Mathematische Grundlagen

Größe: px
Ab Seite anzeigen:

Download "Mathematische Grundlagen"

Transkript

1 Mathematische Grundlagen Oliver Deussen Mathematische Grundlagen 1

2 Affine Räume um Zeichenebene bzw. Raum zu beschreiben, muß vorher ein Koordinatensystem festgelegt werden durch geometrische Fragestellungen werden Koordinatenachsen und -ursprung eingeführt das mathematische Konzept ist der affine Raum Oliver Deussen Mathematische Grundlagen 2

3 Der affine Raum Eine Menge A n heißt n- dimensionaler affiner Raum, g.d.w. ein n-dimensionaler reeller Vektorraum V n existiert und folgende Bedingungen erfüllt sind: 1. zu jedem geordnetem Paar (p, q) p, q A n gehört ein Vektor v V n, so dass v = ( pq) 2. zu jedem p A n und jedem v V n existiert ein eindeutiges q A n so dass v = ( pq) 3. ist v = ( pq) und w = ( qr), dann gilt: v + w = ( pr) Elemente von A n heißen Punkte Oliver Deussen Mathematische Grundlagen 3

4 Koordinatensysteme Eine Menge (o, e 1, e 2,, e n ) bestehend aus einem Punkt o A n und der Basis (e 1, e 2,, e n ) von A n heißt Koordinatensystem für jeden Punkt p A n ist v = ( op) Ortsvektor von p Komponenten von v heißen Koordinaten bzgl. (e 1, e 2,, e n ) d.h. p besitzt die Koordinaten (x 1, x 2,, x n ) g.d.w: ( op) = v = x 1 e 1 + x 2 e x n e n Punkt o heißt Koordinatenursprung Punkte p i mit ( op i ) = e i heißen Einheitspunkte Oliver Deussen Mathematische Grundlagen 4

5 Affine Unterräume Eine nichtleere Teilmenge B A n heißt r-dimensionaler affiner Unterraum von A n g.d.w ein r- dimensionaler Untervektorraum W von v n existiert und: 1. p, q B w = ( pq) W 2. p B, w W Es gibt ein q B mit ( pq) = w d.h. B ist wieder affiner Raum (n 1) dimensionaler Unterraum von A n heißt Hyperebene Oliver Deussen Mathematische Grundlagen 5

6 Ist p 0 B gegeben, so besteht B aus der Menge aller Punkte, für die ( p 0 p) W ist sei Basis (d 0..d n ) von W, so gilt für alle Punkte p B: ( p 0 p) = λ 1 d 1 + λ 2 d λ r d r (λ i R) mit ( op 0 ) = v 0 und ( op) = v gilt: v = v 0 + λ 1 d 1 + λ 2 d λ r d r seien p i die Punkte mit ( p o p i ) = d i und ( op i ) = v i, so gilt: d i = v i v o (i = 1 r) daraus folgt: v = v o + λ 1 (v 1 v 0 ) + λ 2 (v 2 v o ) + + λ r (v r v o ) = r (1 λ i )v o + λ 1 v 1 + λ 2 v λ r v r i=1 Oliver Deussen Mathematische Grundlagen 6

7 wird λ o = 1 r i=1 λ i so folgt: Definition: v = r i=0 λ i v i Eine Teilmenge X eines Vektorraumes V heißt affiner Unterraum von V, falls es ein v V und einen Untervektorraum W gibt, so dass X = v + V = {u V es gibt ein w W mit u = v + w } eindimensionale Unterräume heißen Geraden sind 2 Punkte p o und p 1 gegeben, so gibt es exakt eine Gerade durch beide Punkte. Oliver Deussen Mathematische Grundlagen 7

8 Ein Punkt P auf der Geraden wird beschrieben durch: ( op) = v = 1 λ i v i = λ o v o + λ 1 v 1 (mit v o = ( op o ) und v 1 = ( op 1 ) i=0 mit λ o = 1 r i=1 λ i folgt: v = (1 λ 1 )v o + λ 1 v 1 Punkte P auf der Strecke P o P 1 werden beschrieben durch: {p ( op) = v = (1 λ)v o + λv 1 } P 0 P P 1 g v o v v 1 0 Oliver Deussen Mathematische Grundlagen 8

9 Affinkombination Gilt: v = n i=0 λ i v i mit n i=0 λ i = 1 und v i = ( op i ) so ist v eine Affinkombination der Vektoren v i bzw. p eine Affinkombination der Punkte p i pa v 1 λ 1 v 1 λ2 v 2 v v 2 Oliver Deussen Mathematische Grundlagen 9

10 Affine Abbildung Eine Abbildung zwischen zwei affinen Räumen A 1 und A 2 ist affin, wenn sie Affinkombinationen enthält: Φ : A 1 A 2 ist affin wenn gilt: Φ( n i=0 für jede endliche Folge λ o... λ n R mit λ i p i ) = n n i=0 i=0 λ i Φ(p i ) λ i = 1 affine Abbildung ist eindeutig durch Abbildung der affinen Basis festgelegt Oliver Deussen Mathematische Grundlagen 10

11 Sind A 1 = w 1 + V 1 und A 2 = w 2 + V 2 affine Unterräume eines Vektorraumes, so lässt sich eine Affine Abbildung Φ : A 1 A 2 schreiben als: Φ(w 1 + v) = Φ(w 1 ) + Ψ(v) d.h.: jede affine Abbildung lässt sich als Zusammensetzung einer linearen Abbildung und einer Translation schreiben deshalb lassen sich affine Abbildungen des 3D-Raumes nicht durch 3x3- Matrizen darstellen Grund: Translation ist nicht linear Oliver Deussen Mathematische Grundlagen 11

12 Projektive Räume Ist V ein reeller Vektorraum, so ist die Menge aller Geraden durch den Ursprung der reelle projektive Raum P (V ) Dimension des projektiven Raumes P (V ): dimp (V ) = dim(v ) 1 ein projektiver Raum der Dimension 1 bzw. 2 heißt projektive Gerade bzw. projektive Ebene Oliver Deussen Mathematische Grundlagen 12

13 Homogene Koordinaten Punkte des dreidimensionalen reellen projektiven Raumes P (R 4 ) sind Geraden durch den Ursprung im R 4 wenn v R 4 (Vektor), so definiert v eine Gerade g durch den Ursprung des R 4 mit: g(α) = αv α R abgekürzt mit : g = Rv Projektiver Punkt R + {0} P (R 4 ) v Rv Oliver Deussen Mathematische Grundlagen 13

14 ist v = (x, y, z, w) 0 R 4, so werden mit [x, y, z, w] = R(x, y, z, w) die homogenen Koordinaten des projektiven Punktes Rv bezeichnet [x, y, z, w] sind homogene Koordinaten eines Punktes im R 4 Die Basis vom P (R 4 ) ist ein 5- Tupel von projektiven Punkten p 0... p 4 wobei jeweils 4 projektive Punkte unabhängig sind, d.h. es gibt linear unabhängige Vektoren v o... v 4 R 4 gibt mit p i = Rv i Oliver Deussen Mathematische Grundlagen 14

15 Zusammenhang zwischen affinen und projektiven Räumen Abbildung vom affinen Raum in den projektiven Raum: i : R 3 P (R 4 ) (x, y, z) [x, y, z, 1] Abbildung vom projektiven Raum in den affinen Raum: i : P (R 4 ) R 3 [x, y, z, w] ( x w, x w, z w ) Oliver Deussen Mathematische Grundlagen 15

