7 Bedingte Erwartungswerte und Bedingte Verteilungen

Größe: px
Ab Seite anzeigen:

Download "7 Bedingte Erwartungswerte und Bedingte Verteilungen"

Transkript

1 7 edingte Erwartungswerte und edingte Verteilungen Sei (Ω,, P ein W Raum, (Ω, ein Messraum, Y : Ω Ω sei (, -messbar und nehme die Werte y 1,..., y n Ω an. Y 1 (y k {ω Ω Y (ω y k } : k Ω n und σ(y { k I k I {1,..., n}}. Definition Sei X : Ω R eine ZV mit E X <. Dann ist der bedingte Erwartungswert von X unter der edingung Y y k defniniert durch: E[X Y y k ] : 1 XdP, k 1,..., n P ( k k Falls X diskret mit x 1,..., x m : E[X Y y k ] 1 P (Y y k m x j P (X x j, Y y k j1 m x j P (X x j Y y k j1 Definition Der bedingte Erwartungswert von X gegeben Y R mit n E[X Y ](ω : E[X Y y k ] 1 [Y yk ](ω emerkung k1 a Offenbar ist E[X Y ] (σ(y, -messbar. b Sei Z : E[X Y ]. Dann gilt k ZdP Ω 1 k ZdP E[X, Y y k ] P ( k XdP k Wegen der Struktur von σ(y folgt auch ZdP XdP σ(y ist E[X Y ] : Ω c E[X Y ] g(y mit n g(y E[X Y y k ] 1 {yk }(y k1 61

2 62 KPITEL 7. EDINGTE ERWRTUNGSWERTE UND EDINGTE VERTEILUNGEN d Offenbar hängt die Definition von E[X Y ] nur davom ab, auf welchen Mengen k Y die verschiedenen Werte annimmt, nicht aber welche Werte das genau sind. Deshalb schreibt man auch: E[X Y ] E[X σ(y ] eispiel 7.1 Sei ([0, 1, [0,1, λ [0,1, X(ω ω }{{} :P - Hier fehlt ein ild - [ k 1 k, k { }, k 1,..., n, F : k I {1,..., n} n n E[X, k ] n 1 2 k I 1 ωp (dω P ( k k k n k 1 n 2k 1 n E[X, F] ist also eine pproximation oder Vergröberung von X. ezüglich einer beliebigen Sub-σ-lgebra F wird der bedingte Erwartungswert wie folgt definiert: Definition Sei X eine Zufallsvariable mit E X < und F eine Sub-σ- lgebra von. Dann heißt Z : Ω R eine Version des bedingten Erwartungswertes E[X F] von X unter F, wenn gilt (i Z ist F-messbar ωdω (ii ZdP XdP F Satz 7.1 Der bedingte Erwartungswert existiert und ist bis auf Nullmengen eindeutig. eweis Sei X 0. Durch Q( : X(ωP (dω F wird ein Maß auf (Ω, F definiert (Satz 2.7. Sei P F die Einschränkung von P auf F. Offenbar Q P F. Satz von Radon-Nikodym Q besitzt eine Dichte Z bzgl. P F und Z ist nach Definition F-messbar. Falls X beliebig: X X + X P-f.s. Eindeutigkeit: Seien Z, Z Versionen von E[X, F]. (Z ZdP 0 F

3 63 Wegen {Z > Z} F, {Z < Z} F folgt: E Z Z (Z ZdP {Z> Z} {Z< Z} (Z ZdP 0 Z Z P-f.s. emerkung Der bedingte Erwartungswert ist also eigentlich die Äquivalenzklasse { } E[X F] Z L 1 (Ω, F, P ZdP XdP F Ein Element davon nennt man Version. Oft wird E[X F] mit einer Version identifiziert. Definition Sei F. Eine Version von E[1 F] bezeichnet man als Version der bedingten Wahrscheinlichkeit P ( F. emerkung Es gilt für F : P ( FdP (ii Satz 7.2 Sei X L 2 (Ω,, P mit X 2 EX 2. Dann gilt: 1 dp P ( X E[X F] 2 inf { X Y 2 Y L 2 (Ω, F, P } eweis siehe Henze Stochastik II, S.214 Satz 7.3 (Rechenregeln für bedingte Erwartungswerte Es seien X, Y L 1 (Ω,, P, F, F 1, F 2 Sub-σ-lgebren von. Dann gilt: a E[aX + by F] ae[x F] + be[y F] P-f.s. a, b R b E[E[X Y ]] EX c X Y E[X F] E[Y F] P-f.s. d Für F 1 F 2 gilt E[E[X F 2 ] F 1 ] E[X F 1 ] Für F 1 F 2 gilt E[E[X F 2 ] F 1 ] E[X F 2 ] e Falls Y F-messbar und EXY < gilt: E[XY F] Y E[X F] f Falls X von F unabhängig ist (d.h. falls die X und 1 F unabhängig sind, dann gilt: E[X F] EX emerkung us Satz 7.3 bekommt man:

4 64 KPITEL 7. EDINGTE ERWRTUNGSWERTE UND EDINGTE VERTEILUNGEN 1. X c R f E[c F] c 2. F {, Ω} f E[X F] EX 3. X F-messbar e E[X F] X 4. X 0 c E[X F] 0 P-f.s. eweis von Satz 7.3: a E[aX + by F]dP ax + by dp Linearität a XdP + b Y dp a E[X F]dP + b E[Y F]dP (ae[x F] + be[y F] dp F ehauptung, da ae[x F] + be[y F] F-messbar und Radon-Nikodym- Dichte P -f.s. eindeutig. b E[E[X F]] Ω E[X F]dP Ω XdP EX c : {ω Ω E[X F](ω > E[Y F](ω} F { ω Ω E[X F](ω > E[Y F](ω + 1 } n n N }{{} n nnahme: P ( > 0 n N mit P ( n > 0 0 (Y XdP n E[Y F]dP E[X F]dP n n (E[Y F] E[X F] dp n 1 n P ( n < 0 Widerspruch!

5 65 d Z.z. Für F 1 F 2 gilt: E[E[X F 2 ] F 1 ] E[X F 1 ]. Sei F 1 F 2 und E[X F 1 ]dp XdP E[X F 2 ]dp E[E[X F 2 ] F 1 ]dp ehauptung, da Radon-Nikodym-Dichte eindeutig. Für F 1 F 2 ähnlich. e Mit algebraischer Induktion: Sei Y 1, F und F beliebig. Y E[X F]dP E[X F]dP XdP Y XdP ußerdem ist Y E[X F] F-messbar ehauptung, da Radon-Nikodym- Dichte P -f.s. eindeutig. Linearität des Integrals + Teil a ussage für Y E.Y 0 : edingte Version des Satzes von der monotonen Konvergenz ( Übung. Dann Y Y + Y f E[X F]dP unabh. Ω XdP 1 XdP 1 dp XdP } {{ } EX EXdP ehauptung, da EX F-messbar. Satz 7.4 (Faktorisierungssatz Es seien (Ω,, (Ω, Messräume und Y : Ω Ω ein Zufallsgröße. Ist X : Ω R eine (σ(y, -messbare Zufallsvariable. Dann gibt es eine -messbare Funktion g : Ω R mit X g Y. eweis lgebraische Induktion: (i Sei X n j1 a j1 j E mit a j 0, j σ(y. j Y 1 ( j, j. Wähle g n j1 a j1 j X g Y ehauptung

