SLAM. Simultaneous Localization and Mapping. KogSys-Sem-M2: Reading Club - SLAM - Andreas Habermann

Größe: px
Ab Seite anzeigen:

Download "SLAM. Simultaneous Localization and Mapping. KogSys-Sem-M2: Reading Club - SLAM - Andreas Habermann"

Transkript

1 SLAM Simultaneous Localization and Mapping KogSys-Sem-M2: Reading Club - SLAM - Andreas Habermann

2 Simultaneous Localization And Mapping SLAM Problematik SLAM Arten SLAM Methoden: (E)KF SLAM GraphSLAM Fast SLAM KogSys-Sem-M2: Reading Club - SLAM - Andreas Habermann 2

3 SLAM - Problematik Ziel: Karte und Pose bestimmen Fragen: Wie sieht die Welt aus? Wo bin ich? Bekannt: Kontrolldaten, z.b. Odometriedaten (Daten des Vortriebssystems) z t Sensordaten (erfasste Landmarken) ut KogSys-Sem-M2: Reading Club - SLAM - Andreas Habermann 3

4 Probleme Odometrie Positionsmessung ungenau auf Grund von: Bodenbeschaffenheit Verschleiß Ungleichmäßige Gewichtsverteilung etc KogSys-Sem-M2: Reading Club - SLAM - Andreas Habermann 4

5 Probleme durch Sensordaten Ungenauigkeit der Sensoren Noise (Rauschen) Gleichartigkeit der Landmarken (Landmarken mit gleichen Signaturen) Robot pose uncertainty KogSys-Sem-M2: Reading Club - SLAM - Andreas Habermann 5

6 Pfad- und Kartenfehler Pfadfehler und Kartenfehler korrelieren! KogSys-Sem-M2: Reading Club - SLAM - Andreas Habermann 6

7 Statische Welt Markov Annahme (Markov Assumption) Alle Landmarken sind unbeweglich Außer dem Roboter gibt es keine weiteren bewegliche Elemente Aktueller Zustand ist eine komplette Zusammenfassung der Vergangenheit (und kann dadurch aus dieser ermittelt werden) KogSys-Sem-M2: Reading Club - SLAM - Andreas Habermann 7

8 Einführung der Variablen zt ut Messung (Beobachtung) zum Zeitpunkt t Kontrolldaten für Zeitpunkt t -> alle Daten im Intervall ]t-1,t] z t1:t 2 Menge aller Messungen (Sensordaten) von Zeitpunkt t1 bis t2 u t1:t 2 Menge aller Kontrolldaten von Zeitpunkt t1 bis t2 xt m State, der Zustand des Systems zum Zeitpunkt t (durch die Annahme der statischen Welt beschränkt sich der Zustand auf die Pose des Roboters) Map, die Karte KogSys-Sem-M2: Reading Club - SLAM - Andreas Habermann 8

9 Arten des SLAM-Problems Online SLAM: Schätzt aktuelle Pose und Karte p ( xt, m z1 : t, u1: t ) = p( x1: t, m z1: t, u1: t ) dx1dx2... dxt 1 Integrationen werden normal schrittweise durchgeführt Full SLAM: Schätzt den ganzen Pfad und Karte p( x : t, m z1: t, u1 : 1 t ) KogSys-Sem-M2: Reading Club - SLAM - Andreas Habermann 9

10 Online SLAM: Graphisches Modell p ( xt, m z1 : t, u1: t ) = p( x1: t, m z1: t, u1: t ) dx1 dx2... dxt KogSys-Sem-M2: Reading Club - SLAM - Andreas Habermann 10

11 Full SLAM: Graphisches Modell p( x : t, m z1: t, u1 : 1 t KogSys-Sem-M2: Reading Club - SLAM - Andreas Habermann 11 )

12 (E)KF - SLAM Verwendet (Extended) Kalman Filter Online SLAM Verfahren Nutzt nur positive Landmarken-Sichtungen Annahme: Rauschen (Noise) ist normal verteilt KogSys-Sem-M2: Reading Club - SLAM - Andreas Habermann 12

13 Kalman Filter Bayes Filter Von Swerling (1958) und Kalman (1960) entwickelt Belief wird durch den Erwartungswert μt und die Kovarianz Σt repräsentiert KogSys-Sem-M2: Reading Club - SLAM - Andreas Habermann 13

14 Kalman Filter: Annahmen 1. Markov Assumption 2. Wahrscheinlichkeitsfunktion der Zustandsübergänge ist linear mit normal verteiltem Rauschen 3. Wahrscheinlichkeitsfunktion der Messungen ist ebenfalls linear mit normal verteiltem Rauschen 4. Initial belief bel(x0) ist normal verteilt KogSys-Sem-M2: Reading Club - SLAM - Andreas Habermann 14

15 Komponenten des Kalman Filters A t B t C t Matrix (nxn), die beschreibt, wie sich der Zustand, ohne Kontrolldaten oder Rauschen, von t nach t-1 entwickelt. Matrix (nxm), die beschreibt, wie die Kontrolldaten u t den Zustand von t nach t-1 ändern. Matrix (kxn), die beschreibt, wie der Zustand x t auf eine Beobachtung z t abgebildet wird. ε δ t t Zufallsvariablen, die das Rauschen abbilden. Sie sind unabhängig und normalverteilt mit Covarianz R t and Q t KogSys-Sem-M2: Reading Club - SLAM - Andreas Habermann 15

16 Kalman Filter Algorithmus 1. Algorithm Kalman_filter( µ t-1, Σ t-1, u t, z t ): 1. Vorhersage: 2. µ t = A t µ t 1 + Btut T 3. Σ t = A t Σ t 1At + R 4. Korrektur: T T 5. Kt = Σ tct ( Ct Σ tct + Qt ) 6. µ t = µ t + K t ( zt Ct µ t ) 7. Σ t = ( I KtCt ) Σ t t 1 Vorhersage auf Grund der Kontrolldaten Korrektur anhand der Beobachtungen (Sensordaten) 8. Return µ t, Σ t KogSys-Sem-M2: Reading Club - SLAM - Andreas Habermann 16

17 Extended Kalman Filter Problem: Kalman Filter benötigt Linearität In der Realität ist diese Linearität häufig nicht gegeben. Lösung: Linearisierung Die nichtlineare Funktion g(x) wird durch ihre Tangente am Erwartungswert der Normalverteilung linearisiert KogSys-Sem-M2: Reading Club - SLAM - Andreas Habermann 17

18 EKF: Linearisierung KogSys-Sem-M2: Reading Club - SLAM - Andreas Habermann 18

19 Kombinierter Zustandsvektor Der kombinierte Zustandsvektor besteht aus der Pose des Roboters und der Karte mit N Landmarken. Die Pose des Roboters besteht aus x und y Koordinaten sowie der Ausrichtung des Roboters. Die N Landmarken werden durch ihre Koordinaten und ihre Signatur im Vektor repräsentiert KogSys-Sem-M2: Reading Club - SLAM - Andreas Habermann 19