16 Projektive Abbildungen eine Abbildung f zwischen projektiven Räumen P (V ) und P (W ) heißt projektiv, wenn es eine injektive lineare Abbildung F : V W gibt, so dass f(rv) = RF (v) für jedes, vom Nullvektor verschiedenes v V gilt projektive Abbildung sind durch ihre Wirkung auf die Basis beschränkt Abbildung lässt sich als 4x4- Matrix schreiben: a 00 a 03 A =... a 30 a 33 Oliver Deussen Mathematische Grundlagen 16

17 für den Punkt p mit den Koordinaten [x, y, z, w] wird daraus: f(p) = [x, y, z, w]a = [a 00 x + + a 30 w,, a 03 x + + a 33 w] Die Abbildung f ist genau denn affin, wenn alle affinen Punkte auf affine Punkte und alle uneigentlichen Punkte auf uneigentliche Punkte abgebildet werden d.h. eine homogene Matrix für eine affine Abbildung sieht wie folgt aus: a 00 a 01 a 02 0 a A = 10 a 11 a 12 0 a 20 a 21 a 22 0 a 30 a 31 a 32 a 33 Oliver Deussen Mathematische Grundlagen 17

18 Transformationen 1. Skalierung S x S y S z x y z w = S x x S y y S z z w 2. Translation T x T y T z x y z w = x + T x w y + T y w z + T z w w Oliver Deussen Mathematische Grundlagen 18

19 3. Rotation um die x-achse cosφ sinφ 0 0 sinφ cosφ x y z w = x cosφy sinφz sinφy + cosφz w x y z z x y Oliver Deussen Mathematische Grundlagen 19

20 4. Rotation um die y-achse M y = cosφ 0 sinφ sinφ 0 cosφ x y z x y z Oliver Deussen Mathematische Grundlagen 20

21 5. Rotation um die z-achse M z = cosφ sinφ 0 0 sinφ cosφ y x z Oliver Deussen Mathematische Grundlagen 21

22 6. Scherung in x-richtung M sx = 1 p q Scherung in y-richtung M sy = p 1 q Oliver Deussen Mathematische Grundlagen 22

23 Rotation um eine beliebige Achse Rotationswinkel sei durch α gegeben Rotations-Achse sei durch einen Punkt (x 1, y 1, z 1 ) und den Richtungsvektor (A, B, C) T gegeben x = Au + x 1, y = Bu + y 1, z = Cu + z 1 u R y B V C φ θ A W Drehachse x V = B 2 + C 2 W = A 2 + B 2 + C 2 sin φ = B V, cos φ = C V sin θ = A W, cos θ = V W z Oliver Deussen Mathematische Grundlagen 23

24 1. Translation der Achse in den Koordinatenursprung T = x y z T 1 = x y z Rotation der Achse in die yz-ebene V/W 0 A/W R y = A/V 0 V/W Oliver Deussen Mathematische Grundlagen 24

25 3. Rotation der Achse auf die z-achse C/V B/V 0 R x = 0 B/V C/V Rotation um z-achse entsprechend Drehwinkel α cos α sin α 0 0 sin α cos α 0 0 R z = Oliver Deussen Mathematische Grundlagen 25

26 insgesamt erhält man die Transformationsmatrix M durch: M = T 1 R 1 y R 1 x R z R x R y T M transformiert alle Koordinaten so, daß sie bzgl. der z-achse um α gedreht werden können, danach werden die Transformationen rückgängig gemacht. Oliver Deussen Mathematische Grundlagen 26

27 Eulerwinkel für eine beliebige Rotation existieren 12 verschiedene Möglichkeiten, sie auf Rotationen um x-, y-, z-achse abzubilden (xyx, xyz, yxy,...) Eulerwinkel: drehe zuerst um z-achse, dann um y-achse, schließlich um x-achse (Bezeichnung: xyz) Die Gesamtmatrix hat folgendes Aussehen: R (α, β, γ) = R x (α) R y (β) R z (γ) = cosβ cosγ cosβ sinγ sinβ sinα sinβ cosγ + cosα sinγ cosα cosγ sinα sinβ sinγ sinα cosβ cosα sinβ cosγ sinα sinγ cosα sinβ sinγ sinα cosγ cosα cosβ Oliver Deussen Mathematische Grundlagen 27

28 Problem: Rückrechnung ist nicht eindeutig: β 1 = arcsin r 13 β 2 = π + arcsin r 13 cosα = r 33 cosβ cosγ = r 11 cosβ sinα = r 23 cosβ sinγ = r 12 cosβ Problem: cosβ = 0 α und β ununterscheidbar Ausweg: γ = 0 cosα = r 22 = r 31 sinα = r 21 = r 32 Oliver Deussen Mathematische Grundlagen 28

29 Sichtbarkeitstransformation im 3D bilden 3D-Szenen auf Bildschirm ab Projektion auf Bildschirmebene Clipping später: hidden surface elimination Oliver Deussen Mathematische Grundlagen 29

30 GKS-Modell 3D-Weltkoordinaten Clipping gegen Sichtkörper Geclippte Weltkoordinaten Projektion auf die Proj.-Ebene Transformation in Viewport-Koordinaten 2D-Device-Koordinaten generelles Modell, relativ rechenaufwendig andere Modelle je nach Anforderung (Hardware-Shading) Oliver Deussen Mathematische Grundlagen 30

31 Der Sichtkörper (View Volume) Sichtkörper: Teil des Raumes (der Welt), der auf die Rißebene (d.h. das Fenster) zu projizieren ist. Zentralprojektion: Sichtkörper ist Pyramide (Projektionszentrum als Spitze, Kanten gehen durch die Ecken des Fensters) Rißebene Front Clipping Plane Back Clipping Plane Oliver Deussen Mathematische Grundlagen 31

32 Planare Projektionen Planare Projektonen Zentralprojektion Ein-Punkt-P. Zwei-Punkt-P. Drei-Punkt-P. Orthogonale P. Grund-,Auf-, Seitenriß Isometrische P. Parallelprojektion Schiefe P. Kabinettp. Kavaliersp. Oliver Deussen Mathematische Grundlagen 32

33 Parallelprojektion y y z Projektion x x Oliver Deussen Mathematische Grundlagen 33

34 Zentralprojektion y y z Projektion x x Oliver Deussen Mathematische Grundlagen 34

35 Ein-Punkt-Projektion y x z Projektionsebene schneidet die Hauptachse Oliver Deussen Mathematische Grundlagen 35

36 Zwei-Punkt-Projektion Oliver Deussen Mathematische Grundlagen 36

37 Drei-Punkt-Projektion Oliver Deussen Mathematische Grundlagen 37

38 Beispiele schiefer Projektionen: Kavaliersprojektion Kabinettprojektion diese Projektionen verzerren visuell, aber man kann gut messen Oliver Deussen Mathematische Grundlagen 38

39 Berechnung einer Zentralprojektion Projektionsebene sei die xy-ebene (x c, y c, z c ) ist das Projektionszentrum Die Projektionsgerade für Punkt (x 1, y 1, z 1 ) erfüllt: x = x c + (x 1 x c ) u y = y c + (y 1 y c ) u z = z c + (z 1 z c ) u aus z=0 folgt u = z c z 1 z c, also x x 2 = x c z 1 x c c z 1 z c = x cz 1 x 1 z c z 1 z c y y 2 = y c z 1 y c c z 1 z c = y cz 1 y 1 z c z 1 z c Oliver Deussen Mathematische Grundlagen 39

