Wiederholung Exponentialfunktion

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Wiederholung Exponentialfunktion"

Transkript

1 SEITE 1 VON 9 Wiederholung Eponenialfunkion VON HEINZ BÖER 1. Regeln und Beispiele Der Funkionserm Eponenialfunkionen haben die Form f() = b a. Die y-achse wird bei b geschnien, denn f(0) = 0 b a = b 1 = b. p a seh für den Wachsums- bzw. Abnahmefakor a = Is der Wachsumsprozensaz p posiiv, dann is a > 1, die Kurve seig koninuierlich und zwar immer schneller. Is der Wachsumsprozensaz p negaiv, dann is a < 1, die Kurve fäll koninuierlich und zwar immer langsamer. Die Funkionsgrafen Beispiel I: 500 werden auf der Bank mi 2,5 % verzins. b = 500; a = 1 + 2,5/100 = 1,025; also f() = 500 1,025 (: Jahre; f(): Euro) Die Kurve sare bei 500 und nimm koninuierlich zu und zwar immer schneller. Sie wächs über alle Grenzen. Beispiel II: Die Bevölkerung Deuschlands nimm von 82 Millionen um 0,5 % pro Jahr ab. b = 82; a = 1-0,5/100 = 0,995; also f() = 82 0,995 (: Jahre; f(): Mio Menschen) Die Kurve sare bei 82 und nimm koninuierlich ab und zwar immer langsamer. Sie näher sich der - Achse.

2 SEITE 2 VON 9 Aufgabenyp I (Berechnung von Funkionsweren) a) Auf welchen Berag seig ein Kapial von 500 in 5 Jahren bei 2,5 % Verzinsung? In der Zinsrechnung wird der Anfangswer b auch K 0 (Kapial zu Beginn) genann, der Wachsumsfakor a heiß Zinsfakor z, die Variable im Eponenen is die Zei (für ime): K() = K0 z. Hier gil: K 0 = 500 ; p % = 2,5 % pro Jahr, also z = 1,025; = 5 Jahre K(5) = 500 1, ,70 Nach 5 Jahren sehen (mi Zins und Zinseszinsen) 565,70 auf dem Kono. b) Von einer radioakiven Subsanz zerfallen pro Jahr 2 %. Wie viel srahlende Subsanz is nach 20 Jahren noch vorhanden? Anfangswer b = 1 (z. B. kg oder g oder eine andere Masseneinhei) Abnahmefakor a = 0,98; Variable = 20 f(20) = 1 0, , Nach 20 Jahren is noch 2/3 von der radioakiven Ausgangsmenge vorhanden, von einem Kilogramm also ewa noch 667 g; von 100 g noch ewa 66,7 g. Aufgabenyp II (Berechnung des Wachsums/Abnahme-Prozensazes p) a) Ein Kapial von 1000 is nach einem Jahr 1048 wer. Mi welchem Zinssaz wurde es angeleg? 1000 a 1 = 1048 a = 1,048 p % = 4,8 % Der Zinssaz berug 4,8 %. b) Ein 10 Jahre aler Baum is 7,30 m hoch; mi 25 Jahren is er 12,05 m hoch. Um welchen Prozensaz wächs er pro Jahr? Wie groß war er beim Einpflanzen? * Der Wachsumsprozensaz Zähl man die Zei ab 10 Jahren, so ergib sich nach weieren 15 Jahren: 7,30 a 15 = 12,05 a = 15 12,05 7,3 1,034 p % = 3,4 % Der Baum wächs pro Jahr um rund 3,4 %. * Die Anfangshöhe b 1, = 7,30 b 5,23 Der Baum wurde mi einer Anfangslänge von gu 5,20 m eingepflanz. (Oder: b 1, = 12,05 b 5,22 mi geringer Rundungsabweichung)

3 SEITE 3 VON 9 c) Ein Kapial von 500 wird für 3 Jahre mi 3,5 % verzins, für weiere 4 Jahre mi 4,5 %. Eine andere Sparkasse biee dasselbe Endkapial bei gleich bleibendem Jahreszinssaz an. Wie hoch is er? * Das Endkapial nach 7 Jahren bei der ersen Bank K 7 = 500 1, , ,08 * Der Zinssaz der zweien Bank K 7 = 500 a 7 = 661,08 a = 661,08 7 1, Bei einem gleich bleibenden Zinssaz von rund 4,1 % ergib sich in ewa dasselbe Endkapial wie bei der ersen Bank von gu 660. Aufgabenyp III (Berechnung des Eponenen; siehe auch VI) a) Ein Kapial von 550 wurde zu 2,5 % angeleg und beräg jez 748,40. Wie viele Jahre wurde es verzins? K() = 550 1,025 = 748,40 Probeweises Einsezen von Weren für ergib: 550 1, ,395 und 550 1, , 854. Nach 12 Jahren is der angegebene Konosand erreich. b) Eine radioakive Subsanz von 1200 g ha bei 1,5 % Zerfallsrae inzwischen auf rund 820 g abgenommen. Auf welche Zeidauer kann man schließen? In die Gleichung ,985 = 820 werden -Were eingesez, so dass sich Funkionswere möglichs nahe bei 820 ergeben: , und , Das radioakive Maerial srahl sei ewa 25 Jahren.

4 SEITE 4 VON 9 Aufgabenyp IV (lineare und eponenielle Grafen zuordnen und deuen) a) Erläuern Sie, welche Grafen zu linearen, welche zu Epo- f() I II Hinweis zur Verwendung von a und b: nenialfunkionen gehören. b) Begründen Sie: Was IV III Lineare Funkion f() = a + b wissen Sie jeweils si- cher über die Größe Eponenialfunkion von a und b in den vier Fällen? f() = b a c) Erläuern Sie: Welche der folgenden Größenbeschreibungen pass zu welchem Grafen oben? Begründen Sie: Eine Beschreibung pass nich ganz. 1. Bei 15 C seh der "Quecksilberfaden" an einem Thermomeer 20 mm hoch. Er verlänger sich um jeweils 15 mm, wenn sich die Temperaur um 1 C erhöh. 2. Ein Haushalsgerä kose neu 150. Pro Jahr verlier es 8 % seines Zeiweres. 3. Anfangs besaß er 50, gab aber pro Tag 2,5 aus. 4. Eine 30 cm lange Alge vergrößer ihre Länge äglich um 5 %. 5. Eine 50 cm lange Kerze brenn gleichmäßig ab mi 2,5 cm pro Sunde. Zu a) Lineare Funkionen: I, IV, da die Grafen Geraden sind. Eponenialfunkionen: II, III, da die Grafen gekrümm sind. Zu b) I: a > 0, da die Gerade seig. II: a > 1, da der Eponenialgraf seig. III: 0 < a < 1, da der Eponenialgraf fäll IV: a < 0, da die Gerade fäll. b is in allen vier Beispielen größer als Null. b III > b IV > b II > b I Zu c) 1: I, denn es is eine lineare Funkion beschrieben, die seig. 2: III, denn es is eine Eponenialfunkion beschrieben, die fäll. 3: IV, denn es is eine lineare Funkion beschrieben, die fäll. 4: II, denn es is eine Eponenialfunkion beschrieben, die seig.