6 66 KPITEL 7. EDINGTE ERWRTUNGSWERTE UND EDINGTE VERTEILUNGEN (ii Sei X 0 und (σ(y, -messbar. (X n E, 0 X n X und wegen (i (, -messbare Funktion g n mit X n g n Y, n N. Wähle also g sup n N g n X sup X n sup(g n Y (sup g n Y n N n N n N (iii X X + X (ii X g 1 Y g 2 Y. Wähle g g 1 g 2. emerkung Statt E[X σ(y ] schreiben wir auch E[X Y ] und wegen Satz 7.4 g : Ω R (, -messbar mit E[X Y ] g Y P -f.s.. Die Funktion g ist P Y -f.s. eindeutig. Definition Ist E[X Y ] g Y wie oben, so heißt E[X Y y] g(y (ein bedingter Erwartungswert von X unter der edingung Y y. Satz 7.5 Für alle gilt: E[X Y y]p Y (dy eweis E[X Y y]p Y (dy gdp Y Sa. 2.4 Y 1 ( Y 1 ( XdP g Y dp Y 1 ( XdP. emerkung Für heißt P ( Y y : E[1 Y y] (eine bedingte Wahrscheinlichkeit von unter der edingung Y y. edingte Wahrscheinlichkeiten treten oft bei gekoppelten Zufallsexperimenten auf. Die folgende Sichtweise ist konstruktiver: Definition Es seien (Ω 1, 1, (Ω 2, 2 messbare Räume. Eine bbildung Q : Ω 1 2 [0, 1] mit (i ω 1 Q(ω 1, 2 ist 1 -messbar 2. (ii 2 Q(ω 1, 2 ist ein Wahrscheinlichkeitsmaß auf (Ω 2, 2 ω 1 Ω 1 nennt man Übergangskern oder Kern von (Ω 1, 1 nach (Ω 2, 2. Satz 7.6 Es seien (Ω 1, 1, P 1 ein Wahrscheinlichkeitsraum, (Ω 2, 2 ein Messraum und Q ein Übergangskern von (Ω 1, 1 nach (Ω 2, 2. Dann wird durch ( P ( : 1 (ω 1, ω 2 Q(ω 1, dω 2 P 1 (dω 1 Ω 2 Ω 1 ein Wahrscheinlichkeitsmaß P : P 1 Q auf 1 2 definiert. P heißt Koppelung und ist das einzige Wahrscheinlichkeitsmaß auf 1 2 mit der Eigenschaft P ( 1 2 Q(ω 1, 2 P 1 (dω 1 ( 1

7 67 eweis 1. Ähnlich wie in 3 zeigt man: für f : Ω 1 Ω 2 R +, f ( 1 2 -messbar ist ω 1 Ω 2 f(ω 1, ω 2 Q(ω 1, dω 2 1 -messbar. 2. Für 1 2 ist 1 (ω 1, ω (ω (ω 2 (. 3. P (Ω 1 Ω 2 1 wegen (*. P 0 ist klar. ( P n 1 (ω 1, ω n1 2 Q (ω 1, dω 2 }{{} P 1 (dω 1 n1 Ω 1 Ω 2 n1 1 n (ω 1,ω 2 ( ( 1 n (ω 1, ω 2 Q (ω 1, dω 2 n1 Ω 1 Ω 2 P ( n. n1 P 1 (dω 1 4. Eindeutigkeitssatz für Maße. Satz 7.7 Es seien (Ω,, P ein Wahrscheinlichkeitsraum, (Ω 1, 1 ein messbarer Raum, Y : Ω Ω 1 (, 1 -messbar und X ein d-dimensionaler Zufallsvektor. Dann existiert ein Kern Q von (Ω 1, 1 nach (R d, d derart, dass P X,Y P Y Q. Q ist eine Version der bedingten Verteilung von X unter Y. Schreibweise: Q(y, P X ( Y y. eweis - ohne eweis - emerkung Für, d gilt: P (X, Y Q (y, P Y dy P X ( Y y P Y (dy Satz 7.8 Es seien µ und ν σ-endliche Maße auf 1 bzw. d. P (Y,X besitze eine Dichte f bezüglich µ ν. Es sei f Y (y : R f(x, yν(dx die (Rand-Dichte von P Y bzgl. µ. d Weiterhin sei So wird durch f(x y : P X ( Y y : f(x, y f Y (y und 0 : 0. 0 f(x yν(dx d, y Ω 1 eine bedingte Verteilung von X unter der edingung Y y definiert. f( y heißt bedingte ν-dichte von X unter der edingung Y y.

8 68 KPITEL 7. EDINGTE ERWRTUNGSWERTE UND EDINGTE VERTEILUNGEN eweis y f(x yν(dx ist messbar d (Satz von Tonelli, f(x yν(dx ist ein Wahrscheinlichkeitsmaß y Ω 1. Für 1, d gilt: P (Y,X ( fd(µ ν ( f (x, y ν (dx µ (dy ( f (x y ν (dx f Y (y µ (dy! P X ( Y y P Y (dy }{{} f Y (yµ(dy Satz 7.9 Es seien (Ω,, P ein Wahrscheinlichkeitsraum, Y : Ω R d ein Zufallsvektor und X eine Zufallsvariable mit E X <. Dann ist h (y : xp X (dx Y y ein bedingter Erwartungswert von X unter der edingung Y y. R eweis Nach 7.5: E [X Y y] P Y (dy Y 1 ( XdP. Für d und T (Y, X : X (1 Y gilt: XdP T (Y, X dp Y 1 ( 2.4 T (y, x P (Y,X (dy, dx x1 (y P (Y,X (dy, dx ( xp X (dx Y y P Y (dy R 7.5 eh. eispiel 7.2 U und V seien unabhängig und U(0, 1-verteilt und entsprechen den zufälligen Seitenlängen eines Rechtecks. Es sei X Flächeninhalt des Rechtecks und Y Umfang des Rechtecks. Klar: X und Y sind nicht unabhängig.

9 { 1 0 < u < 1 und 0 < v < 1 Weiter ist f U,V (u, v die gemeinsame Dichte von U 0 sonst und V. 2 (Transformationssatz für Dichten f X,Y (x, y für 0 < x < 1 und y 2 16x 4 x < y < 2 + 2x; f X (x log x für 0 < x < 1. 2 f(y x für 4 x < y < x. log x y 2 16x E[Y X x] y f(y xdy 4(1 x log x. eispiel 7.3 (uffonsches Nadelproblem Wir werfen eine Nadel der Länge 1 zufällig auf einen unendlich langen Streifen der reite 1. Wie groß ist die Wahrscheinlichkeit, dass die Nadel mindestens eine Wand des Korridors schneidet? X bstand der Nadelmitte von der linken Wand Y Winkel der Nadel zum Lot nnahme: X U(0, 1, Y U( π 2, π 2 und X, Y unabhängig. Nadel schneidet die Wand {ω (X, Y (ω } mit {(x, y y < π 2, x [0, 1 2 cos y] [1 1 2 cos y, 1]} - hier fehlt eine Skizze - Es ergibt sich: P ( P X,Y ( 2 π π 2 π 2 π 2 π 2 π 2 π (x, y P X (dx Y y P Y (dy ( P X [0, cos y cos y ] [1 2 2, 1] Y y P Y (dy cos y 1 π dy 69 So läßt sich zum eispiel auch π näherungsweise bestimmen.

