Algorithmen und Datenstrukturen

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Algorithmen und Datenstrukturen"

Transkript

1 1 Algorithmen und Datenstrukturen Wintersemester 01/13 6. Vorlesung Prioritäten setzen Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I

2 Guten Morgen! Tipps für unseren ersten Test am 0. November: Lesen Sie die Definitionen der Klassen O, Ω und Θ gaaaanz genau bis Sie sie restlos verstehen! Lesen Sie alle Vorlesungsfolien (bis einschließlich heute) und Kap. 1 4 & 6 im Buch [CLRS]! Machen Sie möglichst viele Übungsaufgaben in Kap. 3, 4, 6 [CLRS]! Programmieren Sie z.b. Pseudocode aus der Vorlesung! Stellen Sie Fragen Kommilitonen, Tutoren, mir! Haben Sie schon das/ein Buch? Was ganz (?) anderes: Haben Sie eine Linearzeitlösung für maximale Teilsummen gefunden? Beweisen Sie ihre Korrektheit mit einer Schleifeninvarianten!

3 Anwendung: Prozesssteuerung 3 Anwendung: steuere System durch Verwaltung von unterschiedlich wichtigen Prozessen Anforderung: Prozesse (mit ihrer Priorität) einfügen Prozess mit höchster Priorität finden/löschen Priorität von Prozessen erhöhen modelliere Abstrakter Datentyp: Prioritätsschlange verwaltet Elemente einer Menge M, wobei jedes Element x M eine Priorität x.key hat.

4 Prioritätsschlange 4 Abstrakter Datentyp: Prioritätsschlange verwaltet Elemente einer Menge M, wobei jedes Element x M eine Priorität x.key hat. Operation Insert(element x) element FindMax() element ExtractMax() IncreaseKey (element x, priorität p) Funktionalität M = M {x} liefere x M mit x.key = max{y.key y M} x = FindMax(); M = M \ {x}; liefere x x.key = p

5 Implementation 5 Aufgabe: Diskutieren Sie mit Ihrer NachbarIn: Wie würden Sie die Methoden einer Prioritätsschlange implementieren? Welche Laufzeiten liefert Ihre Implementierung im schlechtesten Fall? W-C-Laufzeiten Ihrer Implement. heute: Implement. als Heap (Haufen) Insert FindMax ExtractMax IncreaseKey Θ( n ) Θ( 1 ) Θ( n ) Θ( n ) Θ(log n) Θ( 1 ) Θ(log n) Θ(log n) Das ist exponentiell besser!

6 Bäume, gut gepackt sehr schnelle Operationen! Pfeile implementieren: left(index i) return i right(index i) return i + 1 parent(index i) return i/

7 Bäume, gut gepackt sehr schnelle Operationen! Pfeile implementieren: left(index i) return i right(index i) return i + 1 parent(index i) return i/ Definition: Ein Heap ist ein Feld, das einem binären Baum entspricht, bei dem alle Ebenen außer der letzten voll sind, die letzte 8 Ebene 7 3 v.l.n.r gefüllt ist und die Heap-Eigenschaftgilt

8 Bäume, gut gepackt sehr schnelle Operationen! Pfeile implementieren: left(index i) return i right(index i) return i + 1 parent(index i) return i/ Definition: Ein Heap hat die Max-Heap-Eigenschaft, wenn für jeden Knoten i > 1 gilt: A[parent(i)] A[i] So ein Heap heißt Max-Heap

9 Bäume, gut gepackt sehr schnelle Operationen! Pfeile implementieren: left(index i) return i right(index i) return i + 1 parent(index i) return i/ Definition: Ein Heap hat die Min Max-Heap-Eigenschaft, wenn für jeden Knoten i > 1 gilt: A[parent(i)] A[i] Min So ein Heap heißt Max-Heap

10 Baustelle totales Chaos Max-Heap-Eigenschaft Aufgabe: Berechnen Sie in O(n log n) Zeit einen Max-Heap! Nimm MergeSort! Absteigende Sortierung 8 Fertig? Nicht ganz: Heap-Eig. viel schwächer als Sortierung. 3 Hoffen: Schnellere Berechnung! Idee: Nutze Baumstruktur! Arbeite bottom-up: Erst die Blätter

11 Baustelle totales Chaos Max-Heap-Eigenschaft Aufgabe: Berechnen Sie in O(n log n) Zeit einen Max-Heap! Nimm MergeSort! Absteigende Sortierung 8 Fertig? Nicht ganz: Heap-Eig. viel schwächer als Sortierung. 3 Hoffen: Schnellere Berechnung! Idee: Nutze Baumstruktur! Arbeite bottom-up: Erst die Blätter vertauschen!

