Vorlesung Statistische Mechanik: Ising-Modell

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Vorlesung Statistische Mechanik: Ising-Modell"

Transkript

1 Phasendiagramme Das Phasendiagramm zeigt die Existenzbereiche der Phasen eines Stoffes in Abhängigkeit von thermodynamischen Parametern. Das einfachste Phasendiagramm erhält man für eine symmetrische binäre Mischung oder für das Ising-Modell mit der up-down-symmetrie. Ein ähnliches, wenn auch invertiertes Diagramm ergibt sich, wenn molekular einheitliche Polymere in einem niedermolekularen Solvens gelöst werden. SS 2005 Heermann - Universität Heidelberg Seite 1

2 T T c (stable) one phase coexistence curve (1) spinodal (2) spinodal decomposition (unstable) curve nucleation (metastable) two phases m Abbildung 1: Einfaches Phasendiagramm für eine symmetrische Mischung von zwei Komponenten (auch Ising-Modell) SS 2005 Heermann - Universität Heidelberg Seite 2

3 Abbildung 2: Tief- und Hochtemperaturentmischungskurven im System Cyclohexan/Polystyrol. Auf der x-achse ist der Gewichtsbruch für Polystyrol angegeben. SS 2005 Heermann - Universität Heidelberg Seite 3

4 Als weiteres Beispiel betrachten wir Kohlendioxid. Hier liegt der Tripelpunkt mit 5,81 bar weit oberhalb des Atmosphärendrucks. Die zugehörige Temperatur beträgt -57 C. Flüssig ist Kohlendioxid unter Normaldruck nicht existenzfähig, sondern nur unter erhöhtem Druck. SS 2005 Heermann - Universität Heidelberg Seite 4

5 320 Phase Diagram CO Tc = K 280 T [K] Experiment (R.Span,W.Wagner,1996) MD Simulation ρ [g/cm 3 ] Abbildung 3: CO 2 -System SS 2005 Heermann - Universität Heidelberg Seite 5

6 Ein weiteres typisches Phasendiagramm ist in der folgenden Figur 4 gezeigt. An den Phasengrenzen im p T -Diagramm können jeweils zwei Phasen koexistieren. Am Tripelpunkt (p trt tr) koexistieren drei Phasen, und am kritischen Punkt (p c T c ) verschwindet der Unterschied zwischen flüssiger und gasförmiger Phase. SS 2005 Heermann - Universität Heidelberg Seite 6

7 p c Kritischer Punkt Druck p fest flüssig Tripelpunkt gasförmig Temperatur T T c Abbildung 4: Typisches Phasendiagramm mit kritischem Punkt und Triplepunkt SS 2005 Heermann - Universität Heidelberg Seite 7

8 Betrachten wir das Gleichgewicht zwischen einer Phase i und einer Phase j. Die Koexistenzkurve im p T -Diagramm sei p = p ij (T ). (1) Da zwischen beiden Phasen Teilchen ausgetauscht werden können, müssen die chemischen Potentiale gleich sein µ i (T, p ij (T )) = µ j (T, p ij (T )). (2) SS 2005 Heermann - Universität Heidelberg Seite 8

9 Beim Übergang von N ij Teilchen aus der Phase i in die Phase j tritt eine latente Wärme Q ij auf { ( ) ( ) } Si Sj Q ij = T + N ij N T,p N T,p { ( µi ) ( ) } µj = T N ij, (3) T T wobei für den Druck (1) einzusetzen ist. Die zweite Gleichung folgt aus der ersten dadurch, dass Entropie und chemisches Potential als erste Ableitungen der freien Enthalpie auftreten. p p SS 2005 Heermann - Universität Heidelberg Seite 9

10 Differentiation von (2) entlang der Phasengrenze liefert ( µi T ) p ( µj T ) p = {( µi p ) T ( µj p ) } dpij (T ) T dt (4). Die Ableitungen der chemischen Potentiale nach dem Druck können aber aus der Duhem-Gibbs-Relation ( SdT V dp + Ndµ = 0) berechnet werden ( µi p ) T = V i N i. (5) SS 2005 Heermann - Universität Heidelberg Seite 10

11 Damit erhalten wir die Clausius-Clapeyron-Gleichung Q ij = T dp ij(t ) V ij, (6) dt die einen Zusammenhang zwischen latenter Wärme Q ij, Volumenänderung V ij und Steigung der Phasengrenze im p T -Diagramm liefert. Im Gasraum über einer Flüssigkeit stellt sich unabhängig von V der Sättigungsdruck (Dampfdruck) ein, der von T abhängt (Dampfdruckkurve). Die obige Gleichung kann man benutzen, um näherungsweise die Dampfdruckkurve (Sublimationskurve) zu berechnen. SS 2005 Heermann - Universität Heidelberg Seite 11

12 Wir vernachlässigen das Volumen der Flüssigkeit (feste Phase) gegenüber dem der Gasphase und nehmen an, dass für die Energie der Flüssigkeit lediglich die Bindungsenergie wichtig ist E f = ɛn ɛ > 0. (7) Die Gasphase wird als ideales Gas nicht wechselwirkender Teilchen angesehen. Beide Annahmen gelten nicht in der Nähe des kritischen Punktes, sind aber sonst relativ gut erfüllt. SS 2005 Heermann - Universität Heidelberg Seite 12

13 Damit kann die latente Wärme durch Integration des ersten Hauptsatzes berechnet werden Q fg = E g E f + p fg { δv g V f } { 3 2 k BT + ɛ + k B T } N. (8) Für die Dampfdruckkurve erhält man (6) 5 dp(t ) dt = 2 BT + ɛ p(t ) k B T 2, (9) und damit wird p(t ) = A T 5 2 e ɛ/k B T. (10) SS 2005 Heermann - Universität Heidelberg Seite 13

14 Man erhält µ fl = ɛ. Da die chemischen Potentiale der flüssigen und gasförmigen Phase gleich sein müssen, und da (10) auch die Zustandsgleichungen des Gases (??) erfüllen muss, ist die zunächst unbestimmte Integrationskonstante A durch (??) gegeben. Damit lässt sich die Bindungsenergie aus der Dampfdruckkurve, wenigstens näherungsweise, experimentell bestimmen. SS 2005 Heermann - Universität Heidelberg Seite 14

15 Nach dieser Diskussion über einfache Phasendiagramme sprengt es den Rahmen einer Einführung in die theoretische Physik, über komplizierte Situationen zu sprechen. Dennoch soll nicht verheimlicht werden, dass bei vielen Stoffen bzw. Stoffkombinationen erheblich komplexere Situationen vorliegen. Als Beispiel sei hier das Phasendiagramm für das System aus Polystrol und CO 2 in Figure 5 genannt. SS 2005 Heermann - Universität Heidelberg Seite 15

16 Abbildung 5: Phasendiagramm für das System Polystrol-CO 2 SS 2005 Heermann - Universität Heidelberg Seite 16

17 Phasenübergänge erster Ordnung Nach dieser allgemeinen Diskussion über die Phasengrenzen wollen wir uns das Zwei-Phasengebiet etwas genauer anschauen. In Abbildung 2 hatten wir den Bereich der thermodynamisch stabilen Zustände durch die Koexistenzkurve von den thermodynamisch metastabilen, bzw. thermodynamisch instabilen Zuständen getrennt. Betrachten wir nun den Fall, dass ein System aus einem thermodynamisch stabilen Zustand in einen der instabil, bzw. metastabil ist, gebracht wird. SS 2005 Heermann - Universität Heidelberg Seite 17