10

Jan Kallsen. Mathematical Finance Eine Einführung in die zeitdiskrete Finanzmathematik

Jan Kallsen. Mathematical Finance Eine Einführung in die zeitdiskrete Finanzmathematik Jan Kallsen Mathematical Finance Eine Einführung in die zeitdiskrete Finanzmathematik AU zu Kiel, WS 13/14, Stand 10. Februar 2014 Inhaltsverzeichnis 1 Mathematische Hilfsmittel 4 1.1 Absolutstetigkeit

Mehr

Stochastische Eingangsprüfung, 17.05.2008

Stochastische Eingangsprüfung, 17.05.2008 Stochastische Eingangsprüfung, 17.5.8 Wir gehen stets von einem Wahrscheinlichkeitsraum (Ω, A, P) aus. Aufgabe 1 ( Punkte) Sei X : Ω [, ) eine integrierbare Zufallsvariable mit XdP = 1. Sei Q : A R, Q(A)

Mehr

Füllmenge. Füllmenge. Füllmenge. Füllmenge. Mean = 500,0029 Std. Dev. = 3,96016 N = 10.000. 485,00 490,00 495,00 500,00 505,00 510,00 515,00 Füllmenge

Füllmenge. Füllmenge. Füllmenge. Füllmenge. Mean = 500,0029 Std. Dev. = 3,96016 N = 10.000. 485,00 490,00 495,00 500,00 505,00 510,00 515,00 Füllmenge 2.4 Stetige Zufallsvariable Beispiel. Abfüllung von 500 Gramm Packungen einer bestimmten Ware auf einer automatischen Abfüllanlage. Die Zufallsvariable X beschreibe die Füllmenge einer zufällig ausgewählten

Mehr

Gaußsche Prozesse - ein funktionalanalytischer Zugang

Gaußsche Prozesse - ein funktionalanalytischer Zugang Universität Ulm Fakultät für Mathematik und Wirtschaftswissenschaften Gaußsche Prozesse - ein funktionalanalytischer Zugang Bachelorarbeit in Wirtschaftsmathematik vorgelegt von Clemens Kraus am 31. Mai

Mehr

Beispiel 48. 4.3.2 Zusammengesetzte Zufallsvariablen

Beispiel 48. 4.3.2 Zusammengesetzte Zufallsvariablen 4.3.2 Zusammengesetzte Zufallsvariablen Beispiel 48 Ein Würfel werde zweimal geworfen. X bzw. Y bezeichne die Augenzahl im ersten bzw. zweiten Wurf. Sei Z := X + Y die Summe der gewürfelten Augenzahlen.

Mehr

Absolute Stetigkeit von Maßen

Absolute Stetigkeit von Maßen Absolute Stetigkeit von Maßen Definition. Seien µ und ν Maße auf (X, Ω). Dann heißt ν absolut stetig bezüglich µ (kurz ν µ ), wenn für alle A Ω mit µ(a) = 0 auch gilt dass ν(a) = 0. Lemma. Sei ν ein endliches

Mehr

Zufallsgrößen. Vorlesung Statistik für KW 29.04.2008 Helmut Küchenhoff

Zufallsgrößen. Vorlesung Statistik für KW 29.04.2008 Helmut Küchenhoff Zufallsgrößen 2.5 Zufallsgrößen 2.5.1 Verteilungsfunktion einer Zufallsgröße 2.5.2 Wahrscheinlichkeits- und Dichtefunktion Wahrscheinlichkeitsfunktion einer diskreten Zufallsgröße Dichtefunktion einer

Mehr

Unsupervised Kernel Regression

Unsupervised Kernel Regression 9. Mai 26 Inhalt Nichtlineare Dimensionsreduktion mittels UKR (Unüberwachte KernRegression, 25) Anknüpfungspunkte Datamining I: PCA + Hauptkurven Benötigte Zutaten Klassische Kernregression Kerndichteschätzung

Mehr

Schleswig-Holsteinische Ergänzung der Musteraufgaben für den hilfsmittelfreien Teil der schriftlichen Abiturprüfung im Fach Mathematik ab 2015

Schleswig-Holsteinische Ergänzung der Musteraufgaben für den hilfsmittelfreien Teil der schriftlichen Abiturprüfung im Fach Mathematik ab 2015 ische Ergänzung der für den hilfsmittelfreien Teil der schriftlichen Abiturprüfung im Fach Mathematik ab 2015 Ministerium für ildung und Wissenschaft des Landes Juni 2013 1 für Aufgabenpool 1 Analysis

Mehr

1 Stochastische Prozesse in stetiger Zeit

1 Stochastische Prozesse in stetiger Zeit 1 Stochastische Prozesse in stetiger Zeit 1.1 Grundlagen Wir betrachten zufällige Prozesse, definiert auf einem Wahrscheinlichkeitsraum (Ω, F, P), welche Werte in einen fest gewählten Zustandsraum annehmen.

Mehr

Kompaktskript zur Vorlesung Stochastische Risikoanalyse

Kompaktskript zur Vorlesung Stochastische Risikoanalyse Kompaktskript zur Vorlesung Stochastische Risikoanalyse Friedrich-Schiller-Universität Jena Wirtschaftswissenschaftliche Fakultät Lehrstuhl für Wirtschafts- und Sozialstatistik Prof. Dr. P. Kischka Sommersemester

Mehr

Einführung in die. Wahrscheinlichkeitstheorie und Statistik

Einführung in die. Wahrscheinlichkeitstheorie und Statistik Institut für Mathematische Stochastik Einführung in die Wahrscheinlichkeitstheorie und Statistik (Kurzskript zur Vorlesung Wintersemester 2014/15 von Prof. Dr. Norbert Gaffke Inhaltsverzeichnis 1 Wahrscheinlichkeitsräume

Mehr

Ergänzungen zur Analysis I

Ergänzungen zur Analysis I 537. Ergänzungsstunde Logik, Mengen Ergänzungen zur Analysis I Die Behauptungen in Satz 0.2 über die Verknüpfung von Mengen werden auf die entsprechenden Regelnfür die Verknüpfung von Aussagen zurückgeführt.

