7 Erzwungene Schwingung bei Impulslasten

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "7 Erzwungene Schwingung bei Impulslasten"

Transkript

1 Einmassenschwinger eil I.7 Impulslasen 53 7 Erzwungene Schwingung bei Impulslasen Impulslasen im echnischen Allag sind zum Beispiel Soß- oder Aufprallvorgänge oder Schläge. Die Las seig dabei in kurzer Zei an, bleib für eine gewisse Zeidauer auf nennenswerem Niveau, verringer sich anschließend und ri anschließend nich mehr auf. In den folgenden Hinweisen sollen zunächs nur Impulslasen von sehr kurzer Dauer berache werden. Wegen der kurzen Zeidauer ha die Dämpfung auf das Schwingungsverhalen des Sysems einen sehr geringen Einfluss, da bei solchen Belasungen die maximale Beanspruchung in der Regel erreich wird, bevor sich die Dämpfungskräfe auswirken können. Daher wird in diesem Abschni die Dämpfung vernachlässig. Einige wesenliche Impulsformen sollen, ensprechend der Übersich der Belasungen in eil I.3, behandel werden. Die Impulslasen sind dadurch gekennzeichne, dass für einen kurzen Zeiraum die Las auf das Baueil einwirk. Dieser kurze Zeiraum wird im folgenden als Phase I bezeichne. Nach dem Ende dieses Zeiraumes wirken keine Lasen mehr, das Baueil is jedoch aus seiner Ruhelage ausgelenk. Dadurch ergib sich für den anschließenden Zeibereich ein Ausschwingen, das die Merkmale einer freien Schwingung ha. Dieser Zeibereich wird im folgenden als Phase II bezeichne. 7.1 Sinus-Impuls Dieser Belasungsfall gib annähernd die Belasung z. B. durch einen Windsoß oder Fahrzeuganprall wieder. p( Der Verlauf der Las is in Abb.7-1 gezeig. p Es sind aufgrund des Zeiverlaufes der Las die folgenden Zeibereiche zu unerscheiden Phase I: Phase II: Zeibereich der erzwungenen Schwingung, die Las wirk auf das Baueil ein, p( Zeibereich des freien Ausschwingens, die Wirkung der Las is beende, der Wer der Las beräg p( Als Anfangswere für Phase I wird u ( und u& ( angenommen. Lösung für Phase I: < / Abb. 7-1 Phase I Π Sinus-Impuls-Belasung Für diese Zei is die Bewegung idenisch einer Bewegung u( infolge der harmonischen Belasung p( p o sin. Daher erhäl man als Bewegungsgleichung für diesen Zeiraum

2 54 eil I.7 Impulslasen Einmassenschwinger P 1 ; 1 ß ( ( sin ßsin u (7.1 Lösung für Phase II: > / Zu Beginn der Phase II is das Sysem nich in Ruhe, sondern ha als Anfangswere für ' die Were, die sich aus Gleichung (7.1 für (Ende Phase I ergeben. P 1 P ß u( sin ßsin sin 1 ß 1 ß ß (7. P 1 P u& ( cos ß cos 1 + cos 1 ß 1 ß ß Die Gleichung der Schwingung in der Phase II lauee mi Gleichung (4.7. u& ( u ( u( cos + sin (7.3 Maximalwer der Bewegungsgleichung: Wenn ein Maximum in Phase I aufri, muss gelen: P 1 u& cos ß cos ; 1 ß cos cos cos cos ( β ( und dami ± + n ; n, ± 1, ±,... Wegen < bzw. < gil die Beziehung nur für n 1 und <. Für den Fall, dass sich von unen näher, gil für den Zeipunk des Aufreens des ersen Maximums: bzw. ( ß Für ß < 1 lieg dami die Maximalampliude ses in Phase I, also im Zeibereich der Impulsdauer. Die Ordinae erhäl man, wenn Gleichung (7.4 in Gleichung (7.1 eingesez wird. Für ß 1 erhäl man die Maximalampliude ri genau am Ende des Lasimpulses auf. Die Größe der Maximalampliude erhäl man aus Gleichung (7.4 mi einer Grenzüberlegung β 1 P u max bzw. D, ( ß 1, (7.5

3 Einmassenschwinger eil I.7 Impulslasen 55 Für ß > 1 erhäl man die Maximalampliude, indem Gleichung (7.3 in der Form u ρ sin( θ geschrieben wird. Für die Ampliude ρ erhäl man nach Gleichung (4.9 mi den Beziehungen (7. ( u& P ß ρ + u( + cos ß 1 ß oder für den dynamischen Vergrößerungsfakor D ß D cos, ( ß > 1, > (7.6 ß 1 ß 7. Recheck-Impuls Abb.7- zeig einen recheckförmigen Lasimpuls- Verlauf. Phase I: Für den Zeibereich während der Dauer des Lasimpulses erhäl man als Parikularlösung die saische Lösung: P u p ( Die homogene Lösung ergib sich zu Acos + Bsin u n ( Abb. 7- p Phase I Phase II Recheck-Impuls-Belasung Die Gesamschwingung ha die Verschiebung P u( + Acos + Bsin Mi den Anfangsbedingungen u( und ů( erhäl man P B und A und es folg dami P u( ( 1 cos (7.7 Phase II: Die Lösung für den Zeibereich nach dem Ende des Lasimpulses ergib sich mi den Anfangsweren u( und ů(, die aus Phase I resulieren, analog zu Gleichung (7.3 des Sinus-Impulses. Für die Ampliude ρ und dami für u max ergib sich mi der Gleichung (4.9

4 56 eil I.7 Impulslasen Einmassenschwinger ρ u max u ( ( u& + p u max 1 cos + sin k ; Nach dem Umformen dieser Gleichung erhäl man p u max sin ; > (7.8 k Maximalwere der Ampliude: Für > / ri das Maximum in Phase I auf. Der Wer des Maximums ergib sich nach Gleichung (7.7 zu p / k. Für < / ri das Maximum in Phase II auf. Dami wird der dynamische Lasfakor D < sin D ( Dreieckimpuls p Der Verlauf der Las is in Abb.7-3 gezeig. Phase I: Als Parikularlösung ergib sich p ( u p 1 k Abb. 7-3 Phase I Phase II Dreieck-Impuls-Belasung Analog zur Vorgehensweise beim Rechecksoß erhäl man für den Fall, das der Wer der Anfangsverschiebung und Anfangsgeschwindigkei gleich Null is, für die Gesambewegung p sin ( u cos + 1 (7.1 k Für sehr kurzzeiige Impulslasen / >,4 ergib sich der Maximalwer der Schwingung in Phase I, ansonsen in Phase II. Den Wer (hier den dynamischen Lasfakor D erhäl man wieder analog zu Abschni 4., wenn als Anfangswere für die freie Schwingung die Were u( und ů( nach Gleichung (7.1 und ihrer Ableiung eingesez werden. Für muss sich als Grenzwer für den dynamischen Vergrößerungsfakor D