12 Baustelle totales Chaos Max-Heap-Eigenschaft Aufgabe: Berechnen Sie in O(n log n) Zeit einen Max-Heap! Nimm MergeSort! Absteigende Sortierung 8 Fertig? Nicht ganz: Heap-Eig. viel schwächer als Sortierung Hoffen: Schnellere Berechnung! Idee: Nutze Baumstruktur! Arbeite bottom-up: Erst die Blätter

13 Baustelle totales Chaos Max-Heap-Eigenschaft Aufgabe: Berechnen Sie in O(n log n) Zeit einen Max-Heap! Nimm MergeSort! Absteigende Sortierung 8 Fertig? Nicht ganz: Heap-Eig. viel schwächer als Sortierung Hoffen: Schnellere Berechnung! Idee: Nutze Baumstruktur! Arbeite bottom-up: Erst die Blätter

14 Baustelle totales Chaos Max-Heap-Eigenschaft Aufgabe: Berechnen Sie in O(n log n) Zeit einen Max-Heap! Absteigende Sortierung Fertig? Nimm MergeSort! Nicht ganz: Heap-Eig. viel schwächer als Sortierung. Hoffen: Schnellere Berechnung! Idee: Nutze Baumstruktur! Arbeite bottom-up: Erst die Blätter Ergebnis

15 Elementaroperation 8 Versickere x, falls x zu klein, d.h. falls x < max(y, z) y y > z x z y z x z y z y x Heap Heap Heap Heap MaxHeapify(feld A, index i) l = left(i); r = right(i) if l A.heap-size and A[l] > A[i] then largest = l Lokale Strategie: Laufzeit? T MH (n, i) := Anzahl der Swaps top-down else largest = i = Länge d. Weges v. A[i] if r A.heap-size and A[r] > A[largest] then largest = r Höhe von i im Teilheap mit Wurzel i if largest i then swap(a, i, largest) = Höhe dieses Teilheaps MaxHeapify(A, largest)

16 Das große Ganze Lokale Strategie: Laufzeit: top-down T MH (n, i) Höhe des Teilheaps mit Wurzel i Globale Strategie: bottom-up BuildMaxHeap(feld A) A.heap-size = A.length for i = A.length/ downto 1 do MaxHeapify(A, i) Laufzeit. grob: O(n log n) genauer: T BMH (n) = = n/ i=1 T MH (n, i) n n n 8 + n = n log n ) i+1 i=1 i =? (

17 Forts. Laufzeitanalyse log n T BMH (n) n i ( 1 i=1 ableiten! Wir hätten gerne: ) i+1 Vgl. geometrische Reihe: T BMH (n) n 4 i=1 ix i 1 = 1 (1 x) ableiten! Quotientenregel: ( f g i ( 1 i 1 ) = n = n 4 1 ( 1 ) i=0 = n 4 i=0 log n i=1 i ( 1 ) i 1 x i = 1 1 x (falls x < 1) ) = gf g f g 10 Satz. Ein Heap von n Elementen kann in Θ(n) Zeit berechnet werden.

18 Übung Heap-Aufbau 11 Aufgabe: Bauen Sie einen Heap mit BuildMaxHeap! MaxHeapify(feld A, index i) l = left(i); MaxHeapify(feld r = right(i) A, index i) if l l A.heap-size = left(i); r and = right(i) A[l] > A[i] then BuildMaxHeap(feld A) largest = l if l > A.heap-size then l = i A.heap-size = A.length else largest if r > = A.heap-size i then r = i for i = A.length/ downto 1 do if r max A.heap-size = max(i, and l, r) A[r] > A[largest] MaxHeapify(A, i) largest = r if max i then if largest swap(a, i then i, max) swap(a, i, largest) MaxHeapify(A, max) MaxHeapify(A, largest)