Mehr

Finanzmathematik - Wintersemester 2007/08. http://code.google.com/p/mitgetexed/

Finanzmathematik - Wintersemester 2007/08. http://code.google.com/p/mitgetexed/ Finanzmathematik - Wintersemester 2007/08 http://code.google.com/p/mitgetexed/ Stand: 4. November 2007 Inhaltsverzeichnis 1 Motivation und erste Begriffe 2 2 Endliche Finanzmärkte 4 3 Das Cox-Ross-Rubinstein-Modell

Mehr

Schleswig-Holsteinische Ergänzung der Musteraufgaben für den hilfsmittelfreien Teil der schriftlichen Abiturprüfung im Fach Mathematik ab 2015

Schleswig-Holsteinische Ergänzung der Musteraufgaben für den hilfsmittelfreien Teil der schriftlichen Abiturprüfung im Fach Mathematik ab 2015 ische Ergänzung der für den hilfsmittelfreien Teil der schriftlichen Abiturprüfung im Fach Mathematik ab 2015 Ministerium für ildung und Wissenschaft des Landes Juni 2013 1 Inhaltsverzeichnis Vorbemerkungen

Mehr

Martingale. Kapitel 6. 6.1 Martingale in diskreter Zeit. 6.1.1 Definition und Beispiele

Martingale. Kapitel 6. 6.1 Martingale in diskreter Zeit. 6.1.1 Definition und Beispiele Kapitel 6 Martingale In der Statistik modellieren Martingale z.b. Glücksspiele oder Handelsstrategien in Finanzmärkten und sind ein grundlegendes Hilfsmittel für die statistische Inferenz stochastischer

Mehr

Modulabschlussklausur Analysis II

Modulabschlussklausur Analysis II Modulabschlussklausur Analysis II. Juli 015 Bearbeitungszeit: 150 min Aufgabe 1 [5/10 Punkte] Es sei a R und f a : R 3 R mit f a (x, y, z) = x cos(y) + z 3 sin(y) + a 3 + (z + ay a y) cos(x) a) Bestimmen

Mehr

Kapitel 3. Zufallsvariable. Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion. Erwartungswert, Varianz und Standardabweichung

Kapitel 3. Zufallsvariable. Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion. Erwartungswert, Varianz und Standardabweichung Kapitel 3 Zufallsvariable Josef Leydold c 2006 Mathematische Methoden III Zufallsvariable 1 / 43 Lernziele Diskrete und stetige Zufallsvariable Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion

Mehr

Übung zur Vorlesung Physikalische Chemie im Studiengang 3. FS KB Ch und 3. FS BB Phy

Übung zur Vorlesung Physikalische Chemie im Studiengang 3. FS KB Ch und 3. FS BB Phy Übung zur Vorlesung Physikalische Chemie im Studiengang 3. FS KB Ch und 3. FS BB Phy Dr. Raimund Horn a Dipl. Chem. Barbara Bliss b Dipl. Phys. Lars Lasogga c a Fritz Haber Institut der Max Planck Gesellschaft

Mehr

Einführung in die Statistik

Einführung in die Statistik Einführung in die Statistik Dr. C.J. Luchsinger 2 Zufallsgrössen Literatur Kapitel 2 * Statistik in Cartoons: Kapitel 4 * Krengel: 3.1 und 3.2 in 3 und (Honours Program) 10 sowie 11.1, 11.2 und 11.3 in

Mehr

Statistische Thermodynamik I Lösungen zur Serie 1

Statistische Thermodynamik I Lösungen zur Serie 1 Statistische Thermodynamik I Lösungen zur Serie Zufallsvariablen, Wahrscheinlichkeitsverteilungen 4. März 2. Zwei Lektoren lesen ein Buch. Lektor A findet 2 Druckfehler, Lektor B nur 5. Von den gefundenen

Mehr

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wirtschftsmthemtik für Interntionl Mngement (BA) und Betriebswirtschft (BA) Wintersemester 2013/14 Stefn Etschberger Hochschule Augsburg Mthemtik: Gliederung 1 Aussgenlogik 2 Linere Algebr 3 Linere

Mehr

Stochastische Prozesse Gliederung zur Vorlesung im Sommersemester 2006

Stochastische Prozesse Gliederung zur Vorlesung im Sommersemester 2006 Stochastische Prozesse Gliederung zur Vorlesung im Sommersemester 26 Markus Reiß Universität Heidelberg reiss@statlab.uni-heidelberg.de VORLÄUFIGE FASSUNG: 28. Juli 26 Inhaltsverzeichnis 1 Der Poissonprozess

Mehr

e d m m = D d (E e (m)) D d E e m f c = f(m) m m m 1 f(m 1 ) = c m m 1 m c = f(m) c m c m b b 0, 1 b r f(b, r) f f(b, r) := y b r 2 n, n = pq ggt (p, q) = 1 p q y n f K f(x + y) = f(x) + f(y) f(x y) =

Mehr

Schwach ergodische Prozesse

Schwach ergodische Prozesse Schwach ergodische Prozesse Von der Fakultät für Naturwissenschaften der Universität Duisburg-Essen (Standort Duisburg) zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften genehmigte

Mehr

Einführung in die Finanzmathematik Vorlesung an der TU Darmstadt WS 2004/2005

Einführung in die Finanzmathematik Vorlesung an der TU Darmstadt WS 2004/2005 Einführung in die Finanzmathematik Vorlesung an der TU Darmstadt WS 2004/2005 Jakob Creutzig TU Darmstadt, AG 9 9. Februar 2005 Inhaltsverzeichnis 1 Finanzderivate 2 2 Ein-Perioden-Modellierung 8 3 Prozesse

Mehr

STOCHASTISCHE PROZESSE. Vorlesungsskript

STOCHASTISCHE PROZESSE. Vorlesungsskript STOCHASTISCHE PROZESSE II: Martingale und Brownsche Bewegung Wolfgang König Vorlesungsskript Universität Leipzig Wintersemester 2005/6 Inhaltsverzeichnis 1 Theorie der Martingale 3 1.1 Definition und

Mehr

Grundlagen der Stochastischen Analysis. Egbert Dettweiler

Grundlagen der Stochastischen Analysis. Egbert Dettweiler Grundlagen der Stochastischen Analysis Egbert Dettweiler Vorwort Der erste Teil des vorliegenden Manuskripts ist im wesentlichen eine Vorlesungsausarbeitung einer im Sommersemester 23 an der Universität

Mehr

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 9.. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 Die Grundfrage bei der Anwendung des Satzes über implizite Funktionen betrifft immer die folgende Situation: Wir haben eine Funktion f : V W und eine Stelle x

Mehr

Amerikanischen Optionen

Amerikanischen Optionen Die Bewertung von Amerikanischen Optionen im Mehrperiodenmodell Universität-Gesamthochschule Paderborn Fachbereich 17 Seminar Finanzmathematik SS 2001 Referentin: Christiane Becker-Funke Dozent: Prof.

Mehr

Optimale Steuerung. Sequentielle Quadratische Programmierung. Kevin Sieg. 14. Juli 2010. Fachbereich für Mathematik und Statistik Universität Konstanz

Optimale Steuerung. Sequentielle Quadratische Programmierung. Kevin Sieg. 14. Juli 2010. Fachbereich für Mathematik und Statistik Universität Konstanz Optimale Steuerung Kevin Sieg Fachbereich für Mathematik und Statistik Universität Konstanz 14. Juli 2010 1 / 29 Aufgabenstellung 1 Aufgabenstellung Aufgabenstellung 2 Die zusammengesetzte Trapezregel

Mehr

Übungsrunde 7, Gruppe 2 LVA 107.369, Übungsrunde 7, Gruppe 2, 28.11. Markus Nemetz, markus.nemetz@tuwien.ac.at, TU Wien, 11/2006

Übungsrunde 7, Gruppe 2 LVA 107.369, Übungsrunde 7, Gruppe 2, 28.11. Markus Nemetz, markus.nemetz@tuwien.ac.at, TU Wien, 11/2006 1 3.34 1.1 Angabe Übungsrunde 7, Gruppe 2 LVA 107.369, Übungsrunde 7, Gruppe 2, 28.11. Markus Nemetz, markus.nemetz@tuwien.ac.at, TU Wien, 11/2006 U sei auf dem Intervall (0, 1) uniform verteilt. Zeigen

Mehr

2 3 x3 17. x k dx = x k x k+1 k +1. Mit jeder weiteren partiellen Integration reduziert sich der Grad des Faktors x n, induktiv erhalten wir also

2 3 x3 17. x k dx = x k x k+1 k +1. Mit jeder weiteren partiellen Integration reduziert sich der Grad des Faktors x n, induktiv erhalten wir also Universität Konstanz Fachbereich Mathematik und Statistik Repetitorium Analysis 0 Dr DK Huynh Blatt 8 Aufgabe 6 Bestimmen Sie (a) (x + x 7x+)dx (c) (f) x n exp(x)dx (n N fest) sin (x)dx (g) (b) (d) ln(x)dx

Mehr

13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen.