5 Einmassenschwinger eil I.7 Impulslasen 57 ergeben, da dann fakisch ein Recheck-"Impuls" erhalen wird. 7.4 Näherungsberechnung von Impulslasen kurzer Dauer In Abb.7-4 sind die dynamischen Vergrößerungsfakoren der drei beracheen Impulsformen in Abhängigkei von / aufgeragen. Wie man erkenn, häng der dynamische Lasfakor D sark von der Impulsform ab. Da D aber auf die Impulsspize p bezogen is, sind die jeweils eingebrachen Gesamimpulse in der Zei unerschiedlich groß. Der Gesamimpuls is das Inegral über die Dauer der Impulsbelasung I p ( d (7.11 Für die beracheen Formen ergib sich,4, 1,6 1,,8,4 D Abb. 7-4,,4,6,8 1, 1, 1,4 1,6 1,8, Dynamischer Vergrößerungsfakor bei Impulsbelasung m I p I, p 5 I p Für einen Impuls eines allgemeinen Verlaufes kann allgemein angegeben werden I p ; < 1 Dabei is ein Formfakor, der charakerisisch für den Impulsverlauf is. Es is deshalb sinnvoll, bei einem Vergleich die Impulsspizen so zu erhöhen, dass in der Zei die gleichen Impulse aufgebrach werden. Bezogen auf den Recheckimpulswer p RE ergib sich mi dem Formfakor : p 1/ p RE, und dami k po 1 umax D D RE RE p p Dieser Wer der asächlichen Beanspruchung bei gleichen Impulsen wird im Abb.7-5 aufgeragen. Man erkenn, dass bis ewa / < 1/6 die Beanspruchung nahezu unabhängig von der Impulsform is und nahezu linear mi anwächs. Uner Beachung dieser Ähnlichkei is für / < 1/6 die asächliche Beanspruchung nur noch von der Größe des Impulses abhängig.

6 58 eil I.7 Impulslasen Einmassenschwinger Bei vernachlässiger Dämpfung ergib sich für die Masse m folgende Impulsgleichung: m u& [ p( k u( ]d (7.1 Δů is die durch die Belasung hervorgerufene Änderung der Geschwindigkei. Für kleine Were von is u( vernachlässigbar klein (in der Größenordnung von ewa, während sich Δů in der Größenordnung von änder. Man kann für kleine Impulsdauern daher näherungsweise schreiben I m u& p( d I, u& (7.13 m Für die Phase II nach der Wirkung des Impulses gil u( u( & sin + u( cos ; Mi u ( und u &( u& u vereinfach sich die Gleichung zu I m (7.14 o ( sin ; I p( τ dτ, > 3, D, 1,,,4,6,8 1, Abb. 7-5 Dynamischer Vergrößerungsfakor bei Impulsbelasungen gleicher Größe

Universität Ulm Samstag,

Universität Ulm Samstag, Universiä Ulm Samsag, 5.6. Prof. Dr. W. Arend Robin Nika Sommersemeser Punkzahl: Lösungen Gewöhnliche Differenialgleichungen: Klausur. Besimmen Sie die Lösung (in möglichs einfacher Darsellung) folgender

Mehr

Laplacetransformation in der Technik

Laplacetransformation in der Technik Verallgemeinere Funkionen Laplaceransformaion in der echnik Fakulä Grundlagen Februar 26 Fakulä Grundlagen Laplaceransformaion in der echnik Übersich Verallgemeinere Funkionen Verallgemeinere Funkionen

Mehr

5 Erzwungene Schwingungen mit harmonischer Belastung

5 Erzwungene Schwingungen mit harmonischer Belastung 4 Teil I.5 Haronische Belasung Einassenschwinger 5 Erzwungene Schwingungen i haronischer Belasung Bei den erzwungenen Schwingungen i haronischer Belasung kann die Lasfunkion auf der rechen Seie der Bewegungsgleichung

Mehr

Kapitel 11 Produktion, Sparen und der Aufbau von Kapital

Kapitel 11 Produktion, Sparen und der Aufbau von Kapital apiel 11 Produkion, Sparen und der Aufbau von apial Vorbereie durch: Florian Barholomae / Sebasian Jauch / Angelika Sachs Die Wechselwirkung zwischen Produkion und apial Gesamwirschafliche Produkionsfunkion:

Mehr

4. Quadratische Funktionen.

4. Quadratische Funktionen. 4-1 Funkionen 4 Quadraische Funkionen 41 Skalierung, Nullsellen Eine quadraische Funkion is von der Form f() = c 2 + b + a mi reellen Zahlen a, b, c; is c 0, so sprechen wir von einer echen quadraischen

Mehr

Mathematische Methoden in den Ingenieurwissenschaften 4. Übungsblatt

Mathematische Methoden in den Ingenieurwissenschaften 4. Übungsblatt Prof Dr M Gerds Dr A Dreves J Michael Winerrimeser 6 Mahemaische Mehoden in den Ingenieurwissenschafen 4 Übungsbla Aufgabe 9 : Mehrmassenschwinger Berache wird ein schwingendes Sysem aus Körpern der Masse

Mehr

Signal- und Systemtheorie for Dummies

Signal- und Systemtheorie for Dummies FB Eleroechni Ewas Signal- und Sysemheorie or Dummies Version - Juli Oh No!!!! Pro. Dr.-Ing. ajana Lange Fachhochschule Merseburg FB Eleroechni Pro. Dr.-Ing. ajana Lange Signal- und Sysemheorie or Dummies

Mehr

1 Abtastung, Quantisierung und Codierung analoger Signale

1 Abtastung, Quantisierung und Codierung analoger Signale Abasung, Quanisierung und Codierung analoger Signale Analoge Signale werden in den meisen nachrichenechnischen Geräen heuzuage digial verarbeie. Um diese digiale Verarbeiung zu ermöglichen, wird das analoge

Mehr

Name: Punkte: Note: Ø:

Name: Punkte: Note: Ø: Name: Punke: Noe: Ø: Kernfach Physik Abzüge für Darsellung: Rundung: 4. Klausur in K am 5. 5. 0 Ache auf die Darsellung und vergiss nich Geg., Ges., Formeln, Einheien, Rundung...! Angaben: e =,60 0-9 C

Mehr

Masse, Kraft und Beschleunigung Masse:

Masse, Kraft und Beschleunigung Masse: Masse, Kraf und Beschleunigung Masse: Sei 1889 is die Einhei der Masse wie folg fesgeleg: Das Kilogramm is die Einhei der Masse; es is gleich der Masse des Inernaionalen Kilogrammprooyps. Einzige Einhei

