v A B A α h 1 h c) Wie lautet der Geschwindigkeitsvektor beim Auftreffen der Kugel im Punkt B?

Größe: px
Ab Seite anzeigen:

Download "v A B A α h 1 h c) Wie lautet der Geschwindigkeitsvektor beim Auftreffen der Kugel im Punkt B?"

Transkript

1 Institut für Mechanik Prof. Dr.-In. habil. P. Betsch Prof. Dr.-In. habil. Th. Seeli Prüfun in Dynamik 3. Auust 4 Aufabe ca. 0 % der Gesamtpunkte) H m v 0 y v A B A α h h L x Eine Kuel Punktmasse m) bewet sich reibunsfrei mit der Anfanseschwindikeit v 0 zunächst eine schiefe Ebene hinab und dann durch eine Mulde, die sie im Punkt A unter dem Winkel α verlässt. Ge.: m, v 0, H, h, L, α, a) Wie lautet der Geschwindikeitsvektor v A der Kuel im Punkt A? b) Wie lautet die Bahnkurve yx) der Kuel? In welcher Höhe h trifft die Kuel im Punkt B auf? jeweils mit Herleitun!) c) Wie lautet der Geschwindikeitsvektor beim Auftreffen der Kuel im Punkt B?

2 Institut für Mechanik Prof. Dr.-In. habil. P. Betsch Prof. Dr.-In. habil. Th. Seeli Prüfun in Dynamik 3. Auust 4 Aufabe ca. 0 % der Gesamtpunkte) x S m, J S ϕ r F 0 r S α Eine auf einer rauhen Ebene ruhende Seiltrommel Masse m, Massenträheitsmoment J S ) wird in Beweun esetzt, indem am Seil unter dem Winkel α mit der konstanten Kraft F 0 ezoen wird. a) Schneiden Sie das System frei Freikörperbild). b) Bestimmen Sie die Beschleuniun a S des Schwerpunktes S, wenn die Trommel rollt. c) Wie roß muss dafür der Haftkoeffizient µ 0 sein? µ 0 Ge.: m, J S, F 0, r, r, α,

3 Institut für Mechanik Prof. Dr.-In. habil. P. Betsch Prof. Dr.-In. habil. Th. Seeli Prüfun in Dynamik 3. Auust 4 Aufabe 3 ca. 35 % der Gesamtpunkte) Zwei Pendel sind wie darestellt über eine Feder der Steifikeit c miteinander ekoppelt. Das erste Pendel besteht aus einem schlanken homoenen Stab der Masse m und der Läne a, während das zweite Pendel aus einem masselosen Stab der Läne a besteht, an dessen freiem Ende eine Punktmasse m befestit ist. Beide Stäbe können sich um ihre Drehachsen A und B reibunslos drehen. In der Lae ϕ = ϕ = 0 sei die Feder entspannt. Für die Auslenkun der Feder sei nur der horizontale Anteil zu berücksichtien! A B m a a ϕ ϕ c a m Bestimmen Sie: a) die Beweunsleichunen in den aneebenen eneralisierten Koordinaten ϕ und ϕ mit Hilfe der Larane schen Gleichunen, b) die linearisierten Beweunsleichunen für kleine Auslenkunen, c) die Eienkreisfrequenzen des Systems für den Fall: m = 3m, m = m, c = m a, d) Berechnen Sie unter der Näherunsannahme ω = 0.8 a und ω =.5 a die Eienvektoren des Systems und skizzieren Sie die Schwinunsformen. Geeben: m, m, a, c,

4 Institut für Mechanik Prof. Dr.-In. habil. P. Betsch Prof. Dr.-In. habil. Th. Seeli Prüfun in Dynamik 3. Auust 4 Aufabe 4 ca. 5 % der Gesamtpunkte) Das darestellte System besteht aus einer vertikal frei bewelichen Rolle m, J, r ), einer elenki elaerten Rolle m, J, r ) und einer Masse m 3, die über ein masseloses, dehnstarres Seil verbunden sind. Der Reibunskoeffizient zwischen der Masse m 3 und der schiefen Ebene ist µ. Das System befindet sich zu Beinn in Ruhe und der Mittelpunkt der Rolle in einer Höhe h über dem Boden. Es ist davon auszuehen, dass das Seil auf den Rollen nicht leitet. ϕ J, m r x 3 m 3 µ ϕ α r x h J, m a) Geben Sie die kinematischen Beziehunen zwischen den Koordinaten x,ϕ,ϕ und x 3 an. b) Ermitteln Sie mit Hilfe des Arbeitssatzes die Geschwindikeit, mit der die Rolle auf dem Boden aufsetzt. Geeben: m, m, m 3, J, J, r, r, α, µ,, h

5 Lösun zu Aufabe a) Wie lautet der Geschwindikeitsvektor v A der Kuel im Punkt A? Der Enerieerhaltunssatz lautet: T +V = T +V ) Das Nullniveau wird in den Punkt A elet. Somit folt für die Enerieterme: T = mv 0 V = mh h) T = mv A V = 0 ) Setzen wir die Terme ein und lösen nach v A : mv 0 +mh h) = mv A v A = H h)+v0 Somit ilt für den Geschwindikeitsvektor: [ ] cosα v A = v A sinα 3) 4) b) In welcher Höhe h trifft die Kuel im Punkt B auf? Wie lautet die Bahnkurve yx) der Kuel? jeweils mit Herleitun!) Die Beschleuniunen in x- und y-richtun sind wie folt eeben: Durch Interation erhalten wir: ẍ = 0 ÿ = 5) ẋ = v Ax ẏ = t+v Ay x = v Ax t+x 0 y = t +v Ay t+y 0 6)

6 mit den Randbedinunen x 0 = 0 und y 0 = 0 erhalten wir: t = x v Ax y = t +v Ay t 7) Setzen wir diese Gleichunen ineinander ein, erhält man die Bahnkurve yx) des Massenpunktes: y = ) x x +v Ay v Ax v Ax y = x va cos α +v x A sinα 8) v A cosα y = x +x tanα va cos α Die Höhe h kann somit durch die Läne L berechnet werden: h = L +L tanα 9) va cos α c) Wie lautet der Geschwindikeitsvektor kurz vor dem Auftreffen der Kuel am Punkt B? [ ] va cosα v B = t+v Ay [ ] 0) v A cosα v B = L +v v A cosα A sinα

7 Lösun zu Aufabe a) Freikörperbild x S ϕ r F 0 r S α m H N b) Kräfte- und Momentensatz ma S = F 0 cosα H ) 0 = N m +F 0 sinα ) J s ϕ = r H r F 0 3) Kinematik x S = r ϕ, v S = r ϕ, a S = r ϕ 4) Schwerpunktbeschleuniun a S = F cosα r 0 r m + J S r m c) Damit kein Rutschen auftritt, muss elten H µ 0 N aus ), 3) J S cosα r H = F r 0 + J S r m 5) aus ) N = m F 0 sinα 6) einsetzen liefert µ 0 J S cosα r m + r r ) m F 0 sinα + J S r m )