20 EKF-SLAM Algorithmus Teil 1: Motion Update KogSys-Sem-M2: Reading Club - SLAM - Andreas Habermann 20

21 EKF-SLAM Algorithmus Teil 2 7ff: Iteration über alle Messungen Messung = Entfernung, Richtung, Signatur 9-11: Initialisierung neuer (bisher unbekannter) Landmarken KogSys-Sem-M2: Reading Club - SLAM - Andreas Habermann 21

22 EKF-SLAM Algorithmus Teil 3 Berechnung der erwarteten Messung KogSys-Sem-M2: Reading Club - SLAM - Andreas Habermann 22

23 EKF-SLAM Algorithmus Teil 4 17: Berechnung des Kalman-Gain 18,19: Filter-Update KogSys-Sem-M2: Reading Club - SLAM - Andreas Habermann 23

24 EKF-SLAM: Beispiel Beispielfahrt eines Roboters in einer Welt mit 8 Landmarken Mit jedem Schritt steigt die Ungewissheit über die Pose des Roboters sowie der Lage der Landmarken an KogSys-Sem-M2: Reading Club - SLAM - Andreas Habermann 24

25 EKF-SLAM Beispiel Erst die erneute Sichtung der ersten Landmarke führt zu einer Abnahme der Unsicherheiten (für alle Landmarken und die Pose des Roboters) KogSys-Sem-M2: Reading Club - SLAM - Andreas Habermann 25

26 General EKF SLAM Korrespondenz oft unbekannt Erweiterung des Algorithmus nötig Statt einer gegebenen Korrespondenz wird die ML-Korrespondenz (maximum likelihood correspondence) verwendet Dem Algorithmus wird statt der Korrespondenz die momentane Größe der Karte übergeben KogSys-Sem-M2: Reading Club - SLAM - Andreas Habermann 26

27 EKF-SLAM Beispiel KogSys-Sem-M2: Reading Club - SLAM - Andreas Habermann 27

28 GraphSLAM Full SLAM Verfahren Full SLAM Problem formt einen sparse Graph (= Graph mit wenigen Kanten) Lazy SLAM (Datenerhebung und -verarbeitung werden getrennt durchgeführt) Graph wird reduziert bis er nur noch Roboterposen enthält KogSys-Sem-M2: Reading Club - SLAM - Andreas Habermann 28

29 GraphSLAM KogSys-Sem-M2: Reading Club - SLAM - Andreas Habermann 29

30 GraphSLAM Algorithmus: Hauptschritte 1. initialize 2. repeat 3. linearize 4. reduce 5. solve 6. until convergence Initialisierung des Posenerwartungswertvektors Erstellung von Informationsmatrix und -vektor Reduzieren der Matrix und des Vektors Update μ (auch Erwartungswerte der Features) 7. return μ KogSys-Sem-M2: Reading Club - SLAM - Andreas Habermann 30

31 GraphSLAM Illustration: Erstellung der Informationsmatrix KogSys-Sem-M2: Reading Club - SLAM - Andreas Habermann 31

32 GraphSLAM Illustration: Erstellung der Informationsmatrix KogSys-Sem-M2: Reading Club - SLAM - Andreas Habermann 32

33 GraphSLAM Illustration: Erstellung der Informationsmatrix KogSys-Sem-M2: Reading Club - SLAM - Andreas Habermann 33

34 GraphSLAM Illustration: Reduzieren der Informationsmatrix KogSys-Sem-M2: Reading Club - SLAM - Andreas Habermann 34

35 GraphSLAM Illustration: Reduzieren der Informationsmatrix KogSys-Sem-M2: Reading Club - SLAM - Andreas Habermann 35

36 GraphSLAM Illustration: Ergebnis KogSys-Sem-M2: Reading Club - SLAM - Andreas Habermann 36

37 Fast SLAM Nutzt Partikelfilter Direkte Anwendung von Partikelfiltern auf das SLAM-Problem nicht möglich exponentieller Aufwand Als Online oder Full SLAM Verfahren einsetzbar KogSys-Sem-M2: Reading Club - SLAM - Andreas Habermann 37

38 Fast SLAM Trick Bei gegebener Pose besitzt das Full SLAM Problem mit bekannter Korrespondenz eine bedingte Unabhängigkeit zwischen 2 disjunkten Featuremengen. Abhängigkeiten entstehen nur durch die Unsicherheit der Pose. Diese Beobachtung führt zur Möglichkeit Rao- Blackwellized particle filters einzusetzen KogSys-Sem-M2: Reading Club - SLAM - Andreas Habermann 38

39 FastSLAM Trick Jeder Partikel behandelt einen ausgewählten Pfad Der Pfad wird ausgeklammert (je Partikel ein Pfad) und die Features werden behandelt als ob sie unabhängig wären Jedes Feature wird durch eine eigene Normalverteilung repräsentiert KogSys-Sem-M2: Reading Club - SLAM - Andreas Habermann 39

40 FastSLAM Graph Features werden getrennt von einander betrachtet. Die Gesamtkarte m besteht aus Teilkarten m1 bis m KogSys-Sem-M2: Reading Club - SLAM - Andreas Habermann 40

41 FastSLAM Partikel Menge von Kalman-Filtern für die Features KogSys-Sem-M2: Reading Club - SLAM - Andreas Habermann 41

42 FastSLAM Algorithmus: Hauptschritte KogSys-Sem-M2: Reading Club - SLAM - Andreas Habermann 42

43 FastSLAM Beispiel (grid-based) KogSys-Sem-M2: Reading Club - SLAM - Andreas Habermann 43

44 FastSLAM Beispiel Video KogSys-Sem-M2: Reading Club - SLAM - Andreas Habermann 44

45 Feature Elimiation FastSLAM kann die Abwesenheit von Features nutzen Dadurch können zweifelhafte/falsche Features (bewegliche Objekte die bei der ersten Beobachtung als Feature erkannt wurden) eliminiert werden KogSys-Sem-M2: Reading Club - SLAM - Andreas Habermann 45

46 Feature Elimination Beispiel KogSys-Sem-M2: Reading Club - SLAM - Andreas Habermann 46

47 Vergleich: FastSLAM & EKF KogSys-Sem-M2: Reading Club - SLAM - Andreas Habermann 47

48 Quellen Literatur: Sebastian Thrun, Wolfram Burgard, Dieter Fox: Probabilistic Robotics (Intelligent Robotics and Autonomous Agents). The Mit Press, 2005, ISBN Abbildungen Website zum Buch KogSys-Sem-M2: Reading Club - SLAM - Andreas Habermann 48

Biologisch motivierter SLAM Algorithmus

Biologisch motivierter SLAM Algorithmus HAW Hamburg 01. Dezember 2011 Gliederung 1 Einführung 2 RatSLAM 3 Aussicht für Master 2 / 23 Einführung Was ist SLAM SLAM bedeutet: Simultaneous Localization and Mapping Erstellung einer Karte durch mobilen