Mehr

2.2 Rechnen mit Fourierreihen

2.2 Rechnen mit Fourierreihen 2.2 Rechnen mi Fourierreihen In diesem Abschni sollen alle Funkionen als sückweise seig und -periodisch vorausgesez werden. Ses sei ω 2π/. Wir sezen jez aus Funkionen neue Funkionen zusammen und schauen,

Mehr

Strömung im Rohr. Versuch: Inhaltsverzeichnis. Fachrichtung Physik. Physikalisches Grundpraktikum. 1 Aufgabenstellung 2

Strömung im Rohr. Versuch: Inhaltsverzeichnis. Fachrichtung Physik. Physikalisches Grundpraktikum. 1 Aufgabenstellung 2 Fachrichung Physik Physikalisches Grundprakikum Ersell: Bearbeie: Versuch: L. Jahn SR M. Kreller J. Kelling F. Lemke S. Majewsky i. A. Dr. Escher Akualisier: am 29. 03. 2010 Srömung im Rohr Inhalsverzeichnis

Mehr

Praktikum Grundlagen der Elektrotechnik Versuch 5. Matrikelnummer:... ...

Praktikum Grundlagen der Elektrotechnik Versuch 5. Matrikelnummer:... ... FH D FB 3 Fachhochschule Düsseldorf Universiy of Applied Sciences Fachbereich Elekroechnik Deparmen of Elecrical Engineering Prakikum Grundlagen der Elekroechnik Versuch 5 Name Marikelnummer:... Anesa

Mehr

Übungen zu Physik 1 für Maschinenwesen

Übungen zu Physik 1 für Maschinenwesen Physikdeparmen E13 WS 211/12 Übungen zu Physik 1 für Maschinenwesen Prof. Dr. Peer Müller-Buschbaum, Dr. Eva M. Herzig, Dr. Volker Körsgens, David Magerl, Markus Schindler, Moriz v. Sivers Vorlesung 1.11.211,

Mehr

AVWL II, Prof. Dr. T. Wollmershäuser. Kapitel 5 Die Phillipskurve

AVWL II, Prof. Dr. T. Wollmershäuser. Kapitel 5 Die Phillipskurve AVWL II, Prof. Dr. T. Wollmershäuser Kapiel 5 Die Phillipskurve Version: 22.11.2010 Der empirische Befund in den 60er Jahren Inflaion und Arbeislosigkei in den Vereinigen Saaen, 1900-1960 : 1931-1939 In

Mehr

Flugzeugaerodynamik I Lösungsblatt 2

Flugzeugaerodynamik I Lösungsblatt 2 Flugzeugaerodynamik I Lösungsbla 2 Lösung Aufgabe Bei der vorliegenden Aufgabe handel es sich um die Nachrechenaufgabe der Skele Theorie. a) Der Koeffizien A 1 is durch die Wölbung des gegebenen Skeles

Mehr

1 Lokale Änderungsrate und Gesamtänderung

1 Lokale Änderungsrate und Gesamtänderung Schülerbuchseie Lösungen vorläufig I Inegralrechnung Lokale Änderungsrae und Gesamänderung S. S. b h = m s ( s) + m s s + m s ( s) = 7 m Fläche = 7 FE a) s =, h km h +, h km h +, h km h +, h km h +,, h

Mehr

Systemtheorie: Übertragungssystem: Beispiele

Systemtheorie: Übertragungssystem: Beispiele Sysemheorie: lieer mahemaische Werkzeuge, um die Umwandlung einer physikalisch kodieren Inormaion in einer andere Darsellung z.b. vom Orsraum in den Fourierraum ohne Inormaionsverlus zu beschreiben. Überragungssysem:

Mehr

7.3. Partielle Ableitungen und Richtungsableitungen

7.3. Partielle Ableitungen und Richtungsableitungen 7.3. Parielle Ableiungen und Richungsableiungen Generell vorgegeben sei eine Funkion f von einer Teilmenge A der Ebene R oder allgemeiner des n-dimensionalen Raumes R n nach R. Für x [x 1,..., x n ] aus

Mehr

Mathematik III DGL der Technik

Mathematik III DGL der Technik Mahemaik III DGL der Technik Grundbegriffe: Differenialgleichung: Bedingung in der Form einer Gleichung in der Ableiungen der zu suchenden Funkion bis zu einer endlichen Ordnung aufreen. Funkions- und

Mehr

Diskrete Integratoren und Ihre Eigenschaften

Diskrete Integratoren und Ihre Eigenschaften Diskree Inegraoren und Ihre Eigenschafen Whie Paper von Dipl.-Ing. Ingo Völlmecke Indusrielle eglersrukuren werden im Allgemeinen mi Hilfe von Inegraoren aufgebau. Aufgrund des analogen Schalungsaufbaus

Mehr

Zentrale schriftliche Abiturprüfungen im Fach Mathematik

Zentrale schriftliche Abiturprüfungen im Fach Mathematik Zenrale schrifliche Abiurprüfungen im Fach Mahemaik Aufgabe 9: Radioakiver Zerfall Beim radioakiven Zerfall einer Subsanz S 1 beschreib m 1 () die Masse der noch nich zerfallenen Subsanz zum Zeipunk mi

Mehr

Regelungstechnik 1 - Grundglieder: Analyse im Zeit und Frequenzbereich

Regelungstechnik 1 - Grundglieder: Analyse im Zeit und Frequenzbereich Regelungsechnik - Grundglieder: Analyse im Zei und Frequenzbereich Vorberachungen: Das Überragungsverhalen von linearen Regelkreiselemenen wird vorwiegend durch Sprunganworen bzw. Übergangsfunkionen sowie

Mehr

14 Kurven in Parameterdarstellung, Tangentenvektor und Bogenlänge

14 Kurven in Parameterdarstellung, Tangentenvektor und Bogenlänge Dr. Dirk Windelberg Leibniz Universiä Hannover Mahemaik für Ingenieure Mahemaik hp://www.windelberg.de/agq 14 Kurven in Parameerdarsellung, Tangenenvekor und Bogenlänge Aufgabe 14.1 (Tangenenvekor und

Mehr

Einführung in die Physik I. Kinematik der Massenpunkte. O. von der Lühe und U. Landgraf

Einführung in die Physik I. Kinematik der Massenpunkte. O. von der Lühe und U. Landgraf Einfühung in die Phsik I Kinemaik de Massenpunke O. on de Lühe und U. Landgaf O und Geschwindigkei Wi beachen den O eines als punkfömig angenommenen Köpes im Raum als Funkion de Zei Eindimensionale Posiion