5 SEITE 5 VON 9 5: IV, denn es is eine lineare Funkion beschrieben, die fäll. Aber im Gegensaz zu 3, wo negaive Were als Schulden möglich sind, kann es bei der Kerzenlänge keine negaiven Were geben. Aufgabenyp V (Funkionsgleichungen aufsellen und Grafen skizzieren) Grafen zu a, b, c, d: Noieren Sie die Funkionsgleichung (sowei nich gegeben) und skizzieren Sie den zugehörigen Grafen. b a a) f() = 1,5-4 b) f() = 2 1,2 d c) Eine lineare Funkion beginn bei 8 und nimm in 8 Schrien um 12 ab. c d) Eine Eponenialfunkion, die mi dem Wer 10 sare, nimm in 3 Schrien um 27 % ab. e) Noieren Sie zu den Aufgaben IV.c.1 bis 5 passende Funkionsgleichungen. Zu c) Anfangswer b = 8; Seigung a = 12 8 = -1,5; also f () = -1, Zu d) Anfangswer b = 10 Nach 3 Schrien sind noch 73 % von 10, also 7,3 vorhanden a = 7,3; also a = 3 0,73 0,9 ; also f() = 10 0,9. Zu e1) f(t) = T mi T: Temperaur-Gradzahl ab 15 C; f(t): mm Que cksilberfadenlänge e2) f() = 150 0,92 mi : Zei in Jahren; f(): Zeiwer des Geräes in e3) f() = -2, mi : Zei in Tagen; f(): Guhaben/Schulden in e4) f() = 30 1,05 mi : Zei in Tagen; f(): Algenlänge in cm e5) f() = -2, mi : Zei in Sunden; f(): Kerzenlänge in cm

6 SEITE 6 VON 9 Aufgabenyp VI (Eponenialgleichungen lösen, siehe auch III) Lösen Sie die Gleichungen: a) 2 = 64 b) 3 4 = 9 0,8 c) 20 1,02 = 10 1,04 d) Die Zahl der Landwire in Frankreich nahm von 1968 bis 2000 in ewa nach der Funkion f() = ,9576 ab. In dem Zeiraum nahm die Zahl der Beamen, die für die Landwire zusändig waren, nach f() = ,0057 zu. Würde die Enwicklung weier so verlaufen, wann gib es dann für jeden Landwir einen Beamen? Zu a) 2 6 = 64, also = 6 Zu b) 3 4 = 9 0,8 : 3 : 0,8 4 0,8 = 3 5 = 3 sysemaisches Probieren 0,68 Zu c) 20 1,02 = 10 1,04 : 10 : 1,02 2 = 1,04 1,02 sysemaisches Probieren 35,7 Zu d) ,9576 = ,0057 : : 0, = 1,0057 0,9576 sysemaisches Probieren 94 In rund 94 Jahren schneiden sich die Kurven und jeder Beame kümmer sich um "seinen" Landwir.

7 SEITE 7 VON 9 2. Übungen I: a) K 0 = 500 ; p % = 3,5 % pro Jahr. Wie groß is das Kapiel nach 5 Jahren? b) K 0 = 850 ; p % = -1,5 % pro Jahr. Wie viel bleib als Kapial nach 12 Jahren? c) In einem Sparverrag legen Sie 750 zu einem Jahreszinssaz von 3,5 % für 7 Jahre fes. Wie viel erhalen Sie am Ende? d) Eine andere Bank versprich sa der Bedingungen in c) 2,5 % für 3 Jahre, für die Reszei 4 %. Sind die Kondiionen (Bedingungen) besser? e) Wie laue die allgemeine Funkionsgleichung für eponenielle Funkionen? Erläuern Sie die Bedeuung aller vorkommenden Variablen. II: Besimmen Sie die Funkionsvorschrif einer Eponenialfunkion, deren Graf durch die beiden angegebenen Punke geh. a b c d f() 5 5, , e) Ein Kapial von 350 wurde angeleg und beräg nach 9 Jahren 400,19. Wie hoch war der Zinssaz? f) Eine Pflanze wächs vom 2. bis zum 10. Jahr von 3,40 m auf 6,20 m. Um welchen Prozensaz wächs sie pro Jahr? g) Die Maschinenprodukion ha sei 2005 von Jahr zu Jahr um 7,0%, 10,6 %, 6,0 %, -24,6 %, 8,8 %, 10,0 % zugenommen. Wie hoch lag sie im Jahr 2011 im Vergleich zu 2005? Um wie viel Prozen is sie durchschnilich pro Jahr gesiegen? III: a) Ein Kapial von 750 wurde zu 1,5 % angeleg und beräg jez Wie viele Jahre wurde es verzins? b) Eine radioakive Subsanz von 1500 g ha bei 3,5 % Zerfallsrae inzwischen auf rund 430 g abgenommen. Auf welche Zeidauer kann man schließen?

8 SEITE 8 VON 9 IV: a) Begründen Sie, welche der vier Grafen zu linearen, welche zu Eponenialfunkionen gehören? Machen Sie Aussagen zur Größe der a-were. b) Begründen Sie, welcher Graf je- I II III weils zu den folgenden Größenverläufen pass. 1. Die Zimmerpflanze is 5 cm IV groß. Bei guer Wässerung wächs sie monalich um 5 cm. 2. Der Inhal der Spardose von 25 wird mi anderem Geld der Elern auf eine Superanlage mi 8% Jahreszinsen geleg. 3. Das Auo kose neu und verlier jährlich ewa 11 % seines Weres. 4. Ein Werpapier mi einem Sarwer von 70 wird in den ersen drei Jahren mi 1,5 % verzins, in den weieren Jahren mi 2,5 %. 5. Mehme ha Schulden von 50. Er vereinbar, wöchenlich 1,50 abzubezahlen.

9 SEITE 9 VON 9 V: Noieren Sie die Funkionsgleichung (sowei nich gegeben) und skizzieren Sie den zugehörigen Grafen. a) f() = 2,5-5 b) f() = 4 1,1 c) Eine lineare Funkion beginn bei 2 und nimm in 6 Schrien um 9 zu. d) Eine Eponenialfunkion, die mi dem Wer 15 sare, nimm in 5 Schrien um 30 % ab. e) Noieren Sie zu den Aufgaben IV.b.1 bis 5 passende Funkionsgleichungen. VI: Lösen Sie die Gleichungen: a) 3 = 81 b) 0,7 2 = 44,8 0,5 c) 10 1,03 = 5 1,05 Überlegen Sie eine Anwendungssiuaion zu der Aufgabe c. d) Ein Unernehmen ha einen Wer von 30 Millionen, verlier aber 10 % pro Jahr. Dagegen seig der Wer des Konkurrenzunernehmens ausgehend von 10 Millionen um 5 % jährlich. Wann sind beide gleich viel wer?