Mehr

Probabilistisches Tracking mit dem Condensation Algorithmus

Probabilistisches Tracking mit dem Condensation Algorithmus Probabilistisches Tracking mit dem Condensation Algorithmus Seminar Medizinische Bildverarbeitung Axel Janßen Condensation - Conditional Density Propagation for Visual Tracking Michael Isard, Andrew Blake

Mehr

Forschungsschwerpunkte Probabilistische Techniken für die Navigation mobiler Roboter

Forschungsschwerpunkte Probabilistische Techniken für die Navigation mobiler Roboter Forschungsschwerpunkte Probabilistische Techniken für die Navigation mobiler Roboter Mobile Roboter müssen in der Lage sein, sich zuverlässig in ihren Umgebungen zu bewegen. Das erfordert verschiedene

Mehr

Semantische 3D-Karten für mobile Roboter. Prof. Dr. Andreas Nüchter Jacobs University Bremen Campus Ring 1 28759 Bremen

Semantische 3D-Karten für mobile Roboter. Prof. Dr. Andreas Nüchter Jacobs University Bremen Campus Ring 1 28759 Bremen Semantische 3D-Karten für mobile Roboter Prof. Dr. Andreas Nüchter Jacobs University Bremen Campus Ring 1 28759 Bremen Danksagung Für erfolgreiche Zusammenarbeit in den letzten Jahren mit Joachim Hertzberg

Mehr

Anwendung einer Monokularen Kamera als Bewegungs-Sensor für Mobile Roboter p.1

Anwendung einer Monokularen Kamera als Bewegungs-Sensor für Mobile Roboter p.1 Anwendung einer Monokularen Kamera als Bewegungs-Sensor für Mobile Roboter Tobias Pietzsch Anwendung einer Monokularen Kamera als Bewegungs-Sensor für Mobile Roboter p.1 Zielstellung Kamera als Sensor

Mehr

(1) Problemstellung. (2) Kalman Filter

(1) Problemstellung. (2) Kalman Filter Inhaltsverzeichnis (1) Problemstellung...2 (2) Kalman Filter...2 Funktionsweise... 2 Gleichungen im mehrdimensionalen Fall...3 Schätzung des Systemzustands...3 Vermuteter Schätzfehler... 3 Aktualisierung

Mehr

Hochpräzises 3D-Scannen von mobilen Plattformen aus. Prof. Dr. Andreas Nüchter Jacobs University Bremen Campus Ring 1 28759 Bremen 1

Hochpräzises 3D-Scannen von mobilen Plattformen aus. Prof. Dr. Andreas Nüchter Jacobs University Bremen Campus Ring 1 28759 Bremen 1 Hochpräzises 3D-Scannen von mobilen Plattformen aus Prof. Dr. Andreas Nüchter Jacobs University Bremen Campus Ring 1 28759 Bremen 1 Danksagung Für erfolgreiche Zusammenarbeit in den letzten Jahren mit

Mehr

Aufabe 7: Baum-Welch Algorithmus

Aufabe 7: Baum-Welch Algorithmus Effiziente Algorithmen VU Ausarbeitung Aufabe 7: Baum-Welch Algorithmus Florian Fest, Matr. Nr.0125496 baskit@generationfun.at Claudia Hermann, Matr. Nr.0125532 e0125532@stud4.tuwien.ac.at Matteo Savio,

Mehr

omnidirektionalersichtsysteme

omnidirektionalersichtsysteme Diplomarbeit LokalisierungeinesmobilenRobotersystemsmittels EinprobabilistischerAnsatzfürrobuste omnidirektionalersichtsysteme BjörnGaworski bg@elien.de ArbeitsbereichTechnischeAspekteMultimodalerSysteme

Mehr

Prädiktion von Roboter- und Ball-Positionen in der RoboCup Small-Size-League

Prädiktion von Roboter- und Ball-Positionen in der RoboCup Small-Size-League Tigers Mannheim Prädiktion von Roboter- und Ball-Positionen in der RoboCup Small-Size-League Theoretische Grundlagen verwendeter Verfahren und Modellierung von Objektbewegungen STUDIENARBEIT des Studienganges

Mehr

Modellierung von Positionssensoren. Jörg Roth Fachbereich Informatik Fernuniversität Hagen

Modellierung von Positionssensoren. Jörg Roth Fachbereich Informatik Fernuniversität Hagen Modellierung von Positionssensoren Jörg Roth Fachbereich Informatik Fernuniversität Hagen Position und Positionssensorik Die Position ist eine der wichtigsten Einflussgrößen für ortsbezogenen Dienste Im

Mehr

Typische Fragestellungen aus 3D-Modellierung und mobiler Robotik

Typische Fragestellungen aus 3D-Modellierung und mobiler Robotik Typische Fragestellungen aus 3D-Modellierung und mobiler Robotik Christian Rink German Aerospace Center () Institute of Robotics and Mechatronics 28.4.2014 Knowledge for Tomorrow www.dlr.de Slide 1 of

Mehr

Proseminar Künstliche Intelligenz: Wahrnehmung

Proseminar Künstliche Intelligenz: Wahrnehmung Proseminar Künstliche Intelligenz: Wahrnehmung Sommersemester 2011 Computer Science Department Group Inhalt Department of Informatics 1 Sensoren 2 Bildverarbeitung Kantenerkennung 3D-Informationen extrahieren

Mehr

Indoor-Navigation unter Android

Indoor-Navigation unter Android Indoor-Navigation unter Android So sieht sie aus: MOTIVATION Bestimmung der Besucherpostion Nutzung bestehender WLAN-Netze Nutzung möglichst vieler Sensoren (Sensor Fusion) Hohe Genauigkeit (< 3m) Suche

Mehr

Autonome Roboter. Übersicht. Fakultät Informatik Masterstudiengang Informatik

Autonome Roboter. Übersicht. Fakultät Informatik Masterstudiengang Informatik Autonome Roboter SS 2015 Fakultät Informatik Masterstudiengang Informatik Prof. Dr. Oliver Bittel bittel@htwg-konstanz.de www-home.htwg-konstanz.de/~bittel Prof. Dr. O. Bittel, HTWG Konstanz Autonome Roboter

Mehr

Optimal Control in Air Traffic Management

Optimal Control in Air Traffic Management Optimal Control in Air Traffic Management DGLR Workshop Bestimmung optimaler Trajektorien im Air Traffic Management 23.04.2013 Deutsche Flugsicherung GmbH, Langen 23.04.2013 1 Inhalt. Hintergrund und Motivation.