18 Vorlesung Statistische Mechanik: Ising-Modell Abbildung 6: SS 2005 Heermann - Universität Heidelberg Seite 18 # $ %'& ()*+ L! "

19 Als erstes wollen wir den Fall betrachten, bei dem der Quench in den Bereich zwischen der Koexistenzkurve und der Spinodale gemacht wird. Wir hatten diesen Bereich als metastabil gekennzeichnet, da die freie Energie dort kein absolutes Minimum besitzt. Es existiert dort lediglich ein relatives Minimum mit einer bestimmten Barrierenhöhe, die den metastabilen Minimalwert von dem des absoluten Minimums trennt. Experimentell stellt man fest, dass dieser metastabile Zustand durch Fluktuationen abgebaut wird. SS 2005 Heermann - Universität Heidelberg Seite 19

20 Diese Fluktuationen sind Tröpfchen. Wir können versuchen diesen Abbau des metastabilen Zustandes durch die Töpfchen durch die Keimbildungstheorie zu verstehen. Diese Theorie geht auf Becker und Döring zurück und ist im wesentlichen eine Ratentheorie. In der einfachsten Formulierung nehmen wir an, dass anfänglich keine Konzentrationsfluktuationen im System seien. Das System sei homogen mit einer bestimmten freien Energie. SS 2005 Heermann - Universität Heidelberg Seite 20

21 Diese freie Energie entspricht nun dem metastabilen Zustand. Das System ist bezüglich seiner Parameter nicht in einem Gleichgewichtszustand und versucht nun, durch Konzentrationsfluktuationen in den Gleichgewichtszustand zu gelangen SS 2005 Heermann - Universität Heidelberg Seite 21

22 Keimbildung Sei n s die Anzahl der Tröpfchen der Größe s, R s die Rate der Kondensation von Atomen für Tröpfchen der Größe s und R s die Abdampfrate. Die Rate J s (pro Einheitsvolumen), mit der Tröpfchen der Größe s zu s + 1 wachsen ist, durch gegeben. J s = R s n s R s+1n s+1 (11) SS 2005 Heermann - Universität Heidelberg Seite 22

23 Daraus folgt die Kontinuitätsgleichung n s t = J s 1 J s s 2 (12) und im stationären Fall heißt J Keimbildungsrate. J := J 1 = J 2 =... (13) SS 2005 Heermann - Universität Heidelberg Seite 23

24 s = 0 ist eine Quelle und jedes Tröpfchen, welches größer als eine kritische Größe (s ) anwächst, wird aus dem System genommen. Dann folgt Nehmen wir an, dass J = ( ds n s R s ) 1 (14) n s e F/k BT. (15) SS 2005 Heermann - Universität Heidelberg Seite 24

25 D.h., es handelt sich um ein Gas von Tröpfchen, die nicht miteinander wechselwirken, dann folgt J n Γ3 4 s e 27h 2 (16) in Einheiten, die für das Ising-Modell gelten. SS 2005 Heermann - Universität Heidelberg Seite 25

4. Freie Energie/Enthalpie & Gibbs Gleichungen

4. Freie Energie/Enthalpie & Gibbs Gleichungen 4. Freie Energie/Enthalpie & Gibbs Gleichungen 1. Eigenschaften der Materie in der Gasphase 2. Erster Hauptsatz: Arbeit und Wärme 3. Entropie und Zweiter Hauptsatz der hermodynamik 4. Freie Enthalpie G,

Mehr

Phasengleichgewicht und Phasenübergänge. Gasförmig

Phasengleichgewicht und Phasenübergänge. Gasförmig Phasengleichgewicht und Phasenübergänge Siedetemperatur Flüssig Gasförmig Sublimationstemperatur Schmelztemperatur Fest Aus unserer Erfahrung mit Wasser wissen wir, dass Substanzen ihre Eigenschaften bei

Mehr

11. Der Phasenübergang

11. Der Phasenübergang 11. Der Phasenübergang - Phasendiagramme, Kritischer Punkt und ripelpunkt - Gibbssche Phasenregel - Phasenübergänge 1. und 2. Ordnung - Das Phasengleichgewicht - Clausius-Clapeyron-Gleichung - Pictet-routon-Regel,

Mehr

9. Phasengleichgewichte und Zustandsänderungen 9.1 Einkompentige Systeme

9. Phasengleichgewichte und Zustandsänderungen 9.1 Einkompentige Systeme 9. Phasengleichgewichte und Zustandsänderungen 9.1 Einkompentige Systeme Temperaturabhängigkeit der freien Enthalpie dg = d( H TS ) = dh T ds S dt = C P dt TC P T H Da S > 0, nimmt G mit zunehmender Temperatur

Mehr

4. Strukturänderung durch Phasenübergänge

4. Strukturänderung durch Phasenübergänge 4. Strukturänderung durch Phasenübergänge Phasendiagramm einer reinen Substanz Druck Phasenänderung durch Variation des Drucks und/oder der Temperatur Klassifizierung Phasenübergänge 1. Art Phasenübergänge

Mehr

Prof. Dr. Peter Vogl, Thomas Eissfeller, Peter Greck. Übung in Thermodynamik und Statistik 4B Blatt 8 (Abgabe Di 3. Juli 2012)

Prof. Dr. Peter Vogl, Thomas Eissfeller, Peter Greck. Übung in Thermodynamik und Statistik 4B Blatt 8 (Abgabe Di 3. Juli 2012) U München Physik Department, 33 http://www.wsi.tum.de/33 eaching) Prof. Dr. Peter Vogl, homas Eissfeller, Peter Greck Übung in hermodynamik und Statistik 4B Blatt 8 Abgabe Di 3. Juli 202). Extremalprinzip

Mehr

A 3 Dampfdruckkurve einer leichtflüchtigen Flüssigkeit

A 3 Dampfdruckkurve einer leichtflüchtigen Flüssigkeit Versuchsanleitungen zum Praktikum Physikalische Chemie für Anfänger 1 A 3 Dampfdruckkurve einer leichtflüchtigen Flüssigkeit Aufgabe: Es ist die Dampfdruckkurve einer leicht flüchtigen Flüssigkeit zu ermitteln

Mehr

3. Mikrostruktur und Phasenübergänge

3. Mikrostruktur und Phasenübergänge 3. Mikrostruktur und Phasenübergänge Definition von Mikrostruktur und Gefüge Gefüge bezeichnet die Beschaffenheit der Gesamtheit jener Teilvolumina eines Werkstoffs, von denen jedes hinsichtlich seiner

Mehr

Thomas Eissfeller, Peter Greck, Tillmann Kubis, Christoph Schindler

Thomas Eissfeller, Peter Greck, Tillmann Kubis, Christoph Schindler U München Reinhard Scholz Physik Department, 33 homas Eissfeller, Peter Greck, illmann Kubis, Christoph Schindler http://www.wsi.tum.de/33/eaching/teaching.htm Übung in heoretischer Physik 5B (hermodynamik)

Mehr

Thermodynamik I. Sommersemester 2012 Kapitel 2, Teil 2. Prof. Dr. Ing. Heinz Pitsch