Selbstdiagnosebogen zu Exponentialfunktionen

Selbstdiagnosebogen zu Exponentialfunktionen Mathematik- Unterrichts- Einheiten- Datei e. V. www.mued.de Klasse 10 04/2009 Selbstdiagnosebogen zu Eponentialfunktionen A) Kreuze deine Einschätzung an. Ich kann 1. zu einem Wachstumsprozentsatz den

Mehr

Exponential- und Logarithmusfunktionen

Exponential- und Logarithmusfunktionen . ) Personen, Personen bzw. Personen ) Ewas weniger als Minuen. (Nach,... Minuen sind genau Personen informier.) ) Ja. Bereis um : Uhr sind (heoreisch) Personen informier. ) Informiere Miarbeierinnen und

Mehr

4.7. Exponential- und Logarithmusfunktionen

4.7. Exponential- und Logarithmusfunktionen ... Eonenialfunkionen Definiion:.. Eonenial- und Logarihmusfunkionen Die Funkion f() = c a mi D = R, c und a R + \{}heiß Eonenialfunkion zur Basis a. Die Eonenialfunkion zur Basis a = e mi der Eulerschen

Mehr

Kapitel : Exponentielles Wachstum

Kapitel : Exponentielles Wachstum Wachsumsprozesse Kapiel : Exponenielles Wachsum Die Grundbegriffe aus wachsum 1.xmcd werden auch hier verwende! Wir verwenden im Beispiel 2 auch fas die gleiche Angabe wie in Beispiel 1 - lediglich eine

Mehr

Aufgabensammlung Teil 2a. Auch mit Verwendung von Methoden aus der Analysis: Wachstumsraten Differentialgleichungen. Auch mit CAS-Einsatz

Aufgabensammlung Teil 2a. Auch mit Verwendung von Methoden aus der Analysis: Wachstumsraten Differentialgleichungen. Auch mit CAS-Einsatz Wachsum Exponenielles Wachsum Aufgabensammlung Teil 2a Auch mi Verwendung von Mehoden aus der Analysis: Wachsumsraen Differenialgleichungen Auch mi CAS-Einsaz Sand: 23. Februar 2012 Daei Nr. 45811 INTERNETBIBLIOTHEK

Mehr

9. EXPONENTIALFUNKTION, LOGARITHMUSFUNKTION

9. EXPONENTIALFUNKTION, LOGARITHMUSFUNKTION Eponenialfunkion, Logarihmusfunkion 9. EXPONENTIALFUNKTION, LOGARITHMUSFUNKTION 9.. Eponenialfunkion (a) Definiion Im Abschni Zinseszinsrechnung konne die Berechnung eines Kapials K n nach n Perioden der

Mehr

Zentrale schriftliche Abiturprüfungen im Fach Mathematik

Zentrale schriftliche Abiturprüfungen im Fach Mathematik Zenrale schrifliche Abiurprüfungen im Fach Mahemaik Aufgabe 9: Radioakiver Zerfall Beim radioakiven Zerfall einer Subsanz S 1 beschreib m 1 () die Masse der noch nich zerfallenen Subsanz zum Zeipunk mi

Mehr

Musterbeispiele zur Zinsrechnung

Musterbeispiele zur Zinsrechnung R. Brinkann h://brinkann-du.de Seie 1 20.02.2013 Muserbeisiele zur Zinsrechnung Ein Bankkunde uss Zinsen zahlen, wenn er sich bei der Bank Geld leih. Das Geld was er sich leih, nenn an aial. Die Höhe der

Mehr

1. Mathematische Grundlagen und Grundkenntnisse

1. Mathematische Grundlagen und Grundkenntnisse 8 1. Mahemaische Grundlagen und Grundkennnisse Aufgabe 7: Gegeben sind: K = 1; = 18; p = 1 (p.a.). Berechnen Sie die Zinsen z. 18 1 Lösung: z = 1 = 5 36 Man beache, dass die kaufmännische Zinsformel als

Mehr

Name: Punkte: Note: Ø:

Name: Punkte: Note: Ø: Name: Punke: Noe: Ø: Kernfach Physik Abzüge für Darsellung: Rundung: 4. Klausur in K am 5. 5. 0 Ache auf die Darsellung und vergiss nich Geg., Ges., Formeln, Einheien, Rundung...! Angaben: e =,60 0-9 C

Mehr

4.7. Prüfungsaufgaben zum beschränkten Wachstum

4.7. Prüfungsaufgaben zum beschränkten Wachstum .7. Prüfungsaufgaben zum beschränken Wachsum Aufgabe : Exponenielle Abnahme und beschränkes Wachsum In einem Raum befinden sich eine Million Radonaome. Duch radioakiven Zerfall verminder sich die Zahl

Mehr

Analysis: Exp. und beschränktes Wachstum Analysis Übungsaufgaben zum exponentiellen und beschränkten Wachstum

Analysis: Exp. und beschränktes Wachstum Analysis Übungsaufgaben zum exponentiellen und beschränkten Wachstum www.mahe-aufgaben.com Analysis: Exp. und beschränkes Wachsum Analysis Übungsaufgaben zum exponeniellen und beschränken Wachsum Gymnasium Klasse 10 Alexander Schwarz www.mahe-aufgaben.com Februar 2014 1

Mehr

III.2 Radioaktive Zerfallsreihen

III.2 Radioaktive Zerfallsreihen N.BORGHINI Version vom 5. November 14, 13:57 Kernphysik III. Radioakive Zerfallsreihen Das Produk eines radioakiven Zerfalls kann selbs insabil sein und späer zerfallen, und so weier, sodass ganze Zerfallsreihen

Mehr

Herzlich willkommen zur Demo der mathepower.de Aufgabensammlung

Herzlich willkommen zur Demo der mathepower.de Aufgabensammlung Herzlich willkommen zur der Um sich schnell innerhalb der ca. 350.000 Mahemaikaufgaben zu orienieren, benuzen Sie unbeding das Lesezeichen Ihres Acroba Readers: Das Icon finden Sie in der links sehenden

Mehr

5.5. Abstrakte Abituraufgaben zu Exponentialfunktionen

5.5. Abstrakte Abituraufgaben zu Exponentialfunktionen 5.5. Absrake Abiuraufgaben zu Eponenialfunkionen Aufgabe : Kurvenunersuchung, Inegraion, Opimierungsaufgabe Gegeben is die Funkion f() ( ) e,5. a) Unersuchen Sie das Schaubild von f auf Achsenschnipunke,

Mehr

Analysis: Exponentialfunktionen Analysis

Analysis: Exponentialfunktionen Analysis www.mahe-aufgaben.com Analysis: Eponenialfunkionen Analysis Übungsaufgaben u Eponenialfunkionen Pflich- und Wahleil gesames Soffgebie (insbesondere Funkionsscharen) ohne Wachsum Gymnasium ab J Aleander

Mehr

Wiederholung: Radioaktiver Zerfall. Radioaktive Zerfallsprozesse können durch die Funktion

Wiederholung: Radioaktiver Zerfall. Radioaktive Zerfallsprozesse können durch die Funktion Wiederholung: Radioakiver Zerfall Radioakive Zerfallsprozesse können durch die Funkion f ( ) c a beschrieben werden. Eine charakerisische Größe hierbei is die Halbwerszei der radioakiven Elemene. Diese

Mehr

7.3. Partielle Ableitungen und Richtungsableitungen

7.3. Partielle Ableitungen und Richtungsableitungen 7.3. Parielle Ableiungen und Richungsableiungen Generell vorgegeben sei eine Funkion f von einer Teilmenge A der Ebene R oder allgemeiner des n-dimensionalen Raumes R n nach R. Für x [x 1,..., x n ] aus

Mehr

Aufgaben aus Zentralen Klassenarbeiten Mathematik (Baden-Württemberg) zu Logarithmen und Wachstum

Aufgaben aus Zentralen Klassenarbeiten Mathematik (Baden-Württemberg) zu Logarithmen und Wachstum www.mhe-ufgben.com Aufgben us Zenrlen Klssenrbeien Mhemik 96-99 (Bden-Würemberg) zu Logrihmen und Wchsum ZK 96 ) Besimme mi Hilfe der Definiion des Logrihmus : ) 6 b) c) d) 0 000 ) Es is 0, 6. Berechne