Mehr

3.2 Festlegung der relevanten Brandszenarien

3.2 Festlegung der relevanten Brandszenarien B Anwendungsbeispiel Berechnungen Seie 70.2 Feslegung der relevanen Brandszenarien Eine der wichigsen Aufgaben beim Nachweis miels der Ingenieurmehoden im Brandschuz is die Auswahl und Definiion der relevanen

Mehr

Freie ungedämpfte Schwingung eines Massenpunktes (Federschwinger) = 2a. Die allgemeine Lösung der DGL ist dann eine Linearkombination beider Lösungen:

Freie ungedämpfte Schwingung eines Massenpunktes (Federschwinger) = 2a. Die allgemeine Lösung der DGL ist dann eine Linearkombination beider Lösungen: Die Schwingungs-Differenilgleichung Freie ungedämpfe Schwingung eines Mssenpunes Federschwinger Bei Auslenung des Mssenpunes: Hooesches Gesez F - Federonsne Die Bewegungsgleichung lue dher: d m oder m

Mehr

III.2 Radioaktive Zerfallsreihen

III.2 Radioaktive Zerfallsreihen N.BORGHINI Version vom 5. November 14, 13:57 Kernphysik III. Radioakive Zerfallsreihen Das Produk eines radioakiven Zerfalls kann selbs insabil sein und späer zerfallen, und so weier, sodass ganze Zerfallsreihen

Mehr

Übungsaufgaben zu Kapitel 5: Erwartungen Die Grundlagen

Übungsaufgaben zu Kapitel 5: Erwartungen Die Grundlagen Kapiel 5 Übungsaufgaben zu Kapiel 5: Erwarungen Die Grundlagen Übungsaufgabe 5-1a 5-1a) Beschreiben Sie die heoreischen Überlegungen zum Realzins. Wie unerscheide sich der Realzins vom Nominalzins? Folie

Mehr

V 321 Kondensator, Spule und Widerstand Zeit- u. Frequenzverhalten

V 321 Kondensator, Spule und Widerstand Zeit- u. Frequenzverhalten V 32 Kondensaor, Spule und Widersand Zei- u. Frequenzverhalen.Aufgaben:. Besimmen Sie das Zei- und Frequenzverhalen der Kombinaionen von Kondensaor und Widersand bzw. Spule und Widersand..2 Ermieln Sie

Mehr

Untersuchung von Gleitentladungen und deren Modellierung durch Funkengesetze im Vergleich zu Gasentladungen

Untersuchung von Gleitentladungen und deren Modellierung durch Funkengesetze im Vergleich zu Gasentladungen Unersuchung von Gleienladungen und deren Modellierung durch Funkengeseze im Vergleich zu Gasenladungen Dipl.-Ing. Luz Müller, Prof. Dr.-Ing. Kur Feser Insiu für Energieüberragung und Hochspannungsechnik,

Mehr

Kondensator und Spule im Gleichstromkreis

Kondensator und Spule im Gleichstromkreis E2 Kondensaor und Spule im Gleichsromkreis Es sollen experimenelle nersuchungen zu Ein- und Ausschalvorgängen bei Kapaziäen und ndukiviäen im Gleichsromkreis durchgeführ werden. Als Messgerä wird dabei

Mehr

Grundlagen der Elektrotechnik 3

Grundlagen der Elektrotechnik 3 Grundlagen der Elekroechnik 3 Kapiel 3. Schalvorgänge - Die aplace Transformaion Prof. Dr.-Ing. I. Willms Grundlagen der Elekroechnik 3 S. Fachgebie Nachrichenechnische Syseme 3.. Einführung Nuzung einer

Mehr

Kapitel 6: Ort, Geschwindigkeit und Beschleunigung als Funktion der Zeit

Kapitel 6: Ort, Geschwindigkeit und Beschleunigung als Funktion der Zeit Kapiel 6: Or, Geschwindigkei und Beschleunigung als Funkion der Zei 2 Kapiel 6: Or, Geschwindigkei und Beschleunigung als Funkion der Zei Einführung Lerninhal Einführung 3 Das Programm yzet erlaub es,

Mehr

Schriftliche Abiturprüfung Mathematik 2013

Schriftliche Abiturprüfung Mathematik 2013 Schrifliche Abiurprüfung Mahemaik 03 Aufgabe (NT 008, Nr) Pflicheil Bilden Sie die Ableiung der Funkion f mi f(x) = 3x e x+ und vereinfachen Sie so wei wie möglich ( VP) Aufgabe (HT 008, Nr ) G is eine

Mehr

Aufgabensammlung. Signale und Systeme 1. Einführung in die Signal- und Systemtheorie. Kontaktinformation: Dr. Mike Wolf, Tel. 2619

Aufgabensammlung. Signale und Systeme 1. Einführung in die Signal- und Systemtheorie. Kontaktinformation: Dr. Mike Wolf, Tel. 2619 Aufgabensammlung Signale und Syseme 1 für die BA-Sudiengänge EIT, II, BT, MTR, OTR, MT, IN (3. FS) Einführung in die Signal- und Sysemheorie für den BA-Sudiengang WIW-ET (5. FS) Konakinformaion: Dr. Mike

Mehr

Eine charakteristische Gleichung beschreibt die Arbeitsweise eines Flipflops in schaltalgebraischer Form.

Eine charakteristische Gleichung beschreibt die Arbeitsweise eines Flipflops in schaltalgebraischer Form. Sequenielle Schalungen 9 Charakerisische Gleichungen Eine charakerisische Gleichung beschreib die Arbeisweise eines Flipflops in schalalgebraischer Form. n is ein Zeipunk vor einem beracheen Tak. is ein

Mehr

Übungsserie: Single-Supply, Gleichrichter Dioden Anwendungen

Übungsserie: Single-Supply, Gleichrichter Dioden Anwendungen 1. Mai 216 Elekronik 1 Marin Weisenhorn Übungsserie: Single-Supply, Gleichricher Dioden Anwendungen Aufgabe 1. Gleichricher In dieser Gleichricherschalung für die USA sei f = 6 Hz. Der Effekivwer der Ausgangspannung

Mehr

Kommunikationstechnik I

Kommunikationstechnik I Kommunikaionsechnik I Prof. Dr. Sefan Weinzierl Muserlösung 5. Aufgabenbla 1. Moden 1.1 Erläuern Sie, was in der Raumakusik uner Raummoden versanden wird. Der Begriff einer sehenden Welle läss sich am

Mehr

Schriftliche Abiturprüfung 2007 Sachsen-Anhalt Physik 13 n (Leistungskursniveau)

Schriftliche Abiturprüfung 2007 Sachsen-Anhalt Physik 13 n (Leistungskursniveau) Schrifliche Abiurprüfung 2007 Sachsen-Anhal Physik 13 n (Leisungskursniveau) Thema 2: Bewegungen in raviaionsfeldern 1 Eigenschafen des raviaionsfeldes Erläuern Sie den Feldbegriff anhand des raviaionsfeldes.

