Medizinische Biometrie (L5)

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Medizinische Biometrie (L5)"

Transkript

1 Medizinische Biometrie (L5) Vorlesung II Daten Deskription Prof. Dr. Ulrich Mansmann Institut für Medizinische Informationsverarbeitung, Biometrie und Epidemiologie IBE, Med. Biom. (L5) 1

2 Lernziele Nomenklatur der Datenerhebung: Merkmal, Merkmalsausprägung, Beobachtungseinheit, Merkmalsträger Medizinische Dokumentation: Qualität,Arten der Dokumentation, Datenauswahl, Datenklassifikation, Qualitätssicherung der Dokumentation Daten strukturiert und systematisch erheben Statistische Maßzahlen: Lokation, Lagemasse, Variabilität Komprimieren von Daten in Information Daten, Deskription, Modell, Graphik Wiederholung von Themen aus Medizinische Psychologie und Medizinische Soziologie IBE, Med. Biom. (L5) 2

3 Nomenklatur der Datenerhebung Merkmal: Eigenschaft, die durch eine Untersuchung (Beobachtung) festgestellt werden kann (Geschlecht, Alter). Merkmalsausprägungen: Werte, die das Merkmal annehmen kann. Beim Merkmal Geschlecht also (ohne Beachtung besonderer Ausnahmefälle) die Ausprägungen männlich und weiblich. Beobachtungseinheit, Merkmalsträger: Einheiten an denen ein Merkmal erhoben wird. Die Beobachtungseinheiten können z.b. Personen, Zellen, Blutproben usw. sein. Nicht triviale Situation: Was ist die Beobachtungseinheit in einer Studie bei der es um das Überleben von Zahnimplantaten geht? Der Patient mit mehr als einem implantierten Zahn? Der einzelne implantierte Zahn? IBE, Med. Biom. (L5) 3

4 Qualität dokumentierter Daten Objektivität: Die Daten sollen vom Untersucher unabhängig sein. Reliabilität: Die erhobenen Daten sollen mit großer Genauigkeit durch einen anderen Untersucher reproduzierbar sein. Validität: die erhobenen Daten sollen das beschreiben, was mit Ihnen beschrieben werden soll. Normierung: Verwende einheitliche, anerkannte Standards. Vergleichbarkeit: Tests und Untersuchungen, die dem Nachweis des gleichen Sachverhaltes dienen, sollen zum gleichen Ergebnis kommen (individuelle Reliabilität). Ökonomie und Nützlichkeit: Dokumentation so umfangreich wie nötig und so knapp wie möglich. Vollständigkeit: Die Dokumentation sollte alle für die Fragestellung relevanten individuellen Krankeitsverläufe erfasst und für diese Verläufe alle relevante Information verfügbar machen (Störgrößen, Einflußgrößen). Z.B: Fehlt das Geschlecht, so kann das Schuhgrößenproblem nicht aufgeklärt werden (Teil I, Folie 7). IBE, Med. Biom. (L5) 4

5 Arten der Dokumentation Prospektive Dokumentation: Planung, Berücksichtigung von Qualitätsstandards, Aufbau einer arbeitsteiligen Organisation Retrospektive Dokumentation: Inhaltliche Qualität der Daten ist nicht einschätzbar, welche Regularien unterlagen den diagnostischen und therapeutischen Maßnahmen? Typisierung der zu dokumentierenden Variablen: Identifikationsgrößen Zielgrößen Einflussgrößen Störgrößen Z Einflussgröße (Z) X Y X Y C Störgröße, Confounder (C): liegt nicht auf dem interessierenden kausalen Pfad, steht jedoch mit Einfluss- und Zielgröße in Verbindung. IBE, Med. Biom. (L5) 5

6 Merkmalstypen Nominalskaliertes (nominales) Merkmal: Es können nur Aussagen über gleich und ungleich gemacht werden. (a=b, a b) Ordinalskaliertes (ordinales) Merkmal: Abbildung der Rangordnung der Untersuchungseinheiten bezüglich der gemessenen Eigenschaft ist möglich. (a<b, a=b, a>b) Intervallskaliertes Merkmal: Nicht nur Rangordnung, sondern auch Größenunterschiede der Ausprägung der gemessenen Eigenschaft kann abgebildet werden. (a ist um c Einheiten größer als b: c=a-b) Verhältnisskalierte Variablen: Nicht nur Größenunterschiede, sondern auch Größenverhältnisse können quantifiziert werden. (a ist um den Faktor c verschieden von b: c=a/b) Eine Verhältnisskala setzt voraus, dass die Zahl Null eine natürliche Entsprechung in den empirischen Daten hat. Bei einer Intervallskala ist die Vergabe des Wertes Null für eine bestimmte Ausprägung der zu messenden Eigenschaft eine Entscheidung der Forscher. Alter einer Person verhältnisskaliert Zeitskala der historischen Zeitrechnung intervallskaliert, Chisti Geburt ist eine willkürliche Festsetzung eines Nullpunktes. IBE, Med. Biom. (L5) 6

7 Merkmalstypen qualitativ quantitativ dichotom binär nominal ordinal intervallskaliert verhältnisskaliert diskret stetig diskret stetig Geschlecht (m/w), Remission (j/n) Augenfarbe, Nationalität, Diagnose Tumorstadien, Schulnoten, Behandlungserfolg Anzahl von Geschwister, Anzahl Leukozyten in einer Zählkammer Größe, Gewicht, Blutdruck Zeitpunkt der Geburt IBE, Med. Biom. (L5) 7

8 Qualitätssicherung der Dokumentation Kontrolle der inhaltlichen Qualität bei der Datengewinnung und der formalen Korrektheit bei der Datenerfassung und verarbeitung. Fehler bei der Datengewinnung: unvollständige und verzerrte anamnestische Angaben Fehler bei der Durchführung diagnostischer Untersuchungen Übersehen wichtiger Befunde falsche Beurteilung diagnostischer Untersuchungen fehlerhafte Angaben über therapeutische Maßnahmen Fehler bei der Übermittlung von Daten Fehler bei Datenerfassung und verarbeitung vergessene Eintragungen, Übertragungsfehler, fiktive Eintragungen, Kodierungsfehler, Eingabefehler Fehler bei der Datenauswertung Wahl ungeeigneter statistischer Methoden, Fehler bei der Interpretation der Ergebnisse Formale Methoden zur Fehlerkontrolle IBE, Med. Biom. (L5) 8