Mehr

Kondensator und Spule im Gleichstromkreis

Kondensator und Spule im Gleichstromkreis E2 Kondensaor und Spule im Gleichsromkreis Es sollen experimenelle nersuchungen zu Ein- und Ausschalvorgängen bei Kapaziäen und ndukiviäen im Gleichsromkreis durchgeführ werden. Als Messgerä wird dabei

Mehr

Phillips Kurve (Blanchard Ch.8) JKU Linz Riese, Kurs Einkommen, Inflation und Arbeitslosigkeit SS 2008

Phillips Kurve (Blanchard Ch.8) JKU Linz Riese, Kurs Einkommen, Inflation und Arbeitslosigkeit SS 2008 Phillips Kurve (Blanchard Ch.8) 151 Einleiung Inflaion und Arbeislosigkei in den Vereinigen Saaen, 1900-1960 In der beracheen Periode war in den USA eine niedrige Arbeislosigkei ypischerweise von hoher

Mehr

1 Lokale Änderungsrate und Gesamtänderung

1 Lokale Änderungsrate und Gesamtänderung Schülerbuchseie Lösungen vorläufig I Inegralrechnung Lokale Änderungsrae und Gesamänderung S. S. b h = m s ( s) + m s s + m s ( s) = 7 m Fläche = 7 FE a) s =, h km h +, h km h +, h km h +, h km h +,, h

Mehr

4. Quadratische Funktionen.

4. Quadratische Funktionen. 4-1 Funkionen 4 Quadraische Funkionen 41 Skalierung, Nullsellen Eine quadraische Funkion is von der Form f() = c 2 + b + a mi reellen Zahlen a, b, c; is c 0, so sprechen wir von einer echen quadraischen

Mehr

Fachrichtung Mess- und Regelungstechniker

Fachrichtung Mess- und Regelungstechniker Fachrichung Mess- und egelungsechniker 4.3.2.7-2 chüler Daum:. Tiel der L.E. : Digiale euerungsechnik 3 2. Fach / Klasse : Arbeiskunde, 3. Ausbildungsjahr 3. Themen der Unerrichsabschnie :. -Kippglied

Mehr

Medikamentendosierung A. M.

Medikamentendosierung A. M. Medikamenendosierung A M Inhalsverzeichnis 1 Einleiung 2 2 Ar der Einnahme 3 3 Tropfenweise Einnahme 4 31 Differenialgleichung 4 32 Exake Lösung 5 33 Näherungsweise Lösung 5 4 Periodische Einnahme 7 41

Mehr

INPUT-EVALUATION DER ZHW: PHYSIK SEITE 1. Serie 1

INPUT-EVALUATION DER ZHW: PHYSIK SEITE 1. Serie 1 INPUT-EVALUATIN DER ZHW: PHYSIK SEITE 1 Serie 1 1. Zwei Personen ziehen mi je 500 N an den Enden eines Seils. Das Seil ha eine Reissfesigkei von 600 N. Welche der vier folgenden Aussagen is physikalisch

Mehr

Analysis: Ganzrationale Funktionen Analysis Ganzrationale Funktionen Differenzialrechnung, Extrem- und Wendepunkte

Analysis: Ganzrationale Funktionen Analysis Ganzrationale Funktionen Differenzialrechnung, Extrem- und Wendepunkte www.mahe-aufgaben.com Analysis: Ganzraionale Funkionen Analysis Ganzraionale Funkionen Differenzialrechnung, Exrem- und Wendepunke Gymnasium Klasse 0 Alexander Schwarz www.mahe-aufgaben.com Juni 0 www.mahe-aufgaben.com

Mehr

Thema : Rendite und Renditemessung

Thema : Rendite und Renditemessung Thema : Rendie und Rendiemessung Lernziele Es is wichig, die Zeigewichung der Rendie als ennzahl zu versehen, den Unerschied zwischen einer koninuierlichen und einer diskreen erzinsung zu begreifen und

Mehr

Aufgabenblatt 1. Lösungen. A1: Was sollte ein Arbitrageur tun?

Aufgabenblatt 1. Lösungen. A1: Was sollte ein Arbitrageur tun? Aufgabenbla 1 Lösungen 1 A1: Was solle ein Arbirageur un? Spo-Goldpreis: $ 5 / Unze Forward-Goldpreis (1 Jahr): $ 7 / Unze Risikoloser Zins: 1% p.a. Lagerkosen: Es gib zwei Handelssraegien, um in einem

Mehr

Mathematik III DGL der Technik

Mathematik III DGL der Technik Mahemaik III DGL der Technik Grundbegriffe: Differenialgleichung: Bedingung in der Form einer Gleichung in der Ableiungen der zu suchenden Funkion bis zu einer endlichen Ordnung aufreen. Funkions- und

Mehr

Die Sensitivität ist eine spezielle Form der Zinselastizität: Aufgabe 1

Die Sensitivität ist eine spezielle Form der Zinselastizität: Aufgabe 1 Neben anderen Risiken unerlieg die Invesiion in ein fesverzinsliches Werpapier dem Zinsänderungsrisiko. Dieses Risiko läss sich am einfachsen verdeulichen, indem man die Veränderung des Markweres der Anleihe

Mehr

Exponentialfunktion und Logarithmus. 1 Lineares und exponentielles Wachstum

Exponentialfunktion und Logarithmus. 1 Lineares und exponentielles Wachstum Seie 6 66 Lösungen vorläufig Eponenialfunkion und Logarihmus III Eponenialfunkion und Logarihmus Lineares und eponenielles Wachsum S. 6 Die Bevölkerung wächs alle 0 Jahre mi dem Fakor,. Jahr 000 00 00

Mehr

15. Netzgeräte. 1. Transformator 2. Gleichrichter 3. Spannungsglättung 4. Spannungsstabilisierung. Blockschaltbild:

15. Netzgeräte. 1. Transformator 2. Gleichrichter 3. Spannungsglättung 4. Spannungsstabilisierung. Blockschaltbild: Ein Nezgerä, auch Nezeil genann, is eine elekronische Schalungen die die Wechselspannung aus dem Sromnez (230V~) in eine Gleichspannung umwandeln kann. Ein Nezgerä sez sich meisens aus folgenden Komponenen

Mehr

II. Wertvergleich von Zahlungsströmen durch Diskontierung

II. Wertvergleich von Zahlungsströmen durch Diskontierung Unernehmensfinanzierung Winersemeser 20/2 Prof. Dr. Alfred Luhmer II. Wervergleich von Zahlungssrömen durch Diskonierung Gegenwarswere und Zukunfswere Kalkulaionszinsfuß Bewerung konsaner Zahlungssröme:

Mehr

Makroökonomie 1. 2. Makroök. Analyse mit flexiblen Preisen. Gliederung. 2.4. Geld und Inflation

Makroökonomie 1. 2. Makroök. Analyse mit flexiblen Preisen. Gliederung. 2.4. Geld und Inflation Gliederung akroökonomie 1 rof. Volker Wieland rofessur für Geldheorie und -poliik J.W. Goehe-Universiä Frankfur 1. Einführung 2. akroökonomische Analyse mi Flexiblen reisen 3. akroökonomische Analyse in

Mehr

AVWL II, Prof. Dr. T. Wollmershäuser. Kapitel 5 Die Phillipskurve

AVWL II, Prof. Dr. T. Wollmershäuser. Kapitel 5 Die Phillipskurve AVWL II, Prof. Dr. T. Wollmershäuser Kapiel 5 Die Phillipskurve Version: 22.11.2010 Der empirische Befund in den 60er Jahren Inflaion und Arbeislosigkei in den Vereinigen Saaen, 1900-1960 : 1931-1939 In