13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen. 13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen. Sie heißt linear, wenn sie die Form y (n) + a n 1 y (n 1)

Mehr

Mathematik I Internationales Wirtschaftsingenieurwesen

Mathematik I Internationales Wirtschaftsingenieurwesen Mathematik I Internationales Wirtschaftsingenieurwesen Integralrechnung 03.12.08 Das unbestimmte Integral/Stammfunktion Das bestimmte Integral/Flächenberechnung Integral als Umkehrung der Ableitung Idee:

Mehr

Die Pareto Verteilung wird benutzt, um Einkommensverteilungen zu modellieren. Die Verteilungsfunktion ist

Die Pareto Verteilung wird benutzt, um Einkommensverteilungen zu modellieren. Die Verteilungsfunktion ist Frage Die Pareto Verteilung wird benutzt, um Einkommensverteilungen zu modellieren. Die Verteilungsfunktion ist k a F (x) =1 k>0,x k x Finden Sie den Erwartungswert und den Median der Dichte für a>1. (Bei

Mehr

Einführung in die Stochastik für Informatiker Sommersemester 2000 Prof. Mathar

Einführung in die Stochastik für Informatiker Sommersemester 2000 Prof. Mathar Einführung in die Stochastik für Informatiker Sommersemester 2000 Prof. Mathar getext von René Wörzberger rene@woerzberger.de Bilder Thorsten Uthke Review Diego Biurrun diego@pool.informatik.rwth-aachen.de

Mehr

Statistik II - Elementare Wahrscheinlichkeitsrechnung. Prof. Dr. Christine Müller Technische Universität Dortmund

Statistik II - Elementare Wahrscheinlichkeitsrechnung. Prof. Dr. Christine Müller Technische Universität Dortmund Statistik II - Elementare Wahrscheinlichkeitsrechnung Prof Dr Christine Müller Technische Universität Dortmund Sommersemester 2014 1 Literatur Henze, N (1997 Stochastik für Einsteiger Vieweg, Braunschweig

Mehr

Statistik I für Betriebswirte Vorlesung 5

Statistik I für Betriebswirte Vorlesung 5 Statistik I für Betriebswirte Vorlesung 5 PD Dr. Frank Heyde TU Bergakademie Freiberg Institut für Stochastik 07. Mai 2015 PD Dr. Frank Heyde Statistik I für Betriebswirte Vorlesung 5 1 Klassische Wahrscheinlichkeitsdefinition

Mehr

Bayern FOS BOS 12 Fachabiturprüfung 2015 Mathematik (Nichttechnische Ausbildungsrichtungen) Analysis A I

Bayern FOS BOS 12 Fachabiturprüfung 2015 Mathematik (Nichttechnische Ausbildungsrichtungen) Analysis A I Bayern FOS BOS Fachabiturprüfung 05 Mathematik (Nichttechnische Ausbildungsrichtungen) Analysis A I.0 Nebenstehende Abbildung zeigt den Graphen G f ' der ersten Ableitungsfunktion einer in ganz 0 definierten

Mehr

II. Bewertung von Derivaten in diskreter Zeit

II. Bewertung von Derivaten in diskreter Zeit II. Bewertung von Derivaten in diskreter Zeit 2.1. Wahrscheinlichkeitstheoretische Grundlagen 2.1.1. Bedingte Erwartungswerte Sei (Ω, F, P) ein Wahrscheinlichkeitsraum. Für A, B F mit P(B) > 0 ist die

Mehr

1 Grundlagen: Abbildung mit Linsen

1 Grundlagen: Abbildung mit Linsen C B C @ KOP/ Koppelprobleme KOP Dieses Kapitel beschäftigt sich mit Fragestellungen bezüglich der Verkopplung von Wellenleitern sowie Stecker oder Spleiÿe. Grundlagen: bbildung mit Linsen Zunächst werden

Mehr

Probestudium der Physik: Mathematische Grundlagen

Probestudium der Physik: Mathematische Grundlagen Probestudium der Physik: Mathematische Grundlagen Ludger Santen 1. Februar 2013 Fachrichtung Theoretische Physik, Universität des Saarlandes, Saarbrücken 1 Einführung Die Mathematik ist die Sprache der

Mehr

Mengensysteme, Wahrscheinlichkeitsmaße

Mengensysteme, Wahrscheinlichkeitsmaße Kapitel 1 Mengensysteme, Wahrscheinlichkeitsmaße Der Großteil der folgenden fundamentalen Begriffe sind schon aus der Vorlesung Stochastische Modellbildung bekannt: Definition 1.1 Eine Familie A von Teilmengen

Mehr

Technische Mechanik 1

Technische Mechanik 1 Ergänzungsübungen mit Lösungen zur Vorlesung Aufgabe 1: Geben Sie die Koordinaten der Kraftvektoren im angegebenen Koordinatensystem an. Gegeben sind: F 1, F, F, F 4 und die Winkel in den Skizzen. Aufgabe

Mehr

Präsenzübungsaufgaben zur Vorlesung Elementare Sachversicherungsmathematik

Präsenzübungsaufgaben zur Vorlesung Elementare Sachversicherungsmathematik Präsenzübungsaufgaben zur Vorlesung Elementare Sachversicherungsmathematik Dozent: Volker Krätschmer Fakultät für Mathematik, Universität Duisburg-Essen, WS 2012/13 1. Präsenzübung Aufgabe T 1 Sei (Z 1,...,

Mehr

Extremwertverteilungen

Extremwertverteilungen Seminar Statistik Institut für Stochastik 12. Februar 2009 Gliederung 1 Grenzwertwahrscheinlichkeiten 2 3 MDA Fréchet MDA Weibull MDA Gumbel 4 5 6 Darstellung von multivariaten, max-stabilen Verteilungsfunktionen

Mehr

Grundlagen. Wozu Wahrscheinlichkeitsrechnung? Definition und Begriff der Wahrscheinlichkeit. Berechnung von Laplace-Wahrscheinlichkeiten

Grundlagen. Wozu Wahrscheinlichkeitsrechnung? Definition und Begriff der Wahrscheinlichkeit. Berechnung von Laplace-Wahrscheinlichkeiten Teil 2: Wahrscheinlichkeitsrechnung 326 Grundlagen Wozu Wahrscheinlichkeitsrechnung? Definition und egriff der Wahrscheinlichkeit erechnung von Laplace-Wahrscheinlichkeiten Rechnen mit einfachem Mengenkalkül

