infovk.ppt 1

3.2 Binäre Suche. Usr/local/www/ifi/fk/menschen/schmid/folien/infovk.ppt 1 3.2 Binäre Suche Beispiel 6.5.1: Intervallschachtelung (oder binäre Suche) (Hier ist n die Anzahl der Elemente im Feld!) Ein Feld A: array (1..n) of Integer sei gegeben. Das Feld sei sortiert, d.h.: A(i)

Mehr

Kapitel 4. Euklidische Ringe und die Jordansche Normalform. 4.1 Euklidische Ringe

Kapitel 4. Euklidische Ringe und die Jordansche Normalform. 4.1 Euklidische Ringe Kapitel 4 Euklidische Ringe und die Jordansche Normalform 4.1 Euklidische Ringe Die Ringe der ganzen Zahlen, Z, sowie Polynomringe über Körpern, K[X], wobei K ein Körper ist, haben die folgenden Gemeinsamheiten:

Mehr

Komplexitätstheorie Einführung und Überblick (Wiederholung)

Komplexitätstheorie Einführung und Überblick (Wiederholung) Literatur C. Papadimitriou UC Berkeley Zum Komplexitätsbegriff Strukturelle Komplexität Average Case Analyse Effiziente Algorithmen Logische Komplexität Beschreibungssprachen: SQL Kolmogorov Komplexität

Mehr

Sortieren. Eine Testmenge erstellen

Sortieren. Eine Testmenge erstellen Sortieren Eine der wohl häufigsten Aufgaben für Computer ist das Sortieren, mit dem wir uns in diesem Abschnitt eingeher beschäftigen wollen. Unser Ziel ist die Entwicklung eines möglichst effizienten

Mehr

Prädikatenlogik - Micromodels of Software

Prädikatenlogik - Micromodels of Software Prädikatenlogik - Micromodels of Software Philipp Koch Seminar Logik für Informatiker Universität Paderborn Revision: 30. Mai 2005 1 Inhaltsverzeichnis 1 Motivation 3 2 Modelle 3 2.1 Definition eines Modells.......................

Mehr

Informationsblatt Induktionsbeweis

Informationsblatt Induktionsbeweis Sommer 015 Informationsblatt Induktionsbeweis 31. März 015 Motivation Die vollständige Induktion ist ein wichtiges Beweisverfahren in der Informatik. Sie wird häufig dazu gebraucht, um mathematische Formeln

Mehr

Entscheidungsbäume. Definition Entscheidungsbaum. Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen?

Entscheidungsbäume. Definition Entscheidungsbaum. Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen? Entscheidungsbäume Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen? Definition Entscheidungsbaum Sei T ein Binärbaum und A = {a 1,..., a n } eine zu sortierenden Menge. T ist ein Entscheidungsbaum

Mehr

Anfragesprachen mit Rekursion Datalog

Anfragesprachen mit Rekursion Datalog Beispiel: Frankfurter U-Bahn-Netz Hier vereinfacht: Eine Relation U-Bahn-Netz mit Attributen Linie, Halt, nächsterhalt 7.1 7.2 Statische Analyse 7.3 U-Bahn-Netz Linie Halt nächsterhalt U4 Bockenheimer

Mehr

Codierung. Auszug aus dem Skript von Maciej Liśkiewicz und Henning Fernau

Codierung. Auszug aus dem Skript von Maciej Liśkiewicz und Henning Fernau Codierung Auszug aus dem Skript von Maciej Liśkiewicz und Henning Fernau Ein bisschen Informationstheorie Betrachten wir das folgende Problem: Wie lautet eine sinnvolle Definition für das quantitative

Mehr

5.2 Das All-Pairs-Shortest-Paths-Problem (APSP-Problem) Kürzeste Wege zwischen allen Knoten. Eingabe: Gerichteter Graph G =(V, E, c)

5.2 Das All-Pairs-Shortest-Paths-Problem (APSP-Problem) Kürzeste Wege zwischen allen Knoten. Eingabe: Gerichteter Graph G =(V, E, c) 5.2 Das All-Pairs-Shortest-Paths-Problem (APSP-Problem) Kürzeste Wege zwischen allen Knoten. Eingabe: Gerichteter Graph G =(V, E, c) mit V = {1,...,n} und E {(v, w) 1 apple v, w apple n, v 6= w}. c : E!