40 in homogenen Koordinaten ausgedrückt z c 0 x c 0 0 z c y c z c x 1 y 1 z 1 1 = x c z 1 x 1 z c y c z 1 y 1 z c 0 z 1 z c x 2 y Oliver Deussen Mathematische Grundlagen 40

41 Berechnung einer Parallelprojektion Projektionsebene sei die xy-ebene Projektionsrichtung parallel zur z-achse x 1 y 1 z 1 1 = x 1 y Projektionsrichtung parallel zum Vektor (x p, y p, z p ) T, z p 0 Projektionsgerade für Punkt (x 1, y 1, z 1 ) erfüllt Oliver Deussen Mathematische Grundlagen 41

42 x = x 1 + x p u y = y 1 + y p u z = z 1 + z p u aus z=0 folgt u = z 1 z p, also: x 2 = x 1 z 1 x p z p y 2 = y 1 z 1 y p z p in homogenen Koordinaten: 1 0 x p z p y p z p x 1 y 1 z 1 1 = x 2 y Oliver Deussen Mathematische Grundlagen 42

Planare Projektionen und Betrachtungstransformation. Quelle: Angel (2000)

Planare Projektionen und Betrachtungstransformation. Quelle: Angel (2000) Planare Projektionen und Betrachtungstransformation Quelle: Angel (2) Gliederung Einführung Parallelprojektionen Perspektivische Projektionen Kameramodell und Betrachtungstransformationen Mathematische

Mehr

Computergraphik Grundlagen

Computergraphik Grundlagen Computergraphik Grundlagen IV. Koordinatensysteme und geometrische Transformationen Prof. Stefan Schlechtweg Hochschule Anhalt Fachbereich Informatik Inhalt Lernziele 1. Skalare Punkte und Vektoren 2.

Mehr

Definition 27 Affiner Raum über Vektorraum V

Definition 27 Affiner Raum über Vektorraum V Definition 27 Affiner Raum über Vektorraum V Definition 27 Affiner Raum über Vektorraum V ist die Menge A = Definition 27 Affiner Raum über Vektorraum V ist die Menge A = mit einer Abbildung + : A V A,

Mehr

6 Symmetrische Matrizen und quadratische Formen

6 Symmetrische Matrizen und quadratische Formen Mathematik für Ingenieure II, SS 9 Freitag. $Id: quadrat.tex,v.5 9//5 ::59 hk Exp $ $Id: orthogonal.tex,v.4 9// ::54 hk Exp $ $Id: fourier.tex,v. 9// :: hk Exp $ Symmetrische Matrizen und quadratische

Mehr

Computer-Graphik I Transformationen & Viewing

Computer-Graphik I Transformationen & Viewing lausthal Motivation omputer-raphik I Transformationen & Viewing Man möchte die virtuelle 3D Welt auf einem 2D Display darstellen. Zachmann lausthal University, ermany zach@in.tu-clausthal.de. Zachmann

Mehr

Computer Graphik. Mitschrift von www.kuertz.name

Computer Graphik. Mitschrift von www.kuertz.name Computer Graphik Mitschrift von www.kuertz.name Hinweis: Dies ist kein offizielles Script, sondern nur eine private Mitschrift. Die Mitschriften sind teweilse unvollständig, falsch oder inaktuell, da sie

Mehr

Computergraphik Grundlagen

Computergraphik Grundlagen Computergraphik Grundlagen V. Die Rendering-Pipeline Prof. Stefan Schlechtweg Hochschule Anhalt Fachbereich Informatik Inhalt Lernziele 1. Der Begriff Rendering 2. Die Rendering-Pipeline Geometrische Modellierung

Mehr

Computer Vision I. Nikos Canterakis. Lehrstuhl für Mustererkennung, Universität Freiburg

Computer Vision I. Nikos Canterakis. Lehrstuhl für Mustererkennung, Universität Freiburg Nikos Canterakis Lehrstuhl für Mustererkennung, Universität Freiburg Gliederung 7 Projektionen und Rückprojektionen Der Punkt Die Gerade Die Quadrik Die Ebene Zusammenhang Kalibriermatrix - Bild des absoluten

Mehr

Übungsaufgaben LAAG I. für Lehramtsstudenten GS, MS, BS

Übungsaufgaben LAAG I. für Lehramtsstudenten GS, MS, BS Doz.Dr. Norbert Koksch TU DRESDEN Fachrichtung Mathematik, Institut für Analysis Übungsaufgaben LAAG I für Lehramtsstudenten GS, MS, BS Logik: Übungsaufgabe 1. Begründen Sie, ob es sich um eine Aussage

Mehr

Geometrische Maße oder,... wie kann man quantitative Aussagen über geometrische Objekte erhalten?

Geometrische Maße oder,... wie kann man quantitative Aussagen über geometrische Objekte erhalten? In der euklidischen Geometrie der Mittelstufe ging es zumeist um geometrische Konstruktionen und um qualitative Aussagen über geometrische Objekte in Bezug zueinander. Möchte man, insbesondere im dreidimensionalen

Mehr

Bildtransformationen. Geometrische Transformationen Grauwert-Interpolation

Bildtransformationen. Geometrische Transformationen Grauwert-Interpolation Bildtransformationen Geometrische Transformationen Grauwert-Interpolation Transformation Transformation zwei Schritte geometrische Transformation (Trafo der Koordinaten) Neuberechnung der Pielwerte an

Mehr

Computer Vision: 3D-Geometrie. D. Schlesinger () Computer Vision: 3D-Geometrie 1 / 17

Computer Vision: 3D-Geometrie. D. Schlesinger () Computer Vision: 3D-Geometrie 1 / 17 Computer Vision: 3D-Geometrie D. Schlesinger () Computer Vision: 3D-Geometrie 1 / 17 Lochkamera Modell C Projektionszentrum, Optische Achse, Bildebene, P Hauptpunkt (optische Achse kreuzt die Bildebene),

Mehr

Erinnerung. Arbeitsschritte der Computergraphik. Modellierung. Animation. Rendering. Ausgabemedium. Generierung

Erinnerung. Arbeitsschritte der Computergraphik. Modellierung. Animation. Rendering. Ausgabemedium. Generierung Erinnerung Arbeitsschritte der Computergraphik Modellierung Animation Generierung Ausgabemedium Graphik/-Pipeline Wandelt die Beschreibung einer Szene im dreidimensionalen Raum in eine zweidimensionale

Mehr

Technische Universität München. Fakultät für Informatik

Technische Universität München. Fakultät für Informatik Technische Universität München Fakultät für Informatik Forschungs- und Lehreinheit Informatik IX Thema: Kameramodelle und Kamerakalibrierung Proseminar: Grundlagen Bildverstehen/Bildgestaltung Michaela

Mehr

:= Modellabbildung. Bildsynthese (Rendering) Bildsynthese

:= Modellabbildung. Bildsynthese (Rendering) Bildsynthese Geometrisches Modell bestehend aus Datenstrukturen zur Verknüpfung geometrischer Primitive, welche eine Gesamtszene beschreiben Bildsynthese := Modellabbildung Pixelbasiertes Modell zur Darstellung eines

Mehr

Gegeben ist die Funktion f durch. Ihr Schaubild sei K.