Mehr

Vorlesungsplan. Von Naïve Bayes zu Bayesischen Netzwerk- Klassifikatoren. Naïve Bayes. Bayesische Netzwerke

Vorlesungsplan. Von Naïve Bayes zu Bayesischen Netzwerk- Klassifikatoren. Naïve Bayes. Bayesische Netzwerke Vorlesungsplan 17.10. Einleitung 24.10. Ein- und Ausgabe 31.10. Reformationstag, Einfache Regeln 7.11. Naïve Bayes, Entscheidungsbäume 14.11. Entscheidungsregeln, Assoziationsregeln 21.11. Lineare Modelle,

Mehr

5. Schließende Statistik. 5.1. Einführung

5. Schließende Statistik. 5.1. Einführung 5. Schließende Statistik 5.1. Einführung Sollen auf der Basis von empirischen Untersuchungen (Daten) Erkenntnisse gewonnen und Entscheidungen gefällt werden, sind die Methoden der Statistik einzusetzen.

Mehr

Monte-Carlo-Simulation

Monte-Carlo-Simulation Modellierung und Simulation Monte-Carlo-Simulation Universität Hamburg Johannes Schlundt 7. Januar 2013 Monte-Carlo-Simulation Johannes S. 1/31 Inhalt Motivation Geschichtliche Entwicklung Monte-Carlo-Simulation

Mehr

Scheduling und Lineare ProgrammierungNach J. K. Lenstra, D. B. Shmoys und É.

Scheduling und Lineare ProgrammierungNach J. K. Lenstra, D. B. Shmoys und É. Scheduling und Lineare ProgrammierungNach J. K. Lenstra, D. B. Shmoys und É. Tardos Janick Martinez Esturo jmartine@techfak.uni-bielefeld.de xx.08.2007 Sommerakademie Görlitz Arbeitsgruppe 5 Gliederung

Mehr

Autonome Fahrzeuge. Eine Pro-Seminar Arbeit von. Patrick Bertsch. 1 Abstract

Autonome Fahrzeuge. Eine Pro-Seminar Arbeit von. Patrick Bertsch. 1 Abstract Eine Pro-Seminar Arbeit von 2006 1 Abstract Die folgende Arbeit soll einen kurzen Einblick in das Gebiet der Künstlichen Intelligenz, im Bezug auf autonome Fahrzeuge, geben. Im folgenden sollen der Aufbau

Mehr

Textmining Klassifikation von Texten Teil 1: Naive Bayes

Textmining Klassifikation von Texten Teil 1: Naive Bayes Textmining Klassifikation von Texten Teil 1: Naive Bayes Dept. Informatik 8 (Künstliche Intelligenz) Friedrich-Alexander-Universität Erlangen-Nürnberg (Informatik 8) Klassifikation von Texten 1: Naive

Mehr

Iterative Bildrekonstruktion

Iterative Bildrekonstruktion Iterative Bildrekonstruktion Prof. Dr. Marc Kachelrieß Deutsches Krebsforschungszentrum (DKFZ) Heidelberg, Germany www.dkfz.de Modell Updategleichung Einfluss Updategleichung und Modell Bildrekonstruktion

Mehr

Transformation und Darstellung funktionaler Daten

Transformation und Darstellung funktionaler Daten Transformation und Darstellung funktionaler Daten Seminar - Statistik funktionaler Daten Jakob Bossek Fakultät für Statistik 7. Mai 2012 Übersicht Einleitung Einordnung im Seminar Motivation am Beispiel

Mehr

Methoden zur Visualisierung von Ergebnissen aus Optimierungs- und DOE-Studien

Methoden zur Visualisierung von Ergebnissen aus Optimierungs- und DOE-Studien Methoden zur Visualisierung von Ergebnissen aus Optimierungs- und DOE-Studien Katharina Witowski katharina.witowski@dynamore.de Übersicht Beispiel Allgemeines zum LS-OPT Viewer Visualisierung von Simulationsergebnissen

Mehr

Seminarvortag zum Thema Virtual Private Network Design im Rahmen des Seminars Network Design an der Universität Paderborn

Seminarvortag zum Thema Virtual Private Network Design im Rahmen des Seminars Network Design an der Universität Paderborn Seminarvortag zum Thema Virtual Private Network Design im Rahmen des Seminars Network Design an der Universität Paderborn Ein 5.55-Approximationsalgorithmus für das VPND-Problem Lars Schäfers Inhalt Einführung:

Mehr

Grundprinzipien der Bayes-Statistik

Grundprinzipien der Bayes-Statistik Grundprinzipien der Bayes-Statistik Karl-Rudolf Koch Zusammenfassung: In drei wesentlichen Punkten unterscheidet sich die Bayes-Statistik von der traditionellen Statistik. Zunächst beruht die Bayes-Statistik

Mehr

Markov-Prozesse mit stetigem Zustands- und Parameterraum

Markov-Prozesse mit stetigem Zustands- und Parameterraum Kapitel 8 Markov-Prozesse mit stetigem Zustands- und Parameterraum Markov-Prozesse mit stetigem Zustandsraum S R (bzw. mehrdimensional S R p und in stetiger Zeit, insbesondere sogenannte Diffusionsprozesse

Mehr

Symplifying the Reconstruction of 3D Models using Parameter Elimination

Symplifying the Reconstruction of 3D Models using Parameter Elimination Seminar 3D Rekonstruktion, Priehn, Hannes Priehn, Jens Symplifying the Reconstruction of 3D Models using Parameter Elimination SS2011 Hannes Priehn Jens Priehn Koordinatensysteme Titel, Datum,... 2 Weltkoordinaten

Mehr

Nichtlineare Optimierung ohne Nebenbedingungen

Nichtlineare Optimierung ohne Nebenbedingungen Kapitel 2 Nichtlineare Optimierung ohne Nebenbedingungen In diesem Abschnitt sollen im wesentlichen Verfahren zur Bestimmung des Minimums von nichtglatten Funktionen in einer Variablen im Detail vorgestellt

Mehr

Simulation and Visualization of Indoor-Acoustics. for Robot Control

Simulation and Visualization of Indoor-Acoustics. for Robot Control Simulation and Visualization of Indoor-Acoustics for Robot Control Peter Dannenmann FB Intelligente Visualisierung und Simulation (IVS), Deutsches Forschungszentrum für Künstliche Intelligenz (DFKI) Norbert

Mehr

Teil II. Nichtlineare Optimierung

Teil II. Nichtlineare Optimierung Teil II Nichtlineare Optimierung 60 Kapitel 1 Einleitung In diesem Abschnitt wird die Optimierung von Funktionen min {f(x)} x Ω betrachtet, wobei Ω R n eine abgeschlossene Menge und f : Ω R eine gegebene

Mehr

Kapitel 3. Zufallsvariable. Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion. Erwartungswert, Varianz und Standardabweichung

Kapitel 3. Zufallsvariable. Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion. Erwartungswert, Varianz und Standardabweichung Kapitel 3 Zufallsvariable Josef Leydold c 2006 Mathematische Methoden III Zufallsvariable 1 / 43 Lernziele Diskrete und stetige Zufallsvariable Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion

Mehr

1. Einfuhrung zur Statistik

1. Einfuhrung zur Statistik Philipps-Universitat Marburg Was ist Statistik? Statistik = Wissenschaft vom Umgang mit Daten Phasen einer statistischen Studie 1 Studiendesign Welche Daten sollen erhoben werden? Wie sollen diese erhoben