9 Komprimieren von Daten in Information (I) Isaacs et al (1983) J. Clin. Pathol, 36: IgM Messungen an 298 Kindern im Alter von 6 Monaten bis 6 Jahre IgM (g/l) Anzahl Kinder Welche medizinisch interessante Information enthalten diese Daten? Kann aus den Daten Information gewonnen werden, die über die beobachtete Gruppe von 296 Kindern hinaus von allgemeinem Interesse ist? Wie ist in einer Population gesunder Kinder zwischen 6 Monaten und 6 Jahren der IgM Wert typischerweise verteilt? (Normalwerte) IBE, Med. Biom. (L5) 9

10 Komprimieren von Daten in Information (II) Histogramm I Histogramm II Frequency Direkte Umsetzung der Liste in einen Graph Density Fläche summiert sich auf zum Wert IgM [g/l] IgM [g/l] Histogramm III Boxplot Frequency Gröbere Klasseneinteilung als in der Datenliste IgM [g/l] Abstraktere Form der Darstellung Median 25%, 75% Quantil 5%, 95% Quantil Ausreißer IgM [g/l] IBE, Med. Biom. (L5) 10

11 Statistische Maßzahlen Wie ist in einer Population gesunder Kinder zwischen 6 Monaten und 6 Jahren der IgM Wert typischerweise verteilt? (Normalwerte) Minimum, Maximum, Spannweite (= Maximum Minimum) Was ist ein typischer Wert (Lokation, Lagemaße)? Mittelwert (Datenschwerpunkt), Median (Datenmitte), Modalwert (häufigste Ausprägung) In welchen Bereichen liegen typischerweise die IgM Werte? Bereiche der zentralen 50%, 90% der beobachteten Werte Quantilen Wie stark streuen die IgM-Werte in der betrachteten Population? Interquartilen Abstand, Varianz, Standardabweichung Welche Form hat die Verteilung: symmetrisch, schief? IBE, Med. Biom. (L5) 11

12 Komprimieren von Daten in Information (III) IgM (g/l) Anzahl Kinder Haeufigkeit [%] kum. Haeufigkeit [%] [1,] [2,] [3,] [4,] [5,] [6,] [7,] [8,] [9,] [10,] [11,] [12,] [13,] [14,] [15,] [16,] [17,] [18,] [19,] [20,] [21,] [22,] [23,] [24,] IBE, Med. Biom. (L5) 12

13 Urliste: x 1, x 2, x 3,, x n Statistische Maßzahlen: Lagemasse Liste der beobachteten Werte Rangliste: x (1), x (2),, x (n) x (i) : Element mit Position i in der nach der Größe der Werte geordneten Urliste Modalwert: Beschreibt den am häufigsten vorkommenden Wert in der Stichprobe. (Beispiel: 0.7 und 0.8 mit je 38 Kindern) Median: Mittelwert: q-quantil: Wert der die Mitte der Rangliste einnimmt n ungerade: x ((n+1)/2) ; n gerade: 0.5 [x (n/2) + x (n/2+1) ] x = (x 1 + x 2 + x x n )/n n q ganze Zahl x q = 0.5 [x (nq) + x (nq+1) ] sonst x q = x ([n g]) mit [n q] die auf n q folgende kleinste ganze Zahl. > summary(igm) Min. 1st Quartile Median Mean 3rd Quartile Max IBE, Med. Biom. (L5) 13

14 Median- und Quantilenberechnung x (i) : Wert an Position i x (1) x (2) x (3) x (4) x (5) x (6) x (7) Median n ungerade 25% Quantil (1. Quartil): n=7, q=0.25, n q=1.75, [n q] = 2 x (1) x (2) x (3) x (4) x (5) x (6) Median {x (3) + x (4) }/2 n gerade IBE, Med. Biom. (L5) 14

15 Statistische Maßzahlen: Variabilität Urliste: x 1, x 2, x 3,, x n Rangliste: x (1), x (2),, x (n) Liste der beobachteten Werte x (i) : Element mit Position i in der nach der Größe der Werte geordneten Urliste Spannweite (Range): r = x max x min = x (n) x (1) Interquartilsabstand: IQR = x 0.75 x 0.25 Stichprobenvarianz: s 2 = n i = 1 ( x x ) i n 1 2 Standardabweichung: s Datenbeispiel: IQR = 0.5; s² = 0.22; s = 0.47 IBE, Med. Biom. (L5) 15

16 Komprimieren von Daten in Information (IV) Urliste: x 1, x 2, x 3,, x n Rangliste: x (1), x (2),, x (n) empirische Verteilungsfunktion: Liste der beobachteten Werte x (i) : Element mit Position i in der nach der Größe der Werte geordneten Urliste F n (x) = [Anzahl der Beob. mit x i x]/n percentage Ablesen von Quantilen aus der empirischen Verteilungsfunktion 95 % Quantile Median Kann auch zum Vergleich von Gruppen verwendet werden IgM [g/l] IBE, Med. Biom. (L5) 16

17 Komprimieren von Daten in Information (V) Wie ist in einer Population gesunder Kinder zwischen 6 Monaten und 6 Jahren der IgM Wert typischerweise verteilt? (Normalwerte) Ist die vorhandene Stichprobe repräsentativ für die interessierende Population? Ist die IgM Verteilung unabhängig vom Alter? Ist es angemessen, in der durchgeführten Untersuchung das Alter der Kinder völlig zu vernachlässigen? Alter als Einflußgröße, Altersstruktur der Studiengruppe Wie nahe liegt der ermittelte Gruppenmittelwert (Median) am wirklichen Populationsmittelwert (Populationsmedian)? Wie gut schätzt der zentrale 50% (90%) Bereich, der aus den Daten ermittelt wurde, den der wahren Populationsverteilung ab? Interne Validität: Können mit der Studie die interessierenden Größen für die interessierende Population unverzerrt geschätzt werden? Externe Validität: Können die Ergebnisse von der lokalen Kinderpopulation (Europa) auf größere Populationen erweitert werden (USA, Afrika)? IBE, Med. Biom. (L5) 17

18 Komprimieren von Daten in Information (V) Histogramm Histogramm und Modell Frequency Frequency IgM [g/l] IgM [g/l] Theoretisches Modell für Inferenz Interpretation der Fläche als W keit, Berechnung folgender Größen P[X > w] = P[w u < X < w o ] = 0.9 Erlaubt das theoretische Modell eine Beschreibung der in den Daten enthaltenen Information mit wenigen Parametern? Ist das abgeleitete theoretische Modell eine angemessene Beschreibung der Wirklichkeit? IgM [g/l] IBE, Med. Biom. (L5) 18