Thermodynamik I. Sommersemester 2012 Kapitel 2, Teil 2. Prof. Dr. Ing. Heinz Pitsch Thermodynamik I Sommersemester 2012 Kapitel 2, Teil 2 Prof. Dr. Ing. Heinz Pitsch Kapitel 2, Teil 2: Übersicht 2 Zustandsgrößen 2.3 Bestimmung von Zustandsgrößen 2.3.1 Bestimmung der Phase 2.3.2 Der Sättigungszustand

Mehr

a) Welche der folgenden Aussagen treffen nicht zu? (Dies bezieht sind nur auf Aufgabenteil a)

a) Welche der folgenden Aussagen treffen nicht zu? (Dies bezieht sind nur auf Aufgabenteil a) Aufgabe 1: Multiple Choice (10P) Geben Sie an, welche der Aussagen richtig sind. Unabhängig von der Form der Fragestellung (Singular oder Plural) können eine oder mehrere Antworten richtig sein. a) Welche

Mehr

Multiple-Choice Test. Alle Fragen können mit Hilfe der Versuchsanleitung richtig gelöst werden.

Multiple-Choice Test. Alle Fragen können mit Hilfe der Versuchsanleitung richtig gelöst werden. PCG-Grundpraktikum Versuch 1- Dampfdruckdiagramm Multiple-Choice Test Zu jedem Versuch im PCG wird ein Vorgespräch durchgeführt. Für den Versuch Dampfdruckdiagramm wird dieses Vorgespräch durch einen Multiple-Choice

Mehr

Physikalisches Praktikum I

Physikalisches Praktikum I Fachbereich Physik Physikalisches Praktikum I W21 Name: Verdampfungswärme von Wasser Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: Gruppennummer: Endtestat: Folgende Fragen

Mehr

Allgemeine Chemie. SS 2014 Thomas Loerting. Thomas Loerting Allgemeine Chemie

Allgemeine Chemie. SS 2014 Thomas Loerting. Thomas Loerting Allgemeine Chemie Allgemeine Chemie SS 2014 Thomas Loerting 1 Inhalt 1 Der Aufbau der Materie (Teil 1) 2 Die chemische Bindung (Teil 2) 3 Die chemische Reaktion (Teil 3) 2 Definitionen von den an einer chemischen Reaktion

Mehr

Dampfdruck von Flüssigkeiten

Dampfdruck von Flüssigkeiten Dampfdruck von Flüssigkeiten 1 Dampfdruck von Flüssigkeiten In diesem Versuch werden die Dampfdruckkurven zweier Flüssigkeiten im Temperaturbereich zwischen Raumtemperatur und den jeweiligen Siedetemperaturen

Mehr

Verflüssigung von Gasen / Joule-Thomson-Effekt

Verflüssigung von Gasen / Joule-Thomson-Effekt Sieden und Kondensation: T p T p S S 0 1 RTSp0 1 ln p p0 Dampfdrucktopf, Autoklave zur Sterilisation absolute Luftfeuchtigkeit relative Luftfeuchtigkeit a ( g/m 3 ) a pw rel S ps rel 1 Taupunkt erflüssigung

Mehr

Die freie Energie wird also bei konstantem Volumen und konstanter Temperatur minimal

Die freie Energie wird also bei konstantem Volumen und konstanter Temperatur minimal Die freie Energie wird also bei konstantem Volumen und konstanter Temperatur minimal 7.2 Die Enthalpie Die Enthalpie H ist definiert als H = U + pv, womit wir für die Änderung erhalten dh = pdv + TdS +

Mehr

Dampfdruck von Flüssigkeiten (Clausius-Clapeyron' sche Gleichung)

Dampfdruck von Flüssigkeiten (Clausius-Clapeyron' sche Gleichung) Versuch Nr. 57 Dampfdruck von Flüssigkeiten (Clausius-Clapeyron' sche Gleichung) Stichworte: Dampf, Dampfdruck von Flüssigkeiten, dynamisches Gleichgewicht, gesättigter Dampf, Verdampfungsenthalpie, Dampfdruckkurve,

Mehr

Wärmelehre/Thermodynamik. Wintersemester 2007

Wärmelehre/Thermodynamik. Wintersemester 2007 Einführung in die Physik I Wärmelehre/Thermodynamik Wintersemester 2007 Vladimir Dyakonov #12 am 26.01.2007 Folien im PDF Format unter: http://www.physik.uni-wuerzburg.de/ep6/teaching.html Raum E143, Tel.

Mehr

Einführung in die Physikalische Chemie Teil 2: Makroskopische Phänomene und Thermodynamik

Einführung in die Physikalische Chemie Teil 2: Makroskopische Phänomene und Thermodynamik Einführung in die Physikalische Chemie Teil 2: Makroskopische Phänomene und Thermodynamik Kapitel 7: Boltzmann-Verteilung Kapitel 8: Statistische Beschreibung makroskopischer Grössen Kapitel 9: Thermodynamik:

Mehr

Dampfdruck von Flüssigkeiten

Dampfdruck von Flüssigkeiten Dampfdruck von Flüssigkeiten 1 Dampfdruck von Flüssigkeiten In diesem Versuch werden die Dampfdruckkurven zweier Flüssigkeiten im Temperaturbereich zwischen Raumtemperatur und den jeweiligen Siedetemperaturen

Mehr

1. BESTIMMUNG DER DAMPFDRUCKKURVE EINER REINEN FLÜSSIGKEIT ZUR BERECHNUNG DER VER- DAMPFUNGSENTHALPIE DH verd UND -ENTROPIE DS verd

1. BESTIMMUNG DER DAMPFDRUCKKURVE EINER REINEN FLÜSSIGKEIT ZUR BERECHNUNG DER VER- DAMPFUNGSENTHALPIE DH verd UND -ENTROPIE DS verd A1-1 1. BESTIMMUNG DER DAMPFDRUCKKURVE EINER REINEN FLÜSSIGKEIT ZUR BERECHNUNG DER VER- DAMPFUNGSENTHALPIE DH verd UND -ENTROPIE DS verd Bereiten Sie folgende Themengebiete vor Zustandsdiagramme von Einkomponentensystemen

Mehr

Bekannter Stoff aus dem 1. Semester:

Bekannter Stoff aus dem 1. Semester: Bekannter Stoff aus dem 1. Semester: Atombau! Arten der Teilchen! Elemente/Isotope! Kernchemie! Elektronenhülle/Quantenzahlen Chemische Bindung! Zustände der Materie! Ionenbindung! Atombindung! Metallbindung

Mehr

Inhalt 1 Grundlagen der Thermodynamik

Inhalt 1 Grundlagen der Thermodynamik Inhalt 1 Grundlagen der Thermodynamik..................... 1 1.1 Grundbegriffe.............................. 2 1.1.1 Das System........................... 2 1.1.2 Zustandsgrößen........................

Mehr

Wir wollen unsere folgenden Betrachtung auf die drei Phasen - fest, - flüssig, - gasförmig beschränken.