Mehr

Endlicher Automat (EA)

Endlicher Automat (EA) Endlicher Automat (EA) siehe auch Formale Grundlagen 3 1 Motivation: Automaten für die Modellierung, Spezifikation und Verifikation verwenden! Definition Ein Endlicher Automat A = (S,I,Σ,T,F) besteht aus

Mehr

13. Binäre Suchbäume

13. Binäre Suchbäume 1. Binäre Suchbäume Binäre Suchbäume realiesieren Wörterbücher. Sie unterstützen die Operationen 1. Einfügen (Insert) 2. Entfernen (Delete). Suchen (Search) 4. Maximum/Minimum-Suche 5. Vorgänger (Predecessor),

Mehr

Breiten- und Tiefensuche in Graphen

Breiten- und Tiefensuche in Graphen Breiten- und Tiefensuche in Graphen Inhalt Theorie. Graphen. Die Breitensuche in der Theorie am Beispiel eines ungerichteten Graphen. Die Tiefensuche in der Theorie am Beispiel eines gerichteten Graphen

Mehr

Entwurf von Algorithmen - Kontrollstrukturen

Entwurf von Algorithmen - Kontrollstrukturen Entwurf von Algorithmen - Kontrollstrukturen Eine wichtige Phase in der Entwicklung von Computerprogrammen ist der Entwurf von Algorithmen. Dieser Arbeitsschritt vor dem Schreiben des Programmes in einer

Mehr

Kapitel 4. Aussagenlogik. 4.1 Boolesche Algebren

Kapitel 4. Aussagenlogik. 4.1 Boolesche Algebren Kapitel 4 Aussagenlogik Aussagenlogik war das erste logische System, das als mathematische Logik formuliert werden konnte (George Boole, Laws of Thought, 1854). Aussagenlogik ist die einfachste Logik und

Mehr

Wortproblem für kontextfreie Grammatiken

Wortproblem für kontextfreie Grammatiken Wortproblem für kontextfreie Grammatiken G kontextfreie Grammatik. w Σ w L(G)? Wortproblem ist primitiv rekursiv entscheidbar. (schlechte obere Schranke!) Kellerautomat der L(G) akzeptiert Ist dieser effizient?

Mehr

PRÜFUNG SOFTWARETECHNIK II Musterlösung

PRÜFUNG SOFTWARETECHNIK II Musterlösung Universität Stuttgart Institut für Automatisierungsund Softwaretechnik Prof. Dr.-Ing. Dr. h. c. P. Göhner PRÜFUNG SOFTWARETECHNIK II Musterlösung Name: Matrikel-Nr:. Note: Prüfungstag: 28.09.2011 Prüfungsdauer:

Mehr

Komplexität und Komplexitätsklassen

Komplexität und Komplexitätsklassen Dr. Sebastian Bab WiSe 12/13 Theoretische Grundlagen der Informatik für TI Termin: VL 21 vom 21.01.2013 Komplexität und Komplexitätsklassen Die meisten Probleme mit denen wir zu tun haben sind entscheidbar.

Mehr

Terme stehen für Namen von Objekten des Diskursbereichs (Subjekte, Objekte des natürlichsprachlichen Satzes)

Terme stehen für Namen von Objekten des Diskursbereichs (Subjekte, Objekte des natürlichsprachlichen Satzes) Prädikatenlogik Man kann den natürlichsprachlichen Satz Die Sonne scheint. in der Prädikatenlogik beispielsweise als logisches Atom scheint(sonne) darstellen. In der Sprache der Prädikatenlogik werden

Mehr

Seminarvortag zum Thema Virtual Private Network Design im Rahmen des Seminars Network Design an der Universität Paderborn

Seminarvortag zum Thema Virtual Private Network Design im Rahmen des Seminars Network Design an der Universität Paderborn Seminarvortag zum Thema Virtual Private Network Design im Rahmen des Seminars Network Design an der Universität Paderborn Ein 5.55-Approximationsalgorithmus für das VPND-Problem Lars Schäfers Inhalt Einführung:

Mehr

Aufkleber der Gruppe:

Aufkleber der Gruppe: Praxis 9 Theorie Bewertung.doc Situation: Theorie A e m e F g e ng nom ne ol n: A nm e r k ung : D i e g e s t e l l t e n A u f g a be n w e r d e n n a c h d e n a k t u e l l g ü l t i g e n L e h r

Mehr

9. Übung Formale Grundlagen der Informatik

9. Übung Formale Grundlagen der Informatik Institut für Informatik Sommersemester 2001 Universität Zürich 9. Übung Formale Grundlagen der Informatik Norbert E. Fuchs (fuchs@ifi.unizh.ch) Reinhard Riedl (riedl@ifi.unizh.ch) Nadine Korolnik (korolnik@ifi.unizh.ch)