Mehr

Fachrichtung Mess- und Regelungstechniker

Fachrichtung Mess- und Regelungstechniker Fachrichung Mess- und egelungsechniker 4.3.2.7-2 chüler Daum:. Tiel der L.E. : Digiale euerungsechnik 3 2. Fach / Klasse : Arbeiskunde, 3. Ausbildungsjahr 3. Themen der Unerrichsabschnie :. -Kippglied

Mehr

Schwingungen. 1 Schwingung als periodischer Vorgang

Schwingungen. 1 Schwingung als periodischer Vorgang -I.D1- D Schwingungen 1 Schwingung als periodischer Vorgang 1.1 Definiion Voraussezungen für das Ensehen einer mechanischen Schwingung sind eine zur Gleichgewichslage gerichee rückreibende Kraf und die

Mehr

4. Kippschaltungen mit Komparatoren

4. Kippschaltungen mit Komparatoren 4. Kippschalungen mi Komparaoren 4. Komparaoren Wird der Operaionsversärker ohne Gegenkopplung berieben, so erhäl man einen Komparaor ohne Hserese. Seine Ausgangsspannung beräg: a max für > = a min für

Mehr

Versuch 1 Schaltungen der Messtechnik

Versuch 1 Schaltungen der Messtechnik Fachhochschule Merseburg FB Informaik und Angewande Naurwissenschafen Prakikum Messechnik Versuch 1 Schalungen der Messechnik Analog-Digial-Umsezer 1. Aufgaben 1. Sägezahn-Umsezer 1.1. Bauen Sie einen

Mehr

Motivation. Finanzmathematik in diskreter Zeit

Motivation. Finanzmathematik in diskreter Zeit Moivaion Finanzmahemaik in diskreer Zei Eine Hinführung zu akuellen Forschungsergebnissen Alber-Ludwigs-Universiä Freiburg Prof. Dr. Thorsen Schmid Abeilung für Mahemaische Sochasik Freiburg, 22. April

Mehr

1 Grundwissen Elektrik

1 Grundwissen Elektrik 1 Grundwissen Elekrik 1.1 Elekrisches Feld Elekrische Felder exisieren in der Umgebung von Ladungen. Die Feldrichung is dabei die Richung der Kraf auf eine posiive Probeladung. Die Feldlinien verlaufen

Mehr

Phillips Kurve (Blanchard Ch.8) JKU Linz Riese, Kurs Einkommen, Inflation und Arbeitslosigkeit SS 2008

Phillips Kurve (Blanchard Ch.8) JKU Linz Riese, Kurs Einkommen, Inflation und Arbeitslosigkeit SS 2008 Phillips Kurve (Blanchard Ch.8) 151 Einleiung Inflaion und Arbeislosigkei in den Vereinigen Saaen, 1900-1960 In der beracheen Periode war in den USA eine niedrige Arbeislosigkei ypischerweise von hoher

Mehr

20 Teil I.3 Belastungsarten Einmassenschwinger

20 Teil I.3 Belastungsarten Einmassenschwinger 20 eil I.3 Belasungsaren Einmassenschwinger 3 Belasungsaren Der zeiliche Verlauf der Belasung, die auf das Baueil wirk, is von enscheidender Bedeuung dafür, mi welchen Mehoden die srukurdynamische Aufgabensellung

Mehr

Ferienkurs Experimentalphysik 1

Ferienkurs Experimentalphysik 1 Ferienkurs Experimenalphysik 1 1 Fakulä für Physik Technische Universiä München Bernd Kohler & Daniel Singh Bla 1 - Lösung WS 214/215 23.3.215 Ferienkurs Experimenalphysik 1 ( ) - leich ( ) - miel ( )

Mehr

3. Physikschulaufgabe. - Lösungen -

3. Physikschulaufgabe. - Lösungen - Realschule. Physikschulaufgabe Klasse I - Lösungen - hema: Aom- u. Kernphysik, Radioakiviä. Elekrisches Feld: Alphasrahlung: Sind (zweifach) posiiv geladene Heliumkerne. Sie werden im elekrischen Feld

Mehr

Abb.4.1: Aufbau der Versuchsapparatur

Abb.4.1: Aufbau der Versuchsapparatur 4. xperimenelle Unersuchungen 4. Aufbau der Versuchsanlage Für die Unersuchungen zum Schwingungs- und Resonanzverhalen sowie Soffausauschprozess wurde eine Versuchsanlage aufgebau. In der Abbildung 4.

Mehr

Schriftliche Abiturprüfung Technik/Datenverarbeitungstechnik - Leistungskurs - Hauptprüfung. Pflichtteil

Schriftliche Abiturprüfung Technik/Datenverarbeitungstechnik - Leistungskurs - Hauptprüfung. Pflichtteil Sächsisches Saasminiserium Gelungsbereich: Berufliches Gymnasium für Kulus und Spor Fachrichung: Technikwissenschaf Schuljahr 20/202 Schwerpunk: Daenverarbeiungsechnik Schrifliche Abiurprüfung Technik/Daenverarbeiungsechnik

Mehr

Wechselspannung. Zeitlich veränderliche Spannung mit periodischer Wiederholung

Wechselspannung. Zeitlich veränderliche Spannung mit periodischer Wiederholung Elekrische Schwingungen und Wellen. Wechselsröme i. Wechselsromgrößen ii.wechselsromwidersand iii.verhalen von LC Kombinaionen. Elekrischer Schwingkreis 3. Elekromagneische Wellen Wechselspannung Zeilich

Mehr

2. Einmassenschwinger. Inhalt:

2. Einmassenschwinger. Inhalt: . Einmassenschwinger Inhalt:.1 Bewegungsdifferentialgleichung. Eigenschwingung.3 Harmonische Anregung.4 Schwingungsisolation.5 Stossartige Belastung.6 Allgemeine Belastung.7 Nichtlineare Systeme.8 Dämpfungsarten

Mehr

Eigenwerte und Eigenvektoren

Eigenwerte und Eigenvektoren Eigenwere un Eigenvekoren Vorbemerkung: Is ie n n Marix inverierbar, so ha as lineare Gleichungssysem A x b für jees b genau eine Lösung, nämlich x A b. Grun: i A x A A b b, ii Is y eine weiere Lösung,

Mehr

Übungen zur Vorlesung Nachrichtenübertragungstechnik E5iK Blatt 10

Übungen zur Vorlesung Nachrichtenübertragungstechnik E5iK Blatt 10 Fachhochschule Augsburg SS 20001 Fachbereich Elekroechnik Modulaion digialer Signale Übungen zur Vorlesung Nachrichenüberragungsechnik E5iK Bla 10 Fragen 1. Welche Voreile biee die digiale Überragung von