Wir wollen unsere folgenden Betrachtung auf die drei Phasen - fest, - flüssig, - gasförmig beschränken. 8.4 Phasenübergänge und Phasengleichgewichte 8.4.1 Phasenübergang bei reinem Stoff Wir wollen unsere folgenden Betrachtung auf die drei Phasen - fest, - flüssig, - gasförmig beschränken. Die Erfahrung

Mehr

Versuch 2. Physik für (Zahn-)Mediziner. c Claus Pegel 13. November 2007

Versuch 2. Physik für (Zahn-)Mediziner. c Claus Pegel 13. November 2007 Versuch 2 Physik für (Zahn-)Mediziner c Claus Pegel 13. November 2007 1 Wärmemenge 1 Wärme oder Wärmemenge ist eine makroskopische Größe zur Beschreibung der ungeordneten Bewegung von Molekülen ( Schwingungen,

Mehr

Karl Stephan Franz Mayinger. Thermodynamik. Grundlagen und technische Anwendungen. Zwölfte, neubearbeitete und erweiterte Auflage

Karl Stephan Franz Mayinger. Thermodynamik. Grundlagen und technische Anwendungen. Zwölfte, neubearbeitete und erweiterte Auflage Karl Stephan Franz Mayinger Thermodynamik Grundlagen und technische Anwendungen Zwölfte, neubearbeitete und erweiterte Auflage Band 2 Mehrstoffsysteme und chemische Reaktionen Mit 135 Abbildungen Springer-Verlag

Mehr

Grundlagen der Physik 2 Schwingungen und Wärmelehre

Grundlagen der Physik 2 Schwingungen und Wärmelehre Grundlagen der Physik 2 Schwingungen und Wärmelehre Othmar Marti othmar.marti@uni-ulm.de Institut für Experimentelle Physik 25. 06. 2007 Othmar Marti (Universität Ulm) Schwingungen und Wärmelehre 25. 06.

Mehr

Liste der Formelzeichen. A. Thermodynamik der Gemische 1

Liste der Formelzeichen. A. Thermodynamik der Gemische 1 Inhaltsverzeichnis Liste der Formelzeichen XV A. Thermodynamik der Gemische 1 1. Grundbegriffe 3 1.1 Anmerkungen zur Nomenklatur von Mischphasen.... 4 1.2 Maße für die Zusammensetzung von Mischphasen....

Mehr

Grenzflächenphänomene. Physikalische Grundlagen der zahnärztlichen Materialkunde 3. Struktur der Materie. J m. N m. 1. Oberflächenspannung

Grenzflächenphänomene. Physikalische Grundlagen der zahnärztlichen Materialkunde 3. Struktur der Materie. J m. N m. 1. Oberflächenspannung Grenzflächenphänomene 1. Oberflächenspannung Physikalische Grundlagen der zahnärztlichen Materialkunde 3. Struktur der Materie Grenzflächenphänomene Phase/Phasendiagramm/Phasenübergang Schwerpunkte: Oberflächenspannung

Mehr

Themengebiet: Thermodynamik. mol K. mol. ] eines Stoffes bestehend aus n Mol mit der Masse m gilt. M = m n. (2)

Themengebiet: Thermodynamik. mol K. mol. ] eines Stoffes bestehend aus n Mol mit der Masse m gilt. M = m n. (2) Seite 1 Themengebiet: Thermodynamik 1 Literatur D. Meschede, Gerthsen Physik, Springer F. Kohlrausch, Praktische Physik, Band 2, Teubner R.P. Feynman, R.B. Leighton und M. Sands, Feynman-Vorlesungen über

Mehr

8. Mehrkomponentensysteme. 8.1 Partielle molare Größen. Experiment 1 unter Umgebungsdruck p:

8. Mehrkomponentensysteme. 8.1 Partielle molare Größen. Experiment 1 unter Umgebungsdruck p: 8. Mehrkomponentensysteme 8.1 Partielle molare Größen Experiment 1 unter Umgebungsdruck p: Fügen wir einer Menge Wasser n mit Volumen V (molares Volumen v m =V/n) bei einer bestimmten Temperatur T eine

Mehr

Protokoll Dampfdruck. Punkte: /10

Protokoll Dampfdruck. Punkte: /10 Protokoll Dampfdruck Gruppe Biologie Assistent: Olivier Evelyn Jähne, Eva Eickmeier, Claudia Keller Kontakt: claudiakeller@teleport.ch Sommersemester 2006 6. Juni 2006 Punkte: /0 . Einleitung Wenn eine

Mehr

Versuch Nr. 7. = q + p dv

Versuch Nr. 7. = q + p dv Hochschule Augsburg Versuch Nr. 7 Physikalisches Aufbauten 7 a bzw. 27 a Praktikum Spezifische Verdampfungsenthalpie - Dampfdruckkurve 1. Grundlagen_und_Versuchsidee 1.1 Definition der Verdampfungsenthalpie:E

Mehr

Klausur zur Vorlesung Thermodynamik

Klausur zur Vorlesung Thermodynamik Institut für Thermodynamik 23. August 2013 Technische Universität Braunschweig Prof. Dr. Jürgen Köhler Klausur zur Vorlesung Thermodynamik Für alle Aufgaben gilt: Der Rechen- bzw. Gedankengang muss stets

Mehr

Das chemische Potential- eine Übersicht wichtiger Beziehungen

Das chemische Potential- eine Übersicht wichtiger Beziehungen Das chemische Potential- eine Übersicht wichtiger Beziehungen Definition des chem. Potentials Das chemische Potential beschreibt die bhängigkeit der extensiven thermodynamischen Energiegrößen von der Stoffmenge.

Mehr

Thermodynamik. Grundlagen und technische Anwendungen

Thermodynamik. Grundlagen und technische Anwendungen Springer-Lehrbuch Thermodynamik. Grundlagen und technische Anwendungen Band 2: Mehrstoffsysteme und chemische Reaktionen Bearbeitet von Peter Stephan, Karlheinz Schaber, Karl Stephan, Franz Mayinger Neuausgabe

Mehr

Physikalisches Grundpraktikum Taupunktmessung. Taupunktmessung

Physikalisches Grundpraktikum Taupunktmessung. Taupunktmessung Aufgabenstellung: 1. Bestimmen Sie den Taupunkt. Berechnen Sie daraus die absolute und relative Luftfeuchtigkeit. 2. Schätzen Sie die Messunsicherheit ab! Stichworte zur Vorbereitung: Temperaturmessung,

Mehr

1. Vakuumphysik und technik: Grundlagen. Prof. Dr. Paul Seidel VL Vakuum- und Dünnschichtphysik WS 2014/15

1. Vakuumphysik und technik: Grundlagen. Prof. Dr. Paul Seidel VL Vakuum- und Dünnschichtphysik WS 2014/15 1. Vakuumphysik und technik: Grundlagen 1 Vakuum Vakuum(von lat. vacuus(leer, frei)) wird in verschiedenen Bedeutungen gebraucht: Umgangssprachlich: Vakuumist ein materiefreier Raum. Technik und Klassische

Mehr

Institut für Eisen- und Stahl Technologie. Seminar 2 Binäre Systeme Fe-C-Diagramm. www.stahltechnologie.de. Dipl.-Ing. Ch.

