Lösungen zum Niedersachsen Physik Abitur 2012-Grundlegendes Anforderungsniveau Aufgabe II Experimente mit Elektronen

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Lösungen zum Niedersachsen Physik Abitur 2012-Grundlegendes Anforderungsniveau Aufgabe II Experimente mit Elektronen"

Transkript

1 1 Lösungen zum Niedersachsen Physik Abitur 2012-Grundlegendes Anforderungsniveau Aufgabe II xperimente mit lektronen U dient zum rwärmen der Glühkathode in der Vakuumröhre. Durch den glühelektrischen ffekt werden lektronen aus der Kathode gelöst. U liegt zwischen der Kathode und dem Gitter an. Diese Beschleunigungsspannung dient in der Vakuumröhre zur Beschleunigung der durch U herausgelösten lektronen zum Gitter. U liegt zwischen dem Gitter und der Auffangelektrode an und dient dazu die lektronen zu bremsen. Sie stellt also eine Gegenspannung zu U dar. Das Stromstärkemessgerät (Amperemeter) misst die lektronen, die pro Zeiteinheit durch es transportiert werden, also den Stromfluss. s liegt an U misst also nur die Anzahl der lektroden die das Gegenfeld passieren. Gegeben: U = 20V U = 25V Zunächst werden die lektroden von der Beschleunigungsspannung Richtung Gitter beschleunigt. Von dort werden die lektroden, da die Gegenspannung größer ist als die Beschleunigungsspannung bis zum Stillstand von der Gegenspannung abgebremst. Da die Beschleunigungsspannung 80% der Gegenspannung beträgt werden die lektronen bei ca. 80% des Weges zwischen Gitter und Auffangelektrode zum Stillstand kommen. Von dort aus werden sie zurück zum Gitterbeschleunigt. Dort werden sie wieder von der ursprünglichen Beschleunigungsspannung gebremst usw. 1.2 Gegeben und Gesucht: U = 20V U = 5V v = 2e U m

2 2 v =? Da U U entgegen wirkt muss sie von U subtrahiert werden. U ist also 15V. m ist im Tafelwerk auf Seite 122 zu finden. v = 2 1,6 10 C 15V 9,1 10 kg Herleitung: = 2,3 10 As V kg = 2,3 10 J kg = 2,3 10 m s = 2,3 m 10 s W = e U Die lektronen werden im Beschleunigungsfeld beschleunigt. = m v Die zugeführte nergie wandelt das lektron in kinetische nergie um. e U = 1 m v 2 2e U v = m 1.3 0,9 Stromstärke in ma 0,8 0,77 0,7 0,6 0,5 0,4 I in ma 0,38 0,3 0,24 0,2 0,1 0 0,15 0,06 0 U B in V

3 3 Wenn I = k U, gelten soll müssen I und U, proportional zueinander sein. I dividiert durch U, muss also immer den Proportionalitätsfaktor k ergeben. U in V I in ma U, in V,, in, 6 0,06 14,197 0, ,15 31,623 0, ,24 64,000 0, ,38 89,443 0, ,77 207,063 0,00372 Die Werte sind alle ungefähr gleich I kann also näherungsweise mit der Gleichung beschrieben werden. Der Durchschnittswert ist 0,00411, dies ist auch der Wert der Konstanten k für die Berechnung von I in ma. 1.4 Die Änderung des Abstands zwischen Kathode und Gitter wirkt sich nicht auf U, aus. Diese wird konstant gehalten, somit ändert sich nicht die Anzahl der pro Zeiteinheit aus der Kathode emittierten lektronen. U beschleunigt anschließend diese lektronen. Dies ist aber nicht von der ntfernung zwischen Kathode und Gitter abhängig sondern von der Spannung, die aber konstant bleibt (W = e U). s ändert sich nicht die Stromstärke, da die Fähigkeit der lektronen, die Auffangelektrode zu erreichen wird nicht beeinträchtigt wird Bei beiden Graphen ist die Spannung UB in Volt auf der x-achse und die Stromstärke in µa aufgetragen. Beide Graphen verlaufen überwiegend steigend, während der Graph aus Aufgabe 1.3 monoton steigend verläuft gibt es beim Graph der Abb. 2 zwei inbrüche in der Stromstärke. Generell basiert der Graph der Abb. 2 auf wesentlich mehr Messpunkten als der Graph aus Aufgabe 1.3 (5 zu 21) zu gibt es dort auffällig viele Messpunkte im Bereich zwischen 20V und 30V, wo sich ein Tiefpunkt befindet, während es zwischen 20V und 30V beim Graphen aus Abb. 2 keinen Messwert gibt. s könnte also sein, dass dieser inbruch in der Stromstärke passierte, aber nicht gemessen wurde. Der Graph aus Aufgabe 1.3 endet zu dem bei 35V während der andere bei ungefähren 45V noch einmal fällt. Der Graph aus der Abb. 2 Verläuft außerdem flacher als der aus Aufgabe 1.3. Bei Abb. 2. Wird erst ab 5 Volt ein Stromfluss gemessen, bei Aufgabe 1.3 schon ab dem Ursprung.

4 4 Bei Spannungen unter 20V verlaufen beide Graphen ähnlich, der aus Abb. 2 ist jedoch um 5V verschoben. Dies liegt an der 5V höherer Gegenspannung (Für Gegenspannung siehe Aufgabe 1.1). Außerdem Verläuft der Graph aus Abb. 2 flacher, dies liegt an der höheren Dichte des Heliums gegenüber Vakuum. 2.2 Das elektrische Feld der Spannung UB beschleunigt die lektronen. Beim Aufeinandertreffen von lektron und in lektronenvolt Heliumatom wird keine nergie vom lektron auf das ist die kinetische Heliumatom übertragen. Sie stoßen also elastisch nergie, die ein aneinander. rst wenn es eine bestimmte Strecke lektron erhält beschleunigt wurde, also das lektron eine bestimmte wenn es mit 1V kinetische nergie hat, kann es zu unelastischen Stößen beschleunigt wird kommen, wie es in Abb. 2 zwischen 26 und 27V passiert. Das lektron regt dabei das Heliumatom an und verliert dabei seine nergie. Anschließend werden die lektronen wieder beschleunigt. s kommt aber nicht zu einer erneuten Anregung von Heliumatomen, da die lektronen bis zum nde der Beschleunigung noch nicht wieder genug nergie haben. Dies kann aus dem Graphen abgelesen werden, 26eV-5eV=21eV, 27eV+21eV=48eV. Anschließend werden die lektronen hinter dem Gitter durch die Spannung UG gebremst bis sie die Auffanganode erreichen. s kann auch passieren, dass ein lektron nicht mit einem Heliumatom zusammen stößt. 2.3 Das Leuchten kommt dadurch zustande, dass die beschleunigten lektronen die Heliumatome anregen. Ausgehend vom bohrschen Atommodell wechseln angeregte lektronen in eine höhere Außenschale des Atoms. Die lektronen streben aber danach wieder in den nicht angeregten Zustand überzugehen. Dies muss nicht in einem Schritt passieren. Damit sichtbares Licht beim Wechsel von einem hohen in ein tiefes nergieniveau frei wird muss die Differenz der nergielevel bei etwa einem bis drei ev liegen. Bestimmung der nergieübergänge: λ = 588nm = m λ = 501nm = m = h f c = λ f h = 6, Js = 6, Js 1, C = 4, evs Wir stellen die untere Formel nach f um und setzten sie in die obere ein um die passende nergie zu den Wellenlängen zu finden.