Mehr

9. EXPONENTIALFUNKTION, LOGARITHMUSFUNKTION

9. EXPONENTIALFUNKTION, LOGARITHMUSFUNKTION Eponenialfunkion, Logarihmusfunkion 9. EXPONENTIALFUNKTION, LOGARITHMUSFUNKTION 9.. Eponenialfunkion (a) Definiion Im Abschni Zinseszinsrechnung konne die Berechnung eines Kapials K n nach n Perioden der

Mehr

SR MVP die Sharpe Ratio des varianzminimalen

SR MVP die Sharpe Ratio des varianzminimalen Prüfung inanzmahemaik und Invesmenmanagemen 4 Aufgabe : (4 Minuen) a) Gegeben seien zwei Akien mi zugehörigen Einperiodenrendien R und R. Es gele < ρ(r,r )

Mehr

3. Echtzeit-Scheduling Grundlagen

3. Echtzeit-Scheduling Grundlagen 3. Echzei-Scheduling Grundlagen 3.1. Grundbegriffe, Klassifikaion und Bewerung Grundbegriffe Job Planungseinhei für Scheduling e wce r d Ausführungszei, Bearbeiungszei (execuion ime) maximale Ausführungszei

Mehr

Fakultät Grundlagen. s = t. gleichförm ig

Fakultät Grundlagen. s = t. gleichförm ig Experimenierfeld Freier Fall und Würfe. Einführung Die Kinemaik al Lehre der Bewegungen befa ich nich mi den Urachen on Bewegungabläufen, ondern lediglich mi den Bewegungen an ich. Auch die Audehnung und

Mehr

Exponential- und Logarithmusfunktionen

Exponential- und Logarithmusfunktionen . ) Personen, Personen bzw. Personen ) Ewas weniger als Minuen. (Nach,... Minuen sind genau Personen informier.) ) Ja. Bereis um : Uhr sind (heoreisch) Personen informier. ) Informiere Miarbeierinnen und

Mehr

1 Kinematik der geradlinigen Bewegung eines Punktes 1.1 Freier Fall; Geschwindigkeit, Fallzeit, kinematische Diagramme

1 Kinematik der geradlinigen Bewegung eines Punktes 1.1 Freier Fall; Geschwindigkeit, Fallzeit, kinematische Diagramme Inhal / Übersich der Aufgaben mi Lösungen XI Aufgabe Erläuerung "Info"-Bild Seie 1 1 Kinemaik der geradlinigen Bewegung eines Punkes 1.1 Freier Fall; Geschwindigkei, Fallzei, kinemaische Diagramme 5 1.2

Mehr

6. Erzwungene Schwingungen

6. Erzwungene Schwingungen 6. Erzwungene Schwingungen Ein durch zeitveränderliche äußere Einwirkung zum Schwingen angeregtes (gezwungenes) System führt erzwungene Schwingungen durch. Bedeutsam sind vor allem periodische Erregungen

Mehr

Wiederholung: Radioaktiver Zerfall. Radioaktive Zerfallsprozesse können durch die Funktion

Wiederholung: Radioaktiver Zerfall. Radioaktive Zerfallsprozesse können durch die Funktion Wiederholung: Radioakiver Zerfall Radioakive Zerfallsprozesse können durch die Funkion f ( ) c a beschrieben werden. Eine charakerisische Größe hierbei is die Halbwerszei der radioakiven Elemene. Diese

Mehr

Mathematik für das Ingenieurstudium. 4. Juli 2011

Mathematik für das Ingenieurstudium. 4. Juli 2011 Mahemaik ür das Ingenieursudium Jürgen Koch Marin Sämple 4. Juli 0 .6 Beweise 43 Beispiel.3 (Ungleichungen) a) Die Ungleichung + 4 < 6 is ür alle -Were deinier. Zur Besimmung der Lösungsmenge berechnen

Mehr

1. Mathematische Grundlagen und Grundkenntnisse

1. Mathematische Grundlagen und Grundkenntnisse 8 1. Mahemaische Grundlagen und Grundkennnisse Aufgabe 7: Gegeben sind: K = 1; = 18; p = 1 (p.a.). Berechnen Sie die Zinsen z. 18 1 Lösung: z = 1 = 5 36 Man beache, dass die kaufmännische Zinsformel als

Mehr

Grundgebiete der Elektrotechnik II Feedbackaufgabe: Transiente Vorgänge

Grundgebiete der Elektrotechnik II Feedbackaufgabe: Transiente Vorgänge heinisch-wesfälische Technische Hochschule Aachen Insiu für Sromricherechni und Elerische Anriebe Universiäsprofessor Dr. ir. i W. De Doncer Grundgebiee der Eleroechni II Feedbacaufgabe: Transiene Vorgänge

Mehr

Kapitel : Exponentielles Wachstum

Kapitel : Exponentielles Wachstum Wachsumsprozesse Kapiel : Exponenielles Wachsum Die Grundbegriffe aus wachsum 1.xmcd werden auch hier verwende! Wir verwenden im Beispiel 2 auch fas die gleiche Angabe wie in Beispiel 1 - lediglich eine

Mehr

GRUNDLAGENLABOR CLASSIC RC-GLIED

GRUNDLAGENLABOR CLASSIC RC-GLIED GUNDLAGNLABO LASSI -GLID Inhal: 1. inleing nd Zielsezng...2 2. Theoreische Afgaben - Vorbereing...2 3. Prakische Messafgaben...4 Anhang: in- nd Asschalvorgänge...5 Filename: Version: Ahor: _Glied_2_.doc

Mehr

Bericht zur Prüfung im Oktober 2007 über Finanzmathematik und Investmentmanagement

Bericht zur Prüfung im Oktober 2007 über Finanzmathematik und Investmentmanagement Berich zur Prüfung im Okober 7 über Finanzmahemaik und Invesmenmanagemen (Grundwissen) Peer Albrech (Mannheim) Am 5 Okober 7 wurde zum zweien Mal eine Prüfung im Fach Finanzmahemaik und Invesmenmanagemen

Mehr

4.7. Exponential- und Logarithmusfunktionen

4.7. Exponential- und Logarithmusfunktionen ... Eonenialfunkionen Definiion:.. Eonenial- und Logarihmusfunkionen Die Funkion f() = c a mi D = R, c und a R + \{}heiß Eonenialfunkion zur Basis a. Die Eonenialfunkion zur Basis a = e mi der Eulerschen