Mehr

Charakteristikenmethode im Beispiel

Charakteristikenmethode im Beispiel Charakteristikenmethode im Wir betrachten die PDE in drei Variablen xu x + yu y + (x + y )u z = 0. Das charakteristische System lautet dann ẋ = x ẏ = y ż = x + y und besitzt die allgemeine Lösung x(t)

Mehr

Inhalt Software-Metriken Software-Metriken mit Together FindBugs. Software-Metriken. Raimar Lill Matthias Meitner David Föhrweiser Marc Spisländer

Inhalt Software-Metriken Software-Metriken mit Together FindBugs. Software-Metriken. Raimar Lill Matthias Meitner David Föhrweiser Marc Spisländer Lill, Meitner, Föhrweiser, Spisländer FAU Erlangen-Nürnberg Software-Metriken 1 / 24 Software-Metriken Raimar Lill Matthias Meitner David Föhrweiser Marc Spisländer Lehrstuhl für Software Engineering Friedrich-Alexander-Universität

Mehr

Computer Vision: 3D-Geometrie. D. Schlesinger () Computer Vision: 3D-Geometrie 1 / 17

Computer Vision: 3D-Geometrie. D. Schlesinger () Computer Vision: 3D-Geometrie 1 / 17 Computer Vision: 3D-Geometrie D. Schlesinger () Computer Vision: 3D-Geometrie 1 / 17 Lochkamera Modell C Projektionszentrum, Optische Achse, Bildebene, P Hauptpunkt (optische Achse kreuzt die Bildebene),

Mehr

Optimierung. Optimierung. Vorlesung 2 Optimierung ohne Nebenbedingungen Gradientenverfahren. 2013 Thomas Brox, Fabian Kuhn

Optimierung. Optimierung. Vorlesung 2 Optimierung ohne Nebenbedingungen Gradientenverfahren. 2013 Thomas Brox, Fabian Kuhn Optimierung Vorlesung 2 Optimierung ohne Nebenbedingungen Gradientenverfahren 1 Minimierung ohne Nebenbedingung Ein Optimierungsproblem besteht aus einer zulässigen Menge und einer Zielfunktion Minimum

Mehr

Computer Vision: Optische Flüsse

Computer Vision: Optische Flüsse Computer Vision: Optische Flüsse D. Schlesinger TUD/INF/KI/IS Bewegungsanalyse Optischer Fluss Lokale Verfahren (Lukas-Kanade) Globale Verfahren (Horn-Schunck) (+ kontinuierliche Ansätze: mathematische

Mehr

Solvency II und die Standardformel

Solvency II und die Standardformel Fakultät Mathematik und Naturwissenschaften Institut für Mathematische Stochastik Solvency II und die Standardformel Festkolloquium 20 Jahre (neue) Versicherungsmathematik an der TU Dresden Sebastian Fuchs

Mehr

Rekonfigurierbare Regelung der Stuttgart SmartShell

Rekonfigurierbare Regelung der Stuttgart SmartShell Rekonfigurierbare Regelung der Stuttgart SmartShell Michael Heidingsfeld Institut für Systemdynamik, Universität Stuttgart 9. Elgersburg Workshop (2.-6. März 2014) Institut für Systemdynamik Stuttgart

Mehr

Künstliche Intelligenz Unsicherheit. Stephan Schwiebert WS 2009/2010 Sprachliche Informationsverarbeitung Institut für Linguistik Universität zu Köln

Künstliche Intelligenz Unsicherheit. Stephan Schwiebert WS 2009/2010 Sprachliche Informationsverarbeitung Institut für Linguistik Universität zu Köln Künstliche Intelligenz Unsicherheit Stephan Schwiebert WS 2009/2010 Sprachliche Informationsverarbeitung Institut für Linguistik Universität zu Köln Rückblick Agent in der Wumpuswelt konnte Entscheidungen

Mehr

Tracking Technologien für Augmented Reality

Tracking Technologien für Augmented Reality Tracking Technologien für Augmented Reality 1 Inhalt Motivation Tracking Methoden Optisch MarkerlessTracking (kleine Wiederholung) Aktiv und Passive Marker Modellbasiertes Markerless Tracking Sensoren

Mehr

Wir unterscheiden folgende drei Schritte im Design paralleler Algorithmen:

Wir unterscheiden folgende drei Schritte im Design paralleler Algorithmen: 1 Parallele Algorithmen Grundlagen Parallele Algorithmen Grundlagen Wir unterscheiden folgende drei Schritte im Design paralleler Algorithmen: Dekomposition eines Problems in unabhängige Teilaufgaben.

Mehr

Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. z(t) = at + b

Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. z(t) = at + b Aufgabe 1: Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. (a) Nehmen Sie lineares Wachstum gemäß z(t) = at + b an, wobei z die Einwohnerzahl ist und

Mehr

Grundlagen der Programmierung

Grundlagen der Programmierung Grundlagen der Programmierung Algorithmen und Datenstrukturen Die Inhalte der Vorlesung wurden primär auf Basis der angegebenen Literatur erstellt. Darüber hinaus sind viele Teile direkt aus der Vorlesung

Mehr

Ziel. MapMatchingVerfahren spielen eine wichtige Rolle, z.b bei der Fahrzeugnavigation. Visualisierung der gematchten.

Ziel. MapMatchingVerfahren spielen eine wichtige Rolle, z.b bei der Fahrzeugnavigation. Visualisierung der gematchten. Ziel Mit Hilfe von Verfahren werden die mittels Sensoren aufgenommenen Wegestücke / Punkte auf die Geometrien der Vektordaten im Navigationssystem bezogen MapMatchingVerfahren spielen eine wichtige Rolle,

Mehr

4 Greedy-Algorithmen (gierige Algorithmen)

4 Greedy-Algorithmen (gierige Algorithmen) Greedy-Algorithmen (gierige Algorithmen) Greedy-Algorithmen werden oft für die exakte oder approximative Lösung von Optimierungsproblemen verwendet. Typischerweise konstruiert ein Greedy-Algorithmus eine

Mehr

(λ Ri I A+BR)v Ri = 0. Lässt sich umstellen zu

(λ Ri I A+BR)v Ri = 0. Lässt sich umstellen zu Herleitung der oppenecker-formel (Wiederholung) Für ein System ẋ Ax + Bu (B habe Höchstrang) wird eine Zustandsregelung u x angesetzt. Der geschlossene egelkreis gehorcht der Zustands-Dgl. ẋ (A B)x. Die

Mehr

Ausarbeitung des Seminarvortrags zum Thema

Ausarbeitung des Seminarvortrags zum Thema Ausarbeitung des Seminarvortrags zum Thema Anlagepreisbewegung zum Seminar Finanzmathematische Modelle und Simulationen bei Raphael Kruse und Prof. Dr. Wolf-Jürgen Beyn von Imke Meyer im W9/10 Anlagepreisbewegung