19 Zusammenfassung Neben einem angemessenen Studiendesign, stellt die Erhebung der Daten eine komplexe arbeitsteilige Aufgabe dar. Diese braucht eine sorgfältige Planung und kompetente Durchführung. Typisierung der Daten in kategorielle und numerische und deren weitere Feinunterteilung definiert das zur Analyse verfügbare Instrumentarium. Der erste Schritt einer Datenanalyse besteht in der Erstellung von Datenübersichten mit zunehmender Abstraktion. Es können graphische wie auch numerische Werkzeuge dazu verwendet werden. Es stellt sich die Frage, wie sich die gewonnenen Ergebnisse verallgemeinern lassen. Können die Ergebnisse auf eine größere Population ausgeweitet werden? Ist die Studiengruppe repräsentativ für eine Population? Ist eine Erweiterung auf umfassendere Populationen, als die durch die Studie dargestellte, möglich? IBE, Med. Biom. (L5) 19

1,11 1,12 1,13 1,14 1,15 1,16 1,17 1,17 1,17 1,18

1,11 1,12 1,13 1,14 1,15 1,16 1,17 1,17 1,17 1,18 3. Deskriptive Statistik Ziel der deskriptiven (beschreibenden) Statistik (explorativen Datenanalyse) ist die übersichtliche Darstellung der wesentlichen in den erhobenen Daten enthaltene Informationen

Mehr

Merkmalstypen Univ.-Prof. Dr. rer. nat. et med. habil. Andreas Faldum

Merkmalstypen Univ.-Prof. Dr. rer. nat. et med. habil. Andreas Faldum 1 Merkmalstypen Quantitativ: Geordnete Werte, Vielfache einer Einheit Stetig: Prinzipiell sind alle Zwischenwerte beobachtbar Beispiele: Gewicht, Größe, Blutdruck Diskret: Nicht alle Zwischenwerte sind

Mehr

Deskription, Statistische Testverfahren und Regression. Seminar: Planung und Auswertung klinischer und experimenteller Studien

Deskription, Statistische Testverfahren und Regression. Seminar: Planung und Auswertung klinischer und experimenteller Studien Deskription, Statistische Testverfahren und Regression Seminar: Planung und Auswertung klinischer und experimenteller Studien Deskriptive Statistik Deskriptive Statistik: beschreibende Statistik, empirische

Mehr

htw saar 1 EINFÜHRUNG IN DIE STATISTIK: BESCHREIBENDE STATISTIK

htw saar 1 EINFÜHRUNG IN DIE STATISTIK: BESCHREIBENDE STATISTIK htw saar 1 EINFÜHRUNG IN DIE STATISTIK: BESCHREIBENDE STATISTIK htw saar 2 Grundbegriffe htw saar 3 Grundgesamtheit und Stichprobe Ziel: Über eine Grundgesamtheit (Population) soll eine Aussage über ein

Mehr

Teil I: Deskriptive Statistik

Teil I: Deskriptive Statistik Teil I: Deskriptive Statistik 2 Grundbegriffe 2.1 Merkmal und Stichprobe 2.2 Skalenniveau von Merkmalen 2.3 Geordnete Stichproben und Ränge 2.1 Merkmal und Stichprobe An (geeignet ausgewählten) Untersuchungseinheiten

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung Übung 2 28.02.2008 1 Inhalt der heutigen Übung Beschreibende Statistik Gemeinsames Lösen der Übungsaufgaben 2.1: Häufigkeitsverteilung 2.2: Tukey Boxplot 25:Korrelation

Mehr

Statistik. Jan Müller

Statistik. Jan Müller Statistik Jan Müller Skalenniveau Nominalskala: Diese Skala basiert auf einem Satz von qualitativen Attributen. Es existiert kein Kriterium, nach dem die Punkte einer nominal skalierten Variablen anzuordnen

Mehr

Einführung. 2. Sie entstehen erst durch Beobachtung, Erhebung, Befragung, Experiment

Einführung. 2. Sie entstehen erst durch Beobachtung, Erhebung, Befragung, Experiment Einführung In vielen Gebieten des öffentlichen Lebens, in der Wirtschaft, der Verwaltung, der Industrie, der Forschung, in der Medizin etc. werden Entscheidungen auf der Grundlage von bestimmten Daten

Mehr

a) Zeichnen Sie in das nebenstehende Streudiagramm mit Lineal eine Regressionsgerade ein, die Sie für passend halten.

a) Zeichnen Sie in das nebenstehende Streudiagramm mit Lineal eine Regressionsgerade ein, die Sie für passend halten. Statistik für Kommunikationswissenschaftler Wintersemester 2009/200 Vorlesung Prof. Dr. Helmut Küchenhoff Übung Cornelia Oberhauser, Monia Mahling, Juliane Manitz Thema 4 Homepage zur Veranstaltung: http://www.statistik.lmu.de/~helmut/kw09.html

Mehr

Stichprobenauslegung. für stetige und binäre Datentypen

Stichprobenauslegung. für stetige und binäre Datentypen Stichprobenauslegung für stetige und binäre Datentypen Roadmap zu Stichproben Hypothese über das interessierende Merkmal aufstellen Stichprobe entnehmen Beobachtete Messwerte abbilden Schluss von der Beobachtung

Mehr

Mathematische Statistik. Zur Notation

Mathematische Statistik. Zur Notation Mathematische Statistik dient dazu, anhand von Stichproben Informationen zu gewinnen. Während die Wahrscheinlichkeitsrechnung Prognosen über das Eintreten zufälliger (zukünftiger) Ereignisse macht, werden

Mehr

Auswertung und Darstellung wissenschaftlicher Daten (1)

Auswertung und Darstellung wissenschaftlicher Daten (1) Auswertung und Darstellung wissenschaftlicher Daten () Mag. Dr. Andrea Payrhuber Zwei Schritte der Auswertung. Deskriptive Darstellung aller Daten 2. analytische Darstellung (Gruppenvergleiche) SPSS-Andrea

Mehr

Willkommen zur Vorlesung Statistik

Willkommen zur Vorlesung Statistik Willkommen zur Vorlesung Statistik Thema dieser Vorlesung: Maßzahlen für zentrale Tendenz, Streuung und andere Eigenschaften von Verteilungen Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische

Mehr

Grundlagen der Datenanalyse am Beispiel von SPSS

Grundlagen der Datenanalyse am Beispiel von SPSS Grundlagen der Datenanalyse am Beispiel von SPSS Einführung Dipl. - Psych. Fabian Hölzenbein hoelzenbein@psychologie.uni-freiburg.de Einführung Organisatorisches Was ist Empirie? Was ist Statistik? Dateneingabe

Mehr

2. Deskriptive Statistik 2.1. Häufigkeitstabellen, Histogramme, empirische Verteilungsfunktionen

2. Deskriptive Statistik 2.1. Häufigkeitstabellen, Histogramme, empirische Verteilungsfunktionen 4. Datenanalyse und Modellbildung Deskriptive Statistik 2-1 2. Deskriptive Statistik 2.1. Häufigkeitstabellen, Histogramme, empirische Verteilungsfunktionen Für die Auswertung einer Messreihe, die in Form

Mehr

Deskriptive Statistik

Deskriptive Statistik Deskriptive Statistik In der beschreibenden Statistik werden Methoden behandelt, mit deren Hilfe man Daten übersichtlich darstellen und kennzeichnen kann. Die Urliste (=Daten in der Reihenfolge ihrer Erhebung)

Mehr

Dr. Reinhard Vonthein, Dipl. Statistiker (Univ.)