Mehr

INPUT-EVALUATION DER ZHW: PHYSIK SEITE 1. Serie 1

INPUT-EVALUATION DER ZHW: PHYSIK SEITE 1. Serie 1 INPUT-EVALUATIN DER ZHW: PHYSIK SEITE 1 Serie 1 1. Zwei Personen ziehen mi je 500 N an den Enden eines Seils. Das Seil ha eine Reissfesigkei von 600 N. Welche der vier folgenden Aussagen is physikalisch

Mehr

Analysis: Exp. und beschränktes Wachstum Analysis Übungsaufgaben zum exponentiellen und beschränkten Wachstum

Analysis: Exp. und beschränktes Wachstum Analysis Übungsaufgaben zum exponentiellen und beschränkten Wachstum www.mahe-aufgaben.com Analysis: Exp. und beschränkes Wachsum Analysis Übungsaufgaben zum exponeniellen und beschränken Wachsum Gymnasium Klasse 10 Alexander Schwarz www.mahe-aufgaben.com Februar 2014 1

Mehr

1 Theorie. Versuch 3: Halbleiterbauelemente im Schaltbetrieb. 1.1 Bipolarer Transistor als Schalter in Emitterschaltung

1 Theorie. Versuch 3: Halbleiterbauelemente im Schaltbetrieb. 1.1 Bipolarer Transistor als Schalter in Emitterschaltung Labor Elekronische Prof. Dr. P. Suwe Dipl.-ng. B. Ahrend Versuch 3: Halbleierbauelemene im Schalberieb 1 Theorie Bipolare Transisoren und Feldeffekransisoren lassen sich sowohl zum Versärken von Klein-

Mehr

Bewegung. Einteilung der Mechanik. Kinematik. Bezugssystem. Modell Massepunkt. Geradlinig gleichförmige Bewegung

Bewegung. Einteilung der Mechanik. Kinematik. Bezugssystem. Modell Massepunkt. Geradlinig gleichförmige Bewegung Eineilung der Mechanik Kinemaik Mechanik Kinemaik Dynamik Lehre von den Bewegungen und ihren Gesezen, ohne Beachung der zu Grunde liegenden Ursachen Lehre von den Kräfen und deren Wirkungen und dami der

Mehr

IX. Lagrange-Formulierung der Elektrodynamik

IX. Lagrange-Formulierung der Elektrodynamik IX. Lagrange-Formulierung der Elekrodynamik In diesem Kapiel wird gezeig, dass die Maxwell Lorenz-Gleihungen der Elekrodynamik hergeleie werden können, wenn dem Sysem {Punkladung + elekromagneihes Feld}

Mehr

Die Sensitivität ist eine spezielle Form der Zinselastizität: Aufgabe 1

Die Sensitivität ist eine spezielle Form der Zinselastizität: Aufgabe 1 Neben anderen Risiken unerlieg die Invesiion in ein fesverzinsliches Werpapier dem Zinsänderungsrisiko. Dieses Risiko läss sich am einfachsen verdeulichen, indem man die Veränderung des Markweres der Anleihe

Mehr

Leistungselektronik für Bachelors Grundlagen und praktische Anwendungen

Leistungselektronik für Bachelors Grundlagen und praktische Anwendungen we Probs Leisungselekronik für Bachelors Grundlagen und prakische Anwendungen ISBN-: 3-446-4784-7 ISBN-3: 978-3-446-4784-8 Leseprobe Weiere Informaionen oder Besellungen uner hp://www.hanser.de/978-3-446-4784-8

Mehr

HÖHERE TECHNISCHE BUNDESLEHRANSTALT SAALFELDEN Höhere Abteilung für Elektrotechnik und Informationstechnik. Angewandte Elektrotechnik AET

HÖHERE TECHNISCHE BUNDESLEHRANSTALT SAALFELDEN Höhere Abteilung für Elektrotechnik und Informationstechnik. Angewandte Elektrotechnik AET HÖHEE EHNSHE BNDESEHANSA SAAFEDEN Höhere Abeilung für Elekroechnik und nformaionsechnik Angewande Elekroechnik AE Formelsammlung Wechselsromechnik Komplexe Wechselsromrechung eil Michael WASE nhalsverzeichnis

Mehr

Für die sekundäre Scheinleistung S und die primäre Netzleistung S Netz gelten bei reiner Widerstandslast:

Für die sekundäre Scheinleistung S und die primäre Netzleistung S Netz gelten bei reiner Widerstandslast: 4. Fremdgeführe Sromricher Fremdgeführe Sromricher benöigen eine fremde, nich zum Sromricher gehörende Wechselspannungsquelle, die ihnen während der Dauer der Kommuierung die Kommuierungsspannung zur Verfügung

Mehr

Elektrodynamik II - Wechselstromkreise

Elektrodynamik II - Wechselstromkreise Physik A VL36 (18.1.13 Elekrodynamik II - Wechselspannung und Wechselsrom Wechselspnnung durch Indukion Drehsrom Schalungen mi Wechselsrom Kirchhoff sche h egeln Maschenregel bei Indukiviäen und Kapaziäen

Mehr

Abiturprüfung Baden-Württemberg 1986

Abiturprüfung Baden-Württemberg 1986 001 - hp://www.emah.de 1 Abirprüfng Baden-Würemberg 1986 Leisngskrs Mahemaik - Analysis Z jedem > 0 is eine Fnkion f gegeben drch f x x x e x ; x IR Ihr Schabild sei K. a Unersche K af Asympoen, Schnipnke

Mehr

15. Netzgeräte. 1. Transformator 2. Gleichrichter 3. Spannungsglättung 4. Spannungsstabilisierung. Blockschaltbild:

15. Netzgeräte. 1. Transformator 2. Gleichrichter 3. Spannungsglättung 4. Spannungsstabilisierung. Blockschaltbild: Ein Nezgerä, auch Nezeil genann, is eine elekronische Schalungen die die Wechselspannung aus dem Sromnez (230V~) in eine Gleichspannung umwandeln kann. Ein Nezgerä sez sich meisens aus folgenden Komponenen

Mehr

5. Fourier-Transformation

5. Fourier-Transformation Fragestellungen: 5. Fourier-Transformation Bei Anregung mit einer harmonischen Last kann quasistatitisch gerechnet werden, wenn die Erregerfrequenz kleiner als etwa 30% der Resonanzfrequenz ist. Wann darf

Mehr

2 Messsignale. 2.1 Klassifizierung von Messsignalen

2 Messsignale. 2.1 Klassifizierung von Messsignalen 7 2 Messsignale Messwere beinhalen Informaionen über physikalische Größen. Die Überragung dieser Informaionen erfolg in Form eines Signals. Allerdings wird der Signalbegriff im äglichen Leben mehrdeuig