19 Zurück zu Prioritätsschlangen 1 Abstrakter Datentyp: Prioritätsschlange verwaltet Elemente einer Menge, wobei jedes Element der Menge eine Priorität hat. FindMax() return A[1] ExtractMax() if A.heap-size < 1 then error Heap underflow max = A[1] A[1] = A[A.heap-size] A.heap-size MaxHeapify(A, 1) return max O( ) Laufzeiten? O( ) IncreaseKey(index i, prio. p) if p < A[i] then error prio. too small A[i] = p while i > 1 and A[parent(i)] < A[i] swap(a, i, parent(i)) i = parent(i) Insert(priorität p) O( ) O( ) A.heap-size + + if A.heap-size > A.length then error... A[A.heap-size] = IncreaseKey(A.heap-size, p)

20 Vom Heap zur Sortierung 13 Idee: ExtractMax() gibt rechtestes Heap-Element frei Speichere dort das extrahierte Maximum HeapSort(A) BuildMaxHeap(A) for i = A.length downto do A[i] = ExtractMax() Max-Heap! max = 10 Laufzeit: T HS (n) O(n) + (n 1) O(log n) = O(n log n) Satz. HeapSort sortiert n Schlüssel in O(n log n) Zeit.

21 Zusammenfassung Sortierverfahren 14 InsertionSort MergeSort HeapSort Worst-Case- Θ(n Laufzeit ) Θ(n log n) Θ(n log n) Avg.-Case- Laufzeit Best-Case- Laufzeit in situ (in place) stabil 1 Θ(n ) Θ(n log n) Θ(n log n) Warum? Θ(n) Θ(n log n) Θ(n log n) 1 ) Ein in-situ-algorithmus benötigt nur O(1) extra Speicher. ) Sortieralg. stabil, wenn er gleiche Schlüssel in Ursprungsreihenf. belässt.

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen 1 Algorithmen und Datenstrukturen Wintersemester 2014/15 3. Vorlesung Laufzeitanalyse Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I 2 Recap: Diskutieren Sie mit Ihrer NachbarIn! 1. 2. 3. Was sind

Mehr

8.1.3 Operation Build-Max-Heap Operation zur Konstruktion eines Heaps Eingabe: Feld A[1..n], n = länge(a) BUILD-MAX-HEAP (A)

8.1.3 Operation Build-Max-Heap Operation zur Konstruktion eines Heaps Eingabe: Feld A[1..n], n = länge(a) BUILD-MAX-HEAP (A) Stand der Vorlesung: Datenstruktur Heap: fast vollständiger Binärbaum MaxHeap: sortierter Heap, größtes Element an Wurzel Sortierverfahren: HeapSort: Sortieren eines Feldes A[1.. n] Idee: in place: Feld

Mehr

7. Sortieren Lernziele. 7. Sortieren

7. Sortieren Lernziele. 7. Sortieren 7. Sortieren Lernziele 7. Sortieren Lernziele: Die wichtigsten Sortierverfahren kennen und einsetzen können, Aufwand und weitere Eigenschaften der Sortierverfahren kennen, das Problemlösungsparadigma Teile-und-herrsche

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Wintersemester 2013/14 1. Vorlesung Kapitel 1: Sortieren Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I Das Problem Eingabe Gegeben: eine Folge A = a 1, a 2,..., a

Mehr

11. Elementare Datenstrukturen

11. Elementare Datenstrukturen 11. Elementare Datenstrukturen Definition 11.1: Eine dynamische Menge ist gegeben durch eine oder mehrer Mengen von Objekten sowie Operationen auf diesen Mengen und den Objekten der Mengen. Dynamische

Mehr

Programmiertechnik II

Programmiertechnik II 2007 Martin v. Löwis Priority Queues and Heapsort 2007 Martin v. Löwis 2 Priority Queue Abstrakter Datentyp Inhalt: Elemente mit Priorität Operationen: Einfügen: Angabe des Elements und seiner Priorität

Mehr

Termine für Übungstests. Kap. 3 Sortieren HeapSort ff Priority Queues. Motivation. Überblick. Analyse SiftDown