Gegeben ist die Funktion f durch. Ihr Schaubild sei K. Aufgabe I 1 Gegeben ist die Funktion f durch. Ihr Schaubild sei K. a) Geben Sie die maximale Definitionsmenge D f an. Untersuchen Sie K auf gemeinsame Punkte mit der x-achse. Bestimmen Sie die Intervalle,

Mehr

u + v = v + u. u + (v + w) = (u + v) + w. 0 V + v = v + 0 V = v v + u = u + v = 0 V. t (u + v) = t u + t v, (t + s) u = t u + s u.

u + v = v + u. u + (v + w) = (u + v) + w. 0 V + v = v + 0 V = v v + u = u + v = 0 V. t (u + v) = t u + t v, (t + s) u = t u + s u. Universität Stuttgart Fachbereich Mathematik Prof. Dr. C. Hesse PD Dr. P. H. Lesky Dipl. Math. D. Zimmermann Msc. J. Köllner FAQ 3 Höhere Mathematik I 4..03 el, kyb, mecha, phys Vektorräume Vektorräume

Mehr

Graphische Datenverarbeitung und Bildverarbeitung

Graphische Datenverarbeitung und Bildverarbeitung Graphische Datenverarbeitung und Bildverarbeitung Hochschule Niederrhein Clippen in 2D und 3D Graphische DV und BV, Regina Pohle, 19. Clippen in 2D und 3D 1 Einordnung in die Inhalte der Vorlesung Einführung

Mehr

Kapitel 0. Einführung. 0.1 Was ist Computergrafik? 0.2 Anwendungsgebiete

Kapitel 0. Einführung. 0.1 Was ist Computergrafik? 0.2 Anwendungsgebiete Kapitel 0 Einführung 0.1 Was ist Computergrafik? Software, die einen Computer dazu bringt, eine grafische Ausgabe (oder kurz gesagt: Bilder) zu produzieren. Bilder können sein: Fotos, Schaltpläne, Veranschaulichung

Mehr

Übungen zum Ferienkurs Lineare Algebra WS 14/15

Übungen zum Ferienkurs Lineare Algebra WS 14/15 Übungen zum Ferienkurs Lineare Algebra WS 14/15 Linearkombinationen, Basen, Lineare Abbildungen 2.1 Lineare Unabhängigkeit Sind die folgenden Vektoren linear unabhängig? (a) 1, 2, 3 im Q Vektorraum R (b)

Mehr

H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Übungsbuch für die optimale Vorbereitung in Analysis, Geometrie und Stochastik mit verständlichen Lösungen

H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Übungsbuch für die optimale Vorbereitung in Analysis, Geometrie und Stochastik mit verständlichen Lösungen H. Gruber, R. Neumann Erfolg im Mathe-Abi Übungsbuch für die optimale Vorbereitung in Analysis, Geometrie und Stochastik mit verständlichen Lösungen Inhaltsverzeichnis Inhaltsverzeichnis Analysis Von der

Mehr

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s Nachtrag zur allgemeinen Vektorraum-Theorie. 1.5.15. Direkte Summen. Sei V ein Vektorraum, seien U 1,..., U t Unterräume, wir schreiben V = U 1 U 2 U t = t i=1 U i falls die folgenden beiden Bedingungen

Mehr

2. Erfassung und Verarbeitung von Sensordaten

2. Erfassung und Verarbeitung von Sensordaten 2. Erfassung und Verarbeitung von Sensordaten Lernziele 2. Erfassung und Verarbeitung von Sensordaten Lernziele: Typische in mobilen Geräten enthaltene Sensorarten kennen, Daten von solchen Sensoren empfangen

Mehr

Lineare Algebra und Computer Grafik

Lineare Algebra und Computer Grafik Lineare Algebra und Computer Grafik Vorlesung an der Hochschule Heilbronn (Stand: 7 Mai ) Prof Dr V Stahl Copyright 6 by Volker Stahl All rights reserved Inhaltsverzeichnis Vektoren 4 Vektoren und Skalare

Mehr

4. Kapitel 3D Engine Geometry

4. Kapitel 3D Engine Geometry 15.11.2007 Mathematics for 3D Game Programming & Computer Graphics 4. Kapitel 3D Engine Geometry Anne Adams & Katharina Schmitt Universität Trier Fachbereich IV Proseminar Numerik Wintersemester 2007/08

Mehr

Lernskript. Technisch-angewandte Informatik. Kerngebiete: Technische Informatik Angewandte Informatik. Vertiefungsgebiet:

Lernskript. Technisch-angewandte Informatik. Kerngebiete: Technische Informatik Angewandte Informatik. Vertiefungsgebiet: Lernskript Technisch-angewandte Informatik Kerngebiete: Technische Informatik Angewandte Informatik Vertiefungsgebiet: A1 (Methoden der Informatik für spezielle Anwendungen) FRAGEN Computergrafik Allgemeines

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN. Abzählbarkeit, Injektivität, Sürjektivität und Bijektivität

TECHNISCHE UNIVERSITÄT MÜNCHEN. Abzählbarkeit, Injektivität, Sürjektivität und Bijektivität TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Prof. Dr. Friedrich Roesler Ralf Franken, PhD Max Lein Lineare Algebra 1 WS 26/7 en Blatt 4 13.11.26 Abzählbarkeit, Injektivität, Sürjektivität und Bijektivität

Mehr

Mathematischer Vorkurs für Physiker WS 2009/10

Mathematischer Vorkurs für Physiker WS 2009/10 TU München Prof. Dr. P. Vogl, Dr. S. Schlicht Mathematischer Vorkurs für Physiker WS 2009/10 Vorlesung 1, Montag vormittag Vektoralgebra Ein Vektor lässt sich geometrisch als eine gerichtete Strecke darstellen,

Mehr

Computergrafik 1 3D Rendering

Computergrafik 1 3D Rendering Computergrafik 3D Rendering Hearn/Baker 5.9-6,7.-9,7. Based on material b Werner Purgathofer and Dieter Schmalstieg Creating an Illusion The environment The imaging process = rendering The camera 2 Rendering

Mehr

Computer Vision SS 2011. Skript

Computer Vision SS 2011. Skript Computer Vision SS 211 Skript (Work in Progress) Simon Hawe & Martin Kleinsteuber Skript: Manuel Wolf Inhaltsverzeichnis 1 Einführung 1 1.1 Was ist ein Bild?................................. 1 1.2 Wie

Mehr

4. Übungsblatt Matrikelnr.: 6423043

4. Übungsblatt Matrikelnr.: 6423043 Lineare Algebra I 1. Name: Bleeck, Christian 4. Übungsblatt Matrikelnr.: 6423043 Abgabe: 15.11.06 12 Uhr (Kasten D1 320) Übungsgruppe: 03 Patrick Schützdeller 2. Name: Niemann, Philipp Matrikelnr.: 6388613

Mehr

Workshop: Einführung in die 3D-Computergrafik. Julia Tolksdorf Thies Pfeiffer Christian Fröhlich Nikita Mattar

Workshop: Einführung in die 3D-Computergrafik. Julia Tolksdorf Thies Pfeiffer Christian Fröhlich Nikita Mattar Workshop: Einführung in die 3D-Computergrafik Julia Tolksdorf Thies Pfeiffer Christian Fröhlich Nikita Mattar 1 Organisatorisches Tagesablauf: Vormittags: Theoretische Grundlagen Nachmittags: Bearbeitung