Mehr

Diplomarbeit. Arbitragefreies Bewerten von Schadenversicherungen. von Ingmar Schiltz

Diplomarbeit. Arbitragefreies Bewerten von Schadenversicherungen. von Ingmar Schiltz Diplomarbeit Arbitragefreies Bewerten von Schadenversicherungen von Ingmar Schiltz Universität Siegen Fachbereich Mathematik Juni 2005 ARBITRAGEFREIES BEWERTEN VON SCHADENVERSICHERUNGEN 2 Betreuer und

Mehr

Optionspreisbestimmung nach Cox-Ross-Rubinstein

Optionspreisbestimmung nach Cox-Ross-Rubinstein Optionspreisbestimmung nach Cox-Ross-Rubinstein Michael Beer 8. Mai 000 Inhaltsverzeichnis Einführung und Problembeschreibung. Was sind Optionen?.............................. Modellspezifikation..............................3

Mehr

2.1 Berechnung gleichverteilter Zufallszahlen. (Linearer Kongruenz-Generator)

2.1 Berechnung gleichverteilter Zufallszahlen. (Linearer Kongruenz-Generator) Seydel: Skript umerische Finanzmathematik, Kap. 2 (Version 20) 33 ¾º Ö ÒÙÒ ÚÓÒ Ù ÐÐ Þ Ð Ò Definition (Stichprobe einer Verteilung) Eine Folge von Zahlen heißt Stichprobe (sample) von einer Verteilungsfunktion

Mehr

3. Modelle in stetiger Zeit, Black Scholes

3. Modelle in stetiger Zeit, Black Scholes 3. Modelle in stetiger Zeit, Black Scholes Nach einführenden Bemerkungen werden kurz die Brownsche Bewegung und Martingale in stetiger Zeit besprochen. Dann folgen die Entwicklung des stochastischen Integrals

Mehr

Risiko und Versicherung - Übung

Risiko und Versicherung - Übung Sommer 2009 Risiko und Versicherung - Übung Entscheidungstheoretische Grundlagen Renate Bodenstaff Vera Brinkmann r.bodenstaff@uni-hohenheim.de vera.brinkmann@uni-hohenheim.de https://insurance.uni-hohenheim.de

Mehr

a n := ( 1) n 3n2 + 5 2n 2. a n := 5n4 + 2n 2 2n 3 + 3 10n + 1. a n := 1 3 + 1 2n 5n 2 n 2 + 7n + 8 b n := ( 1) n

a n := ( 1) n 3n2 + 5 2n 2. a n := 5n4 + 2n 2 2n 3 + 3 10n + 1. a n := 1 3 + 1 2n 5n 2 n 2 + 7n + 8 b n := ( 1) n Folgen und Reihen. Beweisen Sie die Beschränktheit der Folge (a n ) n N mit 2. Berechnen Sie den Grenzwert der Folge (a n ) n N mit a n := ( ) n 3n2 + 5 2n 2. a n := 5n4 + 2n 2 2n 3 + 3 n +. 4 3. Untersuchen

Mehr

Solvency II und die Standardformel

Solvency II und die Standardformel Fakultät Mathematik und Naturwissenschaften Institut für Mathematische Stochastik Solvency II und die Standardformel Festkolloquium 20 Jahre (neue) Versicherungsmathematik an der TU Dresden Sebastian Fuchs

Mehr

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Wintersemester 3/4 (.3.4). (a) Für z = + i und z = 3 4i berechne man z z und z z. Die Ergebnisse sind in kartesischer Form anzugeben.

Mehr

Rechnen mit einfachem Mengenkalkül

Rechnen mit einfachem Mengenkalkül edingte ahrscheinlichkeiten llgemeine Frage: Rechnen mit einfachem Mengenkalkül ie groß ist die ahrscheinlichkeit für ein Ereignis falls bereits ein Ereignis eingetreten ist (und der etrachter über diese

Mehr

Coupon Collector's-Problem (Sammelbilderproblem) Name: Walter Wolf Matrikelnr.: 533440 Dozent: Dr. W. Kössler

Coupon Collector's-Problem (Sammelbilderproblem) Name: Walter Wolf Matrikelnr.: 533440 Dozent: Dr. W. Kössler Coupon Collector's-Problem (Sammelbilderproblem) Name: Walter Wolf Matrikelnr.: 533440 Dozent: Dr. W. Kössler Problemstellung Als Sammelbilderproblem bezeichnet man die Frage, wie viele Produkte bzw. Bilder

Mehr

Einführung in die Wahrscheinlichkeitsrechnung und Statistik

Einführung in die Wahrscheinlichkeitsrechnung und Statistik Einführung in die Wahrscheinlichkeitsrechnung und Statistik Jan Kallsen und Claudia Klüppelberg Zentrum Mathematik Technische Universität München WS 2005/06 Inhaltsverzeichnis Vorwort Vorbemerkungen i

Mehr

3 Monte-Carlo-Simulationen

3 Monte-Carlo-Simulationen 3 Monte-Carlo-Simulationen In diesem Kapitel soll mit der so genannten Monte-Carlo-Methode ein wichtiges Anwendungsgebiet des in Kapitel 2 erarbeiteten Begriffs- und Methodenapparats detaillierter beleuchtet

Mehr

Bewertung von Derivaten im Black-Scholes Modell

Bewertung von Derivaten im Black-Scholes Modell Bewertung von Derivaten im Black-Scholes Modell Bachelorarbeit Westfälische Wilhelms-Universität Münster Fachbereich Mathematik und Informatik Institut für Mathematische Statistik Betreuung: PD Dr. Volkert

Mehr

Bei dieser Vorlesungsmitschrift handelt es sich um kein offizielles Skript!

Bei dieser Vorlesungsmitschrift handelt es sich um kein offizielles Skript! Diskrete Stochastik für Informatiker WS003/04 Diskrete Stochastik für die Informatik Bei dieser Vorlesungsmitschrift handelt es sich um kein offizielles Skript! Bei Fragen, Anmerkungen oder Fehlern bitte

Mehr

Name:... Matrikel-Nr.:... 3 Aufgabe Handyklingeln in der Vorlesung (9 Punkte) Angenommen, ein Student führt ein Handy mit sich, das mit einer Wahrscheinlichkeit von p während einer Vorlesung zumindest

Mehr

Inhaltsverzeichnis. Vorlesung Finanzmathe WS2009/2010. 0.1 Umriss... 1

Inhaltsverzeichnis. Vorlesung Finanzmathe WS2009/2010. 0.1 Umriss... 1 Inhaltsverzeichnis Vorlesung Finanzmathe WS2009/2010 0.1 Umriss................................... 1 1 Finanzmärkte und deren Derivate 2 1.1 Optionen: Unterscheidung von Kauf- und Verkaufsoptionen......