8 Lösun zu Aufabe 3 a) Lösunsmölichkeit über Larane. Art Kinetische Enerie T = JA) ϕ + JB) ϕ mit MTM bzl. jeweiliem MGP: J A) = J S) +m a ) = m a +m a 4 = 3 m a J B) = m a) = 4m a T = 6 m a ϕ +m a ϕ Potentielle Enerie V = m a cosϕ ) m acosϕ )+ ca sinϕ ) sinϕ )) Larane Funktion L = T V = 6 m a ϕ +m a ϕ +m a cosϕ )+m acosϕ ) ca sinϕ ) sinϕ )) Larane Formalismus Larane. Art; konservatives System) L = ϕ 3 m a ϕ d ) L = dt ϕ 3 m a ϕ L = m a ϕ sinϕ ) ca sinϕ ) sinϕ )) cosϕ )) 3 m a ϕ +m a sinϕ ) ca cosϕ )sinϕ ) sinϕ )) = 0 L = 4m a ϕ d ) L = 4m a ϕ ϕ dt ϕ L = m asinϕ ) ca cosϕ )sinϕ ) sinϕ )) ϕ 4m a ϕ +m asinϕ )+ca cosϕ )sinϕ ) sinϕ )) = 0

9 b) Linearisierun sinϕ) ϕ cosϕ) sinϕ)cosϕ) ϕ Matrix-Vektor-Notation [ m ] [ ][ ] [ 3 a 0 ][ ϕ m a 0 4m a + +ca ca ϕ 0 ϕ ca m a+ca = ϕ 0] c) Eienkreisfrequenzen [ detk ω M) = m a +ca ω m 3 a ca ] ca m a+ca ω 4m a [ = ma ω ma ma ] ma 5 ma ω 4ma = ) ma ω ma ) 5 ma ω 4ma 4 m a ) = ω 4 4m a 4 ω m a m a = ω 4 + ) ω a 6a = 0 ω/ = 6a ) 9 6a 6 a ω = 6 = 0.76 a 6 ) 9 6 a ω = 6 + =.497 a 6 ) 9 6 a

10 Modalformen ) Eienform/Hauptschwinun K ω M ) a = 0 [ ma ω ma ma ma 5 ma ω 4ma ][ a a ] = [ ] 0 0 ma ω ma) a maa = 0 a = ma ω ma ) ma ) a = 4 ω a a [ a = a 4 ω a a ] [ ] ) = a.7 ) Eienform/Hauptschwinun K ω M ) a = 0 [ ma ω ma ma ][ ] [ a 0 ma 5 = ma ω 4ma a 0] ma ω ma ) a maa = 0 a = ma ω ma ) ma ) a = 4 ω a a [ a = a 4 ω a a ] [ ] ) = a 0.5 Darstellun Eienformen.Eienform a leichphasi).7.eienform a eenphasi)

11 Lösun zu Aufabe 4 a) Kinematik: r ϕ = ẋ r ϕ = x r ϕ = r ϕ r ϕ = ẋ, r ϕ = x r ϕ = ẋ 3 r ϕ = ẋ, x 3 = x b) Arbeitssatz: T +V = T +V +W #) Anfansbedinunen: x = ϕ = ϕ = x 3 = 0 ẋ = ϕ = ϕ = ẋ 3 = 0 T = 0 V = 0 Potentielle Enerie: V = m 3 sinα)x 3 m x Reibarbeit: W = µm 3cosα)x 3 Kinetische Enerie: T = m 3ẋ 3 + J ϕ + J ϕ + m ẋ Die kinematischen Beziehunen werden in den Arbeitssatz einesetzt: W = µm 3 cosα)x V = m 3 x sinα) m x T = m 3 4ẋ ) + J ) 4 ẋ r + J ẋ ) r + m ẋ Einsetzen in #) ẋ = µm 3 cosα) m 3 sinα) +m 4 x 4m 3 +J +J r + m r µm3 cosα) m 3 sinα) +m ẋ = 4 h r ) 4m 3 +J +J r + m r

Lösung zur Klausur Technische Mechanik III Universität Siegen, Fachbereich Maschinenbau,

Lösung zur Klausur Technische Mechanik III Universität Siegen, Fachbereich Maschinenbau, Lösun zur Klausur Technische Mechanik III Universität Sieen, Fachbereich Maschinenbau, 9.02.2008 Aufabe 1 (10 Punkte) y m 2 u M R MR v 0 h r x A l B s C Ein römischer Katapultwaen (Masse ) rollt beladen

Mehr

Technische Mechanik III Übungsblatt Nr. 3

Technische Mechanik III Übungsblatt Nr. 3 Institut für Technische Mechanik Prof. Dr.-In. C. Proppe Prof. Dr.-In. W. Seeann Nae: Testat: Terin: (jew. 19:00 Uhr) Vornae: Di., 25.11.2008 Matr. Nr.: Technische Mechanik III Übunsblatt Nr. 3 Thea: Newtonsches

Mehr

4.3 Systeme von starren Körpern. Aufgaben

4.3 Systeme von starren Körpern. Aufgaben Technische Mechanik 3 4.3-1 Prof. Dr. Wandiner ufabe 1: 4.3 Ssteme von starren Körpern ufaben h S L h D L L L D h H L H SH Ein PKW der Masse m mit Vorderradantrieb zieht einen Seelfluzeuanhäner der Masse

Mehr

a S 1 S 2 S G e z a/2 e y e x a/2 Abbildung 1: Werbetafel.

a S 1 S 2 S G e z a/2 e y e x a/2 Abbildung 1: Werbetafel. VU Modellbildun Beispiele zu Kpitel : Mechnische Systeme 1.) Geeben ist die in Abbildun 1 drestellte Werbetfel mit der Msse m. Die Werbetfel ist mittels zwei Seilen S 1 und S n einer Wnd befestit. Außerdem

Mehr

Energiemethoden, Prof. Popov, WiSe 11/12, 4. Woche Lösungshinweise Seite 1 Lagrangesche-Gleichungen 1. Art. 3m 2 r. Somit sind.