Mehr

Ausgewählte Aufgaben zum Grundbereich des Staatsexamens in Mathematik. Lineare Algebra. zusammengestellt von

Ausgewählte Aufgaben zum Grundbereich des Staatsexamens in Mathematik. Lineare Algebra. zusammengestellt von Ausgewählte Aufgaben zum Grundbereich des Staatsexamens in Mathematik Lineare Algebra zusammengestellt von Sabine Giese, Josef Heringlehner, Birgit Mielke, Hans Mielke und Ralph-Hardo Schulz 98 Aufgaben,

Mehr

Zwei Aufgaben, die auf windschiefe Regelflächen führen,

Zwei Aufgaben, die auf windschiefe Regelflächen führen, Zwei Aufgaben, die auf windschiefe Regelflächen führen, von À. KIEFER (Zürich). (Als Manuskript eingegangen am 25. Januar 1926.) I. Gesucht im Raum der Ort des Punktes, von dem aus die Zentralprojektionen

Mehr

( -1 2 ) -2. Gesamtschule Duisburg-Mitte. Abbildungen. Affine Abbildungen. 1. Spiegelung an den Koordinatenachsen A( 1 / 4 ) -> A'( -1 / 5 )

( -1 2 ) -2. Gesamtschule Duisburg-Mitte. Abbildungen. Affine Abbildungen. 1. Spiegelung an den Koordinatenachsen A( 1 / 4 ) -> A'( -1 / 5 ) Duisurg-Mitte e/04 Aildungen Im zweidimensionalen Raum werden Figuren durch Rechen- / Aildungsvorschriften auf andere Figuren ageildet. Die ursprünglichen Figuren werden mit Buchstaen A,B,C usw. enannt,

Mehr

Höhere Mathematik I. 1. Gruppenübung zur Vorlesung Prof. Dr. M. Stroppel. Winter 2007/08

Höhere Mathematik I. 1. Gruppenübung zur Vorlesung Prof. Dr. M. Stroppel. Winter 2007/08 Dr. A. App Dr. M. Pfeil. Gruppenübung zur Vorlesung Prof. Dr. M. Stroppel Höhere Mathematik I Winter 7/8 Aufgabe P. Binomialkoeffizienten Berechnen Sie ohne Taschenrechner: ( ) (a) x = 5 ( ) ( ) ( ) (b)

Mehr

ARBEITSUNTERLAGEN ZUR VORLESUNG UND ÜBUNG AN DER UNIVERSITÄT DES SAARLANDES LINEARE OPTIMIERUNG

ARBEITSUNTERLAGEN ZUR VORLESUNG UND ÜBUNG AN DER UNIVERSITÄT DES SAARLANDES LINEARE OPTIMIERUNG ¾ REITSUNTERLGEN ZUR VORLESUNG UND ÜUNG N DER UNIVERSITÄT DES SRLNDES LINERE OPTIMIERUNG IM SS Lineare Optimierung (SS ). ufgabe (Graphische Lineare Optimierung) Nach einem anstrengenden Semester steht

Mehr

Vektorgeometrie. mathenachhilfe.ch. Version: 28. Dezember 2007 (Bitte nur für den Eigengebrauch verwenden) 1. Mathematische Operationen für Vektoren

Vektorgeometrie. mathenachhilfe.ch. Version: 28. Dezember 2007 (Bitte nur für den Eigengebrauch verwenden) 1. Mathematische Operationen für Vektoren Vektorgeometrie Version: 28. Dezemer 2007 Bitte nur für den Eigengerauch verwenden) mathenachhilfe.ch. Mathematische Operationen für Vektoren Addition + a + 3 = a + + + 3 + Sutraktion a 3 = a 3 Skalare

Mehr

Wir gehen aus von euklidischen Anschauungsraum bzw. von der euklidischen Zeichenebene. Parallele Geraden schneiden einander nicht.

Wir gehen aus von euklidischen Anschauungsraum bzw. von der euklidischen Zeichenebene. Parallele Geraden schneiden einander nicht. 2 Ein wenig projektive Geometrie 2.1 Fernpunkte 2.1.1 Projektive Einführung von Fernpunkten Wir gehen aus von euklidischen Anschauungsraum bzw. von der euklidischen Zeichenebene. Parallele Geraden schneiden

Mehr

3D-Model Reconstruction using Vanishing Points

3D-Model Reconstruction using Vanishing Points 3D-Model Reconstruction using Vanishing Points Seminar: Ausgewä hlte Themen zu "Bildverstehen und Mustererkennung" Dozenten: Prof. Dr. Xiaoyi Jiang, Dr. Da-Chuan Cheng, Steffen Wachenfeld, Kai Rothaus

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Sei K ein Körper, a ij K für 1 i m, 1 j n. Weiters seien b 1,..., b m K. Dann heißt a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... + a 2n x n = b 2... a m1

Mehr

LINEARE ALGEBRA Ferienkurs. Hanna Schäfer Philipp Gadow

LINEARE ALGEBRA Ferienkurs. Hanna Schäfer Philipp Gadow LINEARE ALGERA Ferienkurs Hanna Schäfer Philipp Gadow INHALT Eigenwerte und Eigenvektoren. asiswechsel.2 Eigenwertgleichung 2.3 Diagonalisierbarkeit 5.4 Trigonalisierung 8.5 Zusatzmaterial 8 Aufgaben 9

Mehr

Computer Vision I. Nikos Canterakis. Lehrstuhl für Mustererkennung, Universität Freiburg,

Computer Vision I. Nikos Canterakis. Lehrstuhl für Mustererkennung, Universität Freiburg, Nikos Canterakis Lehrstuhl für Mustererkennung, Universität Freiburg, Literatur Richard Hartle and Andrew Zisserman. Multiple View Geometr in computer vision, Cambridge Universit Press, 2 nd Ed., 23. O.D.

Mehr

Computergrafik 1. 2D Rendering

Computergrafik 1. 2D Rendering Computergrafik 2D Rendering Hearn/Baker 32., 3.4-3.6,5. 5.8, 6. 6.8, 6. Based on material b Werner Purgathofer, Gerhard Reitmar and Dieter Schmalstieg 2D Racasting Inhalt Einfaches Rendering Model 2D Transformationen

Mehr

Lineare Algebra und analytische Geometrie II (Unterrichtsfach)

Lineare Algebra und analytische Geometrie II (Unterrichtsfach) MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Prof. Dr. D. Rost SS 0 Blatt.06.0 Übungen zur Vorlesung Lineare Algebra und analytische Geometrie II (Unterrichtsfach) Abgabe: Dienstag, 0. Juli 0, bis 4:00

Mehr

www.mathe-aufgaben.com

www.mathe-aufgaben.com Abiturprüfung Mathematik Baden-Württemberg (ohne CAS) Pflichtteil Aufgaben Aufgabe : ( VP) Bilden Sie die erste Ableitung der Funktion f mit sin() f() =. Aufgabe : ( VP) Berechnen Sie das Integral ( )

Mehr

Quaternionen, Kampfflugzeuge und Computerspiele

Quaternionen, Kampfflugzeuge und Computerspiele Quaternionen, Kampfflugzeuge und Computerspiele Nikolai Nowaczyk http://math.nikno.de/ Lars Wallenborn http://www.wallenborn.net/ 29.06.-05.07. 2012 Inhaltsverzeichnis

Mehr

Ein Modell zur automatischen Bestimmung von Gelenkmittelpunkten anhand von 3D Motion Capture-Daten