Mehr

Abiturprüfung Baden-Württemberg 1986

Abiturprüfung Baden-Württemberg 1986 001 - hp://www.emah.de 1 Abirprüfng Baden-Würemberg 1986 Leisngskrs Mahemaik - Analysis Z jedem > 0 is eine Fnkion f gegeben drch f x x x e x ; x IR Ihr Schabild sei K. a Unersche K af Asympoen, Schnipnke

Mehr

14 Kurven in Parameterdarstellung, Tangentenvektor und Bogenlänge

14 Kurven in Parameterdarstellung, Tangentenvektor und Bogenlänge Dr. Dirk Windelberg Leibniz Universiä Hannover Mahemaik für Ingenieure Mahemaik hp://www.windelberg.de/agq 14 Kurven in Parameerdarsellung, Tangenenvekor und Bogenlänge Aufgabe 14.1 (Tangenenvekor und

Mehr

Warum ist die Frage, wem ein Leasingobjekt zugerechnet wird, wichtig? Welche Vorteile kann ein Leasinggeber (eine Leasinggesellschaft) ggf. erzielen?

Warum ist die Frage, wem ein Leasingobjekt zugerechnet wird, wichtig? Welche Vorteile kann ein Leasinggeber (eine Leasinggesellschaft) ggf. erzielen? 1) Boschafen von Kapiel 7 Welche Eigenschafen ha ein Finanzierungs-Leasing-Verrag? Warum is die Frage, wem ein Leasingobjek zugerechne wird, wichig? FLV, vollkommener Kapialmark und Gewinnseuer Welche

Mehr

Masse, Kraft und Beschleunigung Masse:

Masse, Kraft und Beschleunigung Masse: Masse, Kraf und Beschleunigung Masse: Sei 1889 is die Einhei der Masse wie folg fesgeleg: Das Kilogramm is die Einhei der Masse; es is gleich der Masse des Inernaionalen Kilogrammprooyps. Einzige Einhei

Mehr

Latente Wärme und Wärmeleitfähigkeit

Latente Wärme und Wärmeleitfähigkeit Versuch 5 Laene Wärme und Wärmeleifähigkei Aufgabe: Nehmen Sie für die Subsanz,6-Hexandiol Ersarrungskurven auf und ermieln Sie daraus die laene Wärme beim Phasenübergang flüssig-fes sowie den Wärmedurchgangskoeffizienen

Mehr

26 31 7 60 64 10. 16 6 12 32 33 9

26 31 7 60 64 10. 16 6 12 32 33 9 Lineare Algebra / Analyische Geomerie Grundkurs Zenrale schrifliche Abiurprüfungen im Fach Mahemaik Aufgabe 4 Fruchsäfe in Berieb der Geränkeindusrie produzier in zwei Werken an verschiedenen Sandoren

Mehr

Motivation. Finanzmathematik in diskreter Zeit

Motivation. Finanzmathematik in diskreter Zeit Moivaion Finanzmahemaik in diskreer Zei Eine Hinführung zu akuellen Forschungsergebnissen Alber-Ludwigs-Universiä Freiburg Prof. Dr. Thorsen Schmid Abeilung für Mahemaische Sochasik Freiburg, 22. April

Mehr

t,t Zentrale Klausur am Ende der Einführungsphase l von 6 Mathematik 'f(x) f '(x) zkm (mit CAS) \ ro Aufgabenstellung

t,t Zentrale Klausur am Ende der Einführungsphase l von 6 Mathematik 'f(x) f '(x) zkm (mit CAS) \ ro Aufgabenstellung zkm (mi CAS) Miniserium für Landes Nordrhein-Wesfalen Seie 'les l von 6 Zenrale Klausur am Ende der Einführungsphase 202 Mahemaik Aufgabensellung Aufgabe : Unersuchung ganzraionaler Funkionen Gegeben is

Mehr

Weg im tv-diagramm. 1. Rennwagen

Weg im tv-diagramm. 1. Rennwagen Weg im v-diagramm 1. Rennwagen Löung: (a). (a) Bechreibe die Fahr de Rennwagen. (b) Wie wei kommm der Rennwagen in den eren vier Minuen, wie wei komm er über den geamen Zeiraum? (c) Wie groß i die Durchchnigechwindigkei

Mehr

Universität Ulm Samstag,

Universität Ulm Samstag, Universiä Ulm Samsag, 5.6. Prof. Dr. W. Arend Robin Nika Sommersemeser Punkzahl: Lösungen Gewöhnliche Differenialgleichungen: Klausur. Besimmen Sie die Lösung (in möglichs einfacher Darsellung) folgender

Mehr

Kapitel 6: Ort, Geschwindigkeit und Beschleunigung als Funktion der Zeit

Kapitel 6: Ort, Geschwindigkeit und Beschleunigung als Funktion der Zeit Kapiel 6: Or, Geschwindigkei und Beschleunigung als Funkion der Zei 2 Kapiel 6: Or, Geschwindigkei und Beschleunigung als Funkion der Zei Einführung Lerninhal Einführung 3 Das Programm yzet erlaub es,

Mehr

4.5. Prüfungsaufgaben zu Symmetrie und Verschiebung

4.5. Prüfungsaufgaben zu Symmetrie und Verschiebung 4.5. Prüfungsaufgaben zu Symmerie und Verschiebung Aufgabe : Symmerie (6) Unersuche die folgenden Funkionen auf Punk- oder Achsensymmerie: a) f() = 6 6 + 4 + 8 + 7 b) f() = 8 5 5 + 5 c) f() = (a 5 b +

Mehr

Hamburg Kernfach Mathematik Zentralabitur 2013 Erhöhtes Anforderungsniveau Analysis 2

Hamburg Kernfach Mathematik Zentralabitur 2013 Erhöhtes Anforderungsniveau Analysis 2 Hmburg Kernfch Mhemik Zenrlbiur 2013 Erhöhes Anforderungsniveu Anlysis 2 Smrphones Die Mrkeinführung eines neuen Smrphones vom Elekronikherseller PEAR wird ses ufgereg erwre. Zur Modellierung der Enwicklung

Mehr

Wachstumsformen. Dabei ist m die Änderungsrate und c der Anfangsbestand B(0).

Wachstumsformen. Dabei ist m die Änderungsrate und c der Anfangsbestand B(0). Kanonsschule Solohurn Fachmauriä: Wachsumsformen WS14/15 Wachsumsformen Von Wachsum sprechen wir, wenn sich ein Besand mi der Zei veränder. Wachsum bedeue nich immer eine Zunahme des Anfangsbesandes, es

Mehr

WORKING PAPERS Arbeitspapiere der Betrieblichen Finanzwirtschaft

WORKING PAPERS Arbeitspapiere der Betrieblichen Finanzwirtschaft WORKING PAPERS Arbeispapiere der Berieblichen Finanzwirschaf Lehrsuhl für Beriebswirschafslehre, insbes. Beriebliche Finanzwirschaf Bfw29V/03 Zusandsabhängige Bewerung mi dem sochasischen Diskonierungsfakor

Mehr

A.24 Funktionsscharen 1

A.24 Funktionsscharen 1 A.4 Funkionsscharen A.4 Funkionsscharen ( ) Bemerkung: Im Buch Kurvenprobleme gib es viel Aufgaben zu Funkionen, die einen Parameer enhalen. Falls Sie hier also nich genug kriegen... A.4.0 Orskurven (