5 5 = h c = 4, evs 2,998 m 10 s λ m = 2,11eV = h c = 4, evs 2,998 m 10 s λ m = 2,47eV Nun muss Abbildung 3 betrachtet werden. Die nergiedifferenz des Übergangs von - 1,45eV auf -3,92eV beträgt 2,47eV. Dies ist also der Übergang bei der Licht mit der Wellenlänge 501nm frei wird. Die nergiedifferenz des Übergangs von -1,45eV auf - 3,55eV beträgt 2,10eV. Dies ist also der Übergang bei der Licht mit der Wellenlänge 588nm frei wird Absorption Spontane mission stimulierte mmision

6 6 Bei der Absorption wird die nergie eines Photons wird vom Quecksilberatom aufgenommen, dadurch geht es in ein höheres nergieniveau über. s befindet sich nun im angeregten Zustand. Das Atom strebt aber danach wieder in den überzugehen. Dies passiert nach von alleine und nennt sich spontane mission. Sollte während das Atom sich bereits im angeregtem Zustand befinden ein weiteres Photon auf das Atom treffen so kommt es zur stimulierten mission. Dieses Photon bringt das Atom dazu ein zweites Photon kongruent zum anderen auszusenden. 3.2 Wie im einleitenden Text der Aufgabe beschrieben befindet sich ein Leuchtstoff an der Röhrenwand. Dieser Wandelt das emittierte UV- Licht durch Fluoreszenz in weißes Licht um. Dabei absorbiert er zunächst das UV-Licht. Statt vom angeregten Zustand in einem Schritt wieder in den überzugehen, geschieht dies in mehreren Schritten. Licht das uns Fluoreszenz weiß erscheint besteht aus den Grundfarben die additiv gemischt Weiß ergeben (siehe rechts). Der Leuchtstoff strahlt bei verschiedenen nergieniveausprüngen Licht mit verschiedenen Wellenlängen aus, die zusammen weißes Licht ergeben. s sind trotzdem auch nicht strahlende Übergänge möglich. Natriumdampflampen eignen sich nicht zur rzeugung von weißem Licht, da sie gelbes Licht ausstrahlen. in Leuchtstoff kann Licht nur in weniger energiereiches Licht umwandeln. Gelbes Licht besteht aus grünem und rotem Licht, für weißes Licht fehlt also noch blaues Licht, welches aber nergiereicher ist als rotes und grünes. 3.3 Die Kombination der drei LDs kann kein dem sichtbarem Tageslicht ähnliches Spektrum erzeugen. Bei der Überlagerung der drei LDs entstehen große Lücken in den Bereichen um 525nm und 625nm.

7 7 3.4 Das lineare Potentialtopf geht davon aus das Teilchen sich kräftefrei in eine Dimension bewegen können. Sie bewegen sich auf dem Topfboden, der den Durchmesser l hat. Im Topf ist die potentielle nergie= 0. Am Rand steigt die potentielle nergie sprunghaft auf den Wert unendlich. Das Teilchen kann also nicht in den Topfrand eindringen, da dazu eine unendlich hohe Arbeit verrichtet werden müsste. Das Teilchen wird im Topf als Wahrscheinlichkeitswelle dargestellt. Da sie nicht in den Randeindringen kann wird sie am Rand vollständig reflektiert. Wenn die Wellenlänge der Wahrscheinlichkeitswelle ein Vielfaches von 0,5 ist kommt es demnach zu der Bildung einer stehenden Welle, während sich bei anderen Wellenlängen die Welle durch destruktive Interferenz auslöscht. Die Wellenfunktion heißtψ. An den Knotenpunkten ist die Wahrscheinlichkeit, dass sich dort ein Teilchen aufhält 0, während sie an den Maxima am größten ist. Die Verschiedenen nergieniveaus im nergieniveauschema werden durch die ntsprechenden Wahrscheinlichkeitswellen beschrieben. Dies erklärt warum es im nergieniveauschema nur diskrete nergieniveaus geben kann. Angeregte Zustände λ = 3 2 l λ = l λ = 1 2 l l

Kennlinie der Vakuum-Diode

Kennlinie der Vakuum-Diode Physikalisches Praktikum für das Hauptfach Physik Versuch 20 Kennlinie der Vakuum-Diode Wintersemester 2005 / 2006 Name: Mitarbeiter: EMail: Gruppe: Daniel Scholz Hauke Rohmeyer physik@mehr-davon.de B9

Mehr

Physik-Praktikum: FHV

Physik-Praktikum: FHV Physik-Praktikum: FHV Einleitung: Mit dem Franck-Hertz-Versuch kann man sehr anschaulich das Vorhandensein diskreter Energieniveaus in der Elektronenhülle der Atome nach dem Bohrschen Atommodell zeigen.

Mehr

Fotoeffekt 1. Fotoeffekt. auch: äußerer lichtelektrischer Effekt, äußerer Fotoeffekt

Fotoeffekt 1. Fotoeffekt. auch: äußerer lichtelektrischer Effekt, äußerer Fotoeffekt Fotoeffekt 1 Versuch: Fotoeffekt auch: äußerer lichtelektrischer Effekt, äußerer Fotoeffekt Vorbereitung: Platte gut abschmirgeln Mit Ladungslöffel negativ aufladen. Durchführungen: 1. Licht einer Quecksilberdampflampe

Mehr

DIE FILES DÜRFEN NUR FÜR DEN EIGENEN GEBRAUCH BENUTZT WERDEN. DAS COPYRIGHT LIEGT BEIM JEWEILIGEN AUTOR.

DIE FILES DÜRFEN NUR FÜR DEN EIGENEN GEBRAUCH BENUTZT WERDEN. DAS COPYRIGHT LIEGT BEIM JEWEILIGEN AUTOR. Weitere Files findest du auf www.semestra.ch/files DIE FILES DÜRFEN NUR FÜR DEN EIGENEN GEBRAUCH BENUTZT WERDEN. DAS COPYRIGHT LIEGT BEIM JEWEILIGEN AUTOR. Messung von c und e/m Autor: Noé Lutz Assistent:

Mehr

Beispielarbeit PHYSIK

Beispielarbeit PHYSIK Abitur 2008 Physik Beispielarbeit Seite 1 Abitur 2008 Mecklenburg-Vorpommern Beispielarbeit PHYSIK Hinweis: Diese Beispielarbeit ist öffentlich und daher nicht als Klausur verwendbar. Abitur 2008 Physik

Mehr

Gibt es myonische Atome?