Ein Modell zur automatischen Bestimmung von Gelenkmittelpunkten anhand von 3D Motion Capture-Daten Universität Augsburg - Lehrstuhl für Multimedia Computing Bachelorarbeit Ein Modell zur automatischen Bestimmung von Gelenkmittelpunkten anhand von 3D Motion Capture-Daten Moritz Benedikt Laudahn 17. August

Mehr

SCHIEFE AXONOMETRIE MIT DEM COMPUTER

SCHIEFE AXONOMETRIE MIT DEM COMPUTER Mathematica Pannonica 18/2 (2007), xx xx SCHIEFE AXONOMETRIE MIT DEM COMPUTER Abdolrahim David Faroghi Lehrstuhl für Angewandte Mathematik, Montanuniversität Leoben, A-8700 Leoben, Österreich Hans Günther

Mehr

11 Normalformen von Matrizen

11 Normalformen von Matrizen 11 Normalformen von Matrizen Wir wenden uns in diesem Kapitel noch einmal der Untersuchung linearer Abbildungen auf endlichdimensionalen Vektorräumen und deren Darstellung mittels Matrizen zu Speziell

Mehr

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Aufgabe 35: Thema: Singulärwertzerlegung und assoziierte Unterräume Sei A eine m n Matrix mit Rang r und A = UDV T ihre Singulärwertzerlegung.

Mehr

Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen?

Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen? Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen können zwei Ebenen (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen? Wie heiÿt

Mehr

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 9.. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 Die Grundfrage bei der Anwendung des Satzes über implizite Funktionen betrifft immer die folgende Situation: Wir haben eine Funktion f : V W und eine Stelle x

Mehr

Internal Report 06 01. Inkrementelle Akquisition von 3D-Objektmodellen

Internal Report 06 01. Inkrementelle Akquisition von 3D-Objektmodellen Internal Report 06 01 Inkrementelle Akquisition von 3D-Objektmodellen by Lars Heyden Ruhr-Universität Bochum Institut für Neuroinformatik 44780 Bochum IR-INI 06 01 April 2006 ISSN 0943-2752 c 2006 Institut

Mehr

Computer Vision I. Nikos Canterakis. Lehrstuhl für Mustererkennung, Universität Freiburg

Computer Vision I. Nikos Canterakis. Lehrstuhl für Mustererkennung, Universität Freiburg Nikos Canterakis Lehrstuhl für Mustererkennung, Universität Freiburg Gliederung 8 Projektive Invarianz und das kanonische Kamerapaar Kanonisches Kamerapaar aus gegebener Fundamentalmatrix Freiheitsgrade

Mehr

Grundlagen der Mathematik II

Grundlagen der Mathematik II Wintersemester 204/205 - Aufgabenblatt I Abgabe: bis Donnerstag, den 6. November 204, 9:00 Uhr Aufgabe : Untersuchen Sie, für welche 2 C die folgende Matrix c diagonalisierbar ist, und bestimmen Sie für

Mehr

Vorlesung INFORMATIK 2

Vorlesung INFORMATIK 2 Prof. Dr. J. Dankert FH Hamburg Vorlesung INFORMATIK 2 2 Inhalt 1 Graphische Darstellung dreidimensionaler Objekte 4 1.1 Homogene Koordinaten 5 1.2 Transformationen 5 1.2.1 Geometrische Transformationen

Mehr

Prüfungsprotokoll Computergrafik 1 und 2 (1692 & 1693) Prüfer: M. Felten von: Lindig Florian. Dauer: 30 min jeweils. Note: 1.

Prüfungsprotokoll Computergrafik 1 und 2 (1692 & 1693) Prüfer: M. Felten von: Lindig Florian. Dauer: 30 min jeweils. Note: 1. Prüfungsprotokoll Computergrafik 1 und 2 (1692 & 1693) Prüfer: M. Felten von: Lindig Florian Dauer: 30 min jeweils Note: 1.0 jeweils Alles in allem eine lockere Atmosphäre, man bekommt genug Papier und

Mehr

Basis und Dimension. Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren.

Basis und Dimension. Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren. Basis und Dimension Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren. Definition. Sei V ein K-Vektorraum und (v i ) i I eine Familie von Vektoren

Mehr

Beispiel zur Lösung eines Gleichungssystems : 6 y + z = 15 0 6 1. 15 12 x + 3 y 3 z = 15 12 3 3. 15 2 x 3 y = 4 2 3 0.

Beispiel zur Lösung eines Gleichungssystems : 6 y + z = 15 0 6 1. 15 12 x + 3 y 3 z = 15 12 3 3. 15 2 x 3 y = 4 2 3 0. Beispiel zur Lösung eines Gleichungssystems : 6 y + z = 5 0 6 5 2 x + 3 y 3 z = 5 2 3 3 5 2 x 3 y = 4 2 3 0 4 z2 /3 z : 3 2 x 3 y = 4 2 3 0 4 4 x + y z = 5 4 5 6 y + z = 5 0 6 5 z2 + 2 z 2 x 3 y = 4 2

Mehr

Vorgehen zur Kalibrierung von Kamerabildern

Vorgehen zur Kalibrierung von Kamerabildern Vorgehen r Kalibrierng von Kamerabildern Prof. Dr.-Ing. Bernhard Lang, 06.04.2013 3 Kalibrierng von Kamerabildern 3.1 Hintergrnd Eine reale Kamera lässt sich geometrisch drch eine Lochkamera modellieren.

Mehr

Praktikumsversuch. Kamerakalibrierung. S. Rahmann und H. Burkhardt

Praktikumsversuch. Kamerakalibrierung. S. Rahmann und H. Burkhardt Praktikumsversuch Kamerakalibrierung S. Rahmann und H. Burkhardt . Inhaltsverzeichnis 1 Kamerakalibrierung 5 1.1 Einleitung............................... 5 1.2 Projektive Geometrie.........................

Mehr

Abiturprüfung Mathematik 2008 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1

Abiturprüfung Mathematik 2008 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1 Abiturprüfung Mathematik (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe Für jedes t f t () + t R ist die Funktion f t gegeben durch = mit R. Das Schaubild von f t heißt K t.. (6 Punkte)

Mehr

Probestudium der Physik: Mathematische Grundlagen

Probestudium der Physik: Mathematische Grundlagen Probestudium der Physik: Mathematische Grundlagen Ludger Santen 1. Februar 2013 Fachrichtung Theoretische Physik, Universität des Saarlandes, Saarbrücken 1 Einführung Die Mathematik ist die Sprache der

Mehr

Eine solche Anordnung wird auch Fabry-Pérot Interferometer genannt

Eine solche Anordnung wird auch Fabry-Pérot Interferometer genannt Interferenz in dünnen Schichten Interferieren die an dünnen Schichten reflektierten Wellen miteinander, so können diese sich je nach Dicke der Schicht und Winkel des Einfalls auslöschen oder verstärken

Mehr

SCHIEFE AXONOMETRIE MIT DEM COMPUTER

SCHIEFE AXONOMETRIE MIT DEM COMPUTER Mathematica Pannonica 18/2 (2007), 229 245 SCHIEFE AXONOMETRIE MIT DEM COMPUTER Abdolrahim David Faroghi Lehrstuhl für Angewandte Mathematik, Montanuniversität Leoben, A-8700 Leoben, Österreich Hans Günther