Dr. Reinhard Vonthein, Dipl. Statistiker (Univ.) Dr. Reinhard Vonthein, Dipl. Statistiker (Univ.) Reinhard.Vonthein@imbs.uni-luebeck.de Institut für Medizinische Biometrie und Statistik Universität zu Lübeck / Universitätsklinikums Schleswig-Holstein

Mehr

Planung und Auswertung klinischer und experimenteller Studien: Datenmanagement

Planung und Auswertung klinischer und experimenteller Studien: Datenmanagement Planung und Auswertung klinischer und experimenteller Studien: Datenmanagement Institut für Medizininformatik, Biometrie und Epidemiologie Universität Erlangen - Nürnberg 1 Einordnung in den Ablauf 1.

Mehr

Statistik I für Betriebswirte Vorlesung 2

Statistik I für Betriebswirte Vorlesung 2 Statistik I für Betriebswirte Vorlesung 2 PD Dr. Frank Heyde TU Bergakademie Freiberg Institut für Stochastik 16. April 2015 PD Dr. Frank Heyde Statistik I für Betriebswirte Vorlesung 2 1 ii) empirische

Mehr

0 Einführung: Was ist Statistik

0 Einführung: Was ist Statistik 0 Einführung: Was ist Statistik 1 Datenerhebung und Messung Die Messung Skalenniveaus 2 Univariate deskriptive Statistik 3 Multivariate Statistik 4 Regression 5 Ergänzungen Grundbegriffe Statistische Einheit,

Mehr

Projekt zur Entwicklung, Umsetzung und Evaluation von Leitlinien zum adaptiven Management von Datenqualität in Kohortenstudien und Registern

Projekt zur Entwicklung, Umsetzung und Evaluation von Leitlinien zum adaptiven Management von Datenqualität in Kohortenstudien und Registern Projekt zur Entwicklung, Umsetzung und Evaluation von Leitlinien zum adaptiven Management von Datenqualität in Kohortenstudien und Registern gefördert durch die Indikatoren von Datenqualität Michael Nonnemacher

Mehr

1 Verteilungen und ihre Darstellung

1 Verteilungen und ihre Darstellung GKC Statistische Grundlagen für die Korpuslinguistik Kapitel 2: Univariate Deskription von Daten 8.11.2004 Univariate (= eindimensionale) Daten bestehen aus Beobachtungen eines einzelnen Merkmals. 1 Verteilungen

Mehr

Teil II: Einführung in die Statistik

Teil II: Einführung in die Statistik Teil II: Einführung in die Statistik (50 Punkte) Bitte beantworten Sie ALLE Fragen. Es handelt sich um multiple choice Fragen. Sie müssen die exakte Antwortmöglichkeit angeben, um die volle Punktzahl zu

Mehr

Expertenrunde Gruppe 1: Wiederholungsgruppe EXCEL (Datenerfassung, Darstellungsformen, Verwertung)

Expertenrunde Gruppe 1: Wiederholungsgruppe EXCEL (Datenerfassung, Darstellungsformen, Verwertung) Epertenrunde Gruppe 1: Wiederholungsgruppe EXCEL (Datenerfassung, Darstellungsformen, Verwertung) Im Folgenden wird mit Hilfe des Programms EXEL, Version 007, der Firma Microsoft gearbeitet. Die meisten

Mehr

Skript zur Übung: Grundlagen der empirischen Sozialforschung - Datenanalyse

Skript zur Übung: Grundlagen der empirischen Sozialforschung - Datenanalyse Skript zur Übung: Grundlagen der empirischen Sozialforschung - Datenanalyse Phasen des Forschungsprozesses Auswahl des Forschungsproblems Theoriebildung Theoretische Phase Konzeptspezifikation / Operationalisierung

Mehr

Kontingenzkoeffizient (nach Pearson)

Kontingenzkoeffizient (nach Pearson) Assoziationsmaß für zwei nominale Merkmale misst die Unabhängigkeit zweier Merkmale gibt keine Richtung eines Zusammenhanges an 46 o jl beobachtete Häufigkeiten der Kombination von Merkmalsausprägungen

Mehr

Florian Frötscher und Demet Özçetin

Florian Frötscher und Demet Özçetin Statistische Tests in der Mehrsprachigkeitsforschung Aufgaben, Anforderungen, Probleme. Florian Frötscher und Demet Özçetin florian.froetscher@uni-hamburg.de SFB 538 Mehrsprachigkeit Max-Brauer-Allee 60

Mehr

Biomathematik für Mediziner, Klausur WS 1999/2000 Seite 1

Biomathematik für Mediziner, Klausur WS 1999/2000 Seite 1 Biomathematik für Mediziner, Klausur WS 1999/2000 Seite 1 Aufgabe 1: Wieviele der folgenden Variablen sind quantitativ stetig? Schulnoten, Familienstand, Religion, Steuerklasse, Alter, Reaktionszeit, Fahrzeit,

Mehr

90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft

90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft Prof. Dr. Helmut Küchenhoff SS08 90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft am 22.7.2008 Anmerkungen Überprüfen Sie bitte sofort, ob Ihre Angabe vollständig ist. Sie sollte

Mehr

Datenanalyse und Statistik

Datenanalyse und Statistik Datenanalyse und Statistik p. 1/44 Datenanalyse und Statistik Vorlesung 2 (Graphik I) K.Gerald van den Boogaart http://www.stat.boogaart.de Datenanalyse und Statistik p. 2/44 Daten Schätzung Test Mathe

Mehr

Einfache Statistiken in Excel

Einfache Statistiken in Excel Einfache Statistiken in Excel Dipl.-Volkswirtin Anna Miller Bergische Universität Wuppertal Schumpeter School of Business and Economics Lehrstuhl für Internationale Wirtschaft und Regionalökonomik Raum

Mehr

10. Medizinische Statistik

10. Medizinische Statistik 10. Medizinische Statistik Projektplanung Deskriptive Statistik Inferenz-Statistik Literatur: Hüsler, J. und Zimmermann, H.: Statistische Prinzipien für medizinische Projekte, Verlag Hans Huber, 1993.