Termine für Übungstests. Kap. 3 Sortieren HeapSort ff Priority Queues. Motivation. Überblick. Analyse SiftDown Kap. Sortieren..5 HeapSort ff..6 Priority Queues Professor Dr. Vorlesung am Do 7.5. entfällt wegen FVV um Uhr Lehrstuhl für Algorithm Engineering, LS Fakultät für nformatik, TU Dortmund 7. VO DAP SS 009

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Große Übung #6 Phillip Keldenich, Arne Schmidt 26.02.2017 Heute: Master-Theorem Phillip Keldenich, Arne Schmidt Große Übung 2 Vorbetrachtungen Wir betrachten rekursive Gleichungen

Mehr

Informatik II, SS 2014

Informatik II, SS 2014 Informatik II SS 2014 (Algorithmen & Datenstrukturen) Vorlesung 11 (4.6.2014) Binäre Suchbäume II Algorithmen und Komplexität Binäre Suchbäume Binäre Suchbäume müssen nicht immer so schön symmetrisch sein

Mehr

Informatik II, SS 2014

Informatik II, SS 2014 Informatik II SS 2014 (Algorithmen & Datenstrukturen) Vorlesung 10 (3.6.2014) Binäre Suchbäume I Algorithmen und Komplexität Zusätzliche Dictionary Operationen Dictionary: Zusätzliche mögliche Operationen:

Mehr

Beispiellösung zu den Übungen Datenstrukturen und Algorithmen SS 2008 Blatt 5

Beispiellösung zu den Übungen Datenstrukturen und Algorithmen SS 2008 Blatt 5 Robert Elsässer Paderborn, den 15. Mai 2008 u.v.a. Beispiellösung zu den Übungen Datenstrukturen und Algorithmen SS 2008 Blatt 5 AUFGABE 1 (6 Punkte): Nehmen wir an, Anfang bezeichne in einer normalen

Mehr

Abschnitt: Algorithmendesign und Laufzeitanalyse

Abschnitt: Algorithmendesign und Laufzeitanalyse Abschnitt: Algorithmendesign und Laufzeitanalyse Definition Divide-and-Conquer Paradigma Divide-and-Conquer Algorithmen verwenden die Strategien 1 Divide: Teile das Problem rekursiv in Subproblem gleicher

Mehr

Suchen und Sortieren Sortieren. Heaps

Suchen und Sortieren Sortieren. Heaps Suchen und Heaps (Folie 245, Seite 63 im Skript) 3 7 21 10 17 31 49 28 14 35 24 42 38 Definition Ein Heap ist ein Binärbaum, der die Heapeigenschaft hat (Kinder sind größer als der Vater), bis auf die

Mehr

3. Binäre Suchbäume. 3.1 Natürliche binäre Suchbäume. EADS 3.1 Natürliche binäre Suchbäume 78/598 ľernst W. Mayr

3. Binäre Suchbäume. 3.1 Natürliche binäre Suchbäume. EADS 3.1 Natürliche binäre Suchbäume 78/598 ľernst W. Mayr 3. Binäre Suchbäume 3.1 Natürliche binäre Suchbäume Definition 18 Ein natürlicher binärer Suchbaum über einem durch total geordneten Universum U ist ein als interner Suchbaum organisierter Binärbaum (also:

Mehr

Counting - Sort [ [ ] [ [ ] 1. SS 2008 Datenstrukturen und Algorithmen Sortieren in linearer Zeit

Counting - Sort [ [ ] [ [ ] 1. SS 2008 Datenstrukturen und Algorithmen Sortieren in linearer Zeit Counting-Sort Counting - Sort ( A,B,k ). for i to k. do C[ i]. for j to length[ A]. do C[ A[ j ] C[ A[ j ] +. > C[ i] enthält Anzahl der Elemente in 6. for i to k. do C[ i] C[ i] + C[ i ]. > C[ i] enthält

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Wintersemester 202/3 24. Vorlesung Amortisierte Analyse Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I Hash-Tabellen Frage: Ziel: Problem: Lösung: Wie groß macht man

Mehr

Alle bislang betrachteten Sortieralgorithmen hatten (worst-case) Laufzeit Ω(nlog(n)).