Mehr

Grundlagen der Computer-Tomographie

Grundlagen der Computer-Tomographie Grundlagen der Computer-Tomographie Quellenangabe Die folgenden Folien sind zum Teil dem Übersichtsvortrag: imbie.meb.uni-bonn.de/epileptologie/staff/lehnertz/ct1.pdf entnommen. Als Quelle für die mathematischen

Mehr

Mathematik für Informatiker II. Beispiellösungen zur Probeklausur. Aufgabe 1. Aufgabe 2 (5+5 Punkte) Christoph Eisinger Sommersemester 2011

Mathematik für Informatiker II. Beispiellösungen zur Probeklausur. Aufgabe 1. Aufgabe 2 (5+5 Punkte) Christoph Eisinger Sommersemester 2011 Mathematik für Informatiker II Christoph Eisinger Sommersemester 211 Beispiellösungen zur Probeklausur Aufgabe 1 Gegeben sind die Polynome f, g, h K[x]. Zu zeigen: Es gibt genau dann Polynome h 1 und h

Mehr

Computer-Graphik 2 Visibility Computations II Culling

Computer-Graphik 2 Visibility Computations II Culling lausthal omputer-raphik 2 Visibility omputations II ulling lausthal University, ermany zach@in.tu-clausthal.de Klassifikation (Erinnerung) Problemklassen innerhalb des Bereichs "Visibility omputations":

Mehr

SO(2) und SO(3) Martin Schlederer. 06. Dezember 2012

SO(2) und SO(3) Martin Schlederer. 06. Dezember 2012 SO(2) und SO(3) Martin Schlederer 06. Dezember 2012 Inhaltsverzeichnis 1 Motivation 2 2 Wiederholung 2 2.1 Spezielle Orthogonale Gruppe SO(n)..................... 2 2.2 Erzeuger.....................................

Mehr

Technische Universität

Technische Universität Technische Universität München Fakultät für Informatik Forschungs- und Lehreinheit Informatik IX Stereo Vision: Epipolargeometrie Proseminar: Grundlagen Bildverarbeitung/Bildverstehen Alexander Sahm Betreuer:

Mehr

2.1 Codes: einige Grundbegriffe

2.1 Codes: einige Grundbegriffe Gitter und Codes c Rudolf Scharlau 2. Mai 2009 51 2.1 Codes: einige Grundbegriffe Wir stellen die wichtigsten Grundbegriffe für Codes über dem Alphabet F q, also über einem endlichen Körper mit q Elementen

Mehr

Studienarbeit Interaktive Visualisierung von 4-dimensionalen Objekten

Studienarbeit Interaktive Visualisierung von 4-dimensionalen Objekten Studienarbeit Interaktive Visualisierung von 4-dimensionalen Objekten vorgelegt von Andreas Mosig Matrikelnummer 200210251 Betreuer: Prof. Dr. Stefan Müller Koblenz, im April 2005 Inhaltsverzeichnis 1

Mehr

Erinnerung/Zusammenfassung zu Abbildungsmatrizen

Erinnerung/Zusammenfassung zu Abbildungsmatrizen Erinnerung/Zusammenfassung zu Abbildungsmatrizen Thomas Coutandin (cthomas@student.ethz.ch) 7. November 2 Abbildungsmatrizen Im Folgenden betrachten wir stets endlich dimensionale K-Vektorräume (K irgend

Mehr

Quelle/Referenz für dieses Kapitel: Springborn [2, Lectures 28/29] hx a,vi

Quelle/Referenz für dieses Kapitel: Springborn [2, Lectures 28/29] hx a,vi 8 Möbiusgeometrie Quelle/Referenz für dieses Kapitel: Springborn [2, Lectures 28/29] 17.+21. Juni 2013 8.1 Spiegelung an einer Sphäre Jede Hyperebene H R n kann in der Form H = {x 2 R n : hx werden, wobei

Mehr

Definition und Eigenschaften Finiter Elemente

Definition und Eigenschaften Finiter Elemente Definition und Eigenschaften Finiter Elemente 1 Das letzte Mal Im letzten Vortrag haben wir zum Schluss das Lemma von Lax Milgram präsentiert bekommen, dass ich hier nocheinmal in Erinnerung rufen möchte:

Mehr

Arbeitsblätter zum Thema Papierfalten und Algebra für den Unterricht Hochbegabter in der Sekundarstufe II

Arbeitsblätter zum Thema Papierfalten und Algebra für den Unterricht Hochbegabter in der Sekundarstufe II Arbeitsblätter zum Thema Papierfalten und Algebra für den Unterricht Hochbegabter in der Sekundarstufe II Robert Geretschläger Graz, Österreich, 2009 Blatt 1 Lösen quadratischer Gleichungen mit Zirkel

Mehr

bilinear interpoliert ideal interpoliert

bilinear interpoliert ideal interpoliert Bildverarbeitung und Objekterkennung Privatdozent (PD) Dr.-Ing. habil. K.-H. Franke Technische Universität Ilmenau Fakultät für Informatik und Automatisierung Institut für Prakt. Inf. und Medieninf. Fachgebiet

Mehr

& REGELUNGSTECHNIK AUTOMATISIERUNGS- Fachvertiefung WS 2012/2013

& REGELUNGSTECHNIK AUTOMATISIERUNGS- Fachvertiefung WS 2012/2013 - Fachvertiefung WS 01/013 AUTOMATISIERUNGS- & REGELUNGSTECHNIK Dipl.-Ing. Tobias Glück Dr.-Ing. Wolfgang Kemmetmüller Univ.-Prof. Dr. techn. Andreas Kugi Automatisierungs- und Regelungstechnik Fachvertiefung

Mehr

Optimalitätskriterien

Optimalitätskriterien Kapitel 4 Optimalitätskriterien Als Optimalitätskriterien bezeichnet man notwendige oder hinreichende Bedingungen dafür, dass ein x 0 Ω R n Lösung eines Optimierungsproblems ist. Diese Kriterien besitzen

Mehr

DAS SNELLIUSSCHE BRECHUNGSGESETZ UND LINSEN MIT EXAKT PUNKTFÖRMIGEM FOKUS. Eugen Grycko, Werner Kirsch, Tobias Mühlenbruch

DAS SNELLIUSSCHE BRECHUNGSGESETZ UND LINSEN MIT EXAKT PUNKTFÖRMIGEM FOKUS. Eugen Grycko, Werner Kirsch, Tobias Mühlenbruch DAS SNELLIUSSCHE BRECHUNGSGESETZ UND LINSEN MIT EXAKT PUNKTFÖRMIGEM FOKUS Eugen Grycko, Werner Kirsch, Tobias Mühlenbruch Fakultät für Mathematik und Informatik FernUniversität Universitätsstraße 1 Hagen

Mehr

Harm Pralle. Codierungstheorie WS 2005/06. Institut Computational Mathematics Technische Universität Braunschweig

Harm Pralle. Codierungstheorie WS 2005/06. Institut Computational Mathematics Technische Universität Braunschweig Harm Pralle Codierungstheorie WS 2005/06 Institut Computational Mathematics Technische Universität Braunschweig II Literatur: A. Beutelspacher und U. Rosenbaum. Projektive Geometrie. Vieweg, Wiesbaden

Mehr

3D-Algebra Version 2

3D-Algebra Version 2 3D-Algebra Version 2 Fakultät für Mathematik und Informatik Datenbanksysteme für neue Anwendungen FernUniversität in Hagen 19.November 2015 c 2015 FernUniversität in Hagen Das Ziel Repräsentation von Punkten,