Gibt es myonische Atome? Minitest 7 Das Myon it ist ein Elementarteilchen, t das dem Elektron ähnelt, jedoch jd eine deutlich höhere Masse (105,6 MeV/c 2 statt 0,511 MeV/c 2 ) aufweist. Wie das Elektron ist es mit einer Elementarladung

Mehr

06.06.2014. Fakultät Physik der Universität Regensburg SPEKTROSKOPIE. Helene Plank, Stephan Giglberger

06.06.2014. Fakultät Physik der Universität Regensburg SPEKTROSKOPIE. Helene Plank, Stephan Giglberger 06.06.2014 Fakultät Physik der Universität Regensburg SPEKTROSKOPIE Helene Plank, Stephan Giglberger Inhaltsverzeichnis 1. Warum Spektroskopie auf dem Mars?... 1 2. Theoretische Grundlagen der Spektroskopie...

Mehr

Michelson-Interferometer & photoelektrischer Effekt

Michelson-Interferometer & photoelektrischer Effekt Michelson-Interferometer & photoelektrischer Effekt Branche: TP: Autoren: Klasse: Physik / Physique Michelson-Interferometer & photoelektrischer Effekt Cedric Rey David Schneider 2T Datum: 01.04.2008 &

Mehr

Versuchsprotokoll. Die Röhrendiode. zu Versuch 25. (Physikalisches Anfängerpraktikum Teil II)

Versuchsprotokoll. Die Röhrendiode. zu Versuch 25. (Physikalisches Anfängerpraktikum Teil II) Donnerstag, 8.1.1998 Dennis S. Weiß & Christian Niederhöfer Versuchsprotokoll (Physikalisches Anfängerpraktikum Teil II) zu Versuch 25 Die Röhrendiode 1 Inhaltsverzeichnis 1 Problemstellung 3 2 Physikalische

Mehr

Polarisation des Lichts

Polarisation des Lichts PeP Vom Kerzenlicht zum Laser Versuchsanleitung Versuch 4: Polarisation des Lichts Polarisation des Lichts Themenkomplex I: Polarisation und Reflexion Theoretische Grundlagen 1.Polarisation und Reflexion

Mehr

Fachhochschule Bielefeld Fachbereich Elektrotechnik. Versuchsbericht für das elektronische Praktikum. Praktikum Nr. 2. Thema: Widerstände und Dioden

Fachhochschule Bielefeld Fachbereich Elektrotechnik. Versuchsbericht für das elektronische Praktikum. Praktikum Nr. 2. Thema: Widerstände und Dioden Fachhochschule Bielefeld Fachbereich Elektrotechnik Versuchsbericht für das elektronische Praktikum Praktikum Nr. 2 Name: Pascal Hahulla Matrikelnr.: 207XXX Thema: Widerstände und Dioden Versuch durchgeführt

Mehr

Protokoll zum Physikalischen Praktikum Versuch 9 - Plancksches Wirkungsquantum

Protokoll zum Physikalischen Praktikum Versuch 9 - Plancksches Wirkungsquantum Protokoll zum Physikalischen Praktikum Versuch 9 - Plancksches Wirkungsquantum Experimentatoren: Thomas Kunze Sebastian Knitter Betreuer: Dr. Holzhüter Rostock, den 12.04.2005 Inhaltsverzeichnis 1 Ziel

Mehr

14. elektrischer Strom

14. elektrischer Strom Ladungstransport, elektrischer Strom 14. elektrischer Strom In Festkörpern: Isolatoren: alle Elektronen fest am Atom gebunden, bei Zimmertemperatur keine freien Elektronen -> kein Stromfluß Metalle: Ladungsträger

Mehr

Energie, mechanische Arbeit und Leistung

Energie, mechanische Arbeit und Leistung Grundwissen Physik Klasse 8 erstellt am Finsterwalder-Gymnasium Rosenheim auf Basis eines Grundwissenskatalogs des Klenze-Gymnasiums München Energie, mechanische Arbeit und Leistung Mit Energie können

Mehr

Abschlussprüfung 2012 an den Realschulen in Bayern

Abschlussprüfung 2012 an den Realschulen in Bayern Nachtermin lektrizitätslehre I C1 1.1.0 Schließt man eine handelsübliche Glühlampe (Betriebsdaten: ) an eine lektrizitätsquelle mit der Spannung an, so fließt ein Strom der Stärke Beim Anschluss derselben

Mehr

Kern-Hülle-Modell. Modellvorstellung. zum elektrischen Strom. Die Ladung. Die elektrische Stromstärke. Die elektrische Spannung

Kern-Hülle-Modell. Modellvorstellung. zum elektrischen Strom. Die Ladung. Die elektrische Stromstärke. Die elektrische Spannung Kern-Hülle-Modell Ein Atom ist in der Regel elektrisch neutral: das heißt, es besitzt gleich viele Elektronen in der Hülle wie positive Ladungen im Kern Modellvorstellung zum elektrischen Strom - Strom

Mehr

Allg. u. Anorg. Chemie

Allg. u. Anorg. Chemie Allg. u. Anorg. Chemie Übungsaufgaben Atommodell SoSe 2014, Amadeu Daten: h=6,6 10-34 J.s, C=3 10 8 m/s. 1) Stellen Sie das klassische Modell für die elektromagnetische Strahlen graphisch dar. Erklären

Mehr

Klassenstufe 7. Überblick,Physik im Alltag. 1. Einführung in die Physik. 2.Optik 2.1. Ausbreitung des Lichtes

Klassenstufe 7. Überblick,Physik im Alltag. 1. Einführung in die Physik. 2.Optik 2.1. Ausbreitung des Lichtes Schulinterner Lehrplan der DS Las Palmas im Fach Physik Klassenstufe 7 Lerninhalte 1. Einführung in die Physik Überblick,Physik im Alltag 2.Optik 2.1. Ausbreitung des Lichtes Eigenschaften des Lichtes,Lichtquellen,Beleuchtete

Mehr

Praktikum Physik. Protokoll zum Versuch: Kennlinien. Durchgeführt am 15.12.2011. Gruppe X. Name 1 und Name 2 (abc.xyz@uni-ulm.de) (abc.xyz@uni-ulm.