Energiemethoden, Prof. Popov, WiSe 11/12, 4. Woche Lösungshinweise Seite 1 Lagrangesche-Gleichungen 1. Art. 3m 2 r. Somit sind. Eneriemethoen, Prof. Popov, WiSe 11/1, 4. Woche Lösunshinweise Seite 1 Tutorium Aufabe 47 Auf einer schiefen Ebene Neiunswinkel α befinet sich ein Sstem aus einem Klotz Masse m 1 un einem Vollzliner Masse

Mehr

Übungen zu Physik 1 für Maschinenwesen

Übungen zu Physik 1 für Maschinenwesen Physikdepartment E3 WS 0/ Übunen zu Physik für Maschinenwesen Prof. Dr. Peter Müller-Buschbaum, Dr. Eva M. Herzi, Dr. Volker Körstens, David Maerl, Markus Schindler, Moritz v. Sivers Vorlesun 0..0, Übunswoche

Mehr

Technische Mechanik III

Technische Mechanik III epetitoriu Technische echanik III Version 3., 09.0.00 Dr.-In. L. Pannin Institut für Dynaik und Schwinunen Gottfried Wilhel Leibniz Universität Hannover Dieses epetitoriu soll helfen, klassische Aufabentypen

Mehr

Lösung 03 Klassische Theoretische Physik I WS 15/16. x 2n+1 (2n + 1)! = x 2n (2n)! + ( x) 2n (2n)! ( x) 2n+1

Lösung 03 Klassische Theoretische Physik I WS 15/16. x 2n+1 (2n + 1)! = x 2n (2n)! + ( x) 2n (2n)! ( x) 2n+1 Karlsruher Institut für Technoloie Institut für theoretische Festkörperphysik www.tfp.kit.edu Lösun 3 Klassische Theoretische Physik I WS 5/6 Prof. Dr. G. Schön Punkte Sebastian Zanker, Daniel Mendler

Mehr

3. Erhaltungsgrößen und die Newton schen Axiome

3. Erhaltungsgrößen und die Newton schen Axiome Übungen zur T1: Theoretische Mechanik, SoSe13 Prof. Dr. Dieter Lüst Theresienstr. 37, Zi. 45 Dr. James Gray James.Gray@physik.uni-muenchen.de 3. Erhaltungsgrößen und die Newton schen Axiome Übung 3.1:

Mehr

Physik 1 für Maschinenwesen Probeklausur 1. Semester

Physik 1 für Maschinenwesen Probeklausur 1. Semester Physikdepartment E3 TU München Physik für Maschinenwesen Probeklausur. Semester Prof. Dr. Peter Müller-Buschbaum 6.0.0, 7:00 h 8:00 h Name Vorname Matrikelnummer Hiermit bestätie ich, die vorlieende Klausur

Mehr

Formelsammlung: Physik I für Naturwissenschaftler

Formelsammlung: Physik I für Naturwissenschaftler Formelsammlung: Physik I für Naturwissenschaftler 1 Was ist Physik? Stand: 13. Dezember 212 Physikalische Größe X = Zahl [X] Einheit SI-Basiseinheiten Mechanik Zeit [t] = 1 s Länge [x] = 1 m Masse [m]

Mehr

Physik 1 ET, WS 2012 Aufgaben mit Lösung 2. Übung (KW 44) Schräger Wurf ) Bootsfahrt )

Physik 1 ET, WS 2012 Aufgaben mit Lösung 2. Übung (KW 44) Schräger Wurf ) Bootsfahrt ) Physik ET, WS Aufaben mit Lösun. Übun (KW 44). Übun (KW 44) Aufabe (M.3 Schräer Wurf ) Ein Ball soll vom Punkt P (x, y ) (, ) aus unter einem Winkel α zur Horizontalen schrä nach oben eworfen werden. (a)

Mehr

3. Kreisbewegung. Punkte auf einem Rad Zahnräder, Getriebe Drehkran Turbinen, Hubschrauberrotor

3. Kreisbewegung. Punkte auf einem Rad Zahnräder, Getriebe Drehkran Turbinen, Hubschrauberrotor 3. Kreisbewegung Ein wichtiger technischer Sonderfall ist die Bewegung auf einer Kreisbahn. Dabei hat der Massenpunkt zu jedem Zeitpunkt den gleichen Abstand vom Kreismittelpunkt. Beispiele: Punkte auf

Mehr

Blatt 7. Lineare und Nichtlineare Schwingungen- Lösungsvorschlag

Blatt 7. Lineare und Nichtlineare Schwingungen- Lösungsvorschlag Fakultät für Physik der LMU München Lehrstuhl für Kosmoloie, Prof. Dr. V. Mukhanov Übunen zu Klassischer Mechanik T1) im SoSe 11 Blatt 7. Lineare und Nichtlineare Schwinunen- Lösunsvorschla Aufabe 7.1.

Mehr

Übung zu Mechanik 3 Seite 36

Übung zu Mechanik 3 Seite 36 Übung zu Mechanik 3 Seite 36 Aufgabe 61 Ein Faden, an dem eine Masse m C hängt, wird über eine Rolle mit der Masse m B geführt und auf eine Scheibe A (Masse m A, Radius R A ) gewickelt. Diese Scheibe rollt

Mehr

Theorieaufgaben L A = 1. Geben Sie die kinetische Energie des Körpers an, der an zwei masselosen Pendelstützen aufgehängt. E kin ( ϕ) = S Θ (S),M

Theorieaufgaben L A = 1. Geben Sie die kinetische Energie des Körpers an, der an zwei masselosen Pendelstützen aufgehängt. E kin ( ϕ) = S Θ (S),M Univ. Prof. Dr. rer. nat. Wofan H. Müer Technische Universität Berin Fakutät V Lehrstuh für Kontinuusechanik und Materiatheorie - LKM, Sekr. MS 2 Einsteinufer 5, 10587 Berin Theorieaufaben 1. Geben Sie

Mehr

TECHNISCHE MECHANIK III (DYNAMIK)

TECHNISCHE MECHANIK III (DYNAMIK) Klausur im Fach TECHNISCHE MECHANIK III (DYNAMIK) WS 2014 / 2015 Matrikelnummer: Vorname: Nachname: Ergebnis Klausur Aufgabe: 1 2 3 4 Summe Punkte: 15 7 23 15 60 Davon erreicht Bearbeitungszeit: Hilfsmittel:

Mehr

2. Lagrange-Gleichungen

2. Lagrange-Gleichungen 2. Lagrange-Gleichungen Mit dem Prinzip der virtuellen Leistung lassen sich die Bewegungsgleichungen für komplexe Systeme einfach aufstellen. Aus dem Prinzip der virtuellen Leistung lassen sich die Lagrange-Gleichungen

Mehr

Musterlösungen (ohne Gewähr)

Musterlösungen (ohne Gewähr) Hebst Seite /9 Fae ( Punkte) Ein Ball wid it de nfanseschwindikeit v abewofen. z a) Wie oß uss de bwufwinkel α sein, dait die axiale Reichweite w eeicht weden kann? b) Gleichzeiti wid ein. Ball unte de

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Blatt 4 - Lösung Technische Universität München 1 Fakultät für Physik 1 Zwei Kugeln und der Satz von Steiner Nehmen Sie zwei Kugeln mit identischem Radius R und

Mehr

04/02/13. Matrikelnummer: Folgende Angaben sind freiwillig: Name, Vorname: Studiengang: Hinweise:

04/02/13. Matrikelnummer: Folgende Angaben sind freiwillig: Name, Vorname: Studiengang: Hinweise: Klausur Technische Mechanik C 04/0/ Matrikelnummer: Folgende Angaben sind freiwillig: Name, Vorname: Studiengang: Hinweise: - Die Prüfungszeit beträgt zwei Stunden - Erlaubte Hilfsmittel sind: Formelsammlungen,

Mehr

1. Eine kleine Masse rutscht vom höchsten Punkt einer großen Halbkugel vom Radius R reibungsfrei ab.

1. Eine kleine Masse rutscht vom höchsten Punkt einer großen Halbkugel vom Radius R reibungsfrei ab. TU Chemnitz Institut fü Physik Physikübunen fü Witschaftsinenieue WS003 Lösunsvoschläe fü das 3. Übunsblatt 1. Eine kleine Masse utscht vom höchsten Punkt eine oßen Halbkuel vom adius eibunsfei ab. a)

Mehr

2. Kinematik punktförmiger Körper

2. Kinematik punktförmiger Körper . Kinemaik punkförmier Körper Beschleuniun: Körper werden als Massenpunke idealisier. Beweun im -dimensionalen Raum d( ) a( ) ɺ ( ) ɺɺ ( ) d Konenion: : Zei [s] (,y,) : Or [m] : Geschwindikei [m/s] a :

Mehr

Klausur Technische Mechanik C

Klausur Technische Mechanik C Klausur Technische Mechanik C 8/7/ Name: Matrikel: Studiengang: Hinweise: - Die Prüfungszeit beträgt zwei Stunden - Erlaubte Hilfsmittel sind: Formelsammlungen, Deckblätter der Übungsaufgaben und Taschenrechner

Mehr

Technische Mechanik III (Dynamik)

Technische Mechanik III (Dynamik) Insiu für Mechanische Verfahrensechnik und Mechanik Bereich newande Mechanik Technische Mechanik III (Dynamik) 8.6.4 Bearbeiunszei: h min ufabe y y (8 Punke) x m O α x β Ein Fußball der Masse m, der als

Mehr

Hydrodynamik (A) ds dt. v =

Hydrodynamik (A) ds dt. v = Hdrodnamik () Dnamik ist der Teil der Mechanik der insbesondere die Änderun des Beweunszustandes on Körpern - infole der Einwirkun on Kräften - behandelt. In der Fluiddnamik (Mechanik der Flüssikeiten

Mehr

Übung zu Mechanik 3 Seite 48

Übung zu Mechanik 3 Seite 48 Übung zu Mechanik 3 Seite 48 Aufgabe 81 Vor einer um das Maß f zusammengedrückten und verriegelten Feder mit der Federkonstanten c liegt ein Massenpunkt der Masse m. a) Welchen Wert muß f mindestens haben,

Mehr

Blatt 10. Hamilton-Formalismus- Lösungsvorschlag

Blatt 10. Hamilton-Formalismus- Lösungsvorschlag Fakultät für Physik der LMU München Lehrstuhl für Kosmologie, Prof. Dr. V. Mukhanov Übungen zu Klassischer Mechanik T) im SoSe 20 Blatt 0. Hamilton-Formalismus- Lösungsvorschlag Aufgabe 0.. Hamilton-Formalismus

Mehr

Serie 8 - Parametrisierte Kurven

Serie 8 - Parametrisierte Kurven Analysis D-BAUG Dr Meike Akveld HS 05 Serie 8 - Parametrisierte Kurven Geben Sie für die folgenden Bewegungen eines Punktes jeweils eine parametrisierte Darstellung I [0, ] R xt, t yt an Lösung a Geradlinige

Mehr

ERGEBNISSE TECHNISCHE MECHANIK III-IV Lehrstuhl für Technische Mechanik, TU Kaiserslautern

ERGEBNISSE TECHNISCHE MECHANIK III-IV Lehrstuhl für Technische Mechanik, TU Kaiserslautern ERGEBNISSE TECHNISCHE MECHANIK III-IV Lehrstuhl für Technische Mechanik, TU Kaiserslautern WS 12/13, 13.02.2013 1. Aufgabe: (TM III) Um vom Boden aufzustehen, rutscht ein Mensch mit konstanter Geschwindigkeitv

Mehr

Leseprobe. Heribert Stroppe. Physik - Beispiele und Aufgaben. Band 1: Mechanik - Wärmelehre ISBN:

Leseprobe. Heribert Stroppe. Physik - Beispiele und Aufgaben. Band 1: Mechanik - Wärmelehre ISBN: Leseprobe Heribert Stroppe Physik - eispiele und Aufaben and 1: Mechanik - Wärmelehre ISN: 978-3-446-463- Weitere Informationen oder estellunen unter http://www.hanser.de/978-3-446-463- sowie im uchhandel.

Mehr

Blatt 1. Kinematik- Lösungsvorschlag

Blatt 1. Kinematik- Lösungsvorschlag Fakultät für Physik der LMU München Lehrstuhl für Kosmologie, Prof. Dr. V. Mukhanov Übungen zu Klassischer Mechanik (T1) im SoSe 011 Blatt 1. Kinematik- Lösungsvorschlag Aufgabe 1.1. Schraubenlinie Die

Mehr

2.2 Arbeit und Energie. Aufgaben

2.2 Arbeit und Energie. Aufgaben 2.2 Arbeit und Energie Aufgaben Aufgabe 1: Auf eine Katapult befindet sich eine Kugel der Masse, die durch eine Feder beschleunigt wird. Die Feder ist a Anfang u die Strecke s 0 zusaengedrückt. Für die

Mehr

M1 Maxwellsches Rad. 1. Grundlagen

M1 Maxwellsches Rad. 1. Grundlagen M1 Maxwellsches Rad Stoffgebiet: Translations- und Rotationsbewegung, Massenträgheitsmoment, physikalisches Pendel. Versuchsziel: Es ist das Massenträgheitsmoment eines Maxwellschen Rades auf zwei Arten

Mehr

Klausur Technische Mechanik C

Klausur Technische Mechanik C Klausur Technische Mechanik C 1/2/14 Matrikel: Studiengang: Hinweise: - Die Prüfungszeit beträgt zwei Stunden - Erlaubte Hilfsmittel sind: Formelsammlungen, Deckblätter der Übungsaufgaben und Taschenrechner

Mehr

Technische Mechanik III

Technische Mechanik III Repetitoriu Technische Mechanik III Version 3.1, 9..1 Dr.-In. L. Pannin Institut für Dynaik und Schwinunen Gottfried Wilhel Leibniz Universität Hannover Dieses Repetitoriu soll helfen, klassische Aufabentypen

Mehr

2.2 Arbeit und Energie. Aufgaben

2.2 Arbeit und Energie. Aufgaben Technische Mechanik 3 2.2-1 Prof. Dr. Wandinger Aufgabe 1 Auf eine Katapult befindet sich eine Kugel der Masse, die durch eine Feder beschleunigt wird. Die Feder ist a Anfang u die Strecke s 0 zusaengedrückt.