Mehr

Kapitel 11 Produktion, Sparen und der Aufbau von Kapital

Kapitel 11 Produktion, Sparen und der Aufbau von Kapital apiel 11 Produkion, Sparen und der Aufbau von apial Vorbereie durch: Florian Barholomae / Sebasian Jauch / Angelika Sachs Die Wechselwirkung zwischen Produkion und apial Gesamwirschafliche Produkionsfunkion:

Mehr

Arbeitsauftrag Thema: Gleichungen umformen, Geschwindigkeit, Diagramme

Arbeitsauftrag Thema: Gleichungen umformen, Geschwindigkeit, Diagramme Arbeiaufrag Thema: Gleichungen umformen, Gechwindigkei, Diagramme Achung: - So ähnlich (aber kürzer) könne die näche Klaenarbei auehen! - Bearbeie die Aufgaben während der Verreungunde. - Wa du nich chaff

Mehr

Schriftliche Abiturprüfung Mathematik 2013

Schriftliche Abiturprüfung Mathematik 2013 Schrifliche Abiurprüfung Mahemaik 03 Aufgabe (NT 008, Nr) Pflicheil Bilden Sie die Ableiung der Funkion f mi f(x) = 3x e x+ und vereinfachen Sie so wei wie möglich ( VP) Aufgabe (HT 008, Nr ) G is eine

Mehr

Untersuchung von Gleitentladungen und deren Modellierung durch Funkengesetze im Vergleich zu Gasentladungen

Untersuchung von Gleitentladungen und deren Modellierung durch Funkengesetze im Vergleich zu Gasentladungen Unersuchung von Gleienladungen und deren Modellierung durch Funkengeseze im Vergleich zu Gasenladungen Dipl.-Ing. Luz Müller, Prof. Dr.-Ing. Kur Feser Insiu für Energieüberragung und Hochspannungsechnik,

Mehr

Diskrete Integratoren und Ihre Eigenschaften

Diskrete Integratoren und Ihre Eigenschaften Diskree Inegraoren und Ihre Eigenschafen Whie Paper von Dipl.-Ing. Ingo Völlmecke Indusrielle eglersrukuren werden im Allgemeinen mi Hilfe von Inegraoren aufgebau. Aufgrund des analogen Schalungsaufbaus

Mehr

4. Kippschaltungen mit Komparatoren

4. Kippschaltungen mit Komparatoren 4. Kippschalungen mi Komparaoren 4. Komparaoren Wird der Operaionsversärker ohne Gegenkopplung berieben, so erhäl man einen Komparaor ohne Hserese. Seine Ausgangsspannung beräg: a max für > = a min für

Mehr

Mathematische Methoden in den Ingenieurwissenschaften 4. Übungsblatt

Mathematische Methoden in den Ingenieurwissenschaften 4. Übungsblatt Prof Dr M Gerds Dr A Dreves J Michael Winerrimeser 6 Mahemaische Mehoden in den Ingenieurwissenschafen 4 Übungsbla Aufgabe 9 : Mehrmassenschwinger Berache wird ein schwingendes Sysem aus Körpern der Masse

Mehr

Übungsaufgaben zu Kapitel 5: Erwartungen Die Grundlagen

Übungsaufgaben zu Kapitel 5: Erwartungen Die Grundlagen Kapiel 5 Übungsaufgaben zu Kapiel 5: Erwarungen Die Grundlagen Übungsaufgabe 5-1a 5-1a) Beschreiben Sie die heoreischen Überlegungen zum Realzins. Wie unerscheide sich der Realzins vom Nominalzins? Folie

Mehr

Bericht zur Prüfung im Oktober 2007 über Finanzmathematik und Investmentmanagement

Bericht zur Prüfung im Oktober 2007 über Finanzmathematik und Investmentmanagement Berich zur Prüfung im Okober 7 über Finanzmahemaik und Invesmenmanagemen (Grundwissen) Peer Albrech (Mannheim) Am 5 Okober 7 wurde zum zweien Mal eine Prüfung im Fach Finanzmahemaik und Invesmenmanagemen

Mehr

Praktikum Grundlagen der Elektrotechnik Versuch 5. Matrikelnummer:... ...

Praktikum Grundlagen der Elektrotechnik Versuch 5. Matrikelnummer:... ... FH D FB 3 Fachhochschule Düsseldorf Universiy of Applied Sciences Fachbereich Elekroechnik Deparmen of Elecrical Engineering Prakikum Grundlagen der Elekroechnik Versuch 5 Name Marikelnummer:... Anesa

Mehr

I. Vorbemerkungen und wichtige Konzepte

I. Vorbemerkungen und wichtige Konzepte - 1 - I. Vorbemerkungen und wichige Konzee A.Warum und zu welchem Zweck bereiben wir Wirschafsheorie? 1. Zur Beanworung der ökonomischen Grundfragen Fragen der Allokaion (Ziel is die effiziene Allokaion

Mehr

Preisniveau und Staatsverschuldung

Preisniveau und Staatsverschuldung Annahme: Preisniveau und Saasverschuldung Privae Wirschafssubjeke berücksichigen bei ihren Enscheidungen die Budgeresrikion des Saaes. Wenn sich der Saa in der Gegenwar sark verschulde, dann muss der zusäzliche

Mehr

Value Based Management

Value Based Management Value Based Managemen Vorlesung 5 Werorieniere Kennzahlen und Konzepe PD. Dr. Louis Velhuis 25.11.25 Wirschafswissenschafen PD. Dr. Louis Velhuis Seie 1 4 CVA Einführung CVA: Cash Value Added Spezifischer

Mehr

Unterschied 2: kurzfristige vs langfristige Zinssätze. Arbitrage impliziert: r = i e i = r + e (1) (2)

Unterschied 2: kurzfristige vs langfristige Zinssätze. Arbitrage impliziert: r = i e i = r + e (1) (2) Unerschied : kurzfrisige vs langfrisige Zinssäze Inermediae Macro - Uni Basel 10 Arbirage implizier: (1) () Es gib eine klare Beziehung zwischen langfrisigen Zinsen und erwareen künfigen Kurzfriszinsen

Mehr

Grundschaltung, Diagramm

Grundschaltung, Diagramm Grundschalung, Diagramm An die gegebene Schalung wird eine Dreieckspannung von Vs (10Vs) angeleg. Gesuch: Spannung an R3, Srom durch R, I1 Der Spannungsverlauf von soll im oberen Diagramm eingezeichne

Mehr

um (x + X) 4 auszurechnen verwenden wir den Binomischen Lehrsatz (a+b) n = a n + ( n 1 )a n-1* b 1 + + b n ( n k ) = in Gleichung einsetzen

um (x + X) 4 auszurechnen verwenden wir den Binomischen Lehrsatz (a+b) n = a n + ( n 1 )a n-1* b 1 + + b n ( n k ) = in Gleichung einsetzen Mahemaik I Übungsaufgaben 8 Lösungsorschläge on T. Meyer Era-Mahemaik-Übung: 005--06 Aufgabe Berechnen Sie die Ableiung der Funkion f an einer beliebigen Selle 0 ohne Verwendung irgendwelcher Vorkennnisse

Mehr

Vertriebsservice & Produktmanagement

Vertriebsservice & Produktmanagement Zahlungsverkehr, Spareinlagen & Bausparen Verriebsservice & Produkmanagemen Inhalsverzeichnis 1. Zahlungsverkehrsgeschäf...3 1.1. Wann kann ein Kono eröffne werden...3 1.2. Unerlagen Konoeröffnung...3