Praktikum Physik. Protokoll zum Versuch: Kennlinien. Durchgeführt am 15.12.2011. Gruppe X. Name 1 und Name 2 (abc.xyz@uni-ulm.de) (abc.xyz@uni-ulm. Praktikum Physik Protokoll zum Versuch: Kennlinien Durchgeführt am 15.12.2011 Gruppe X Name 1 und Name 2 (abc.xyz@uni-ulm.de) (abc.xyz@uni-ulm.de) Betreuer: Wir bestätigen hiermit, dass wir das Protokoll

Mehr

Elektrische Leitung. Strom

Elektrische Leitung. Strom lektrische Leitung 1. Leitungsmechanismen Bändermodell 2. Ladungstransport in Festkörpern i) Temperaturabhängigkeit Leiter ii) igen- und Fremdleitung in Halbleitern iii) Stromtransport in Isolatoren iv)

Mehr

h- Bestimmung mit LEDs

h- Bestimmung mit LEDs h- Bestimmung mit LEDs GFS im Fach Physik Nicolas Bellm 11. März - 12. März 2006 Der Inhalt dieses Dokuments steht unter der GNU-Lizenz für freie Dokumentation http://www.gnu.org/copyleft/fdl.html Inhaltsverzeichnis

Mehr

Versuch 4.6: Laserdioden-gepumpter Nd:YAG-Laser und Frequenzverdopplung

Versuch 4.6: Laserdioden-gepumpter Nd:YAG-Laser und Frequenzverdopplung Versuch 4.6: Laserdioden-gepumpter Nd:YAG-Laser und Frequenzverdopplung Nicole Martin und Cathrin Wälzlein February 18, 2008 Praktikumsbetreuer: Dominik Blömer Durchführungsdatum: 17.12.2007 1 1 Einleitung

Mehr

Elektronenstrahlröhren

Elektronenstrahlröhren Elektronenstrahlröhren Lernziele: - Umgang mit Hochspannung - Darstellung von Kennlinien - Helmholtzspulen - Umgang mit Regeltransformatoren - Demonstrationsoszillograph Versuche: Anschluss verschiedener

Mehr

Praktikum Nr. 3. Fachhochschule Bielefeld Fachbereich Elektrotechnik. Versuchsbericht für das elektronische Praktikum

Praktikum Nr. 3. Fachhochschule Bielefeld Fachbereich Elektrotechnik. Versuchsbericht für das elektronische Praktikum Fachhochschule Bielefeld Fachbereich Elektrotechnik Versuchsbericht für das elektronische Praktikum Praktikum Nr. 3 Manuel Schwarz Matrikelnr.: 207XXX Pascal Hahulla Matrikelnr.: 207XXX Thema: Transistorschaltungen

Mehr

Grundwissen Physik (8. Klasse)

Grundwissen Physik (8. Klasse) Grundwissen Physik (8. Klasse) 1 Energie 1.1 Energieerhaltungssatz 1.2 Goldene egel der Mechanik Energieerhaltungssatz: n einem abgeschlossenen System ist die Gesamtenergie konstant. Goldene egel der Mechanik:

Mehr

Kennlinie der Vakuum-Diode

Kennlinie der Vakuum-Diode Physikalisches Grundpraktikum Versuch 17 Kennlinie der Vakuum-Diode Praktikant: Tobias Wegener Alexander Osterkorn E-Mail: tobias.wegener@stud.uni-goettingen.de a.osterkorn@stud.uni-goettingen.de Tutor:

Mehr

Grundwissen Physik (9. Klasse)

Grundwissen Physik (9. Klasse) Grundwissen Physik (9. Klasse) 1 Elektrodynamik 1.1 Grundbegriffe Elektrische Ladung: Es gibt zwei Arten elektrischer Ladung, die man als positiv bzw. negativ bezeichnet. Kräfte zwischen Ladungen: Gleichnamige

Mehr

Versuch 28. Wintersemester 2005 / 2006. Daniel Scholz. physik@mehr-davon.de

Versuch 28. Wintersemester 2005 / 2006. Daniel Scholz. physik@mehr-davon.de Physikalisches Praktikum für das Hauptfach Physik Versuch 28 Röntgenstrahlung Wintersemester 2005 / 2006 Name: Mitarbeiter: EMail: Gruppe: Daniel Scholz Hauke Rohmeyer physik@mehr-davon.de B9 Assistent:

Mehr

Licht breitet sich immer geradlinig aus. Nur wenn das Licht in unser Auge fällt, können wir es wahrnehmen.

Licht breitet sich immer geradlinig aus. Nur wenn das Licht in unser Auge fällt, können wir es wahrnehmen. 1. Optik Licht breitet sich immer geradlinig aus. Nur wenn das Licht in unser Auge fällt, können wir es wahrnehmen. Eine Mondfinsternis entsteht, wenn der Mond in den Schatten der Erde gerät: Eine Sonnenfinsternis

Mehr

2 Die wesentlichen Teile der in der optischen Spektroskopie benutzten Apparaturen

2 Die wesentlichen Teile der in der optischen Spektroskopie benutzten Apparaturen 2 Die wesentlichen Teile der in der optischen Spektroskopie benutzten Apparaturen 2.1 Lichtquellen In Abb. 2.1 sind die Spektren einiger Lichtquellen dargestellt, die in spektroskopischen Apparaturen verwendet

Mehr

Raman- Spektroskopie. Natalia Gneiding. 5. Juni 2007

Raman- Spektroskopie. Natalia Gneiding. 5. Juni 2007 Raman- Spektroskopie Natalia Gneiding 5. Juni 2007 Inhalt Einleitung Theoretische Grundlagen Raman-Effekt Experimentelle Aspekte Raman-Spektroskopie Zusammenfassung Nobelpreis für Physik 1930 Sir Chandrasekhara

Mehr

Nikolaus-von-Kues-Gymnasium BKS Sehr gute Leiter. Physik Der elektrische Strom. Cu 108. 1 Valenzelektron

Nikolaus-von-Kues-Gymnasium BKS Sehr gute Leiter. Physik Der elektrische Strom. Cu 108. 1 Valenzelektron Sehr gute Leiter Cu Z=29 Ag Z=47 Au Z=79 64 29 Cu 108 47 Ag 197 79 Au 1 Valenzelektron Die elektrische Ladung e - p + Die Grundbausteine der Atome (und damit aller Materie) sind Elektronen und Protonen

Mehr

Versuch 1.6: Franck-Hertz-Versuch

Versuch 1.6: Franck-Hertz-Versuch Physikalisches Praktikum für Fortgeschrittene TU Darmstadt Abteilung A: Angewandte Physik Versuch 1.6: Franck-Hertz-Versuch Stefan A. Gärtner Durchgeführt mit: Christian Klose Betreut von: Dr. Rainer Spehr

Mehr

5.1. Wellenoptik d 2 E/dx 2 = m 0 e 0 d 2 E/dt 2 Die Welle hat eine Geschwindigkeit von 1/(m 0 e 0 ) 1/2 = 3*10 8 m/s Das ist die

5.1. Wellenoptik d 2 E/dx 2 = m 0 e 0 d 2 E/dt 2 Die Welle hat eine Geschwindigkeit von 1/(m 0 e 0 ) 1/2 = 3*10 8 m/s Das ist die 5. Optik 5.1. Wellenoptik d 2 E/dx 2 = m 0 e 0 d 2 E/dt 2 Die Welle hat eine Geschwindigkeit von 1/(m 0 e 0 ) 1/2 = 3*10 8 m/s Das ist die Lichtgeschwindigkeit! In Materie ergibt sich eine andere Geschwindikeit

Mehr

Wärmeleitung und thermoelektrische Effekte Versuch P2-32

Wärmeleitung und thermoelektrische Effekte Versuch P2-32 Vorbereitung Wärmeleitung und thermoelektrische Effekte Versuch P2-32 Iris Conradi und Melanie Hauck Gruppe Mo-02 3. Juni 2011 Inhaltsverzeichnis Inhaltsverzeichnis 1 Wärmeleitfähigkeit 3 2 Peltier-Kühlblock