Mehr

$ % + 0 sonst. " p für X =1 $

$ % + 0 sonst.  p für X =1 $ 31 617 Spezielle Verteilungen 6171 Bernoulli Verteilung Wir beschreiben zunächst drei diskrete Verteilungen und beginnen mit einem Zufallsexperiment, indem wir uns für das Eintreffen eines bestimmten Ereignisses

Mehr

Gewöhnliche Differentialgleichungen

Gewöhnliche Differentialgleichungen XIV Gewöhnliche Differentialgleichungen Definition 4. : Sei n IN, F : D(F IR n+2 IR. Gewöhnliche DGL n ter Ordnung a F (x, y, y,..., y (n = heißt gewöhnliche Differentialgleichung (DGL n ter Ordnung. Läßt

Mehr

2 Die Darstellung linearer Abbildungen durch Matrizen

2 Die Darstellung linearer Abbildungen durch Matrizen 2 Die Darstellung linearer Abbildungen durch Matrizen V und V seien Vektorräume über einem Körper K. Hom K (V, V ) bezeichnet die Menge der K linearen Abbildungen von V nach V. Wir machen Hom K (V, V )

Mehr

13.5 Der zentrale Grenzwertsatz

13.5 Der zentrale Grenzwertsatz 13.5 Der zentrale Grenzwertsatz Satz 56 (Der Zentrale Grenzwertsatz Es seien X 1,...,X n (n N unabhängige, identisch verteilte zufällige Variablen mit µ := EX i ; σ 2 := VarX i. Wir definieren für alle

Mehr

Ein möglicher Unterrichtsgang

Ein möglicher Unterrichtsgang Ein möglicher Unterrichtsgang. Wiederholung: Bernoulli Experiment und Binomialverteilung Da der sichere Umgang mit der Binomialverteilung, auch der Umgang mit dem GTR und den Diagrammen, eine notwendige

Mehr

Kapitel 4: Stationäre Prozesse

Kapitel 4: Stationäre Prozesse Kapitel 4: Statioäre Prozesse M. Scheutzow Jauary 6, 2010 4.1 Maßerhaltede Trasformatioe I diesem Kapitel führe wir zuächst de Begriff der maßerhaltede Trasformatio auf eiem Wahrscheilichkeitsraum ei ud

Mehr

8 Diskrete Optimierung

8 Diskrete Optimierung 8 Diskrete Optimierung Definition 8.1. Ein Graph G ist ein Paar (V (G), E(G)) besteh aus einer lichen Menge V (G) von Knoten (oder Ecken) und einer Menge E(G) ( ) V (G) 2 von Kanten. Die Ordnung n(g) von

Mehr

K2 MATHEMATIK KLAUSUR. Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max) 28 15 15 2 60 Punkte Notenpunkte

K2 MATHEMATIK KLAUSUR. Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max) 28 15 15 2 60 Punkte Notenpunkte K2 MATHEMATIK KLAUSUR 26.2.24 Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max 28 5 5 2 6 Punkte Notenpunkte PT 2 3 4 5 6 7 8 9 P. (max 2 2 2 4 5 3 3 4 3 Punkte WT Ana A.a b A.c Summe P. (max 7 5

Mehr

Klaus Pötzelberger Department of Statistics and Mathematics Wirtschaftsuniversität Wien

Klaus Pötzelberger Department of Statistics and Mathematics Wirtschaftsuniversität Wien Interdisziplinäres Vertiefungsfach Grundkurs I: Stochastische Grundlagen der Finanzmathematik Wahlfach Mathematical Methods: Wahrscheinlichkeitsrechnung Klaus Pötzelberger Department of Statistics and

Mehr

Martingalmaße und Bewertung europäischer Optionen in diskreten unvollständigen Finanzmärkten

Martingalmaße und Bewertung europäischer Optionen in diskreten unvollständigen Finanzmärkten Martingalmaße und Bewertung europäischer Optionen in diskreten unvollständigen Finanzmärkten Von der Fakultät für Mathematik und Naturwissenschaften der Carl von Ossietzky Universität Oldenburg zur Erlangung

Mehr

Einführung in die Finanzmathematik: Diskrete Modelle Skriptum zur Vorlesung (Teile Kainhofer)

Einführung in die Finanzmathematik: Diskrete Modelle Skriptum zur Vorlesung (Teile Kainhofer) Einführung in die Finanzmathematik: Diskrete Modelle Skriptum zur Vorlesung (Teile Kainhofer) Reinhold Kainhofer FAM, TU Wien Mai 2007 Inhaltsverzeichnis 1 Das Ein-Perioden-Modell 1 1.1 Definitionen............................................

Mehr

Grundprinzipien der Bayes-Statistik

Grundprinzipien der Bayes-Statistik Grundprinzipien der Bayes-Statistik Karl-Rudolf Koch Zusammenfassung: In drei wesentlichen Punkten unterscheidet sich die Bayes-Statistik von der traditionellen Statistik. Zunächst beruht die Bayes-Statistik

Mehr

Hedgen von Swing Optionen durch Randomisierte Doppelstoppzeiten ohne und mit Transaktionskosten

Hedgen von Swing Optionen durch Randomisierte Doppelstoppzeiten ohne und mit Transaktionskosten Hedgen von Swing Optionen durch Randomisierte Doppelstoppzeiten ohne und mit Transaktionskosten - Diplomarbeit - Johann Wolfgang Goethe Universität Frankfurt/Main Fachbereich Mathematik eingereicht von:

Mehr

1 Ordnung muß sein. 1.1 Angeordnete Körper. 1.2 Folgerungen aus den Anordnungsaxiomen. ( c) (b a) > 0. Somit a c b c > 0.

1 Ordnung muß sein. 1.1 Angeordnete Körper. 1.2 Folgerungen aus den Anordnungsaxiomen. ( c) (b a) > 0. Somit a c b c > 0. 1 Ordnung uß sein 1.1 Angeordnete Körper Wir nehen einal an, daß es in eine Körper Eleente gibt, die wir positiv nennen. Welche Eigenschaften sollen diese haben? O1) Wenn x und y positiv sind, dann auch

Mehr

Vorlesung. Funktionen/Abbildungen 1

Vorlesung. Funktionen/Abbildungen 1 Vorlesung Funktionen/Abbildungen 1 1 Grundlagen Hinweis: In dieser Vorlesung werden Funktionen und Abbildungen synonym verwendet. In der Schule wird eine Funktion häufig als eindeutige Zuordnung definiert.

Mehr

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung.

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung. Lineare Gleichungen mit einer Unbekannten Die Grundform der linearen Gleichung mit einer Unbekannten x lautet A x = a Dabei sind A, a reelle Zahlen. Die Gleichung lösen heißt, alle reellen Zahlen anzugeben,

Mehr

Statistik II für Betriebswirte Vorlesung 2

Statistik II für Betriebswirte Vorlesung 2 PD Dr. Frank Heyde TU Bergakademie Freiberg Institut für Stochastik Statistik II für Betriebswirte Vorlesung 2 21. Oktober 2014 Verbundene Stichproben Liegen zwei Stichproben vor, deren Werte einander

Mehr

Monte Carlo Methoden in Kreditrisiko-Management

Monte Carlo Methoden in Kreditrisiko-Management Monte Carlo Methoden in Kreditrisiko-Management P Kreditportfolio bestehend aus m Krediten; Verlustfunktion L = n i=1 L i; Die Verluste L i sind unabhängig bedingt durch einen Vektor Z von ökonomischen

Mehr

1. Motivation / Grundlagen 2. Sortierverfahren 3. Elementare Datenstrukturen / Anwendungen 4. Bäume / Graphen 5. Hashing 6. Algorithmische Geometrie

1. Motivation / Grundlagen 2. Sortierverfahren 3. Elementare Datenstrukturen / Anwendungen 4. Bäume / Graphen 5. Hashing 6. Algorithmische Geometrie Gliederung 1. Motivation / Grundlagen 2. Sortierverfahren 3. Elementare Datenstrukturen / Anwendungen 4. äume / Graphen 5. Hashing 6. Algorithmische Geometrie 4/5, olie 1 2014 Prof. Steffen Lange - HDa/bI

Mehr

Skript. Finanzmathematik I. Max v. Renesse Aufgezeichnet von Tobias Weihrauch. Wintersemester 2012/13 Universität Leipzig. Version vom 4.