Mehr

Hauptprüfung Abiturprüfung 2014 (ohne CAS) Baden-Württemberg

Hauptprüfung Abiturprüfung 2014 (ohne CAS) Baden-Württemberg Bden-Würemberg: Abiur 04 Anlysis www.mhe-ufgben.com Hupprüfung Abiurprüfung 04 (ohne CAS) Bden-Würemberg Anlysis Hilfsmiel: GTR, Formelsmmlung berufliche Gymnsien (AG, BTG, EG, SG, TG, WG) Alexnder Schwrz

Mehr

Der Zeitwert des Geldes - Vom Umgang mit Zinsstrukturkurven -

Der Zeitwert des Geldes - Vom Umgang mit Zinsstrukturkurven - - /8 - Der Zeiwer des Geldes - Vom Umgang mi Zinssrukurkurven - Dr. rer. pol. Helmu Sieger PROBLEMSELLUNG Zinsänderungen beeinflussen den Wer der Zahlungssröme, die Krediinsiue, Versicherungen und sonsige

Mehr

Laplacetransformation in der Technik

Laplacetransformation in der Technik Verallgemeinere Funkionen Laplaceransformaion in der echnik Fakulä Grundlagen Februar 26 Fakulä Grundlagen Laplaceransformaion in der echnik Übersich Verallgemeinere Funkionen Verallgemeinere Funkionen

Mehr

Integralrechnung. Grundidee der Integralrechnung. Einführung des Riemann- Integrals

Integralrechnung. Grundidee der Integralrechnung. Einführung des Riemann- Integrals 1/8 Grundidee der Inegralrechnung Inegralrechnung Die Inegralrechnung is neben der Differenialrechnung der wichigse Zweig der Analysis. Sie is aus dem Problem der Flächen- und Volumenberechnung ensanden.

Mehr

M4/I Bewegungs-und Leistungsaufgaben Name: 1) Verwandle in Minuten! 1 min 30 s = 7 min 15 s = 3 min 45 s =

M4/I Bewegungs-und Leistungsaufgaben Name: 1) Verwandle in Minuten! 1 min 30 s = 7 min 15 s = 3 min 45 s = ) erwandle in Minuen! 30 s 7 5 s 3 5 s 2) erwandle in gemische Einheien! 2,5 2,25,75 3) erwandle in Sekunden! 0,6 0, 0,9 ) erwandle in Minuen! 2 s s 36 s 5) erwandle in Minuen! 0,2 h 0,3 h 0, h 6) erwandle

Mehr

Physik Übung * Jahrgangsstufe 9 * Versuche mit Dioden

Physik Übung * Jahrgangsstufe 9 * Versuche mit Dioden Physik Übung * Jahrgangssufe 9 * Versuche mi Dioden Geräe: Nezgerä mi Spannungs- und Sromanzeige, 2 Vielfachmessgeräe, 8 Kabel, ohmsche Widersände 100 Ω und 200 Ω, Diode 1N4007, Leuchdiode, 2 Krokodilklemmen

Mehr

Bewegung. Einteilung der Mechanik. Kinematik. Bezugssystem. Modell Massepunkt. Geradlinig gleichförmige Bewegung

Bewegung. Einteilung der Mechanik. Kinematik. Bezugssystem. Modell Massepunkt. Geradlinig gleichförmige Bewegung Eineilung der Mechanik Kinemaik Mechanik Kinemaik Dynamik Lehre von den Bewegungen und ihren Gesezen, ohne Beachung der zu Grunde liegenden Ursachen Lehre von den Kräfen und deren Wirkungen und dami der

Mehr

von Hinten: Investitionsplanung und -rechnung, #03

von Hinten: Investitionsplanung und -rechnung, #03 Projek: VWA hema: WS 25/6 Empfänger: Absender: Dimar Nagel Anlage-Daum: 22..25 Saus-Daum: 8..26 von Hinen: Invesiionsplanung und -rechnung, #3 2..25 Alle Foliennummern beziehen sich auf die Ursprungs-PDF

Mehr

2.1 Produktion und Wirtschaftswachstum - Das BIP

2.1 Produktion und Wirtschaftswachstum - Das BIP 2.1 Produkion und Wirschafswachsum - Das BIP DieVolkswirschafliche Gesamrechnung(VGR)is das Buchführungssysem des Saaes. Sie wurde enwickel, um die aggregiere Wirschafsakiviä zu messen. Die VGR liefer

Mehr

Ganzrationale Funktionenscharen. 3. Grades. Umfangreiche Aufgaben. Lösungen ohne CAS und GTR. Alle Methoden ganz ausführlich. Datei Nr.

Ganzrationale Funktionenscharen. 3. Grades. Umfangreiche Aufgaben. Lösungen ohne CAS und GTR. Alle Methoden ganz ausführlich. Datei Nr. Ganzraionale Funionenscharen. Grades Umfangreiche Aufgaben Lösungen ohne CAS und GTR Alle Mehoden ganz ausführlich Daei Nr. 47 Sand 7. Sepember 06 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK

Mehr

Strömung im Rohr. Versuch: Inhaltsverzeichnis. Fachrichtung Physik. Physikalisches Grundpraktikum. 1 Aufgabenstellung 2

Strömung im Rohr. Versuch: Inhaltsverzeichnis. Fachrichtung Physik. Physikalisches Grundpraktikum. 1 Aufgabenstellung 2 Fachrichung Physik Physikalisches Grundprakikum Ersell: Bearbeie: Versuch: L. Jahn SR M. Kreller J. Kelling F. Lemke S. Majewsky i. A. Dr. Escher Akualisier: am 29. 03. 2010 Srömung im Rohr Inhalsverzeichnis

Mehr

17. Kapitel: Die Investitionsplanung

17. Kapitel: Die Investitionsplanung ABWL 17. Kapiel: Die Ivesiiosplaug 1 17. Kapiel: Die Ivesiiosplaug Leifrage des Kapiels: Welche Type vo Ivesiiosobjeke gib es? Wie läss sich die Voreilhafigkei eies Ivesiiosobjeks fesselle? Wie ka aus

Mehr

Kapitel 9. Geldmengenwachstum,

Kapitel 9. Geldmengenwachstum, Kapiel 9 Geldmenenwachsum, Inflaion und Produkion Inflaion, Beschäfiun und Geldmenenh (Blanchard Kap 9 & 3.) wachsum ) 9. Übersich 9.2 Okun'sches Gesez ohne N- und A-Wachsum 9.3 Okun'sches Gesez mi N-

Mehr

3.2 Festlegung der relevanten Brandszenarien

3.2 Festlegung der relevanten Brandszenarien B Anwendungsbeispiel Berechnungen Seie 70.2 Feslegung der relevanen Brandszenarien Eine der wichigsen Aufgaben beim Nachweis miels der Ingenieurmehoden im Brandschuz is die Auswahl und Definiion der relevanen

Mehr

Abiturprüfung Mathematik 2011 (Baden-Württemberg) Berufliche Gymnasien Analysis, Lösung Aufgabe 1

Abiturprüfung Mathematik 2011 (Baden-Württemberg) Berufliche Gymnasien Analysis, Lösung Aufgabe 1 Abiurprüfung Mahemaik 0 (Baden-Würemberg) Berufliche Gymnasien Analysis, Lösung Aufgabe.. Skizzier man sich mi Hilfe des GTR drei Schaubilder der Schar (z.b. für =, = und = 4) ergeben sich folgende Skizzen:

Mehr

Grundgebiete der Elektrotechnik II Feedbackaufgabe: Transiente Vorgänge

Grundgebiete der Elektrotechnik II Feedbackaufgabe: Transiente Vorgänge heinisch-wesfälische Technische Hochschule Aachen Insiu für Sromricherechni und Elerische Anriebe Universiäsprofessor Dr. ir. i W. De Doncer Grundgebiee der Eleroechni II Feedbacaufgabe: Transiene Vorgänge

Mehr

Bericht zur Prüfung im Oktober 2008 über Finanzmathematik und Investmentmanagement

Bericht zur Prüfung im Oktober 2008 über Finanzmathematik und Investmentmanagement Beric zur rüfung im Okober 008 über Finanzmaemaik und Invesmenmanagemen (Grundwissen) eer Albrec (Manneim) Am 7 Okober 008 wurde zum drien Mal eine rüfung im Fac Finanzmaemaik und Invesmenmanagemen nac

Mehr

Analysis: Exponentielles Wachstum Analysis Übungsaufgaben zum Exponentiellen Wachstum zum Einstieg Gymnasium Klasse 10

Analysis: Exponentielles Wachstum Analysis Übungsaufgaben zum Exponentiellen Wachstum zum Einstieg Gymnasium Klasse 10 www.mhe-ufgben.com Anlysis: Eponenielles Wchsum Anlysis Übungsufgben zum Eponeniellen Wchsum zum Einsieg Gymnsium Klsse 1 Alender Schwrz www.mhe-ufgben.com Jnur 214 1 www.mhe-ufgben.com Anlysis: Eponenielles

Mehr

Faktor 4x Long Zertifikate (SVSP-Produktcode: 1300)

Faktor 4x Long Zertifikate (SVSP-Produktcode: 1300) Fakor 4x Long Zerifikae (SVSP-Produkcode: 1300) Index Valor / Symbol / ISIN / WKN Bezugswer Fakor 4x Long Copper Index CBLKU4 / 12306935 / CZ33RK / DE000CZ33RK2 üblicherweise der an der Maßgeblichen erminbörse

Mehr

Kapitelübersicht. Kapitel. Kapitalwert und Endwert. 4.1 Der Ein-Perioden-Fall: Barwert. 4.1 Der Ein-Perioden-Fall: Barwert

Kapitelübersicht. Kapitel. Kapitalwert und Endwert. 4.1 Der Ein-Perioden-Fall: Barwert. 4.1 Der Ein-Perioden-Fall: Barwert -0 - Kapiel Kapialwe und Endwe Kapielübesich. De Ein-Peioden-Fall. De Meh-Peioden-Fall. Diskonieung. Veeinfachungen.5 De Unenehmenswe.6 Zusammenfassung und Schlussfolgeungen -. De Ein-Peioden-Fall: Endwe

Mehr

Faktor 4x Short Natural Gas II Zertifikat (SVSP-Produktcode: 2300)

Faktor 4x Short Natural Gas II Zertifikat (SVSP-Produktcode: 2300) Fakor 4x Shor Naural Gas II Zerifika (SVSP-Produkcode: 2300) KAG Hinweis Emienin: Raing: Zerifikaear: SVSP-Code Verbriefung: Die Werpapiere sind keine Kollekivanlage im Sinne des schweizerischen Bundesgesezes

Mehr

Lösungen zu Kontrollfragen

Lösungen zu Kontrollfragen Lehrsuhl für Finanzwirschaf Lösungen zu Konrollfragen Finanzwirschaf Prof. Dr. Thorsen Poddig Fachbereich 7: Wirschafswissenschaf Einführung (Kapiel ) Sichweisen in der Finanzwirschaf. bilanzorieniere

Mehr

Investition und Finanzierung

Investition und Finanzierung Invesiion und Finanzierung - Vorlesung 9 - Prof. Dr. Rainer Elschen Prof. Dr. Rainer Elschen - 150 - 2.6 Grundlagen der Werpapierbewerung Prof. Dr. Rainer Elschen - 151 - Organisaion der Finanzmärke (1)

Mehr

Physikprotokoll. 1 Versuch Nr.: 7 Moser Guido Dünne Linsen Fulda, den

Physikprotokoll. 1 Versuch Nr.: 7 Moser Guido Dünne Linsen Fulda, den Moser Guido Dünne Linsen Fulda, den 0..998 Dünne Linsen Was sind Linsen? Linsen sind meis Glaskörper, die lichdurchlässig sind und einallende Lichsrahlen ablenken. Die Ablenkung der Srahlen is dabei vom

Mehr

3. Echtzeit-Scheduling Grundlagen

3. Echtzeit-Scheduling Grundlagen 3. Echzei-Scheduling Grundlagen 3.1. Grundbegriffe, Klassifikaion und Bewerung Grundbegriffe Job Planungseinhei für Scheduling e wce r d Ausführungszei, Bearbeiungszei (execuion ime) maximale Ausführungszei

Mehr

REX und REXP. - Kurzinformation -

REX und REXP. - Kurzinformation - und P - Kurzinformaion - July 2004 2 Beschreibung von Konzep Anzahl der Were Auswahlkrierien Grundgesamhei Subindizes Gewichung Berechnung Basis Berechnungszeien Gewicheer Durchschniskurs aus synheischen

Mehr

Faktor 4x Long Zertifikate (SVSP-Produktcode: 1300)

Faktor 4x Long Zertifikate (SVSP-Produktcode: 1300) Fakor 4x Long Zerifikae (SVSP-Produkcode: 1300) Index Valor / Symbol / ISIN / WKN Bezugswer Fakor 4x Long Naural Gas Index 18377042 CBLNG4 DE000CZ33US9 CZ33US üblicherweise der an der Massgeblichen erminbörse

Mehr

Theoretische Grundlagen

Theoretische Grundlagen Theoreiche Grundlagen Phik Leiungkur Größen Größen Größen 5 m Grundgrößen abgeleiee Größen Zahl Einhei Länge, Mae, Zei, Sromärke, Temperaur, Soffmenge, Lichärke Gechwindigkei, Kraf, Ladung Änderunggrößen:

Mehr

Zinsstruktur und Barwertberechnung

Zinsstruktur und Barwertberechnung 5A-0 Kapiel Zinssrukur und Barwerberechnung 5A-1 Kapielübersich 5A.1 Zinssrukur (Einführung) 5A.2 Zinssrukur und Rendie 5A.3 Spo- und Terminzinssäze 5A.4 Formen und graphische Darsellung 5A.5 Zusammenfassung

Mehr

ZA6286. Flash Eurobarometer 416 (The Charter of Fundamental Rights of the European Union, wave 2) Country Questionnaire Germany

ZA6286. Flash Eurobarometer 416 (The Charter of Fundamental Rights of the European Union, wave 2) Country Questionnaire Germany ZA686 Flash Eurobaromeer 6 (The Charer of Fundamenal Righs of he European Union, wave ) Counry Quesionnaire Germany FL6 Charer of Fundamenal Righs of he EU - DE D Darf ich fragen, wie al Sie sind? (BITTE

Mehr

7 Drehstromgleichrichter

7 Drehstromgleichrichter Drehsromgleichricher 7 Drehsromgleichricher 7.1 Mielpnk-Schalng (Halbbrücke) (3-plsiger Gleichricher) In bbildng 7-1 sind die drei Sekndärwicklngen eines Drehsrom-Transformaors in Sernschalng dargesell.

Mehr