Mehr

Polarisation und Doppelbrechung

Polarisation und Doppelbrechung Fortgeschrittenen Praktikum Technische Universita t Darmstadt Betreuer: Dr. Mathias Sinther Durchfu hrung: 06.07.2009 Abgabe: 28.07.2009 Versuch A 3.3 Polarisation und Doppelbrechung Oliver Bitterling

Mehr

2/2: AUFBAU DER ATOMHÜLLE Tatsächlich gilt: Modul 2 - Lernumgebung 2 - Aufbau der Atomhülle

2/2: AUFBAU DER ATOMHÜLLE Tatsächlich gilt: Modul 2 - Lernumgebung 2 - Aufbau der Atomhülle Tatsächlich gilt: Modul 2 - Lernumgebung 2 - Aufbau der Atomhülle Informationsblatt: Zusammenhang von Farbe und des Lichts Die der Lichtteilchen nimmt vom roten über gelbes und grünes Licht bis hin zum

Mehr

Projekt Standardisierte schriftliche Reifeprüfung in Mathematik. T e s t h e f t B 1. Schulbezeichnung:.. Klasse: Vorname: Datum:.

Projekt Standardisierte schriftliche Reifeprüfung in Mathematik. T e s t h e f t B 1. Schulbezeichnung:.. Klasse: Vorname: Datum:. Projekt Standardisierte schriftliche Reifeprüfung in Mathematik T e s t h e f t B Schulbezeichnung:.. Klasse: Schüler(in) Nachname:. Vorname: Datum:. B Große und kleine Zahlen In Wikipedia findet man die

Mehr

Kontrollaufgaben zur Optik

Kontrollaufgaben zur Optik Kontrollaufgaben zur Optik 1. Wie schnell bewegt sich Licht im Vakuum? 2. Warum hat die Lichtgeschwindigkeit gemäss moderner Physik eine spezielle Bedeutung? 3. Wie nennt man die elektromagnetische Strahlung,

Mehr

8. Versuch: Elektromagnetische Wellen Licht

8. Versuch: Elektromagnetische Wellen Licht Physikpraktikum für Pharmazeuten Universität Regensburg Fakultät Physik 8. Versuch: Elektromagnetische Wellen Licht In diesem Versuch sollen die Eigenschaften elektromagnetischer Strahlung in ihren verschiedenen

Mehr

IU3. Modul Universalkonstanten. Lichtgeschwindigkeit

IU3. Modul Universalkonstanten. Lichtgeschwindigkeit IU3 Modul Universalkonstanten Lichtgeschwindigkeit Die Vakuumlichtgeschwindigkeit beträgt etwa c 3.0 10 8 m/s. Sie ist eine Naturkonstante und soll in diesem Versuch bestimmt werden. Weiterhin wollen wir

Mehr

Aufgaben Wechselstromwiderstände

Aufgaben Wechselstromwiderstände Aufgaben Wechselstromwiderstände 69. Eine aus Übersee mitgebrachte Glühlampe (0 V/ 50 ma) soll mithilfe einer geeignet zu wählenden Spule mit vernachlässigbarem ohmschen Widerstand an der Netzsteckdose

Mehr

EO - Oszilloskop Blockpraktikum Frühjahr 2005

EO - Oszilloskop Blockpraktikum Frühjahr 2005 EO - Oszilloskop, Blockpraktikum Frühjahr 25 28. März 25 EO - Oszilloskop Blockpraktikum Frühjahr 25 Alexander Seizinger, Tobias Müller Assistent René Rexer Tübingen, den 28. März 25 Einführung In diesem

Mehr

32. Lektion. Laser. 40. Röntgenstrahlen und Laser

32. Lektion. Laser. 40. Röntgenstrahlen und Laser 32. Lektion Laser 40. Röntgenstrahlen und Laser Lernziel: Kohärentes und monochromatisches Licht kann durch stimulierte Emission erzeugt werden Begriffe Begriffe: Kohärente und inkohärente Strahlung Thermische

Mehr

6.5.1 Aufbau, Wirkungsgrad und Ankontaktierung von LED-Lampen

6.5.1 Aufbau, Wirkungsgrad und Ankontaktierung von LED-Lampen 92 6 Lichtemittierende Dioden (LEDs) 6.5 LED-Technologie 6.5.1 Aufbau, Wirkungsgrad und Ankontaktierung von LED-Lampen Kommerziell verfügbare Halbleiter-Leuchtdioden bestehen aus einem Halbleiter-Chip,

Mehr

Versuch 33: Photovoltaik - Optische und elektrische Charakterisierung von Solarzellen Institut für Technische Physik II

Versuch 33: Photovoltaik - Optische und elektrische Charakterisierung von Solarzellen Institut für Technische Physik II Versuch 33: Photovoltaik - Optische und elektrische Charakterisierung von Solarzellen Institut für Technische Physik II Photovoltaik:Direkte Umwandlung von Strahlungsenergie in elektrische Energie Anregung

Mehr

Wärmeleitung und thermoelektrische Effekte Versuch P2-32

Wärmeleitung und thermoelektrische Effekte Versuch P2-32 Auswertung Wärmeleitung und thermoelektrische Effekte Versuch P2-32 Iris Conradi und Melanie Hauck Gruppe Mo-02 7. Juni 2011 Inhaltsverzeichnis Inhaltsverzeichnis 1 Wärmeleitfähigkeit 3 2 Peltier-Kühlblock

Mehr

3B SCIENTIFIC PHYSICS

3B SCIENTIFIC PHYSICS B SCIENTIFIC PHYSICS Triode D 17 Bedienungsanleitung 5/ ALF - 5 1 Halter -mm-steckerstift zum Anschluss der Anode Anode Gitter 5 Halter mit -mm- Steckerstift zum Anschluss des Gitters Heizwendel 7 Kathodenplatte

Mehr

Protokoll zum Anfängerpraktikum

Protokoll zum Anfängerpraktikum Protokoll zum Anfängerpraktikum Michelson Interferometer Gruppe 2, Team 5 Sebastian Korff Frerich Max 26.06.06 Inhaltsverzeichnis 1. Einleitung -3-1.1 Allgemeines -3-1.2 Funktionsweise -4-1.3 Relative

Mehr

Kinetische Gastheorie

Kinetische Gastheorie Kinetische Gastheorie Mikroskopischer Zugang zur Wärmelehre ausgehend on Gesetzen aus der Mechanik. Ziel: Beschreibung eines Gases mit ielen wechselwirkenden Atomen. Beschreibung mit Mitteln der Mechanik:

Mehr

Vorbereitung zum Versuch. Absorption von Betaund Gammastrahlung. 0 Grundlagen

Vorbereitung zum Versuch. Absorption von Betaund Gammastrahlung. 0 Grundlagen Vorbereitung zum Versuch Absorption von Betaund Gammastrahlung Kirstin Hübner (1348630) Armin Burgmeier (1347488) Gruppe 15 9. Juni 2008 0 Grundlagen 0.1 Radioaktive Strahlung In diesem Versuch wollen

Mehr

Die Leiterkennlinie gibt den Zusammenhang zwischen Stromstärke I und Spannung U wieder.