Institut für Eisen- und Stahl Technologie. Seminar 2 Binäre Systeme Fe-C-Diagramm. www.stahltechnologie.de. Dipl.-Ing. Ch. Institut für Eisen- und Stahl Technologie Seminar 2 Binäre Systeme Fe-C-Diagramm Dipl.-Ing. Ch. Schröder 1 Literatur V. Läpple, Wärmebehandlung des Stahls, 2003, ISBN 3-8085-1308-X H. Klemm, Die Gefüge

Mehr

A 1.1 a Wie groß ist das Molvolumen von Helium, flüssigem Wasser, Kupfer, Stickstoff und Sauerstoff bei 1 bar und 25 C?

A 1.1 a Wie groß ist das Molvolumen von Helium, flüssigem Wasser, Kupfer, Stickstoff und Sauerstoff bei 1 bar und 25 C? A 1.1 a Wie groß ist das Molvolumen von Helium, flüssigem Wasser, Kupfer, Stickstoff und Sauerstoff bei 1 bar und 25 C? (-> Tabelle p) A 1.1 b Wie groß ist der Auftrieb eines Helium (Wasserstoff) gefüllten

Mehr

Kreisprozesse und Wärmekraftmaschinen: Wie ein Gas Arbeit verrichtet

Kreisprozesse und Wärmekraftmaschinen: Wie ein Gas Arbeit verrichtet Kreisprozesse und Wärmekraftmaschinen: Wie ein Gas Arbeit verrichtet Unterrichtsmaterial - schriftliche Informationen zu Gasen für Studierende - Folien Fach Schultyp: Vorkenntnisse: Bearbeitungsdauer Thermodynamik

Mehr

Thermodynamik I. Sommersemester 2012 Kapitel 3, Teil 3. Prof. Dr.-Ing. Heinz Pitsch

Thermodynamik I. Sommersemester 2012 Kapitel 3, Teil 3. Prof. Dr.-Ing. Heinz Pitsch Thermodynamik I Sommersemester 2012 Kapitel 3, Teil 3 Prof. Dr.-Ing. Heinz Pitsch Kapitel 3, Teil 2: Übersicht 3 Energiebilanz 3.3 Bilanzgleichungen 3.3.1 Massebilanz 3.3.2 Energiebilanz und 1. Hauptsatz

Mehr

Physik III - Anfängerpraktikum- Versuch 203

Physik III - Anfängerpraktikum- Versuch 203 Physik III - Anfängerpraktikum- Versuch 203 Sebastian Rollke (103095) und Daniel Brenner (105292) 1. Februar 2005 Inhaltsverzeichnis 1 Vorbetrachtung 2 2 Theorie 2 2.1 Die mikroskopischen Vorgänge bei

Mehr

Grundpraktikum Physikalische Chemie V 18/19. Molekulargewichtsbestimmung. nach Rast, Dumas und durch. Gefrierpunktserniedrigung nach Beckmann

Grundpraktikum Physikalische Chemie V 18/19. Molekulargewichtsbestimmung. nach Rast, Dumas und durch. Gefrierpunktserniedrigung nach Beckmann Grundpraktikum Physikalische Chemie V 8/9 Molekulargewichtsbestimmung nach Rast, Dumas und durch Gefrierpunktserniedrigung nach Beckmann Kurzbeschreibung: Wird eine Substanz in einem bestimmten flüssigen

Mehr

Physikalische Chemie Physikalische Chemie I SoSe 2009 Prof. Dr. Norbert Hampp 1/9 1. Das Ideale Gas. Thermodynamik

Physikalische Chemie Physikalische Chemie I SoSe 2009 Prof. Dr. Norbert Hampp 1/9 1. Das Ideale Gas. Thermodynamik Prof. Dr. Norbert Hampp 1/9 1. Das Ideale Gas Thermodynamik Teilgebiet der klassischen Physik. Wir betrachten statistisch viele Teilchen. Informationen über einzelne Teilchen werden nicht gewonnen bzw.

Mehr

9. Thermodynamik. 9.1 Temperatur und thermisches Gleichgewicht 9.2 Thermometer und Temperaturskala. 9.4 Wärmekapazität

9. Thermodynamik. 9.1 Temperatur und thermisches Gleichgewicht 9.2 Thermometer und Temperaturskala. 9.4 Wärmekapazität 9. Thermodynamik 9.1 Temperatur und thermisches Gleichgewicht 9.2 Thermometer und Temperaturskala 93 9.3 Thermische h Ausdehnung 9.4 Wärmekapazität 9. Thermodynamik Aufgabe: - Temperaturverhalten von Gasen,

Mehr

1. Thermodynamik magnetischer Systeme

1. Thermodynamik magnetischer Systeme 1. Thermodynamik magnetischer Systeme 1 1.1 Thermodynamische Potentiale 2 1.2 Magnetische Modellsysteme G. Kahl (Institut für Theoretische Physik) Statistische Physik II Kapitel 1 5. April 2013 1 / 15

Mehr

Der Dampfdruck von Wasser

Der Dampfdruck von Wasser Physikalisches Grundpraktikum Versuch 8 Der Dampfdruck von Wasser Praktikant: Tobias Wegener Alexander Osterkorn E-Mail: tobias.wegener@stud.uni-goettingen.de a.osterkorn@stud.uni-goettingen.de Tutor:

Mehr

Molzahl: n = N/N A [n] = mol N ist die Anzahl der Atome oder Moleküle des Stoffes. Molmasse oder Molekularmasse: M [M ]= kg/kmol

Molzahl: n = N/N A [n] = mol N ist die Anzahl der Atome oder Moleküle des Stoffes. Molmasse oder Molekularmasse: M [M ]= kg/kmol 2. Zustandsgrößen 2.1 Die thermischen Zustandsgrößen 2.1.1. Masse und Molzahl Reine Stoffe: Ein Mol eines reinen Stoffes enthält N A = 6,02214. 10 23 Atome oder Moleküle, N A heißt Avogadro-Zahl. Molzahl:

Mehr

Einführung in die Physikalische Chemie: Inhalt. Einführung in die Physikalische Chemie:

Einführung in die Physikalische Chemie: Inhalt. Einführung in die Physikalische Chemie: Einführung in die Physikalische Chemie: Inhalt Einführung in die Physikalische Chemie: Inhalt Kapitel 9: Prinzipien der Thermodynamik Inhalt: 9.1 Einführung und Definitionen 9.2 Der 0. Hauptsatz und seine

Mehr

Physik III im Studiengang Elektrotechnik

Physik III im Studiengang Elektrotechnik Physik III im Studiengang Elektrotechnik - Einführung in die Wärmelehre - Prof. Dr. Ulrich Hahn WS 2008/09 Entwicklung der Wärmelehre Sinnesempfindung: Objekte warm kalt Beschreibung der thermische Eigenschaften

Mehr

Physikalische Grundlagen der Hygrometrie

Physikalische Grundlagen der Hygrometrie Den Druck der durch die verdampfenden Teilchen entsteht, nennt man auch Dampfdru Dampfdruck einen gewissen Wert, so können keine weiteren Teilchen aus der Flüssigk Physikalische Grundlagen der Hygrometrie

Mehr

Thermodynamik II. für den Studiengang Computational Engineering Science. H. Pitsch, B. Binninger Institut für Technische Verbrennung Templergraben 64

Thermodynamik II. für den Studiengang Computational Engineering Science. H. Pitsch, B. Binninger Institut für Technische Verbrennung Templergraben 64 Thermodynamik II für den Studiengang Computational Engineering Science H. Pitsch, B. Binninger Institut für Technische Verbrennung Templergraben 64 Inhalt von Thermodynamik II 6. Beziehungen zwischen Zustandsgrößen