Mehr

Telematik trifft Geomatik

Telematik trifft Geomatik B der Welt in 3D Die Vermessung Telematik trifft Geomatik Bild: Riegl Prof. Dr. Andreas Nüchter Was ist Telematik? Die Telematik integriert interdisziplinär Methoden der Telekommunikation, der Automatisierungs-technik

Mehr

29. Mai 2006. 5. Bei Unterschleif gilt die Klausur als nicht bestanden und es erfolgt eine Meldung an das Prüfungsamt.

29. Mai 2006. 5. Bei Unterschleif gilt die Klausur als nicht bestanden und es erfolgt eine Meldung an das Prüfungsamt. L. Fahrmeir, C. Belitz Department für Statistik Bitte für die Korrektur freilassen! Aufgabe 1 2 3 4 Punkte Klausur zur Vorlesung Statistik III für Studenten mit Wahlfach Statistik 29. Mai 2006 Hinweise:

Mehr

Konzepte der Informatik

Konzepte der Informatik Konzepte der Informatik Vorkurs Informatik zum WS 2011/2012 26.09. - 30.09.2011 17.10. - 21.10.2011 Dr. Werner Struckmann / Christoph Peltz Stark angelehnt an Kapitel 1 aus "Abenteuer Informatik" von Jens

Mehr

Software Engineering in der Praxis

Software Engineering in der Praxis Software Engineering in der Praxis Praktische Übungen Adersberger, Spisländer FAU Erlangen-Nürnberg Software-Metriken 1 / 26 Software-Metriken Josef Adersberger Marc Spisländer Lehrstuhl für Software Engineering

Mehr

Programmiertechnik II

Programmiertechnik II Analyse von Algorithmen Algorithmenentwurf Algorithmen sind oft Teil einer größeren Anwendung operieren auf Daten der Anwendung, sollen aber unabhängig von konkreten Typen sein Darstellung der Algorithmen

Mehr

Elementare Bildverarbeitungsoperationen

Elementare Bildverarbeitungsoperationen 1 Elementare Bildverarbeitungsoperationen - Kantenerkennung - 1 Einführung 2 Gradientenverfahren 3 Laplace-Verfahren 4 Canny-Verfahren 5 Literatur 1 Einführung 2 1 Einführung Kantenerkennung basiert auf

Mehr

CT Rekonstruktion mit Objektspezifischen Erweiterten Trajektorien

CT Rekonstruktion mit Objektspezifischen Erweiterten Trajektorien DACH-Jahrestagung 2015 Mo.3.A.3 CT Rekonstruktion mit Objektspezifischen Erweiterten Trajektorien Andreas FISCHER 1, Tobias LASSER 2, Michael SCHRAPP 1, Jürgen STEPHAN 1, Karsten SCHÖRNER 1, Peter NOËL

Mehr

Thema 2: Systemarchitekturen von Sensor-Aktor-Systemen von mobilem Robotern

Thema 2: Systemarchitekturen von Sensor-Aktor-Systemen von mobilem Robotern Überblick und Systemarchitektur allgemein Thema 1: Aktuelle Trends im Robocup Die Robocup-Initiative hat zum Ziel, Benchmark aktueller Entwicklungen auf dem Gebiet der Künstlichen Intelligenz und der Robotik

Mehr

Softwareentwicklung Allgemeines und prozedurale Konstrukte

Softwareentwicklung Allgemeines und prozedurale Konstrukte Mag. iur. Dr. techn. Michael Sonntag Softwareentwicklung Allgemeines und prozedurale Konstrukte E-Mail: sonntag@fim.uni-linz.ac.at http://www.fim.uni-linz.ac.at/staff/sonntag.htm Institut für Informationsverarbeitung

Mehr

6. Bayes-Klassifikation. (Schukat-Talamazzini 2002)

6. Bayes-Klassifikation. (Schukat-Talamazzini 2002) 6. Bayes-Klassifikation (Schukat-Talamazzini 2002) (Böhm 2003) (Klawonn 2004) Der Satz von Bayes: Beweis: Klassifikation mittels des Satzes von Bayes (Klawonn 2004) Allgemeine Definition: Davon zu unterscheiden

Mehr

Betrachtung von Verfahren zur Posenbestimmung und Merkmalsexktraktion. Thorsten Jost INF-MA SR Wintersemester 2008/2009 1.

Betrachtung von Verfahren zur Posenbestimmung und Merkmalsexktraktion. Thorsten Jost INF-MA SR Wintersemester 2008/2009 1. Betrachtung von Verfahren zur Posenbestimmung und Merkmalsexktraktion Thorsten Jost INF-MA SR Wintersemester 2008/2009 1. Dezember 2008 Agenda Motivation Feature Detection SIFT MOPS SURF SLAM Monte Carlo

Mehr

Klausur zur Vorlesung Multivariate Verfahren, SS 2006 6 Kreditpunkte, 90 min

Klausur zur Vorlesung Multivariate Verfahren, SS 2006 6 Kreditpunkte, 90 min Klausur, Multivariate Verfahren, SS 2006, 6 Kreditpunkte, 90 min 1 Prof. Dr. Fred Böker 08.08.2006 Klausur zur Vorlesung Multivariate Verfahren, SS 2006 6 Kreditpunkte, 90 min Gesamtpunkte: 39 Aufgabe

Mehr

Wissensbasierte Systeme

Wissensbasierte Systeme WBS5 Slide 1 Wissensbasierte Systeme Vorlesung 5 vom 17.11.2004 Sebastian Iwanowski FH Wedel WBS5 Slide 2 Wissensbasierte Systeme 1. Motivation 2. Prinzipien und Anwendungen 3. Logische Grundlagen 4. Suchstrategien

Mehr

Wie findet das Navi den Weg?

Wie findet das Navi den Weg? 0.05.0 Verwandte Fragestellungen Problemstellungen aus der Praxis Prof. Dr. Paul Rawiel Gliederung des Vortrags Speicherung von Kartendaten zur Navigation Kriterien für die Navigation Finden des kürzesten

Mehr

PROSEMINAR ONLINE ALGORITHMEN

PROSEMINAR ONLINE ALGORITHMEN PROSEMINAR ONLINE ALGORITHMEN im Wintersemester 2000/2001 Prof. Dr. Rolf Klein, Dr. Elmar Langetepe, Dipl. Inform. Thomas Kamphans (Betreuer) Vortrag vom 15.11.2000 von Jan Schmitt Thema : Finden eines

Mehr

Seminar Visual Analytics and Visual Data Mining

Seminar Visual Analytics and Visual Data Mining Seminar Visual Analytics and Visual Data Mining Dozenten:, AG Visual Computing Steffen Oeltze, AG Visualisierung Organisatorisches Seminar für Diplom und Bachelor-Studenten (max. 18) (leider nicht für

Mehr

Pfinder: Real-Time Tracking of the Human Body

Pfinder: Real-Time Tracking of the Human Body Pfinder: Real-Time Tracking of the Human Body Christopher Wren, Ali Azarbayejani, Trevor Darrell, Alex Pentland aus: IEEE Transactions on Pattern Analysis and Machine Intelligence (pp. 780-785) 12. April

Mehr

Grundlagen der Monte Carlo Simulation

Grundlagen der Monte Carlo Simulation Grundlagen der Monte Carlo Simulation 10. Dezember 2003 Peter Hofmann Inhaltsverzeichnis 1 Monte Carlo Simulation.................... 2 1.1 Problemstellung.................... 2 1.2 Lösung durch Monte

Mehr

ε heteroskedastisch BINARY CHOICE MODELS Beispiele: Wahlentscheidung Kauf langlebiger Konsumgüter Arbeitslosigkeit Schätzung mit OLS?