Mehr

Grundlagen quantitativer Sozialforschung Interferenzstatistische Datenanalyse in MS Excel

Grundlagen quantitativer Sozialforschung Interferenzstatistische Datenanalyse in MS Excel Grundlagen quantitativer Sozialforschung Interferenzstatistische Datenanalyse in MS Excel 16.11.01 MP1 - Grundlagen quantitativer Sozialforschung - (4) Datenanalyse 1 Gliederung Datenanalyse (inferenzstatistisch)

Mehr

Methoden der empirischen Sozialforschung I

Methoden der empirischen Sozialforschung I Methoden der empirischen Sozialforschung I Annelies Blom, PhD TU Kaiserslautern Wintersemester 2011/12 Übersicht Quantitative Datenauswertung: deskriptive und induktive Statistik Wiederholung: Die wichtigsten

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung Dr. Jochen Köhler 26.02.2008 1 Warum Statistik und Wahrscheinlichkeits rechnung im Ingenieurwesen? Zusammenfassung der letzten Vorlesung Statistik und Wahrscheinlichkeitsrechnung

Mehr

Eine Einführung in R: Statistische Tests

Eine Einführung in R: Statistische Tests Eine Einführung in R: Statistische Tests Bernd Klaus, Verena Zuber Institut für Medizinische Informatik, Statistik und Epidemiologie (IMISE), Universität Leipzig http://www.uni-leipzig.de/ zuber/teaching/ws12/r-kurs/

Mehr

1. Einführung und statistische Grundbegriffe. Grundsätzlich unterscheidet man zwei Bedeutungen des Begriffs Statistik:

1. Einführung und statistische Grundbegriffe. Grundsätzlich unterscheidet man zwei Bedeutungen des Begriffs Statistik: . Einführung und statistische Grundbegriffe Grundsätzlich unterscheidet man zwei Bedeutungen des Begriffs Statistik: Quantitative Information Graphische oder tabellarische Darstellung von Datenmaterial

Mehr

Einfache statistische Auswertungen mit dem TI-Nspire

Einfache statistische Auswertungen mit dem TI-Nspire 1. Neues Dokument und darin eine neue Seite anlegen Als Typ 6: Lists & Spreadsheet wählen. Darin die Messwerte in einer Spalte erfassen. Dies ergibt die Urliste. Wenn mehrere Messwerte vorliegen, die diejenigen,

Mehr

4. Erstellen von Klassen

4. Erstellen von Klassen Statistik mit Tabellenkalkulation 4. Erstellen von Klassen Mit einem einfachen Befehl lässt sich eine Liste von Zahlen auf die Häufigkeit der einzelnen Werte untersuchen. Verwenden Sie dazu den Befehl

Mehr

Herzlich willkommen zur Vorlesung Statistik. Streuungsmaße oder die Unterschiedlichkeit der Daten nebst kurzen Ausführungen zu Schiefe und Wölbung

Herzlich willkommen zur Vorlesung Statistik. Streuungsmaße oder die Unterschiedlichkeit der Daten nebst kurzen Ausführungen zu Schiefe und Wölbung FB 1 W. Ludwig-Mayerhofer Statistik 1 Herzlich willkommen zur Vorlesung Statistik smaße oder die Unterschiedlichkeit der Daten nebst kurzen Ausführungen zu Schiefe und Wölbung FB 1 W. Ludwig-Mayerhofer

Mehr

Dr. Maike M. Burda. Welchen Einfluss hat die Körperhöhe auf das Körpergewicht? Eine Regressionsanalyse. HU Berlin, Econ Bootcamp

Dr. Maike M. Burda. Welchen Einfluss hat die Körperhöhe auf das Körpergewicht? Eine Regressionsanalyse. HU Berlin, Econ Bootcamp Dr. Maike M. Burda Welchen Einfluss hat die Körperhöhe auf das Körpergewicht? Eine Regressionsanalyse. HU Berlin, Econ Bootcamp 8.-10. Januar 2010 BOOTDATA.GDT: 250 Beobachtungen für die Variablen... cm:

Mehr

2. Eindimensionale (univariate) Datenanalyse

2. Eindimensionale (univariate) Datenanalyse 2. Eindimensionale (univariate) Datenanalyse Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Kennzahlen, Statistiken In der Regel interessieren uns nicht so sehr die beobachteten Einzeldaten

Mehr

Forschungsstatistik I

Forschungsstatistik I Prof. Dr. G. Meinhardt 6. Stock, Taubertsberg 2 R. 06-206 (Persike) R. 06-214 (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike persike@uni-mainz.de http://psymet03.sowi.uni-mainz.de/

Mehr

Standardisierte Vorgehensweisen und Regeln zur Gewährleistung von: Eindeutigkeit Schlussfolgerungen aus empirischen Befunden sind nur dann zwingend

Standardisierte Vorgehensweisen und Regeln zur Gewährleistung von: Eindeutigkeit Schlussfolgerungen aus empirischen Befunden sind nur dann zwingend Standardisierte Vorgehensweisen und Regeln zur Gewährleistung von: Eindeutigkeit Schlussfolgerungen aus empirischen Befunden sind nur dann zwingend oder eindeutig, wenn keine alternativen Interpretationsmöglichkeiten

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung 3. Vorlesung Dr. Jochen Köhler 1 Inhalte der heutigen Vorlesung Ziel: Daten Modellbildung Probabilistisches Modell Wahrscheinlichkeit von Ereignissen Im ersten

Mehr

Ermitteln Sie auf 2 Dezimalstellen genau die folgenden Kenngrößen der bivariaten Verteilung der Merkmale Weite und Zeit:

Ermitteln Sie auf 2 Dezimalstellen genau die folgenden Kenngrößen der bivariaten Verteilung der Merkmale Weite und Zeit: 1. Welche der folgenden Kenngrößen, Statistiken bzw. Grafiken sind zur Beschreibung der Werteverteilung des Merkmals Konfessionszugehörigkeit sinnvoll einsetzbar? A. Der Modalwert. B. Der Median. C. Das

Mehr

Häufigkeitsverteilungen und Statistische Maßzahlen. Häufigkeitsverteilungen und Statistische Maßzahlen. Variablentypen. Stichprobe und Grundgesamtheit

Häufigkeitsverteilungen und Statistische Maßzahlen. Häufigkeitsverteilungen und Statistische Maßzahlen. Variablentypen. Stichprobe und Grundgesamtheit TECHNISCHE UNIVERSITÄT MÜNCHEN-WEIHENSTEPHAN MATHEMATIK UND STATISTIK INFORMATIONS- UND DOKUMENTATIONSZENTRUM R. Häufigkeitsverteilungen und Statistische Maßzahlen Statistik SS Variablentypen Qualitative

Mehr

Einführung in Quantitative Methoden

Einführung in Quantitative Methoden Einführung in Quantitative Methoden Mag. Dipl.Ing. Dr. Pantelis Christodoulides & Mag. Dr. Karin Waldherr SS 2014 Christodoulides / Waldherr Einführung in Quantitative Methoden- 2.VO 1/57 Die Deskriptivstatistik