Mehr

9.4 Stationäre kompressible Strömungen in Rohren oder Kanälen konstanten Querschnitts

9.4 Stationäre kompressible Strömungen in Rohren oder Kanälen konstanten Querschnitts 9.4 Stationäre kompressible Strömungen in Rohren oder Kanälen konstanten Querschnitts Die Strömung tritt mit dem Zustand 1 in die Rohrleitung ein. Für ein aus der Rohrstrecke herausgeschnittenes Element

Mehr

f f(x ɛξ) f(x) 0, d.h. f (x)ξ = 0 für alle ξ B 1 (0). Also f (x) = 0. In Koordinaten bedeutet dies gerade, dass in Extremstellen gilt: f(x) = 0.

f f(x ɛξ) f(x) 0, d.h. f (x)ξ = 0 für alle ξ B 1 (0). Also f (x) = 0. In Koordinaten bedeutet dies gerade, dass in Extremstellen gilt: f(x) = 0. Mehrdimensionale Dierenzialrechnung 9 Optimierung 9 Optimierung Definition Seien U R n oen, f : U R, x U x heiÿt lokales Maximum, falls eine Umgebung V U von x existiert mit y V : fx fy x heiÿt lokales

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 12. 06. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 12. 06.

Mehr

Roland Reich. Thermodynamik. Grundlagen und Anwendungen in der allgemeinen Chemie. Zweite, verbesserte Auflage VCH. Weinheim New York Basel Cambridge

Roland Reich. Thermodynamik. Grundlagen und Anwendungen in der allgemeinen Chemie. Zweite, verbesserte Auflage VCH. Weinheim New York Basel Cambridge Roland Reich Thermodynamik Grundlagen und Anwendungen in der allgemeinen Chemie Zweite, verbesserte Auflage VCH Weinheim New York Basel Cambridge Inhaltsverzeichnis Formelzeichen Maßeinheiten XV XX 1.

Mehr

Differentialgleichungen

Differentialgleichungen Kapitel Differentialgleichungen Josef Leydold Mathematik für VW WS 05/6 Differentialgleichungen / Ein einfaches Modell (Domar) Im Domar Wachstumsmodell treffen wir die folgenden Annahmen: () Erhöhung der

Mehr

Wärmelehre/Thermodynamik. Wintersemester 2007

Wärmelehre/Thermodynamik. Wintersemester 2007 Einführung in die Physik I Wärmelehre/Thermodynamik Wintersemester 2007 ladimir Dyakonov #13 am 30.01.2007 Folien im PDF Format unter: htt://www.hysik.uni-wuerzburg.de/ep6/teaching.html Raum E143, Tel.

Mehr

Vorlesung 15 II Wärmelehre 15. Wärmetransport und Stoffmischung

Vorlesung 15 II Wärmelehre 15. Wärmetransport und Stoffmischung Vorlesung 15 II Wärmelehre 15. Wärmetransport und Stoffmischung a) Wärmestrahlung b) Wärmeleitung c) Wärmeströmung d) Diffusion 16. Phasenübergänge (Verdampfen, Schmelzen, Sublimieren) Versuche: Wärmeleitung

Mehr

Gewöhnliche Dierentialgleichungen

Gewöhnliche Dierentialgleichungen Gewöhnliche Dierentialgleichungen sind Gleichungen, die eine Funktion mit ihren Ableitungen verknüpfen. Denition Eine explizite Dierentialgleichung (DGL) nter Ordnung für die reelle Funktion t x(t) hat

Mehr

Zur Erinnerung. p isotherm. Stichworte aus der 20. Vorlesung: Poisson sche leichungen/adiabaten- Gleichungen: Kreisprozesse:

Zur Erinnerung. p isotherm. Stichworte aus der 20. Vorlesung: Poisson sche leichungen/adiabaten- Gleichungen: Kreisprozesse: Zur Erinnerung Stichworte aus der 20. Vorlesung: Poisson sche leichungen/adiabaten- Gleichungen: T V V 1 const. const. adiabatisch ( V ) 0 V V 0 R T0 isotherm ( V ) V Kreisrozesse: Ein thermodynamisches

Mehr

Multiple-Choice Test. Alle Fragen können mit Hilfe der Versuchsanleitung richtig gelöst werden.

Multiple-Choice Test. Alle Fragen können mit Hilfe der Versuchsanleitung richtig gelöst werden. PCG-Grundpraktikum Versuch 8- Reale Gas Multiple-Choice Test Zu jedem Versuch im PCG wird ein Vorgespräch durchgeführt. Für den Versuch Reale Gas wird dieses Vorgespräch durch einen Multiple-Choice Test

Mehr

Temperatur. Temperaturmessung. Grundgleichung der Kalorik. 2 ² 3 2 T - absolute Temperatur / ºC T / K

Temperatur. Temperaturmessung. Grundgleichung der Kalorik. 2 ² 3 2 T - absolute Temperatur / ºC T / K Temperatur Temperatur ist ein Maß für die mittlere kinetische Energie der Teilchen 2 ² 3 2 T - absolute Temperatur [ T ] = 1 K = 1 Kelvin k- Boltzmann-Konst. k = 1,38 10-23 J/K Kelvin- und Celsiusskala

Mehr

Seminar zur Theorie der Teilchen und Felder. Van der Waals Theorie

Seminar zur Theorie der Teilchen und Felder. Van der Waals Theorie Seminar zur Theorie der Teilchen und Felder Van der Waals Theorie Tobias Berheide 18.11.2009 1 Inhaltsverzeichnis 1 Einleitung 3 2 Das Van der Waals Gas 3 2.1 Das ideale Gas..............................

Mehr

Grundlagen der Elektrotechnik I Physikalische Größen, physikalische Größenarten, Einheiten und Werte physikalischer Größen

Grundlagen der Elektrotechnik I Physikalische Größen, physikalische Größenarten, Einheiten und Werte physikalischer Größen Grundlagen der Elektrotechnik I 17 11.01.01 Einführung eines Einheitensystems.1 Physikalische Größen, physikalische Größenarten, Einheiten und Werte physikalischer Größen Physikalische Größen: Meßbare,

Mehr

ZUS - Zustandsgleichung realer und idealer Gase

ZUS - Zustandsgleichung realer und idealer Gase ZUS - Zustandsgleichung realer und idealer Gase Anfängerpraktikum 2, 2006 Janina Fiehl Daniel Flassig Gruppe 129 Einleitung Ein wichtiges Teilgebiet der Thermodynamik ist die Beschreibung des Verhaltens

Mehr

15. Wärmetransport. Q t. b) Wärmeleitung (ohne Materietransport)

15. Wärmetransport. Q t. b) Wärmeleitung (ohne Materietransport) 16. Vorlesung EP II Wärmelehre 15. Wärmetransport und Stoffmischung a) Wärmestrahlung b) Wärmeleitung c) Wärmeströmung d) Diffusion 16. Phasenü (Verdampfen, Schmelzen, Sublimieren) Versuche: Wärmeleitung

Mehr

Der Gesamtdruck eines Gasgemisches ist gleich der Summe der Partialdrücke. p [mbar, hpa] = p N2 + p O2 + p Ar +...