ε heteroskedastisch BINARY CHOICE MODELS Beispiele: Wahlentscheidung Kauf langlebiger Konsumgüter Arbeitslosigkeit Schätzung mit OLS? BINARY CHOICE MODELS 1 mit Pr( Y = 1) = P Y = 0 mit Pr( Y = 0) = 1 P Beispiele: Wahlentscheidung Kauf langlebiger Konsumgüter Arbeitslosigkeit Schätzung mit OLS? Y i = X i β + ε i Probleme: Nonsense Predictions

Mehr

Zufallsgrößen. Vorlesung Statistik für KW 29.04.2008 Helmut Küchenhoff

Zufallsgrößen. Vorlesung Statistik für KW 29.04.2008 Helmut Küchenhoff Zufallsgrößen 2.5 Zufallsgrößen 2.5.1 Verteilungsfunktion einer Zufallsgröße 2.5.2 Wahrscheinlichkeits- und Dichtefunktion Wahrscheinlichkeitsfunktion einer diskreten Zufallsgröße Dichtefunktion einer

Mehr

Statistische Thermodynamik I Lösungen zur Serie 1

Statistische Thermodynamik I Lösungen zur Serie 1 Statistische Thermodynamik I Lösungen zur Serie Zufallsvariablen, Wahrscheinlichkeitsverteilungen 4. März 2. Zwei Lektoren lesen ein Buch. Lektor A findet 2 Druckfehler, Lektor B nur 5. Von den gefundenen

Mehr

Monte-Carlo-Simulationen mit Copulas. Kevin Schellkes und Christian Hendricks 29.08.2011

Monte-Carlo-Simulationen mit Copulas. Kevin Schellkes und Christian Hendricks 29.08.2011 Kevin Schellkes und Christian Hendricks 29.08.2011 Inhalt Der herkömmliche Ansatz zur Simulation logarithmischer Renditen Ansatz zur Simulation mit Copulas Test und Vergleich der beiden Verfahren Fazit

Mehr

Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau

Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau 1 Einführung in die statistische Datenanalyse Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau 2 Gliederung 1.Grundlagen 2.Nicht-parametrische Tests a. Mann-Whitney-Wilcoxon-U Test b. Wilcoxon-Signed-Rank

Mehr

Binäre abhängige Variablen

Binäre abhängige Variablen Binäre abhängige Variablen Thushyanthan Baskaran thushyanthan.baskaran@awi.uni-heidelberg.de Alfred Weber Institut Ruprecht Karls Universität Heidelberg Einführung Oft wollen wir qualitative Variablen

Mehr

Seminar Text- und Datamining Datamining-Grundlagen

Seminar Text- und Datamining Datamining-Grundlagen Seminar Text- und Datamining Datamining-Grundlagen Martin Hacker Richard Schaller Künstliche Intelligenz Department Informatik FAU Erlangen-Nürnberg 23.05.2013 Gliederung 1 Klassifikationsprobleme 2 Evaluation

Mehr

Die Ökonomie von Glücksspielen

Die Ökonomie von Glücksspielen Die Ökonomie von Glücksspielen Teil II: Risiko, Unsicherheit, EVF-Model Dr. Ingo Fiedler 09.04.2013 Organisatorisches Keine Verschiebung der Veranstaltung Eventuell: Beginn bereits um 16Uhr? Erinnerung:

Mehr

Statistische Verfahren für das Data Mining in einem Industrieprojekt

Statistische Verfahren für das Data Mining in einem Industrieprojekt Statistische Verfahren für das Data Mining in einem Industrieprojekt Thorsten Dickhaus Forschungszentrum Jülich GmbH Zentralinstitut für Angewandte Mathematik Telefon: 02461/61-4193 E-Mail: th.dickhaus@fz-juelich.de

Mehr

Analyse von Zeitreihen in der Umweltphysik und Geophysik Stochastische Prozesse

Analyse von Zeitreihen in der Umweltphysik und Geophysik Stochastische Prozesse Analyse von Zeitreihen in der Umweltphysik und Geophysik Stochastische Prozesse Yannik Behr Gliederung 1 Stochastische Prozesse Stochastische Prozesse Ein stochastischer Prozess ist ein Phänomen, dessen

Mehr

Schulinternes Curriculum. Mathematik

Schulinternes Curriculum. Mathematik Gymnasium Zitadelle Schulinternes Curriculum (G 8) Stand: Schuljahr 2012/13 Gymnasium Zitadelle Schulinternes Curriculum Seite 1 EF Eingeführtes Lehrbuch: Lambacher Schweizer 10 Einführungsphase Funktionen

Mehr

Entwicklung eines Distanzmaßes zwischen Bildern über dem Modell der Fields of Visual Words

Entwicklung eines Distanzmaßes zwischen Bildern über dem Modell der Fields of Visual Words Entwicklung eines Distanzmaßes zwischen Bildern über dem Modell der Fields of Visual Words André Viergutz 1 Inhalt Einführung. Einordnung der Arbeit in die zugrunde liegenden Konzepte Das Modell der Fields

Mehr

Klassische Risikomodelle

Klassische Risikomodelle Klassische Risikomodelle Kathrin Sachernegg 15. Jänner 2008 1 Inhaltsverzeichnis 1 Einführung 3 1.1 Begriffserklärung.................................. 3 2 Individuelles Risikomodell 3 2.1 Geschlossenes

Mehr

MATHEMATISCHE ANALYSE VON ALGORITHMEN

MATHEMATISCHE ANALYSE VON ALGORITHMEN MATHEMATISCHE ANALYSE VON ALGORITHMEN Michael Drmota Institut für Diskrete Mathematik und Geometrie, TU Wien michael.drmota@tuwien.ac.at www.dmg.tuwien.ac.at/drmota/ Ringvorlesung SS 2008, TU Wien Algorithmus

Mehr

Einführung in die Robotik Steuerungsarchitekturen. Mohamed Oubbati Institut für Neuroinformatik. Tel.: (+49) 731 / 50 24153 mohamed.oubbati@uni-ulm.