Die Leiterkennlinie gibt den Zusammenhang zwischen Stromstärke I und Spannung U wieder. Newton 10 und / Elektrizitätslehre Kapitel 1 Gesetzmäßigkeiten des elektrischen Stromkreises 1.1 Widerstände hemmen den Stromfluss Ohm sches Gesetz und elekt- rischer Widerstand Seite 13 / 14 1. Welche

Mehr

1.2 Drehung der Polarisationsebene, Faradayeffekt, Doppelbrechung

1.2 Drehung der Polarisationsebene, Faradayeffekt, Doppelbrechung Physikalisches Praktikum für Anfänger - Teil 1 Gruppe 1 - Optik 1.2 Drehung der Polarisationsebene, Faradayeffekt, Doppelbrechung 1 Drehung der Polarisationsebene Durch einige Kristalle, z.b. Quarz wird

Mehr

22 Optische Spektroskopie; elektromagnetisches Spektrum

22 Optische Spektroskopie; elektromagnetisches Spektrum 22 Optische Spektroskopie; elektromagnetisches Spektrum Messung der Wellenlänge von Licht mithilfedes optischen Gitters Versuch: Um das Spektrum einer Lichtquelle, hier einer Kohlenbogenlampe, aufzunehmen

Mehr

F-Praktikum Physik: Photolumineszenz an Halbleiterheterostruktur

F-Praktikum Physik: Photolumineszenz an Halbleiterheterostruktur F-Praktikum Physik: Photolumineszenz an Halbleiterheterostruktur David Riemenschneider & Felix Spanier 31. Januar 2001 1 Inhaltsverzeichnis 1 Einleitung 3 2 Auswertung 3 2.1 Darstellung sämtlicher PL-Spektren................

Mehr

Physik, grundlegendes Anforderungsniveau

Physik, grundlegendes Anforderungsniveau Thema: Eigenschaften von Licht Gegenstand der Aufgabe 1 ist die Untersuchung von Licht nach Durchlaufen von Luft bzw. Wasser mit Hilfe eines optischen Gitters. Während in der Aufgabe 2 der äußere lichtelektrische

Mehr

Gase, Flüssigkeiten, Feststoffe

Gase, Flüssigkeiten, Feststoffe Gase, Flüssigkeiten, Feststoffe Charakteristische Eigenschaften der Aggregatzustände Gas: Flüssigkeit: Feststoff: Nimmt das Volumen und die Form seines Behälters an. Ist komprimierbar. Fliesst leicht.

Mehr

Farbtypen. Bedeutung von Farben 1. Drucken. Arbeiten mit Farben. Papierhandhabung. Wartung. Problemlösung. Verwaltung. Index

Farbtypen. Bedeutung von Farben 1. Drucken. Arbeiten mit Farben. Papierhandhabung. Wartung. Problemlösung. Verwaltung. Index Bedeutung von Farben 1 Ihr Drucker bietet Ihnen die Möglichkeit, Farben als Kommunikationsmittel einzusetzen. Farben wecken die Aufmerksamkeit, schaffen Respekt und verleihen Ihren Ausdrucken oder sonstigen

Mehr

Der Photoelektrische Effekt

Der Photoelektrische Effekt Der Photoelektrische Effekt Anna-Maria Klingenböck und Sarah Langer 16.10.2012 Inhaltsverzeichnis 1 Das Licht Welle oder Teilchen? 1 2 Eine einfache Variante 2 3 Versuchsaufbau 3 3.1 1. Versuch...............................

Mehr

Besondere Lernleistung Thema: Umkehrung des lichtelektrischen Effekts in Leuchtdioden von Florian Kantelberg und Michael Winkler

Besondere Lernleistung Thema: Umkehrung des lichtelektrischen Effekts in Leuchtdioden von Florian Kantelberg und Michael Winkler Besondere Lernleistung Thema: Umkehrung des lichtelektrischen Effekts in Leuchtdioden von Florian Kantelberg und Michael Winkler Gliederung: 1. Einleitung 2. Lichtelektrischer Effekt - Bestimmung des Plankschen

Mehr

Grundwissen Physik (7. Klasse)

Grundwissen Physik (7. Klasse) Grundwissen Physik (7. Klasse) 1 Elektrizität und Magnetisus 1.1 Elektrischer Stro Strokreis: Dait ein dauerhafter Stro fließt, uss ein geschlossener Strokreis vorhanden sein. Stro bedeutet Bewegung von

Mehr

Elektrische Messverfahren Versuchsvorbereitung

Elektrische Messverfahren Versuchsvorbereitung Versuche P-70,7,8 Elektrische Messverfahren Versuchsvorbereitung Thomas Keck, Gruppe: Mo-3 Karlsruhe Institut für Technologie, Bachelor Physik Versuchstag: 6.2.200 Spannung, Strom und Widerstand Die Basiseinheit

Mehr

Versuch 17.2 Der Transistor

Versuch 17.2 Der Transistor Physikalisches A-Praktikum Versuch 17.2 Der Transistor Praktikanten: Gruppe: Julius Strake Niklas Bölter B006 Betreuer: Johannes Schmidt Durchgeführt: 11.09.2012 Unterschrift: E-Mail: niklas.boelter@stud.uni-goettingen.de

Mehr

Vortrag 2: Kohärenz VON JANIK UND JONAS

Vortrag 2: Kohärenz VON JANIK UND JONAS Vortrag 2: Kohärenz VON JANIK UND JONAS Vortrag 2: Kohärenz Inhalt: Kohärenz im Allgemeinen Kohärenzlänge Kohärenzbedingungen Zeitliche Kohärenz Räumliche Kohärenz MICHELSON Interferometer zum Nachweis

Mehr

Elektrischen Phänomene an Zellmembranen

Elektrischen Phänomene an Zellmembranen Konzeptvorlesung 17/18 1. Jahr Block 1 Woche 4 Physikalische Grundlagen der Bioelektrizität Physik PD Dr. Hans Peter Beck Laboratorium für Hochenergiephysik der niversität Bern HPB11 1 Elektrischen Phänomene

Mehr

5.8.8 Michelson-Interferometer ******

5.8.8 Michelson-Interferometer ****** 5.8.8 ****** Motiation Ein wird mit Laser- bzw. mit Glühlampenlicht betrieben. Durch Verschieben eines der beiden Spiegel werden Intensitätsmaxima beobachtet. Experiment S 0 L S S G Abbildung : Aufsicht

Mehr

400 - Mikrowellen. 1. Aufgaben. 2. Grundlagen

400 - Mikrowellen. 1. Aufgaben. 2. Grundlagen 400 - Mikrowellen 1. Aufgaben 1.1 Überzeugen Sie sich qualitativ von der Richtstrahlcharakteristik des Hornstrahlers. Messen Sie die Abhängigkeit der empfangenen Mikrowellenleistung vom Abstand zum Sender

Mehr

Arbeit Leistung Energie

Arbeit Leistung Energie Arbeit Leistung Energie manuell geistig Was ist Arbeit Wie misst man Arbeit? Ist geistige Arbeit messbar? Wann wird physikalische Arbeit verrichtet? Es wird physikalische Arbeit verrichtet, wenn eine Kraft

Mehr

Impulserhaltung beim zentralen elastischen Mehrfachstoß mit der Rollenfahrbahn und Zeitmessgerät 4 4

Impulserhaltung beim zentralen elastischen Mehrfachstoß mit der Rollenfahrbahn und Zeitmessgerät 4 4 Impulserhaltung beim zentralen DAP Einleitung Als Kraftstoß auf einen Körper wird die durch eine Kraft F in einer kurzen Zeit t bewirkte Impulsänderung bezeichnet. Der Impuls p ist dabei als das Produkt

Mehr

Beschreibe die wesentlichen Unterschiede zwischen den einzelnen Anregungsmöglichkeiten.