Mehr

Übungsbuch Physik. Peter Müller, Hilmar Heinemann, Hellmut Zimmer, Heinz Krämer. Grundlagen Kontrollfragen Beispiele Aufgaben ISBN

Übungsbuch Physik. Peter Müller, Hilmar Heinemann, Hellmut Zimmer, Heinz Krämer. Grundlagen Kontrollfragen Beispiele Aufgaben ISBN Übungsbuch Physi Peer Müller, Hilar Heineann, Hellu Zier, Heinz Kräer Grundlagen Konrollfragen Beispiele Aufgaben ISBN 3-446-478-4 Leseprobe Weiere Inforaionen oder Besellungen uner hp://www.hanser.de/3-446-478-4

Mehr

Latente Wärme und Wärmeleitfähigkeit

Latente Wärme und Wärmeleitfähigkeit Versuch 5 Laene Wärme und Wärmeleifähigkei Aufgabe: Nehmen Sie für die Subsanz,6-Hexandiol Ersarrungskurven auf und ermieln Sie daraus die laene Wärme beim Phasenübergang flüssig-fes sowie den Wärmedurchgangskoeffizienen

Mehr

Medikamentendosierung A. M.

Medikamentendosierung A. M. Medikamenendosierung A M Inhalsverzeichnis 1 Einleiung 2 2 Ar der Einnahme 3 3 Tropfenweise Einnahme 4 31 Differenialgleichung 4 32 Exake Lösung 5 33 Näherungsweise Lösung 5 4 Periodische Einnahme 7 41

Mehr

Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Wechselströme (WS) Frühjahrssemester Physik-Institut der Universität Zürich

Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Wechselströme (WS) Frühjahrssemester Physik-Institut der Universität Zürich Anleiung zum Physikprakikum für Obersufenlehrpersonen Wechselsröme (WS) Frühjahrssemeser 2017 Physik-nsiu der Universiä Zürich nhalsverzeichnis 11 Wechselsröme (WS) 11.1 11.1 Einleiung........................................

Mehr

Flip - Flops 7-1. 7 Multivibratoren

Flip - Flops 7-1. 7 Multivibratoren Flip - Flops 7-7 Mulivibraoren Mulivibraoren sind migekoppele Digialschalungen. Ihre Ausgangsspannung spring nur zwischen zwei fesen Weren hin und her. Mulivibraoren (Kippschalungen) werden in bisabile,

Mehr

Name: Gruppe: Matrikel-Nummer:

Name: Gruppe: Matrikel-Nummer: Theoretische Physik 1 (Theoretische Mechanik) SS08, Studienziel Bachelor (170 12/13/14) Dozent: J. von Delft Übungen: B. Kubala Nachklausur zur Vorlesung T1: Theoretische Mechanik, SoSe 2008 (1. Oktober

Mehr

Lösung zu Aufgabenblatt 05: Potenzialrechnungen

Lösung zu Aufgabenblatt 05: Potenzialrechnungen Lösung zu Aufgabenbla 05: Poenzialrechnungen Aufgabe 5.1: Das in der Erfolgspoenzialrechnungen zu Grunde gelege Erfolgsziel is die Maximierung des Eigenümerweres einer Unernehmung uner Berücsichigung des

Mehr

Klassische Theoretische Physik II (Theorie B) Sommersemester 2016

Klassische Theoretische Physik II (Theorie B) Sommersemester 2016 Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Klassische Theoretische Physik II (Theorie B) Sommersemester 2016 Prof. Dr. Alexander Mirlin Musterlösung: Blatt 12. PD

Mehr

Hamburg Kernfach Mathematik Zentralabitur 2013 Erhöhtes Anforderungsniveau Analysis 2

Hamburg Kernfach Mathematik Zentralabitur 2013 Erhöhtes Anforderungsniveau Analysis 2 Hmburg Kernfch Mhemik Zenrlbiur 2013 Erhöhes Anforderungsniveu Anlysis 2 Smrphones Die Mrkeinführung eines neuen Smrphones vom Elekronikherseller PEAR wird ses ufgereg erwre. Zur Modellierung der Enwicklung

Mehr

Geradlinige Bewegung Krummlinige Bewegung Kreisbewegung

Geradlinige Bewegung Krummlinige Bewegung Kreisbewegung 11PS KINEMATIK P. Rendulić 2011 EINTEILUNG VON BEWEGUNGEN 1 KINEMATIK Die Kinemaik (Bewegunglehre) behandel die Geezmäßigkeien, die den Bewegungabläufen zugrunde liegen. Die bei der Bewegung aufreenden

Mehr

Harmonische Schwingungen und deren Überlagerungen - Lissajous'sche Figuren

Harmonische Schwingungen und deren Überlagerungen - Lissajous'sche Figuren HTBLA Neufelden Harmonische Schwingungen Seie von 7 Peer Fischer pe.fischer@an.nu Harmonische Schwingungen und deren Überlagerungen - Lissajous'sche Figuren Mahemaische / Fachliche Inhale in Sichworen:

Mehr

Versuch P1-20 Pendel Vorbereitung

Versuch P1-20 Pendel Vorbereitung Versuch P1-0 Pendel Vorbereitung Gruppe Mo-19 Yannick Augenstein Versuchsdurchführung: 9. Januar 01 Inhaltsverzeichnis Aufgabe 1 1.1 Reduzierte Pendellänge............................. 1. Fallbeschleunigung

Mehr

HTL Kapfenberg pc_reifeprüfungsaufgaben_ma_11_bsp.31.mcd Seite 1 von 7

HTL Kapfenberg pc_reifeprüfungsaufgaben_ma_11_bsp.31.mcd Seite 1 von 7 HTL Kapfenberg p_reifeprüfungsaufgaben_ma Bsp.3.m Seie von 7 Angaben zu Aufgabe 3: Ein shwingfähiges mehanishes Sysem is mi einem geshwinigeisproporionalem Dämpfer ausgesae. Folgene in iesem Zusammenhang

Mehr

Aufgabenblatt 1. Lösungen. A1: Was sollte ein Arbitrageur tun?

Aufgabenblatt 1. Lösungen. A1: Was sollte ein Arbitrageur tun? Aufgabenbla 1 Lösungen 1 A1: Was solle ein Arbirageur un? Spo-Goldpreis: $ 5 / Unze Forward-Goldpreis (1 Jahr): $ 7 / Unze Risikoloser Zins: 1% p.a. Lagerkosen: Es gib zwei Handelssraegien, um in einem

Mehr

Thema : Rendite und Renditemessung

Thema : Rendite und Renditemessung Thema : Rendie und Rendiemessung Lernziele Es is wichig, die Zeigewichung der Rendie als ennzahl zu versehen, den Unerschied zwischen einer koninuierlichen und einer diskreen erzinsung zu begreifen und

Mehr