Mehr

DAS ABI-PFLICHTTEIL Büchlein

DAS ABI-PFLICHTTEIL Büchlein DAS ABI-PFLICHTTEIL Büchlein für Baden-Württemberg Alle Originalaufgaben Haupttermine 004 0 Ausführlich gerechnete und kommentierte Lösungswege Mit vielen Zusatzhilfen X π Von: Jochen Koppenhöfer und Pascal

Mehr

Abituraufgabe zur analytischen Geometrie, Hessen 2013, B2, Grundkurs (TR)

Abituraufgabe zur analytischen Geometrie, Hessen 2013, B2, Grundkurs (TR) Abituraufgabe zur analytischen Geometrie, Hessen 2013, B2, Grundkurs (TR) 1 Bei Ausgrabungen wurden die Überreste einer 4500 Jahre alten Pyramide entdeckt. Die Abbildung zeigt die Ansicht der Pyramidenruine

Mehr

Informatik für Maschinenbau-Ingenieure II

Informatik für Maschinenbau-Ingenieure II Informatik für Maschinenbau-Ingenieure II Helmut Weberpals Technische Universität Hamburg Harburg Sommersemester 2008 nota bene Computergraphik und Animation zu erlernen gleicht dem Erlernen eines Musikinstruments.

Mehr

Grundwissen Mathematik 10. Klasse. Eigenschaften Besonderheiten - Beispiele

Grundwissen Mathematik 10. Klasse. Eigenschaften Besonderheiten - Beispiele Themen Eigenschften Besonderheiten - Beispiele Kreis beknnt us Klsse 8: U Kreis = 2 π r A Kreis = r 2 π Kreissektor Bogenlänge b Flächeninhlt Kreissektor: Die Länge b des Kreisbogens und der Flächeninhlt

Mehr

Klausuraufgabensammlung Mathematik. Klausuraufgaben zur Mathematik 1-3 von Wolfgang Langguth

Klausuraufgabensammlung Mathematik. Klausuraufgaben zur Mathematik 1-3 von Wolfgang Langguth Fakultät für Ingenieurswissenschaften Bachelorstudiengang Biomedizinische Technik Prof. Dr. W. Langguth Klausuraufgabensammlung Mathematik Klausuraufgaben zur Mathematik - von Wolfgang Langguth Aufgabenstellungen

Mehr

Seminararbeit für das SE Reine Mathematik- Graphentheorie

Seminararbeit für das SE Reine Mathematik- Graphentheorie Seminararbeit für das SE Reine Mathematik- Graphentheorie Der binäre Rang, der symplektische Graph, die Spektralzerlegung und rationale Funktionen Vortrag am 24.01.2012 Heike Farkas 0410052 Inhaltsverzeichnis

Mehr

Bildverarbeitung Herbstsemester 2012. Kanten und Ecken

Bildverarbeitung Herbstsemester 2012. Kanten und Ecken Bildverarbeitung Herbstsemester 01 Kanten und Ecken 1 Inhalt Einführung Kantendetektierung Gradientenbasierende Verfahren Verfahren basierend auf der zweiten Ableitung Eckpunkterkennung Harris Corner Detector

Mehr

Weitere Aufgaben Mathematik (BLF, Abitur) Hinweise und Beispiele zu hilfsmittelfreien Aufgaben

Weitere Aufgaben Mathematik (BLF, Abitur) Hinweise und Beispiele zu hilfsmittelfreien Aufgaben Weitere Aufgaben Mathematik (BLF, Abitur) Hinweise und Beispiele zu hilfsmittelfreien Aufgaben Aufgabe C Gegeben ist eine Funktion f durch f ( ) = + 3. Gesucht sind lineare Funktionen, deren Graphen zum

Mehr

Einführung in Maple. Kap. 2: Graphik mit Maple. Graphik mit Maple. Stand Januar 2015 (Version 3.0) - F.Wünsch

Einführung in Maple. Kap. 2: Graphik mit Maple. Graphik mit Maple. Stand Januar 2015 (Version 3.0) - F.Wünsch Einführung in Maple Stand Januar 2015 (Version 3.0) - F.Wünsch Dieses Skript basiert auf Kursen von Julian Berwanger Martin Decker Thomas Pruschke Joachim Keller und Harald Dobler Florian Chmela und Roland

Mehr

Klausuraufgabensammlung Mathematik. Klausuraufgaben zur Mathematik 1-3 von Wolfgang Langguth

Klausuraufgabensammlung Mathematik. Klausuraufgaben zur Mathematik 1-3 von Wolfgang Langguth Hochschule für Technik und Wirtschaft des Saarlandes University of Applied Sciences Fakultät für Ingenieurswissenschaften Bachelorstudiengang Biomedizinische Technik Prof. Dr. W. Langguth Klausuraufgabensammlung

Mehr

Lösungen zum 3. Aufgabenblatt

Lösungen zum 3. Aufgabenblatt SS, Lineare Algebra Die Lösungen wurden erstellt von: Isabel Voigt, Vanessa Lamm und Matthias Rehder Hinweis: Eine Liste der zur Bearbeitung verwendeten Literatur ist unter www.mathematiwelt.com aufrufbar.

Mehr

Hauptprüfung Abiturprüfung 2014 (ohne CAS) Baden-Württemberg

Hauptprüfung Abiturprüfung 2014 (ohne CAS) Baden-Württemberg Baden-Württemberg: Abitur 04 Pflichtteil www.mathe-aufgaben.com Hauptprüfung Abiturprüfung 04 (ohne CAS) Baden-Württemberg Pflichtteil Hilfsmittel: keine allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com

Mehr

2 Die Darstellung linearer Abbildungen durch Matrizen

2 Die Darstellung linearer Abbildungen durch Matrizen 2 Die Darstellung linearer Abbildungen durch Matrizen V und V seien Vektorräume über einem Körper K. Hom K (V, V ) bezeichnet die Menge der K linearen Abbildungen von V nach V. Wir machen Hom K (V, V )

Mehr

Grundlagen der digitalen Bildverarbeitung / Fortsetzung

Grundlagen der digitalen Bildverarbeitung / Fortsetzung Grundlagen der digitalen Bildverarbeitung / Fortsetzung Wir haben bereits zwei Beispiele digitaler Bildfilter gesehen. Es gibt eine große Menge von Filtern mit ganz unterschiedlicher Auswirkung auf das

Mehr

3D rendering. Introduction and interesting algorithms. PHP Usergroup Dortmund, Dortmund, 2006-12-14. Kore Nordmann <kore@php.net>

3D rendering. Introduction and interesting algorithms. PHP Usergroup Dortmund, Dortmund, 2006-12-14. Kore Nordmann <kore@php.net> 3D rendering Introduction and interesting algorithms PHP Usergroup Dortmund, Dortmund, 2006-12-14 Kore Nordmann Speaker Kore Nordmann Studies computer science at the University Dortmund

Mehr

Einführung in die Vektorgeometrie und Lineare Algebra

Einführung in die Vektorgeometrie und Lineare Algebra Vektorgeometrie und Lineare Algebra 1 Einführung in die Vektorgeometrie und Lineare Algebra Anhang: Anleitung zur Nutzung des Computer-Algebra-Systems MAPLE in der Linearen Algebra Prof. Siegfried Krauter

Mehr