Beschreibe die wesentlichen Unterschiede zwischen den einzelnen Anregungsmöglichkeiten. Erkläre den Begriff Anregung eines Atoms Unter Anregung eines Atoms versteht man die Zufuhr von Energie an ein Atom, welche dieses vom Grundzustand in einen höheren Energiezustand, auf ein höheres Energieniveau,

Mehr

Probeklausur Sommersemester 2000

Probeklausur Sommersemester 2000 Probeklausur Sommersemester 2000 1. in Mensch, der 50 kg wiegt, schwimmt im Freibad. Wie viel Wasser verdrängt er? 500 l 7,5 m³ 75 l 150 l 50 l 2. urch ein lutgefäß der Länge 1 cm fließt bei einer ruckdifferenz

Mehr

5. Arbeit und Energie

5. Arbeit und Energie Inhalt 5.1 Arbeit 5.2 Konservative Kräfte 5.3 Potentielle Energie 5.4 Kinetische Energie 5.1 Arbeit 5.1 Arbeit Konzept der Arbeit führt zur Energieerhaltung. 5.1 Arbeit Wird Masse m mit einer Kraft F von

Mehr

2.6 Zweiter Hauptsatz der Thermodynamik

2.6 Zweiter Hauptsatz der Thermodynamik 2.6 Zweiter Hauptsatz der Thermodynamik Der zweite Hauptsatz der Thermodynamik ist ein Satz über die Eigenschaften von Maschinen die Wärmeenergie Q in mechanische Energie E verwandeln. Diese Maschinen

Mehr

Aufgabe P1 Elektromagnetische Induktion (11 BE)

Aufgabe P1 Elektromagnetische Induktion (11 BE) Abitur 2005 Physik Gk Seite 3 Pflichtaufgabe 23 BE Aufgabe P1 Elektromagnetische Induktion (11 BE) 1. Eine lange luftgefüllte Zylinderspule (Querschnittsfläche A 1 = 160 cm², Länge l 1 = 60 cm, Windungszahl

Mehr

M4 Oberflächenspannung Protokoll

M4 Oberflächenspannung Protokoll Christian Müller Jan Philipp Dietrich M4 Oberflächenspannung Protokoll Versuch 1: Abreißmethode b) Messergebnisse Versuch 2: Steighöhenmethode b) Messergebnisse Versuch 3: Stalagmometer b) Messergebnisse

Mehr

q : Ladung v : Geschwindigkeit n : Dichte der Ladungsträger

q : Ladung v : Geschwindigkeit n : Dichte der Ladungsträger D07 Fotoeffekt D07 1. ZIELE Beim Fotoeffekt werden frei bewegliche Ladungsträger durch die Absorption von Licht erzeugt. Man nutzt den Effekt, um Beleuchtungsstärken elektrisch zu messen. Im Versuch werden

Mehr

Versuch A1 - Braggsche Reflexion und Röntgenspektrum. Abgabedatum: 28. Februar 2008

Versuch A1 - Braggsche Reflexion und Röntgenspektrum. Abgabedatum: 28. Februar 2008 Versuch A1 - Braggsche Reflexion und Röntgenspektrum Sven E Tobias F Abgabedatum: 28. Februar 2008 Inhaltsverzeichnis 1 Versuchsziel 3 2 Physikalischer Zusammenhang 3 2.1 Röntgenstrahlung...........................

Mehr

Physikalisches Praktikum 5. Semester

Physikalisches Praktikum 5. Semester Torsten Leddig 22.Dezember 2005 Mathias Arbeiter Betreuer: Toralf Ziems Physikalisches Praktikum 5. Semester - Zeeman-Effekt - Inhaltsverzeichnis 1 Aufgabenstellung 3 2 Normaler Zeeman-Effekt 3 3 Messung

Mehr

PO Doppelbrechung und elliptisch polarisiertes Licht

PO Doppelbrechung und elliptisch polarisiertes Licht PO Doppelbrechung und elliptisch polarisiertes Licht Blockpraktikum Herbst 27 (Gruppe 2b) 24. Oktober 27 Inhaltsverzeichnis 1 Grundlagen 2 1.1 Polarisation.................................. 2 1.2 Brechung...................................

Mehr

Elektrische Ladung und elektrischer Strom

Elektrische Ladung und elektrischer Strom Elektrische Ladung und elektrischer Strom Es gibt positive und negative elektrische Ladungen. Elektron Atomhülle Atomkern Der Aufbau eines Atoms Alle Körper sind aus Atomen aufgebaut. Ein Atom besteht

Mehr

Aufgabe b) Anfangs eine simple Aufgabe, doch nach ungefähr dem siebten Glas (64 Reiskörner) eine mühselige Arbeit.

Aufgabe b) Anfangs eine simple Aufgabe, doch nach ungefähr dem siebten Glas (64 Reiskörner) eine mühselige Arbeit. 1. Schachbrett voller Reis Wir haben uns für mehr als 1000 kg entschieden, da wir glauben, dass aufgrund des stark ansteigenden Wachstums (exponentiell!) dieses Gewicht leicht zustande kommt. Anfangs eine

Mehr

Polarisation des Lichtes

Polarisation des Lichtes Polarisation des Lichtes Licht = transversal schwingende el.-magn. Welle Polarisationsrichtung: Richtung des el. Feldvektors Polarisationsarten: unpolarisiert: keine Raumrichtung bevorzugt (z.b. Glühbirne)

Mehr

Leistungskurs Physik (Bayern): Abiturprüfung 2002 Aufgabe III Atomphysik

Leistungskurs Physik (Bayern): Abiturprüfung 2002 Aufgabe III Atomphysik Leistungskurs Physik (Bayern): Abiturprüfung 2002 Aufgabe III Atomphysik 1. Röntgenstrahlung und Compton-Effekt a) Je nah Entstehung untersheidet man bei Röntgenstrahlung u. a. zwishen Bremsstrahlung,