Mehr

2. Deskriptive Statistik

2. Deskriptive Statistik Philipps-Universitat Marburg 2.1 Stichproben und Datentypen Untersuchungseinheiten: mogliche, statistisch zu erfassende Einheiten je Untersuchungseinheit: ein oder mehrere Merkmale oder Variablen beobachten

Mehr

3. Deskriptive Statistik

3. Deskriptive Statistik 3. Deskriptive Statistik Eindimensionale (univariate) Daten: Pro Objekt wird ein Merkmal durch Messung / Befragung/ Beobachtung erhoben. Resultat ist jeweils ein Wert (Merkmalsausprägung) x i : - Gewicht

Mehr

Deskriptive Statistik

Deskriptive Statistik Deskriptive Statistik [descriptive statistics] Ziel der deskriptiven (beschreibenden) Statistik einschließlich der explorativen Datenanalyse [exploratory data analysis] ist zunächst die übersichtliche

Mehr

Tutorium Mathematik in der gymnasialen Oberstufe 1. Veranstaltung: Beschreibende Statistik 19. Oktober 2016

Tutorium Mathematik in der gymnasialen Oberstufe 1. Veranstaltung: Beschreibende Statistik 19. Oktober 2016 Tutorium Mathematik in der gymnasialen Oberstufe 1. Veranstaltung: Beschreibende Statistik 19. Oktober 2016 1. Daten erfassen 1. Aufgabe: Würfeln Sie 30-mal mit einem regelmäßigen Oktaeder und dokumentieren

Mehr

Dr. Maike M. Burda. Welchen Einfluss hat die Körperhöhe auf das Körpergewicht? Eine Regressionsanalyse. HU Berlin, Econ Bootcamp 7.-9.

Dr. Maike M. Burda. Welchen Einfluss hat die Körperhöhe auf das Körpergewicht? Eine Regressionsanalyse. HU Berlin, Econ Bootcamp 7.-9. Dr. Maike M. Burda Welchen Einfluss hat die Körperhöhe auf das Körpergewicht? Eine Regressionsanalyse. HU Berlin, Econ Bootcamp 7.-9. Januar 2011 BOOTDATA11.GDT: 250 Beobachtungen für die Variablen...

Mehr

Statistik I für Betriebswirte Vorlesung 9

Statistik I für Betriebswirte Vorlesung 9 Statistik I für Betriebswirte Vorlesung 9 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik Vorlesung am 8. Juni 2017 im Audi-Max (AUD-1001) Dr. Andreas Wünsche Statistik I für Betriebswirte

Mehr

Einführung in die Statistik mit EXCEL und SPSS

Einführung in die Statistik mit EXCEL und SPSS Christine Duller Einführung in die Statistik mit EXCEL und SPSS Ein anwendungsorientiertes Lehr- und Arbeitsbuch Zweite, überarbeitete Auflage Mit 71 Abbildungen und 26 Tabellen Physica-Verlag Ein Unternehmen

Mehr

5. Schließende Statistik. 5.1. Einführung

5. Schließende Statistik. 5.1. Einführung 5. Schließende Statistik 5.1. Einführung Sollen auf der Basis von empirischen Untersuchungen (Daten) Erkenntnisse gewonnen und Entscheidungen gefällt werden, sind die Methoden der Statistik einzusetzen.

Mehr

PROC MEANS. zum Berechnen statistischer Maßzahlen (für quantitative Merkmale)

PROC MEANS. zum Berechnen statistischer Maßzahlen (für quantitative Merkmale) PROC MEAS zum Berechnen statistischer Maßzahlen (für quantitative Merkmale) Allgemeine Form: PROC MEAS DATA=name Optionen ; VAR variablenliste ; CLASS vergleichsvariable ; Beispiel und Beschreibung der

Mehr

Datenanalyse mit Excel. Wintersemester 2013/14

Datenanalyse mit Excel. Wintersemester 2013/14 Datenanalyse mit Excel 1 KORRELATIONRECHNUNG 2 Korrelationsrechnung Ziel der Korrelationsrechnung besteht im bivariaten Fall darin, die Stärke des Zusammenhangs zwischen zwei interessierenden statistischen

Mehr

Bitte am PC mit Windows anmelden!

Bitte am PC mit Windows anmelden! Einführung in SPSS Plan für heute: Grundlagen/ Vorwissen für SPSS Vergleich der Übungsaufgaben Einführung in SPSS http://weknowmemes.com/generator/uploads/generated/g1374774654830726655.jpg Standardnormalverteilung

Mehr

Vorlesung: Statistik für Kommunikationswissenschaftler

Vorlesung: Statistik für Kommunikationswissenschaftler Vorlesung: Statistik für Kommunikationswissenschaftler Prof. Dr. Helmut Küchenhoff Institut für Statistik, LMU München WiSe 2009/2010 Übungen zur Veranstaltung Mittwoch: 14.15-15.45 HG DZ007 Cornelia Oberhauser

Mehr

Einführung in die Statistik mit EXCEL und SPSS

Einführung in die Statistik mit EXCEL und SPSS Christine Duller 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Einführung in die Statistik mit EXCEL und SPSS Ein

Mehr

Analog zu Aufgabe 16.1 werden die Daten durch folgenden Befehl eingelesen: > kredit<-read.table("c:\\compaufg\\kredit.

Analog zu Aufgabe 16.1 werden die Daten durch folgenden Befehl eingelesen: > kredit<-read.table(c:\\compaufg\\kredit. Lösung 16.3 Analog zu Aufgabe 16.1 werden die Daten durch folgenden Befehl eingelesen: > kredit

Mehr

Eine computergestützte Einführung mit

Eine computergestützte Einführung mit Thomas Cleff Deskriptive Statistik und Explorative Datenanalyse Eine computergestützte Einführung mit Excel, SPSS und STATA 3., überarbeitete und erweiterte Auflage ^ Springer Inhaltsverzeichnis 1 Statistik

Mehr

Franz Kronthaler. Statistik angewandt. Datenanalyse ist (k)eine Kunst. Excel Edition. ^ Springer Spektrum

Franz Kronthaler. Statistik angewandt. Datenanalyse ist (k)eine Kunst. Excel Edition. ^ Springer Spektrum Franz Kronthaler Statistik angewandt Datenanalyse ist (k)eine Kunst Excel Edition ^ Springer Spektrum Inhaltsverzeichnis Teil I Basiswissen und Werkzeuge, um Statistik anzuwenden 1 Statistik ist Spaß 3

Mehr

Seminar zur Energiewirtschaft:

Seminar zur Energiewirtschaft: Seminar zur Energiewirtschaft: Ermittlung der Zahlungsbereitschaft für erneuerbare Energien bzw. bessere Umwelt Vladimir Udalov 1 Modelle mit diskreten abhängigen Variablen 2 - Ausgangssituation Eine Dummy-Variable

Mehr

METHODENLEHRE I WS 2013/14 THOMAS SCHÄFER

METHODENLEHRE I WS 2013/14 THOMAS SCHÄFER METHODENLEHRE I WS 2013/14 THOMAS SCHÄFER DAS THEMA: INFERENZSTATISTIK IV INFERENZSTATISTISCHE AUSSAGEN FÜR ZUSAMMENHÄNGE UND UNTERSCHIEDE Inferenzstatistik für Zusammenhänge Inferenzstatistik für Unterschiede

Mehr

Übung 1 im Fach "Biometrie / Q1"

Übung 1 im Fach Biometrie / Q1 Universität Ulm, Institut für Epidemiologie und Medizinische Biometrie, D-89070 Ulm Institut für Epidemiologie und Medizinische Biometrie Leiter: Prof. Dr. D. Rothenbacher Schwabstr. 13, 89075 Ulm Tel.

Mehr

3 Lage- und Streuungsmaße

3 Lage- und Streuungsmaße 3 Lage- und Streuungsmaße Grafische Darstellungen geben einen allgemeinen Eindruck der Verteilung eines Merkmals, u.a. von Lage und Zentrum der Daten, Streuung der Daten um dieses Zentrum, Schiefe / Symmetrie

Mehr

Einführung in Quantitative Methoden

Einführung in Quantitative Methoden Einführung in Quantitative Methoden Mag. Dipl.Ing. Dr. Pantelis Christodoulides & Mag. Dr. Karin Waldherr SS 2011 Christodoulides / Waldherr Einführung in Quantitative Methoden- 2.VO 1/62 Summenzeichen

Mehr

Statistik Grundbegriffe

Statistik Grundbegriffe Kapitel 2 Statistik Grundbegriffe 2.1 Überblick Im Abschnitt Statistik Grundbegriffe werden Sie die Bedeutung von statistischen Grundbegriffen wie Stichprobe oder Merkmal kennenlernen und verschiedene

Mehr

1. GEGENSTAND UND GRUNDBEGRIFFE DER STATISTIK

1. GEGENSTAND UND GRUNDBEGRIFFE DER STATISTIK 1 1. GEGENSTAND UND GRUNDBEGRIFFE DER STATISTIK 1.1 Gegenstand der Statistik Die Statistik stellt ein Instrumentarium bereit, um Informationen über die Realität oder Wirklichkeit verfügbar zu machen. Definition

Mehr

9. Schätzen und Testen bei unbekannter Varianz

9. Schätzen und Testen bei unbekannter Varianz 9. Schätzen und Testen bei unbekannter Varianz Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Schätzen und Testen bei unbekannter Varianz Wenn wir die Standardabweichung σ nicht kennen,

Mehr

Deskriptive Statistik

Deskriptive Statistik Deskriptive Statistik Deskriptive Statistik: Ziele Daten zusammenfassen durch numerische Kennzahlen. Grafische Darstellung der Daten. Quelle: Ursus Wehrli, Kunst aufräumen 1 Modell vs. Daten Bis jetzt

Mehr

Biomathematik für Mediziner, Klausur SS 2000 Seite 1

Biomathematik für Mediziner, Klausur SS 2000 Seite 1 Biomathematik für Mediziner, Klausur SS 2000 Seite 1 Aufgabe 1: Bei der Diagnose einer bestimmten Krankheit mit einem speziellen Diagnoseverfahren werden Patienten, die tatsächlich an der Krankheit leiden,

Mehr

Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt!

Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt! Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt! 1 Einführung 2 Wahrscheinlichkeiten kurz gefasst 3 Zufallsvariablen und Verteilungen 4 Theoretische Verteilungen (Wahrscheinlichkeitsfunktion)

Mehr

Klausur zu Methoden der Statistik I (mit Kurzlösung) Wintersemester 2007/2008. Aufgabe 1

Klausur zu Methoden der Statistik I (mit Kurzlösung) Wintersemester 2007/2008. Aufgabe 1 Lehrstuhl für Statistik und Ökonometrie der Otto-Friedrich-Universität Bamberg Prof. Dr. Susanne Rässler Klausur zu Methoden der Statistik I (mit Kurzlösung) Wintersemester 2007/2008 Aufgabe 1 Ihnen liegt

Mehr

If something has a 50% chance of happening, then 9 times out of 10 it will. Yogi Berra

If something has a 50% chance of happening, then 9 times out of 10 it will. Yogi Berra If something has a 50% chance of happening, then 9 times out of 10 it will. Yogi Berra If you torture your data long enough, they will tell you whatever you want to hear. James L. Mills Warum Biostatistik?

Mehr

Lagemaße Übung. Zentrale Methodenlehre, Europa Universität - Flensburg

Lagemaße Übung. Zentrale Methodenlehre, Europa Universität - Flensburg Lagemaße Übung M O D U S, M E D I A N, M I T T E L W E R T, M O D A L K L A S S E, M E D I A N, K L A S S E, I N T E R P O L A T I O N D E R M E D I A N, K L A S S E M I T T E Zentrale Methodenlehre, Europa

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung Übung 3 1 Inhalt der heutigen Übung Vorrechnen der Hausübung B.7 Beschreibende Statistik Gemeinsames Lösen der Übungsaufgaben C.1: Häufigkeitsverteilung C.2: Tukey

Mehr

Felix Klug SS 2011. 2. Tutorium Deskriptive Statistik

Felix Klug SS 2011. 2. Tutorium Deskriptive Statistik 2. Tutorium Deskriptive Statistik Felix Klug SS 2011 Skalenniveus Weitere Beispiele für Skalenniveus (Entnommen aus Wiederholungsblatt 1.): Skalenniveu Nominalskala Ordinalskala Intervallskala Verhältnisskala

Mehr

1. Einfuhrung zur Statistik

1. Einfuhrung zur Statistik Philipps-Universitat Marburg Was ist Statistik? Statistik = Wissenschaft vom Umgang mit Daten Phasen einer statistischen Studie 1 Studiendesign Welche Daten sollen erhoben werden? Wie sollen diese erhoben

Mehr

Statistik I. Zusammenfassung und wichtiges zur Prüfungsvorbereitung. Malte Wissmann. 9. Dezember Universität Basel.