Der Gesamtdruck eines Gasgemisches ist gleich der Summe der Partialdrücke. p [mbar, hpa] = p N2 + p O2 + p Ar +... Theorie FeucF euchtemessung Das Gesetz von v Dalton Luft ist ein Gemisch aus verschiedenen Gasen. Bei normalen Umgebungsbedingungen verhalten sich die Gase ideal, das heißt die Gasmoleküle stehen in keiner

Mehr

Fundamentalgleichung für die Entropie. spezifische Entropie: s = S/m molare Entropie: s m = S/n. Entropie S [S] = J/K

Fundamentalgleichung für die Entropie. spezifische Entropie: s = S/m molare Entropie: s m = S/n. Entropie S [S] = J/K Fundamentalgleichung für die Entropie Entropie S [S] = J/K spezifische Entropie: s = S/m molare Entropie: s m = S/n Mit dem 1. Hauptsatz für einen reversiblen Prozess und der Definition für die Entropie

Mehr

Einführung in die Physikalische Chemie Teil 2: Makroskopische Phänomene und Thermodynamik

Einführung in die Physikalische Chemie Teil 2: Makroskopische Phänomene und Thermodynamik Einführung in die Phsikalische Chemie Teil 2: Makroskopische Phänomene und Thermodnamik Kapitel 7: Boltzmann-Verteilung Kapitel 8: Statistische Beschreibung makroskopischer Grössen Kapitel 9: Thermodnamik:

Mehr

ÜBUNGSBLATT 11 LÖSUNGEN MAT121/MAT131 ANALYSIS II FRÜHJAHRSSEMESTER 2011 PROF. DR. CAMILLO DE LELLIS

ÜBUNGSBLATT 11 LÖSUNGEN MAT121/MAT131 ANALYSIS II FRÜHJAHRSSEMESTER 2011 PROF. DR. CAMILLO DE LELLIS ÜBUNGSBLATT 11 LÖSUNGEN MAT121/MAT131 ANALYSIS II FRÜHJAHRSSEMESTER 2011 PROF. DR. CAMILLO DE LELLIS Aufgabe 1. a) Gegeben sei die Gleichung 2x 2 4xy +y 2 3x+4y = 0. Verifizieren Sie, dass diese Gleichung

Mehr

Übung 3. Ziel: Bedeutung/Umgang innere Energie U und Enthalpie H verstehen (Teil 2) Verständnis des thermodynamischen Gleichgewichts

Übung 3. Ziel: Bedeutung/Umgang innere Energie U und Enthalpie H verstehen (Teil 2) Verständnis des thermodynamischen Gleichgewichts Ziel: Bedeutung/Umgang innere Energie U und Enthalpie H verstehen (Teil 2) adiabatische Flammentemperatur Verständnis des thermodynamischen Gleichgewichts Definition von K X, K c, K p Berechnung von K

Mehr

Versuch 8: Der Dampfdruck von Wasser

Versuch 8: Der Dampfdruck von Wasser Versuch 8: Der Dampfdruck von Wasser Inhaltsverzeichnis 1 Einführung 3 2 Theorie 3 2.1 Reale Gase.................................... 3 2.2 Dampfdruck................................... 3 2.3 Arrhenius-Plot.................................

Mehr

Klausur Wärmelehre E2/E2p, SoSe 2012 Braun. Formelsammlung Thermodynamik

Klausur Wärmelehre E2/E2p, SoSe 2012 Braun. Formelsammlung Thermodynamik Name: Klausur Wärmelehre E2/E2p, SoSe 2012 Braun Matrikelnummer: Benotung für: O E2 O E2p (bitte ankreuzen, Mehrfachnennungen möglich) Mit Stern (*) gekennzeichnete Aufgaben sind für E2-Kandidaten [E2p-Kandidaten

Mehr

1 Thermodynamik allgemein

1 Thermodynamik allgemein Einführung in die Energietechnik Tutorium II: Thermodynamik Thermodynamik allgemein. offenes System: kann Materie und Energie mit der Umgebung austauschen. geschlossenes System: kann nur Energie mit der

Mehr

Erinnerung: Intensive, extensive Größen

Erinnerung: Intensive, extensive Größen Erinnerung: Intensive, extensive Größen Man unterscheidet intensive und extensive Größen: Vorgehen: Man denke sich ein thermodynamisches ystem in zwei eile geteilt: Untersystem Untersystem Extensive Größen

Mehr

Stickstoff kann als ideales Gas betrachtet werden mit einer spezifischen Gaskonstante von R N2 = 0,297 kj

Stickstoff kann als ideales Gas betrachtet werden mit einer spezifischen Gaskonstante von R N2 = 0,297 kj Aufgabe 4 Zylinder nach oben offen Der dargestellte Zylinder A und der zugehörige bis zum Ventil reichende Leitungsabschnitt enthalten Stickstoff. Dieser nimmt im Ausgangszustand ein Volumen V 5,0 dm 3

Mehr

Theoretische Physik F Statistische Physik

Theoretische Physik F Statistische Physik Institut für Theoretische Festkörperphysik Prof. Dr. Gerd Schön Theoretische Physik F Statistische Physik Sommersemester 2010 2 Statistische Physik, G. Schön, Karlsruher Institut für Technologie (Universität)

Mehr

Physikalische Chemie. Heinz Hug Wolfgang Reiser EHRMITTEL. EUROPA-FACHBUCHREIHE für Chemieberufe. 2. neu bearbeitete Auflage. von

Physikalische Chemie. Heinz Hug Wolfgang Reiser EHRMITTEL. EUROPA-FACHBUCHREIHE für Chemieberufe. 2. neu bearbeitete Auflage. von 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. EHRMITTEL EUROPA-FACHBUCHREIHE für Chemieberufe Physikalische Chemie

Mehr

Vorlesung #7. M.Büscher, Physik für Mediziner

Vorlesung #7. M.Büscher, Physik für Mediziner Vorlesung #7 Zustandsänderungen Ideale Gase Luftfeuchtigkeit Reale Gase Phasenumwandlungen Schmelzwärme Verdampfungswärme Dampfdruck van-der-waals Gleichung Zustandsdiagramme realer Gase Allgem. Gasgleichung

Mehr

Physikalische Chemie 0 Klausur, 22. Oktober 2011

Physikalische Chemie 0 Klausur, 22. Oktober 2011 Physikalische Chemie 0 Klausur, 22. Oktober 2011 Bitte beantworten Sie die Fragen direkt auf dem Blatt. Auf jedem Blatt bitte Name, Matrikelnummer und Platznummer angeben. Zu jeder der 25 Fragen werden

Mehr

8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht

8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht 8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht 8.2-1 Stoffliches Gleichgewicht Beispiel Stickstoff Sauerstoff: Desweiteren

Mehr

Naturwissenschaftliche Grundlagen für Maschinenbauer und Wirtschaftsingenieure

Naturwissenschaftliche Grundlagen für Maschinenbauer und Wirtschaftsingenieure Naturwissenschaftliche Grundlagen für Maschinenbauer und Wirtschaftsingenieure Heinz W. Siesler (Vorlesung) Miriam Unger (Übungen)( Institut für f r Physikalische Chemie Universität t Duisburg-Essen Schützenbahn

Mehr

Nachtrag zu 11: 11.6.Statistische Physik: Entropie, Boltzmann-Verteilung

Nachtrag zu 11: 11.6.Statistische Physik: Entropie, Boltzmann-Verteilung Nachtrag zu 11: 11.6.Statistische Physik: Entropie, Boltzmann-Verteilung Ludwig Boltzmann 1860: Maxwellsche Geschwindigkeitsverteilung 1865: Clausius, thermodynamische Entropie, 2. Hauptsatz: Entropie

Mehr

Thermodynamik. Thermodynamik ist die Lehre von den Energieänderungen im Verlauf von physikalischen und chemischen Vorgängen.