Mehr

S=[n] Menge von Veranstaltungen J S kompatibel mit maximaler Größe J

S=[n] Menge von Veranstaltungen J S kompatibel mit maximaler Größe J Greedy-Strategie Definition Paradigma Greedy Der Greedy-Ansatz verwendet die Strategie 1 Top-down Auswahl: Bestimme in jedem Schritt eine lokal optimale Lösung, so dass man eine global optimale Lösung

Mehr

Motivation. Formale Grundlagen der Informatik 1 Kapitel 10. Motivation. Motivation. Bisher haben wir mit TMs. Probleme gelöst/entschieden/berechnet.

Motivation. Formale Grundlagen der Informatik 1 Kapitel 10. Motivation. Motivation. Bisher haben wir mit TMs. Probleme gelöst/entschieden/berechnet. bei TMs bei Computern Formale Grundlagen der Informatik 1 Kapitel 10 Frank Heitmann heitmann@informatik.uni-hamburg.de Bisher haben wir mit TMs Probleme gelöst/entschieden/berechnet. Dabei war entscheidbar

Mehr

Prozeß P1 Prozeß P2. Zur Synchronisation stehen den beiden Prozessen binäre Semaphore und die beiden Funktionen

Prozeß P1 Prozeß P2. Zur Synchronisation stehen den beiden Prozessen binäre Semaphore und die beiden Funktionen Seite 8 A UFGABE 11 INTERP ROZEßKOMMUNIKATION Das folgende Petrinetz zeigt zwei verkoppelte Prozesse P1 und P2. Die Transitionen a und b beschreiben Aktionen von P1, die Transitionen c und d Aktionen von

Mehr

Zur Vereinfachung betrachten wir nun nur noch Funktionen f, die einen Funktionswert f nµberechnen. Sie werden alle in einer Tabelle dargestellt:

Zur Vereinfachung betrachten wir nun nur noch Funktionen f, die einen Funktionswert f nµberechnen. Sie werden alle in einer Tabelle dargestellt: Informatik 13: Gierhardt Theoretische Informatik III Berechenbarkeit Nicht-berechenbare Funktionen Nach der Church-Turing-These kann alles, was berechenbar ist, mit einer Turing-Maschine oder einer While-Maschine

Mehr

Wissensbasierte Systeme

Wissensbasierte Systeme WBS4 Slide 1 Wissensbasierte Systeme Vorlesung 4 vom 03.11.2004 Sebastian Iwanowski FH Wedel WBS4 Slide 2 Wissensbasierte Systeme 1. Motivation 2. Prinzipien und Anwendungen 3. Logische Grundlagen 4. Suchstrategien

Mehr

Timed Automata (Zeitbeschriftete Automaten) [R. Alur: Timed Automata]

Timed Automata (Zeitbeschriftete Automaten) [R. Alur: Timed Automata] Timed Automata (Zeitbeschriftete Automaten) [R. Alur: Timed Automata] Formalismus zur Behandlung von Dense Time unterstützt durch Verifikationstools, z.b. UPPAAL Transitionssysteme (Automaten) mit Zeitbeschriftungen

Mehr

3.Inferenzsysteme 3.4 Logische Programme und Antwortmengensemantik

3.Inferenzsysteme 3.4 Logische Programme und Antwortmengensemantik Darstellung, Verarbeitung und Erwerb von Wissen 3.Inferenzsysteme 3.4 Logische Programme und Antwortmengensemantik DVEW WS 2004/05 c Gabriele Kern-Isberner 1 Stratifizierte Programme (Whlg.) Sei P ein

Mehr

Parametrisierte Algorithmen

Parametrisierte Algorithmen Parametrisierte Algorithmen Markus Lohrey Martin-Luther Universität Halle-Wittenberg Sommersemester 2006 Folien basieren auf Vorlagen von Jens Gramm und Rolf Niedermeier, Univ. Tübingen Markus Lohrey (Univ.

Mehr

Kontrollstrukturen - Universität Köln

Kontrollstrukturen - Universität Köln Kontrollstrukturen - Universität Köln Mario Manno Kontrollstrukturen - Universität Köln p. 1 Was sind Sprachen Auszeichnungssprachen HTML, XML Programmiersprachen ASM, Basic, C, C++, Haskell, Java, Pascal,

Mehr