Mehr

Physikalische Anwendungen Kinematik

Physikalische Anwendungen Kinematik Physikalische Anwendungen Kinematik Zum Mathematik-Lehrbuch Notwendig und zunächst hinreichend (Shaker Verlag, Aachen) gibt es mehrere PDF-Dokumente mit ergänzenden Beispielen und Aufgaben, die die Anwendung

Mehr

Vektorrechnung in der Physik und Drehbewegungen

Vektorrechnung in der Physik und Drehbewegungen Vektorrechnung in der Physik und Drehbewegungen 26. November 2008 Vektoren Vektoren sind bestimmt durch a) Betrag und b) Richtung Beispiel Darstellung in 3 Dimensionen: x k = y z Vektor in kartesischen

Mehr

Grundlagen der Analytischen Mechanik

Grundlagen der Analytischen Mechanik Höhere Technische Mechanik Grundlagen der Analytischen Mechanik Prof. Dr.-Ing. Ulrike Zwiers, M.Sc. Fachbereich Mechatronik und Maschinenbau Hochschule Bochum WS 2009/2010 Übersicht 1. Grundlagen der Analytischen

Mehr

Probeklausur zur Theoretischen Physik I: Mechanik

Probeklausur zur Theoretischen Physik I: Mechanik Prof. Dr. H. Friedrich Physik-Department T3a Technische Universität München Probeklausur zur Theoretischen Physik I: Mechanik Montag, 2.7.29 Hörsaal 1 1:15-11:5 Aufgabe 1 (8 Punkte) Geben Sie möglichst

Mehr

Übungen zu Lagrange-Formalismus und kleinen Schwingungen

Übungen zu Lagrange-Formalismus und kleinen Schwingungen Übungen zu Lagrange-Foralisus und kleinen Schwingungen Jonas Probst.9.9 Teilchen auf der Stange Aufgabe: Ein Teilchen der Masse wird durch eine Zwangskraft auf einer asselosen Stange gehalten, auf der

Mehr

Übung zu Mechanik 1 Seite 65

Übung zu Mechanik 1 Seite 65 Übung zu Mechanik 1 Seite 65 Aufgabe 109 Gegeben ist das skizzierte System. a) Bis zu welcher Größe kann F gesteigert werden, ohne daß Rutschen eintritt? b) Welches Teil rutscht, wenn F darüber hinaus

Mehr

Übungen zu Lagrange-Formalismus und kleinen Schwingungen

Übungen zu Lagrange-Formalismus und kleinen Schwingungen Übungen zu Lagrange-Formalismus und kleinen Schwingungen Jonas Probst 22.09.2009 1 Teilchen auf der Stange Ein Teilchen der Masse m wird durch eine Zwangskraft auf einer masselosen Stange gehalten, auf

Mehr

Hier wurde die Jacobi-Determinante der ZylinderKoordinaten verwendet (det J = ρ). Wir führen zunächst die ρ-integration durch: (R 2 H sin 2 φ )

Hier wurde die Jacobi-Determinante der ZylinderKoordinaten verwendet (det J = ρ). Wir führen zunächst die ρ-integration durch: (R 2 H sin 2 φ ) b) Für einen Zylinder bieten sich Zylinderkoordinaten an. Legt man den Ursprung in den Schwerpunkt und die z- bzw. x 3 - Achse entlang der Zylinderachse, verschwinden alle Deviationsmomente. Dies liegt

Mehr

2.4 Stoßvorgänge. Lösungen

2.4 Stoßvorgänge. Lösungen .4 Stoßvorgänge Lösungen Aufgabe 1: a) Geschwindigkeit und Winkel: Für die Wurfhöhe gilt: H = v 0 g sin Die zugehörige x-koordinate ist: x 1 = v 0 g sincos Aus diesen beiden Gleichungen lässt sich die

Mehr

Übungen zu Theoretische Physik I - Mechanik im Sommersemester 2013 Blatt 7 vom Abgabe:

Übungen zu Theoretische Physik I - Mechanik im Sommersemester 2013 Blatt 7 vom Abgabe: Übungen zu Theoretische Physik I - Mechanik im Sommersemester 03 Blatt 7 vom 0.06.3 Abgabe: 7.06.3 Aufgabe 9 3 Punkte Keplers 3. Gesetz Das 3. Keplersche Gesetz für die Planetenbewegung besagt, dass das

Mehr

2. Räumliche Bewegung

2. Räumliche Bewegung 2. Räumliche Bewegung Prof. Dr. Wandinger 1. Kinematik des Punktes TM 3 1.2-1 2. Räumliche Bewegung Wenn die Bahn des Punkts nicht bekannt ist, reicht die Angabe einer Koordinate nicht aus, um seinen Ort

Mehr

Kinetik des starren Körpers

Kinetik des starren Körpers Technische Mechanik II Kinetik des starren Körpers Prof. Dr.-Ing. Ulrike Zwiers, M.Sc. Fachbereich Mechatronik und Maschinenbau Hochschule Bochum WS 2009/2010 Übersicht 1. Kinematik des Massenpunktes 2.

Mehr

Aufgabensammlung. Experimentalphysik für ET. 2. Erhaltungsgrößen

Aufgabensammlung. Experimentalphysik für ET. 2. Erhaltungsgrößen Experimentalphysik für ET Aufgabensammlung 1. Erhaltungsgrößen An einem massenlosen Faden der Länge L = 1 m hängt ein Holzklotz mit der Masse m 2 = 1 kg. Eine Kugel der Masse m 1 = 15 g wird mit der Geschwindigkeit

Mehr

TECHNISCHE MECHANIK A (STATIK)

TECHNISCHE MECHANIK A (STATIK) Probeklausur im Fach TECHNISCHE MECHANIK A (STATIK) Nr. 3 Matrikelnummer: Vorname: Nachname: Ergebnis Klausur Aufgabe: 1 2 3 4 5 6 Summe Punkte: 31 5,5 15,5 10,5 11,5 6 80 Davon erreicht Punkte: Gesamtergebnis

Mehr

Klausur Technische Strömungslehre

Klausur Technische Strömungslehre ...... (Name, Matr.-Nr, Unterschrift) Klausur Technische Strömunslehre 2. 8. 25. Aufabe ( Punkte) Die Ausflussöffnun (Spalthöhe h, Tiefe T ) eines Wasserbehälters wird, wie in der Zeichnun darestellt,

Mehr

Probeklausur PHYS1100 Grundkurs I (Physik, Wirtschaftsphysik, Physik Lehramt)