Skript. Finanzmathematik I. Max v. Renesse Aufgezeichnet von Tobias Weihrauch. Wintersemester 2012/13 Universität Leipzig. Version vom 4. Skript Finanzmathematik I Max v. Renesse Aufgezeichnet von Tobias Weihrauch Wintersemester 2012/13 Universität Leipzig Version vom 4. März 2013 INHALTSVERZEICHNIS 1 Inhaltsverzeichnis 1 Einführung Der

Mehr

Hauptprüfung Abiturprüfung 2014 (ohne CAS) Baden-Württemberg

Hauptprüfung Abiturprüfung 2014 (ohne CAS) Baden-Württemberg Baden-Württemberg: Abitur 04 Pflichtteil www.mathe-aufgaben.com Hauptprüfung Abiturprüfung 04 (ohne CAS) Baden-Württemberg Pflichtteil Hilfsmittel: keine allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com

Mehr

11.3 Komplexe Potenzreihen und weitere komplexe Funktionen

11.3 Komplexe Potenzreihen und weitere komplexe Funktionen .3 Komplexe Potenzreihen und weitere komplexe Funktionen Definition.) komplexe Folgen: z n = x n + j. y n mit zwei reellen Folgen x n und y n.) Konvergenz: Eine komplexe Folge z n = x n + j. y n heißt

Mehr

Mathematische Methoden in den Ingenieurwissenschaften 2. Übungsblatt

Mathematische Methoden in den Ingenieurwissenschaften 2. Übungsblatt Prof. Dr. T. Apel J. Mihael Mathematishe Methoden in den Ingenieurwissenshaften. Übungsblatt Wintertrimester 5 Aufgabe 4 : (Variationsrehnung Extremalen Bestimmen Sie die Extremalen der folgenden Variationsprobleme

Mehr

Monte-Carlo Simulation

Monte-Carlo Simulation Monte-Carlo Simulation Sehr häufig hängen wichtige Ergebnisse von unbekannten Werten wesentlich ab, für die man allerhöchstens statistische Daten hat oder für die man ein Modell der Wahrscheinlichkeitsrechnung

Mehr

Skript zur Vorlesung. Numerik stochastischer Differentialgleichungen

Skript zur Vorlesung. Numerik stochastischer Differentialgleichungen Skript zur Vorlesung Numerik stochastischer Differentialgleichungen Wintersemester 13/14 Johannes Schropp Universität Konstanz Fachbereich Mathematik und Statistik Johannes Schropp, 11. Februar 14 Inhaltsverzeichnis

Mehr

Mathematik Abitur Zusammenfassung Marius Buila

Mathematik Abitur Zusammenfassung Marius Buila Mathematik Abitur Zusammenfassung Marius Buila 1.Analysis 1.1 Grundlagen: Ableitung f (u) ist Steigung in Punkt P (u/f(u)) auf K f(x) = a * x r f (x) = a * r * x r-1 Tangentengleichung: y= f (u) * (x-u)

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Brückenkurs Mathematik TU Dresden 2015 Lineare Gleichungssysteme Schwerpunkte: Modellbildung geometrische Interpretation Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik auf der

Mehr

ARBEITSUNTERLAGEN ZUR VORLESUNG UND ÜBUNG AN DER UNIVERSITÄT DES SAARLANDES DERIVATIVE FINANZINSTRUMENTE

ARBEITSUNTERLAGEN ZUR VORLESUNG UND ÜBUNG AN DER UNIVERSITÄT DES SAARLANDES DERIVATIVE FINANZINSTRUMENTE ARBEITSUNTERLAGEN ZUR VORLESUNG UND ÜBUNG AN DER UNIVERSITÄT DES SAARLANDES DERIVATIVE FINANZINSTRUMENTE im SS 215 Aufgabe 1 (Innerer Wert, Zeitwert, Basiskurs, Aufgeld) Am 13.4.2 kostete eine Kaufoption

Mehr

Mathematikaufgaben zur Vorbereitung auf das Studium

Mathematikaufgaben zur Vorbereitung auf das Studium Hochschule für Technik und Wirtschaft Dresden (FH) Fachbereich Informatik/Mathematik Mathematikaufgaben zur Vorbereitung auf das Studium Studiengänge Informatik Medieninformatik Wirtschaftsinformatik Wirtschaftsingenieurwesen

Mehr

Seminar Analysis Konvexe Funktionen und einige wichtige Ungleichungen

Seminar Analysis Konvexe Funktionen und einige wichtige Ungleichungen Seminar Analysis Konvexe Funktionen und einige wichtige Ungleichungen Michael Schaeer 3.04.03 Abstract This seminar is about convex functions and several imortant ineualities. At the beginning the term

Mehr

Extrema von Funktionen in zwei Variablen

Extrema von Funktionen in zwei Variablen Wirtschaftswissenschaftliches Zentrum Universität Basel Mathematik für Ökonomen 1 Dr. Thomas Zehrt Extrema von Funktionen in zwei Variablen Literatur: Gauglhofer, M. und Müller, H.: Mathematik für Ökonomen,

Mehr

Differentialgleichungen in der Wirtschaftsmathematik

Differentialgleichungen in der Wirtschaftsmathematik Differentialgleichungen in der Wirtschaftsmathematik Skript zur Vorlesung im Wintersemester 21/11 an der TU Dortmund PD Dr. Flavius Guiaş 2. Februar 211 Inhaltsverzeichnis 1 Bedingter Erwartungswert 3

Mehr

Reelle Analysis. Vorlesungsskript. Enno Lenzmann, Universität Basel. 7. November 2013

Reelle Analysis. Vorlesungsskript. Enno Lenzmann, Universität Basel. 7. November 2013 Reelle Analysis Vorlesungsskript Enno Lenzmann, Universität Basel 7. November 2013 6 L p -Räume Mit Hilfe der Masstheorie können wir nun die sog. L p -Räume einführen. Diese Räume sind wichtig in vielen

Mehr

Quantitative Risk Management

Quantitative Risk Management Quantitative Risk Management Copulas und Abhängigkeit Johannes Paschetag Mathematisches Institut der Universität zu Köln Wintersemester 2009/10 Betreuung: Prof. Schmidli, J. Eisenberg i Inhaltsverzeichnis

Mehr

Computer Vision: Optische Flüsse

Computer Vision: Optische Flüsse Computer Vision: Optische Flüsse D. Schlesinger TUD/INF/KI/IS Bewegungsanalyse Optischer Fluss Lokale Verfahren (Lukas-Kanade) Globale Verfahren (Horn-Schunck) (+ kontinuierliche Ansätze: mathematische

Mehr