Statistik I. Zusammenfassung und wichtiges zur Prüfungsvorbereitung. Malte Wissmann. 9. Dezember Universität Basel. Zusammenfassung und wichtiges zur Prüfungsvorbereitung 9. Dezember 2008 Begriffe Kenntnis der wichtigen Begriffe und Unterscheidung dieser. Beispiele: Merkmal, Merkmalsraum, etc. Skalierung: Nominal etc

Mehr

Medizinische Biometrie (L5)

Medizinische Biometrie (L5) Medizinische Biometrie (L5) Vorlesung III Wichtige Verteilungen Prof. Dr. Ulrich Mansmann Institut für Medizinische Informationsverarbeitung, Biometrie und Epidemiologie mansmann@ibe.med.uni-muenchen.de

Mehr

4. Kumulierte Häufigkeiten und Quantile

4. Kumulierte Häufigkeiten und Quantile 4. Kumulierte Häufigkeiten und Quantile Statistik für SoziologInnen 1 4. Kumulierte Häufigkeiten und Quantile Kumulierte Häufigkeiten Oft ist man nicht an der Häufigkeit einzelner Merkmalsausprägungen

Mehr

Empirische Verteilungsfunktion

Empirische Verteilungsfunktion Empirische Verteilungsfunktion H(x) := Anzahl der Werte x ist. Deskriptive

Mehr

5 Exkurs: Deskriptive Statistik

5 Exkurs: Deskriptive Statistik 5 EXKURS: DESKRIPTIVE STATISTIK 6 5 Ekurs: Deskriptive Statistik Wir wollen zuletzt noch kurz auf die deskriptive Statistik eingehen. In der Statistik betrachtet man für eine natürliche Zahl n N eine Stichprobe

Mehr

Analyse klassierter Daten: Vor der Analyse fasst man jeweils mehrere Merkmalsausprägungen in (Merkmalswerte-)Klassen zusammen.

Analyse klassierter Daten: Vor der Analyse fasst man jeweils mehrere Merkmalsausprägungen in (Merkmalswerte-)Klassen zusammen. 4. Analyse univariater Daten: Übersicht Mathematik ist die Wissenschaft der reinen Zahl, Statistik die der empirischen Zahl Von univariaten Daten spricht man, wenn bei der Datenerhebung nur ein Merkmal

Mehr

Business Value Launch 2006

Business Value Launch 2006 Quantitative Methoden Inferenzstatistik alea iacta est 11.04.2008 Prof. Dr. Walter Hussy und David Tobinski UDE.EDUcation College im Rahmen des dokforums Universität Duisburg-Essen Inferenzstatistik Erläuterung

Mehr

Datenerfassung und Datenmanagement

Datenerfassung und Datenmanagement Datenerfassung und Datenmanagement Statistische Auswertungssysteme sind heute eine aus der angewandten Statistik nicht mehr wegzudenkende Hilfe. Dies gilt insbesondere für folgende Aufgabenbereiche: -

Mehr

Einführung in die Statistik mir R

Einführung in die Statistik mir R Einführung in die Statistik mir R ww w. syn t egris.de Überblick GESCHÄFTSFÜHRUNG Andreas Baumgart, Business Processes and Service Gunar Hofmann, IT Solutions Sven-Uwe Weller, Design und Development Jens

Mehr

Gemischte Modelle. Fabian Scheipl, Sonja Greven. SoSe 2011. Institut für Statistik Ludwig-Maximilians-Universität München

Gemischte Modelle. Fabian Scheipl, Sonja Greven. SoSe 2011. Institut für Statistik Ludwig-Maximilians-Universität München Gemischte Modelle Fabian Scheipl, Sonja Greven Institut für Statistik Ludwig-Maximilians-Universität München SoSe 2011 Inhalt Amsterdam-Daten: LMM Amsterdam-Daten: GLMM Blutdruck-Daten Amsterdam-Daten:

Mehr

Mathematische und statistische Methoden II

Mathematische und statistische Methoden II Methodenlehre e e Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte Persike

Mehr

Streuungsmaße von Stichproben

Streuungsmaße von Stichproben Streuungsmaße von Stichproben S P A N N W E I T E, V A R I A N Z, S T A N D A R D A B W E I C H U N G, Q U A R T I L E, K O V A R I A N Z, K O R R E L A T I O N S K O E F F I Z I E N T Zentrale Methodenlehre,

Mehr

3 Lage- und Streuungsmaße

3 Lage- und Streuungsmaße 3 Lage- und Streuungsmaße 3.0 Kumulierte Häufigkeiten und empirische Verteilungsfunktion Grafische Darstellungen geben einen allgemeinen Eindruck der Verteilung eines Merkmals: Lage und Zentrum der Daten,

Mehr

Grundlagen der Datenanalyse

Grundlagen der Datenanalyse Schematischer Überblick zur Behandlung quantitativer Daten Theorie und Modellbildung Untersuchungsdesign Codierung / Datenübertragung (Erstellung einer Datenmatrix) Datenerhebung Fehlerkontrolle / -behebung

Mehr

Häufigkeitsauszählungen, zentrale statistische Kennwerte und Mittelwertvergleiche

Häufigkeitsauszählungen, zentrale statistische Kennwerte und Mittelwertvergleiche Lehrveranstaltung Empirische Forschung und Politikberatung der Universität Bonn, WS 2007/2008 Häufigkeitsauszählungen, zentrale statistische Kennwerte und Mittelwertvergleiche 30. November 2007 Michael

Mehr

Wiederholung Statistik I. Statistik für SozialwissenschaftlerInnen II p.8

Wiederholung Statistik I. Statistik für SozialwissenschaftlerInnen II p.8 Wiederholung Statistik I Statistik für SozialwissenschaftlerInnen II p.8 Konstanten und Variablen Konstante: Merkmal hat nur eine Ausprägung Variable: Merkmal kann mehrere Ausprägungen annehmen Statistik

Mehr

a) x = 1150 ; x = 950 ; x = 800 b) Die Lagemaße unterscheiden sich voneinander. c) Der Median charakterisiert die Stichprobe am besten.

a) x = 1150 ; x = 950 ; x = 800 b) Die Lagemaße unterscheiden sich voneinander. c) Der Median charakterisiert die Stichprobe am besten. R. Brinkmann http://brinkmann-du.de Seite 6.0.2009 Lösungen Mittelwert, Median II se: E E2 E3 E4 E5 E6 a) Notendurchschnitt 2,6 b) Säulendiagramm siehe ausführliche Lösung. c) Kreisdiagramm siehe ausführliche

Mehr

3 Deskriptive Statistik in R (univariat)

3 Deskriptive Statistik in R (univariat) (univariat) Markus Burkhardt (markus.burkhardt@psychologie.tu-chemnitz.de) Inhalt 3.1 Ziel... 1 3.2 Häufigkeiten... 1 3.3 Deskriptive Kennziffern I Lagemaße... 2 3.4 Streuungsmaße... 5 3.5 Standardisierung:

Mehr