Probeklausur PHYS1100 Grundkurs I (Physik, Wirtschaftsphysik, Physik Lehramt) CURANDO Probeklausur PHYS1100 Grundkurs I (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti, (othmar.marti@uni-ulm.de) 30. 11. 005 Prüfungstermin 30. 11. 005, 13:15 bis 14:00 Name Vorname Matrikel-Nummer

Mehr

Hochschule Karlsruhe Technische Mechanik Statik. Aufgaben zur Statik

Hochschule Karlsruhe Technische Mechanik Statik. Aufgaben zur Statik Aufgaben zur Statik S 1. Seilkräfte 28 0 F 1 = 40 kn 25 0 F 2 = 32 kn Am Mast einer Überlandleitung greifen in der angegebenen Weise zwei Seilkräfte an. Bestimmen Sie die resultierende Kraft. Addition

Mehr

Übungen Theoretische Physik I (Mechanik) Blatt 8 (Austeilung am: , Abgabe am )

Übungen Theoretische Physik I (Mechanik) Blatt 8 (Austeilung am: , Abgabe am ) Übungen Theoretische Physik I (Mechanik) Blatt 8 (Austeilung am: 14.09.11, Abgabe am 1.09.11) Hinweis: Kommentare zu den Aufgaben sollen die Lösungen illustrieren und ein besseres Verständnis ermöglichen.

Mehr

Fakultät für Physik Wintersemester 2016/17. Übungen zur Physik I für Chemiker und Lehramt mit Unterrichtsfach Physik

Fakultät für Physik Wintersemester 2016/17. Übungen zur Physik I für Chemiker und Lehramt mit Unterrichtsfach Physik Fakultät für Physik Wintersemester 16/17 Übungen zur Physik I für Chemiker und Lehramt mit Unterrichtsfach Physik Dr. Andreas K. Hüttel Blatt 8 / 7.1.16 1. Schwerpunkte Berechnen Sie den Schwerpunkt in

Mehr

2. Räumliche Bewegung

2. Räumliche Bewegung 2. Räumliche Bewegung Wenn die Bahn des Massenpunkts nicht bekannt ist, reicht die Angabe einer Koordinate nicht aus, um seinen Ort im Raum zu bestimmen. Es muss ein Ortsvektor angegeben werden. Prof.

Mehr

Theoretische Mechanik

Theoretische Mechanik Prof. Dr. R. Ketzmerick/Dr. R. Schumann Technische Universität Dresden Institut für Theoretische Physik Sommersemester 2008 Theoretische Mechanik 9. Übung 9.1 d alembertsches Prinzip: Flaschenzug Wir betrachten

Mehr

a) Stellen Sie den Drallsatz für die Wirbelstrombremse auf. b) Bestimmen Sie ω(t) für den Fall, dass ω(t = 0)=ω 0 ist.

a) Stellen Sie den Drallsatz für die Wirbelstrombremse auf. b) Bestimmen Sie ω(t) für den Fall, dass ω(t = 0)=ω 0 ist. und Experimentelle Mechani Technische Mechani III aer, ee ZÜ 8. Aufgabe 8. B ω Bei einer Wirbelstrombremse wird das chwungrad Masse m, adius r durch einen Bremsmagnet B verzögert. Das hierbei wirende Bremsmoment

Mehr

Technische Mechanik III WiSe Name : Vorname : Matrikelnummer : Klausurnummer : Allgemeine Hinweise:

Technische Mechanik III WiSe Name : Vorname : Matrikelnummer : Klausurnummer : Allgemeine Hinweise: Technische Mechanik III WiSe 0 6.0.0 Nae : Vornae : Matrikelnuer : Klausurnuer : Aufgabe Punkte 9 0 50 Allgeeine Hinweise: alle Blätter it Naen und Matrikelnuer beschriften! keine grüne oder rote Farbe

Mehr

2. Kinematik. v = a = dx v = dt. 2.1 Ortskurven. x(t) v > 0. Kurve: Beschreibung der Bewegung von Massenpunkten. v = 0.

2. Kinematik. v = a = dx v = dt. 2.1 Ortskurven. x(t) v > 0. Kurve: Beschreibung der Bewegung von Massenpunkten. v = 0. . Kinemaik Beschreibun er Beweun on Massenpunken Kure: () > Definiion : : Zei [s] (,y,) : Posiion [m] s : urückeleer We [m] ( ) : Geschwinikei [m/s] a : Beschleuniun [m/s ] is Seiun er Kure: Allemein :

Mehr

Bewegungen - Freier Fall eines Massenpunktes

Bewegungen - Freier Fall eines Massenpunktes Beweunen - Freier Fall eines Massenpunktes Daniel Wunderlich Ausarbeitun zum Vortra im Proseminar Analysis (Wintersemester 008/09, Leitun PD Dr. Gudrun Thäter) Zusammenfassun: Diese Ausarbeitun behandelt

Mehr

1. Bewegungsgleichung

1. Bewegungsgleichung 1. Bewegungsgleichung 1.1 Das Newtonsche Grundgesetz 1.2 Dynamisches Gleichgewicht 1.3 Geführte Bewegung 1.4 Massenpunktsysteme 1.5 Schwerpunktsatz Prof. Dr. Wandinger 2. Kinetik des Massenpunktes TM 3

Mehr

Beispiel 1:Der Runge-Lenz Vektor [2 Punkte]

Beispiel 1:Der Runge-Lenz Vektor [2 Punkte] Übungen Theoretische Physik I (Mechanik) Blatt 9 (Austeilung am: 1.9.11, Abgabe am 8.9.11) Hinweis: Kommentare zu den Aufgaben sollen die Lösungen illustrieren und ein besseres Verständnis ermöglichen.

Mehr

9 Teilchensysteme. 9.1 Schwerpunkt

9 Teilchensysteme. 9.1 Schwerpunkt der Impuls unter ganz allgemeinen Bedingungen erhalten bleibt. Obwohl der Impulserhaltungssatz, wie wir gesehen haben, aus dem zweiten Newton schen Axiom folgt, ist er tatsächlich allgemeiner als die Newton

Mehr

7.6. Prüfungsaufgaben zu Normalenformen

7.6. Prüfungsaufgaben zu Normalenformen 7.6. Prüfungsaufgaben zu Normalenformen Aufgabe () Gegeben sind die Gerade g: x a + r u mit r R und die Ebene E: ( x p ) n. a) Welche geometrische Bedeutung haben die Vektoren a und u bzw. p und n? Veranschaulichen

Mehr

Beispiele zur Identifikation von Fehlvorstellungen in der Technischen Mechanik

Beispiele zur Identifikation von Fehlvorstellungen in der Technischen Mechanik Beispiee zur Identifikation von Fehvorsteungen in der Technischen Mechanik Urike Zwiers, Andrea Dederichs-Koch 9. Ingenieurpädagogische Regionatagung 6. 8. November 2014, Universität Siegen Giederung 1.