Mehr

Schulbiologiezentrum Hannover. Mit einer CD die Wellenlängen des Lichts messen

Schulbiologiezentrum Hannover. Mit einer CD die Wellenlängen des Lichts messen Schulbiologiezentrum Hannover Vinnhorster Weg 2, 30419 Hannover Tel: 0511-16847665/7 Fax: 0511-16847352 email: schulbiologiezentrum@hannover-stadt.de Unterrichtsprojekte Natur und Technik 19.68 Zum Selbstbau

Mehr

3B SCIENTIFIC PHYSICS

3B SCIENTIFIC PHYSICS B SCIENTIFIC PHYSICS Triode S 11 Bedienungsanleitung 1/15 ALF 1 5 7 1 Führungsstift Stiftkontakte Kathodenplatte Heizwendel 5 Gitter Anode 7 -mm-steckerstift zum Anschluss der Anode 1. Sicherheitshinweise

Mehr

= 8.28 10 23 g = 50u. n = 1 a 3 = = 2.02 10 8 = 2.02Å. 2 a. k G = Die Dispersionsfunktion hat an der Brillouinzonengrenze ein Maximum; dort gilt also

= 8.28 10 23 g = 50u. n = 1 a 3 = = 2.02 10 8 = 2.02Å. 2 a. k G = Die Dispersionsfunktion hat an der Brillouinzonengrenze ein Maximum; dort gilt also Aufgabe 1 Ein reines Material habe sc-struktur und eine Dichte von 10 g/cm ; in (1,1,1) Richtung messen Sie eine Schallgeschwindigkeit (für große Wellenlängen) von 000 m/s. Außerdem messen Sie bei nicht

Mehr

Projektpraktikum Atomphysik zum Thema: Bestimmung des Planckschen Wirkungsquantums

Projektpraktikum Atomphysik zum Thema: Bestimmung des Planckschen Wirkungsquantums Projektpraktikum Atomphysik zum Thema: Bestimmung des Planckschen Wirkungsquantums Manuel Frey, Maria Kegeler, Ilja Krüger, Natalie Schön, Timon Thomas, Moritz Zeidler 31. März bis 4. April 2014 1 Inhaltsverzeichnis

Mehr

Gitterherstellung und Polarisation

Gitterherstellung und Polarisation Versuch 1: Gitterherstellung und Polarisation Bei diesem Versuch wollen wir untersuchen wie man durch Überlagerung von zwei ebenen Wellen Gttterstrukturen erzeugen kann. Im zweiten Teil wird die Sichtbarkeit

Mehr

Mathematische Hilfsmittel

Mathematische Hilfsmittel Mathematische Hilfsmittel Koordinatensystem kartesisch Kugelkoordinaten Zylinderkoordinaten Koordinaten (x, y, z) (r, ϑ, ϕ) (r, ϕ, z) Volumenelement dv dxdydz r sin ϑdrdϑdϕ r dr dzdϕ Additionstheoreme:

Mehr

Elektrische Energie, Arbeit und Leistung

Elektrische Energie, Arbeit und Leistung Elektrische Energie, Arbeit und Leistung Wenn in einem Draht ein elektrischer Strom fließt, so erwärmt er sich. Diese Wärme kann so groß sein, dass der Draht sogar schmilzt. Aus der Thermodynamik wissen

Mehr

Seiko Instruments GmbH NanoTechnology

Seiko Instruments GmbH NanoTechnology Seiko Instruments GmbH NanoTechnology Röntgenfluoreszenz Analyse Eine Beschreibung der Röntgenfluoreszenzanalysetechnik mit Beispielen. 1. Prinzip Röntgenstrahlen sind elektromagnetische Wellen, ähnlich

Mehr

7.3 Anwendungsbeispiele aus Physik und Technik

7.3 Anwendungsbeispiele aus Physik und Technik 262 7. Differenzialrechnung 7.3 7.3 Anwendungsbeispiele aus Physik und Technik 7.3.1 Kinematik Bewegungsabläufe lassen sich durch das Weg-Zeit-Gesetz s = s (t) beschreiben. Die Momentangeschwindigkeit

Mehr

5 Gase...2. 5.1 Das ideale Gasgesetz...2. 5.2 Kinetische Gastheorie...3. 5.2.1 Geschwindigkeit der Gasteilchen:...5. 5.2.2 Diffusion...

5 Gase...2. 5.1 Das ideale Gasgesetz...2. 5.2 Kinetische Gastheorie...3. 5.2.1 Geschwindigkeit der Gasteilchen:...5. 5.2.2 Diffusion... 5 Gase...2 5.1 Das ideale Gasgesetz...2 5.2 Kinetische Gastheorie...3 5.2.1 Geschwindigkeit der Gasteilchen:...5 5.2.2 Diffusion...5 5.2.3 Zusammenstöße...6 5.2.4 Geschwindigkeitsverteilung...6 5.2.5 Partialdruck...7

Mehr

Laser und Lichtgeschwindigkeit

Laser und Lichtgeschwindigkeit 1 Laser und Lichtgeschwindigkeit Vorbereitung: Brechungsgesetz, Totalreflexion, Lichtausbreitung in Medien (z.b. in Glasfasern), Erzeugung und Eigenschaften von Laserlicht, Kohärenz, Funktionsweise eines

Mehr

Universität der Pharmazie

Universität der Pharmazie Universität der Pharmazie Institut für Pharmazie Pharmazie-Straße 1 12345 Pharmastadt Identitäts-, Gehalts- und Reinheitsbestimmung von Substanzen in Anlehnung an Methoden des Europäischen Arzneibuchs

Mehr

Michelson - Interferometer

Michelson - Interferometer Michelson - Interferometer Matthias Lütgens 9. April 2005 Partner: Christoph Mahnke Betreuer: Dr. Enenkel Datum der Versuchsdurchführung: 5. April 2005 0.1 Ziel Experimentelle Nutzung des Michelson-Interferometers

Mehr

Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3

Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3 Lineare Funktionen Inhaltsverzeichnis 1 Proportionale Funktionen 3 1.1 Definition............................... 3 1.2 Eigenschaften............................. 3 2 Steigungsdreieck 3 3 Lineare Funktionen

Mehr

Spektralanalyse mit Tracker

Spektralanalyse mit Tracker Spektralanalyse mit Tracker Überarbeitete und ergänzte Kursarbeit von Michael Czuray und Tobias Kuehner Schritt-für Schritt Schüleranleitung: Aufbau: Benötigt werden: Verschiedene LED-Lichter und Glühbirnen

Mehr

Dynamisch unterrichten mit Excel

Dynamisch unterrichten mit Excel Reimund Albers Dynamisch unterrichten mit Excel Erstellen von Schiebereglern 1 Dynamisch unterrichten mit Excel oder: Wie erstelle ich einen Schieberegler in Excel? Beispiel: Demonstration der Abhängigkeit

Mehr

Spektroskopie im sichtbaren und UV-Bereich

Spektroskopie im sichtbaren und UV-Bereich Spektroskopie im sichtbaren und UV-Bereich Theoretische Grundlagen Manche Verbindungen (z.b. Chlorophyll oder Indigo) sind farbig. Dies bedeutet, dass ihre Moleküle sichtbares Licht absorbieren. Durch

Mehr