Einführung in die Robotik Steuerungsarchitekturen. Mohamed Oubbati Institut für Neuroinformatik. Tel.: (+49) 731 / 50 24153 mohamed.oubbati@uni-ulm. Einführung in die Robotik Steuerungsarchitekturen Mohamed Oubbati Institut für Neuroinformatik Tel.: (+49) 731 / 50 24153 mohamed.oubbati@uni-ulm.de 29. 01. 2013 Steuerungsarchitekturen - Deliberative

Mehr

Computer Vision I. Nikos Canterakis. Lehrstuhl für Mustererkennung, Universität Freiburg,

Computer Vision I. Nikos Canterakis. Lehrstuhl für Mustererkennung, Universität Freiburg, Nikos Canterakis Lehrstuhl für Mustererkennung, Universität Freiburg, Literatur Richard Hartle and Andrew Zisserman. Multiple View Geometr in computer vision, Cambridge Universit Press, 2 nd Ed., 23. O.D.

Mehr

Planen mit mathematischen Modellen 00844: Computergestützte Optimierung. Autor: Dr. Heinz Peter Reidmacher

Planen mit mathematischen Modellen 00844: Computergestützte Optimierung. Autor: Dr. Heinz Peter Reidmacher Planen mit mathematischen Modellen 00844: Computergestützte Optimierung Leseprobe Autor: Dr. Heinz Peter Reidmacher 11 - Portefeuilleanalyse 61 11 Portefeuilleanalyse 11.1 Das Markowitz Modell Die Portefeuilleanalyse

Mehr

Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt!

Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt! Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt! 1 Einführung 2 Wahrscheinlichkeiten kurz gefasst 3 Zufallsvariablen und Verteilungen 4 Theoretische Verteilungen (Wahrscheinlichkeitsfunktion)

Mehr

Weiterbildungskurs Stochastik

Weiterbildungskurs Stochastik Hansruedi Künsch Seminar für Statistik Departement Mathematik, ETH Zürich 24. Juni 2009 Inhalt STATISTIK DER BINOMIALVERTEILUNG 1 STATISTIK DER BINOMIALVERTEILUNG 2 Fragestellungen Typische Fragestellungen

Mehr

Event-basierte Visualisierung zeitabhängiger Datensätze

Event-basierte Visualisierung zeitabhängiger Datensätze Fakultät Informatik, Institut für Software- und Multimediatechnik, Professur für Computergrafik zeitabhängiger Datensätze Florian Weidner Dresden, 3. Jun 2013 (Betreut von Dr. Sebastian Grottel) Gliederung

Mehr

Reihungen. Martin Wirsing. in Zusammenarbeit mit Matthias Hölzl und Nora Koch 11/03

Reihungen. Martin Wirsing. in Zusammenarbeit mit Matthias Hölzl und Nora Koch 11/03 Reihungen Martin Wirsing in Zusammenarbeit mit Matthias Hölzl und Nora Koch 11/03 2 Ziele Die Datenstruktur der Reihungen verstehen: mathematisch und im Speicher Grundlegende Algorithmen auf Reihungen

Mehr

3. Ulmer Robotertag 4. März 2010

3. Ulmer Robotertag 4. März 2010 servicerobotik autonome mobile Serviceroboter 3. Ulmer Robotertag Andreas Steck and Christian Schlegel ZAFH Servicerobotik Institut für Informatik Hochschule Ulm http://smart-robotics.sourceforge.net/

Mehr

MATHEMATIK 3 STUNDEN. DATUM: 8. Juni 2009

MATHEMATIK 3 STUNDEN. DATUM: 8. Juni 2009 EUROPÄISCHES ABITUR 2009 MATHEMATIK 3 STUNDEN DATUM: 8. Juni 2009 DAUER DES EXAMENS : 3 Stunden (180 Minuten) ZUGELASSENE HILFSMITTEL : Europäische Formelsammlung Nicht graphischer und nicht programmierbarer

Mehr

1 Part-of-Speech Tagging

1 Part-of-Speech Tagging 2. Übung zur Vorlesung NLP Analyse des Wissensrohstoes Text im Sommersemester 2008 Dr. Andreas Hotho, Dipl.-Inform. Dominik Benz, Wi.-Inf. Beate Krause 28. Mai 2008 1 Part-of-Speech Tagging 1.1 Grundlagen

Mehr

Architektur verteilter Anwendungen

Architektur verteilter Anwendungen Architektur verteilter Anwendungen Schwerpunkt: verteilte Algorithmen Algorithmus: endliche Folge von Zuständen Verteilt: unabhängige Prozessoren rechnen tauschen Informationen über Nachrichten aus Komplexität:

Mehr

Exkurs: Dynamische Optimierung

Exkurs: Dynamische Optimierung Exkurs: Dynamische Optimierung Kapitel 4 Literatur Optimierung Mathematical Methods and Models for Economists, Angel de la Fuente, Cambridge University Press Bibliothekssignatur: QH 000FUE Seite 549 580

Mehr

6 Lösungsverfahren für lineare Gleichungssysteme

6 Lösungsverfahren für lineare Gleichungssysteme 6 Lösungsverfahren für lineare Gleichungssysteme Jörn Loviscach Versionsstand:. März 04, :07 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen beim Ansehen der Videos: http://www.jl7h.de/videos.html

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Übungsbuch für den Grundkurs mit Tipps und Lösungen: Analysis

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Übungsbuch für den Grundkurs mit Tipps und Lösungen: Analysis Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Übungsbuch für den Grundkurs mit Tipps und Lösungen: Analysis Das komplette Material finden Sie hier: Download bei School-Scout.de

Mehr

OPERATIONS-RESEARCH (OR)

OPERATIONS-RESEARCH (OR) OPERATIONS-RESEARCH (OR) Man versteht darunter die Anwendung mathematischer Methoden und Modelle zur Vorbereitung optimaler Entscheidungen bei einem Unternehmen. Andere deutsche und englische Bezeichnungen:

Mehr

Rekonstruktion 3D-Datensätze

Rekonstruktion 3D-Datensätze Rekonstruktion 3D-Datensätze Messung von 2D Projektionsdaten von einer 3D Aktivitätsverteilung Bekannt sind: räumliche Anordnung der Detektoren/Projektionsflächen ->Ziel: Bestimmung der 3D-Aktivitätsverteilung

Mehr

Grundlagen: Bildbearbeitung / Objekterkennung. Julia Peterwitz zum Seminar: Videobasierte Erkennung und Analyse menschlicher Aktionen

Grundlagen: Bildbearbeitung / Objekterkennung. Julia Peterwitz zum Seminar: Videobasierte Erkennung und Analyse menschlicher Aktionen Grundlagen: Bildbearbeitung / Objekterkennung Julia Peterwitz zum Seminar: Videobasierte Erkennung und Analyse menschlicher Aktionen Videoerkennung! Warum? Live-Übertragung von Veranstaltungen Überwachung

Mehr

Die Klein-Gordon Gleichung

Die Klein-Gordon Gleichung Kapitel 5 Die Klein-Gordon Gleichung 5.1 Einleitung Die Gleichung für die Rutherford-Streuung ist ein sehr nützlicher Ansatz, um die Streuung von geladenen Teilchen zu studieren. Viele Aspekte sind aber

Mehr