Mehr

Klassische Theoretische Physik II (Theorie B) Sommersemester 2016

Klassische Theoretische Physik II (Theorie B) Sommersemester 2016 Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Klassische Theoretische Physik II (Theorie B) Sommersemester 2016 Prof. Dr. Alexander Mirlin Musterlösung: Blatt 12. PD

Mehr

Theoretische Physik I: Lösungen Blatt Michael Czopnik

Theoretische Physik I: Lösungen Blatt Michael Czopnik Theoretische Physik I: Lösungen Blatt 2 15.10.2012 Michael Czopnik Aufgabe 1: Scheinkräfte Nutze Zylinderkoordinaten: x = r cos ϕ y = r sin ϕ z = z Zweimaliges differenzieren ergibt: ẍ = r cos ϕ 2ṙ ϕ sin

Mehr

2. Physikalisches Pendel

2. Physikalisches Pendel 2. Physikalisches Pendel Ein physikalisches Pendel besteht aus einem starren Körper, der um eine Achse drehbar gelagert ist. A L S φ S z G Prof. Dr. Wandinger 6. Schwingungen Dynamik 2 6.2-1 2.1 Bewegungsgleichung

Mehr

τ 30 N/mm bekannt. N mm N mm Aufgabe 1 (7 Punkte)

τ 30 N/mm bekannt. N mm N mm Aufgabe 1 (7 Punkte) Institut für Technische und Num. Mechanik Technische Mechanik IIIII Profs. P. Eberhard, M. Hanss WS 114 P 1. Februar 14 Bachelor-Prüfung in Technischer Mechanik IIIII Nachname, Vorname Matr.-Nummer Fachrichtung

Mehr

8. Starre Körper. Die φ-integration liefert einen Faktor 2π. Somit lautet das Ergebnis

8. Starre Körper. Die φ-integration liefert einen Faktor 2π. Somit lautet das Ergebnis Übungen zur T1: Theoretische Mechanik, SoSe213 Prof. Dr. Dieter Lüst Theresienstr. 37, Zi. 425 8. Starre Körper Dr. James Gray James.Gray@physik.uni-muenchen.de Übung 8.1: Berechnung von Trägheitstensoren

Mehr

Herzlich willkommen zur Demo der mathepower.de Aufgabensammlung

Herzlich willkommen zur Demo der mathepower.de Aufgabensammlung Herzlich willkommen zur der Um sich schnell innerhalb der ca. 5. Mathematikaufgaben zu orientieren, benutzen Sie unbedingt das Lesezeichen Ihres Acrobat Readers: Das Icon finden Sie in der links stehenden

Mehr

PP Physikalisches Pendel

PP Physikalisches Pendel PP Physikalisches Pendel Blockpraktikum Frühjahr 2007 (Gruppe 2) 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Ungedämpftes physikalisches Pendel.......... 2 2.2 Dämpfung

Mehr

ERGEBNISSE TECHNISCHE MECHANIK III-IV

ERGEBNISSE TECHNISCHE MECHANIK III-IV ERGEBNISSE TECHNISCHE MECHANIK III-IV Lehrstuhl für Technische Mechanik, TU Kaiserslautern SS 213, 23.7.213 1. Aufgabe: (TMIII) y C z x A ω B D b r a Im skizzierten System dreht sich die KurbelAB (Länger)

Mehr

2. Klausur zur Theoretischen Physik I (Mechanik)

2. Klausur zur Theoretischen Physik I (Mechanik) 2. Klausur zur Theoretischen Physik I (echanik) 09.07.2004 Aufgabe 1 Physikalisches Pendel 4 Punkte Eine homogene, kreisförmige, dünne Platte mit Radius R und asse ist am Punkt P so aufgehängt, daß sie

Mehr

wirkt dabei auf den Haken? F Gleichgewicht: Ort, an dem F angreift, wirkt wie feste Aufhängung für Seil: Umgezeichnet: F Seil F S

wirkt dabei auf den Haken? F Gleichgewicht: Ort, an dem F angreift, wirkt wie feste Aufhängung für Seil: Umgezeichnet: F Seil F S reiwillie Aufaben zur Vorleun WS /3, Blatt 4) Welche Zukraft tritt bei nebentehender Anordnun in eine aelo edachten Zueil auf, wenn eine Mae k anehänt it und die Kraft erade für Gleichewicht ort? Welche

Mehr

Klausur Schwingungstechnik 20. September Name Vorname Matr. - Nr. Punkte

Klausur Schwingungstechnik 20. September Name Vorname Matr. - Nr. Punkte 1 Aufgaben FB Maschinenbau Institut für Mechanik FG Maschinendynamik Prof. Dr.-Ing. H. Irretier Dipl.-Ing. A. Stein Klausur Schwingungstechnik 0. September 011 Name Vorname Matr. - Nr. Punkte =50 Aufgabe

Mehr

Name: Gruppe: Matrikel-Nummer:

Name: Gruppe: Matrikel-Nummer: Theoretische Physik 1 (Theoretische Mechanik) SS08, Studienziel Bachelor (170 1/13/14) Dozent: J. von Delft Übungen: B. Kubala Klausur zur Vorlesung T1: Theoretische Mechanik, SoSe 008 (3. Juli 007) Bearbeitungszeit:

Mehr

Aufgabe 1. Die Determinante ist eine lineare Abbildung von C n n nach C? Nein (außer für n = 1). Es gilt det(λa) = (λ) n det(a).

Aufgabe 1. Die Determinante ist eine lineare Abbildung von C n n nach C? Nein (außer für n = 1). Es gilt det(λa) = (λ) n det(a). Aufgabe Die Determinante ist eine lineare Abbildung von C n n nach C? Nein (außer für n = Es gilt det(λa = (λ n det(a det I n = n? Nein (außer für n = Es gilt deti n = det(ab = det A det B? Ja det(a =

Mehr

Lagrange Formalismus

Lagrange Formalismus Lagrange Formalismus Frank Essenberger FU Berlin 1.Oktober 26 Inhaltsverzeichnis 1 Oszillatoren 1 1.1 Fadenpendel.............................. 1 1.2 Stabpendel.............................. 3 1.3 U-Rohr................................