Thermodynamik. Thermodynamik ist die Lehre von den Energieänderungen im Verlauf von physikalischen und chemischen Vorgängen. Thermodynamik Was ist das? Thermodynamik ist die Lehre von den Energieänderungen im Verlauf von physikalischen und chemischen Vorgängen. Gesetze der Thermodynamik Erlauben die Voraussage, ob eine bestimmte

Mehr

4 Phasendiagramme. Für den kritischen Punkt von Kohlendioxid werden 304,14 K und 7,375 MPa angegeben, für den Tripelpunkt 216,58 K und 518 kpa.

4 Phasendiagramme. Für den kritischen Punkt von Kohlendioxid werden 304,14 K und 7,375 MPa angegeben, für den Tripelpunkt 216,58 K und 518 kpa. ERNST MORITZ ARNDT UNIVERSITÄT GREIFSWALD Mathematisch-Naturwissenschaftliche Fakultät INSTITUT FÜR BIOCHEMIE Arbeitskreis Biophysikalische Chemie Prof. Dr. Walter Langel 4 Phasendiagramme 1 Skizzieren

Mehr

Repetitorium Physikalische Chemie für Lehramt

Repetitorium Physikalische Chemie für Lehramt Repetitorium Physikalische Chemie für Lehramt Anfangstext bei der Prüfung. Hier nicht relevant. Zu jeder der 10 Fragen werden maximal 12,5 Punkte vergeben. Höchstens 100 Punkte können erreicht werden,

Mehr

STATISTISCHE PHYSIK L. D. LANDAU E. M. LIFSCHITZ. Teil 1. In deutscher Sprache herausgegeben

STATISTISCHE PHYSIK L. D. LANDAU E. M. LIFSCHITZ. Teil 1. In deutscher Sprache herausgegeben L. D. LANDAU E. M. LIFSCHITZ STATISTISCHE PHYSIK Teil 1 In deutscher Sprache herausgegeben von Prof. Dr. habil. RICHARD LENK Sektion Physik der Technischen Universität Chemnitz 8., berichtigte, von E.

Mehr

Kapitel 4. Thermodynamisches Gleichgewicht zwischen zwei Systemen. 4.1 Systeme im thermischen Kontakt 1; E 1 =? 2; E 2 =?

Kapitel 4. Thermodynamisches Gleichgewicht zwischen zwei Systemen. 4.1 Systeme im thermischen Kontakt 1; E 1 =? 2; E 2 =? Kapitel 4 hermodynamisches Gleichgewicht zwischen zwei Systemen Im letzten Abschnitt haben wir am Beispiel des idealen Gases die Entropie (S(E)) bestimmt, und zwar im Rahmen des mikrokanonischen Ensembles

Mehr

16 Vektorfelder und 1-Formen

16 Vektorfelder und 1-Formen 45 16 Vektorfelder und 1-Formen 16.1 Vektorfelder Ein Vektorfeld v auf D R n ist eine Abbildung v : D R n, x v(x). Beispiele. Elektrisches und Magnetisches Feld E(x), B(x), Geschwindigkeitsfeld einer Strömung

Mehr

Inhaltsverzeichnis Allgemeine Grundlagen Fluide Phasen

Inhaltsverzeichnis Allgemeine Grundlagen Fluide Phasen 1. Allgemeine Grundlagen... 1 1.1 Energie-undStoffumwandlungen... 1 1.1.1 Energieumwandlungen... 2 1.1.2 Stoffumwandlungen... 6 1.1.3 Energie- und Stoffumwandlungen in technischen Prozessen... 9 1.1.4

Mehr

E Homogene / inhomogene Mischungen und Entmischungsdiagramme

E Homogene / inhomogene Mischungen und Entmischungsdiagramme E Homogene / inhomogene Mischungen und Entmischungsdiagramme 1 Homogene / inhomogene Mischungen Es gibt Flüssigkeiten, die bilden beim Mischen eine klare und einheitlich aussehende Lösung. Solche Mischungen,

Mehr

2. GRUNDLAGEN. 2.1 Kontinuierliche Thermodynamik

2. GRUNDLAGEN. 2.1 Kontinuierliche Thermodynamik 2 GRUNDLAGEN 21 Kontinuierliche Thermodynamik Die Thermodynamik basiert auf Stoffmengen Eine thermodynamische extensive Größe Z wird hierbei als Funktion von der Temperatur T, dem Druck p und den Stoffmengen

Mehr

Institut für Abfallwirtschaft und Altlasten, TU-Dresden Seminar Thermische Abfallbehandlung - Veranstaltung 4 - Dampfkraftprozesse

Institut für Abfallwirtschaft und Altlasten, TU-Dresden Seminar Thermische Abfallbehandlung - Veranstaltung 4 - Dampfkraftprozesse Institut für Abfallwirtschaft und Altlasten, TU-Dresden Seinar Therische Abfallbehandlung - Veranstaltung 4 - Dapfkraftprozesse Dresden, 09. Juni 2008 Dipl.- Ing. Christoph Wünsch, Prof. Dr.- Ing. habil.

Mehr

Laborversuche zur Physik 1 I - 13

Laborversuche zur Physik 1 I - 13 Laborversuche zur Physik 1 I - 13 Zustandsgleichung realer Gase Reyher FB Physik 18.09.14 Ziele Messung von Druck und Volumen eines realen Gases bei verschiedenen Temperaturen. Bestimmung des sogenannten

Mehr

2.1 Importance sampling: Metropolis-Algorithmus

2.1 Importance sampling: Metropolis-Algorithmus Kapitel 2 Simulationstechniken 2.1 Importance sampling: Metropolis-Algorithmus Eine zentrale Fragestellung in der statistischen Physik ist die Bestimmung von Erwartungswerten einer Observablen O in einem

Mehr

ν und λ ausgedrückt in Energie E und Impuls p

ν und λ ausgedrückt in Energie E und Impuls p phys4.011 Page 1 8.3 Die Schrödinger-Gleichung die grundlegende Gleichung der Quantenmechanik (in den bis jetzt diskutierten Fällen) eine Wellengleichung für Materiewellen (gilt aber auch allgemeiner)

Mehr

Physik 2 exp. Teil. 15 Temperatur, Wärme und der erste Hauptsatz der Thermodynamik 15.1 Temperatur

Physik 2 exp. Teil. 15 Temperatur, Wärme und der erste Hauptsatz der Thermodynamik 15.1 Temperatur Physik 2 exp. Teil. 15 Temperatur, Wärme und der erste Hauptsatz der Thermodynamik 15.1 Temperatur Der zentrale Begriff der Thermodynamik ist die Temperatur. Bsp.: Menschlicher Temperatursinn - Eisen vs.

Mehr