Mehr

Physik 1 ET, WS 2012 Aufgaben mit Lösung 6. Übung (KW 49) Zwei Kugeln )

Physik 1 ET, WS 2012 Aufgaben mit Lösung 6. Übung (KW 49) Zwei Kugeln ) Physik ET, WS 0 Aufgaben mit Lösung 6. Übung KW 49) 6. Übung KW 49) Aufgabe M 5. Zwei Kugeln ) Zwei Kugeln mit den Massen m = m und m = m bewegen sich mit gleichem Geschwindigkeitsbetrag v aufeinander

Mehr

1. Bewegungsgleichung

1. Bewegungsgleichung 1. Bewegungsgleichung 1.1 Das Newtonsche Grundgesetz 1.2 Dynamisches Gleichgewicht 1.3 Geführte Bewegung 1.4 Massenpunktsysteme 1.5 Schwerpunktsatz Prof. Dr. Wandinger 2. Kinetik des Massenpunkts Dynamik

Mehr

Formelsammlung: Physik I für Naturwissenschaftler

Formelsammlung: Physik I für Naturwissenschaftler Formelsammlung: Physik I für Naturwissenschaftler 1 Was ist Physik? Stand: 24. Januar 213 Physikalische Größe X = Zahl [X] Einheit SI-Basiseinheiten Mechanik Zeit [t] = 1 s Länge [x] = 1 m Masse [m] =

Mehr

Impuls/Kraft als Vektor, Impulsbilanz/Grundgesetz, Reibung

Impuls/Kraft als Vektor, Impulsbilanz/Grundgesetz, Reibung TBM, Physik, T. Borer Übung 1-006/07 Übung 1 Mechanik Impuls/Kraft als Vektor, Impulsbilanz/Grundgesetz, Reibung Lernziele - die vektorielle Addition bzw. Zerlegung von Impuls, Impulsstrom und Kraft zur

Mehr

3.2 Das physikalische Pendel (Körperpendel)

3.2 Das physikalische Pendel (Körperpendel) 18 3 Pendelschwingungen 32 Das physikalische Pendel (Körperpendel) Ein starrer Körper (Masse m, Schwerpunkt S, Massenträgheitsmoment J 0 ) ist um eine horizontale Achse durch 0 frei drehbar gelagert (Bild

Mehr

F H. Um einen Körper zu beschleunigen, müssen Körper aus der Umgebung ihn einwirken. Man sagt die Umgebung wirkt auf ihn Kräfte aus.

F H. Um einen Körper zu beschleunigen, müssen Körper aus der Umgebung ihn einwirken. Man sagt die Umgebung wirkt auf ihn Kräfte aus. II. Die Newtonschen esetze ================================================================== 2. 1 Kräfte F H Um einen Körper zu beschleunigen, müssen Körper aus der Umgebung ihn einwirken. Man sagt die

Mehr

Klassische Mechanik - Ferienkurs; Lösungem. Sommersemester 2011, Prof. Metzler

Klassische Mechanik - Ferienkurs; Lösungem. Sommersemester 2011, Prof. Metzler Klassische Mechanik - Ferienkurs; Lösunge Soerseester 2011, Prof. Metzler 1 Inhaltsverzeichnis 1 Quickies 3 2 Lagrange Gleichung 1. Art 3 2.1 Perle auf Schraubenlinie..................................

Mehr

4. Verzerrungen. Der Abstand von zwei Punkten ändert sich. Der Winkel zwischen drei Punkten ändert sich

4. Verzerrungen. Der Abstand von zwei Punkten ändert sich. Der Winkel zwischen drei Punkten ändert sich 4. Verzerrungen Wird ein Körper belastet, so ändert sich seine Geometrie. Die Punkte des Körpers ändern ihre Lage. Sie erfahren eine Verschiebung. Ist die Verschiebung für benachbarte Punkte unterschiedlich,

Mehr

Name: Gruppe: Matrikel-Nummer: Aufgabe Punkte

Name: Gruppe: Matrikel-Nummer: Aufgabe Punkte T1: Klassische Mechanik, SoSe007 Prof. Dr. Jan von Delft Theresienstr. 37, Zi. 40 Dr. Vitaly N. Golovach vitaly.golovach@physik.lmu.de Nachholklausur zur Vorlesung T1: Theoretische Mechanik, SoSe 007 (8.

Mehr

Aufgaben zu sin, cos und tan im rechtwinkligen Dreieck

Aufgaben zu sin, cos und tan im rechtwinkligen Dreieck Aufgaben zu sin, cos und tan im rechtwinkligen Dreieck 1) Eine Leiter ist 3m von einer Wand entfernt. Die Leiter ist 5m lang. In welcher Höhe ist die Leiter an die Wand gelehnt und welchen Neigungswinkel

Mehr

KLAUSUR ZUR THEORETISCHEN PHYSIK I (LAK) Wintersemester 12/13

KLAUSUR ZUR THEORETISCHEN PHYSIK I (LAK) Wintersemester 12/13 Fachbereich Physik, Freie Universität Berlin KLAUSUR ZUR THEORETISCHEN PHYSIK I (LAK) Wintersemester 12/13 Donnerstag, 7.2.13, 10:00 Uhr 0 1 2 3 4 7 7 8 7 29 Name: Matrikelnummer: Ergebnis (mit Matrikelnummer)

Mehr

Blatt 03.1: Scheinkräfte

Blatt 03.1: Scheinkräfte Fakultät für Physik T1: Klassische Mechanik, SoSe 2016 Dozent: Jan von Delft Übungen: Benedikt Bruognolo, Sebastian Huber, Katharina Stadler, Lukas Weidinger http://www.physik.uni-muenchen.de/lehre/vorlesungen/sose_16/t1_theor_mechanik/

Mehr

Theoretische Physik I: Weihnachtszettel Michael Czopnik

Theoretische Physik I: Weihnachtszettel Michael Czopnik Theoretische Physik I: Weihnachtszettel 21.12.2012 Michael Czopnik Aufgabe 1: Rudolph und der Weihnachtsmann Der Weihnachtsmann (Masse M) und sein Rentier Rudolph (Masse m) sind durch ein Seil mit konstanter

Mehr

Übung zu Mechanik 1 Seite 50

Übung zu Mechanik 1 Seite 50 Übung zu Mechanik 1 Seite 50 Aufgabe 83 Eine quadratische Platte mit dem Gewicht G und der Kantenlänge a liegt wie skizziert auf drei Böcken, so daß nur Druckkräfte übertragen werden können. Welches Gewicht

Mehr

Musterlösungen. Theoretische Physik I: Klassische Mechanik

Musterlösungen. Theoretische Physik I: Klassische Mechanik Blatt 1 4.01.013 Musterlösungen Theoretische Physik I: Klassische Mechanik Prof. Dr. G. Alber MSc Nenad Balanesković Hamilton-Funktion 1. Betrachten Sie zwei Massenpunktem 1 undm die sich gemäß dem Newtonschen

Mehr

Aufgabe 3.1. Aufgabe 3.2. Aufgabe 3.3. Institut für Angewandte und Experimentelle Mechanik. Technische Mechanik IV

Aufgabe 3.1. Aufgabe 3.2. Aufgabe 3.3. Institut für Angewandte und Experimentelle Mechanik. Technische Mechanik IV ZÜ 3. Aufgabe 3. Ein Wagen Masse M) kann eibungsfei auf eine waagechten Bahn fahen. An eine Achse uch seinen Schwepunkt S que zu Fahtichtung hängt eibungsfei gelaget ein Massenpenel Masse, Länge l, Stab

Mehr