Alle bislang betrachteten Sortieralgorithmen hatten (worst-case) Laufzeit Ω(nlog(n)). 8. Untere Schranken für Sortieren Alle bislang betrachteten Sortieralgorithmen hatten (worst-case) Laufzeit Ω(nlog(n)). Werden nun gemeinsame Eigenschaften dieser Algorithmen untersuchen. Fassen gemeinsame

Mehr

Datenstruktur, die viele Operationen dynamischer Mengen unterstützt

Datenstruktur, die viele Operationen dynamischer Mengen unterstützt Algorithmen und Datenstrukturen 265 10 Binäre Suchbäume Suchbäume Datenstruktur, die viele Operationen dynamischer Mengen unterstützt Kann als Wörterbuch, aber auch zu mehr eingesetzt werden (Prioritätsschlange)

Mehr

Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen

Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen 186.172 Algorithmen und Datenstrukturen 1 VL 4.0 Übungsblatt 1 für die Übung

Mehr

13. Binäre Suchbäume

13. Binäre Suchbäume 1. Binäre Suchbäume Binäre Suchbäume realiesieren Wörterbücher. Sie unterstützen die Operationen 1. Einfügen (Insert) 2. Entfernen (Delete). Suchen (Search) 4. Maximum/Minimum-Suche 5. Vorgänger (Predecessor),

Mehr

Erinnerung VL

Erinnerung VL Erinnerung VL 30.05.2016 Radix-Sort, Abschluss Sortieren Prioritätslisten: Warteschlange mit Prioritäten deletemin: kleinstes Element rausnehmen insert: Element einfügen Binäre Heaps als Implementierung

Mehr

13 (2-4)-Bäume Implementierbare Funktionen. (2-4)-Bäume sind durch folgende Eigenschaften deniert: 1. Alle Äste sind gleich lang

13 (2-4)-Bäume Implementierbare Funktionen. (2-4)-Bäume sind durch folgende Eigenschaften deniert: 1. Alle Äste sind gleich lang 13 (2-4)-Bäume (2-4)-Bäume sind durch folgende Eigenschaften deniert: 1. Alle Äste sind gleich lang 2. Die Ordnung (maximale Anzahl der Söhne eines Knotens) ist gleich 4 3. Innere Knoten haben 2 Söhne

Mehr

Sortierte Folgen 250

Sortierte Folgen 250 Sortierte Folgen 250 Sortierte Folgen: he 1,...,e n i mit e 1 apple applee n kennzeichnende Funktion: M.locate(k):= addressof min{e 2 M : e k} Navigations Datenstruktur 2 3 5 7 11 13 17 19 00 Annahme:

Mehr

Grundlagen: Algorithmen und Datenstrukturen

Grundlagen: Algorithmen und Datenstrukturen Grundlagen: Algorithmen und Datenstrukturen Prof. Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Sommersemester 00

Mehr

Fibonacci-Suche. Informatik I. Fibonacci-Suche. Fibonacci-Suche. Einführung. Rainer Schrader. 24. Mai 2005

Fibonacci-Suche. Informatik I. Fibonacci-Suche. Fibonacci-Suche. Einführung. Rainer Schrader. 24. Mai 2005 Fibonacci-Suche Informatik I Einführung Rainer Schrader Zentrum für Angewandte Informatik Köln 4. Mai 005 Grundidee wie bei der Binärsuche, aber andere Aufteilung Fibonacci-Zahlen: F 0 = 0 F 1 = 1 F m

Mehr

Abgabe: (vor der Vorlesung) Aufgabe 2.1 (P) O-Notation Beweisen Sie die folgenden Aussagen für positive Funktionen f und g:

Abgabe: (vor der Vorlesung) Aufgabe 2.1 (P) O-Notation Beweisen Sie die folgenden Aussagen für positive Funktionen f und g: TECHNISCHE UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR INFORMATIK Lehrstuhl für Sprachen und Beschreibungsstrukturen SS 2009 Grundlagen: Algorithmen und Datenstrukturen Übungsblatt 2 Prof. Dr. Helmut Seidl, S. Pott,

Mehr

Übersicht. Berechnung der Potenz für zwei ganze Zahlen Klausuraufgabe SS 2010! Berechnung der Cosinus-Funktion Klausuraufgabe WS 2010/2011!

Übersicht. Berechnung der Potenz für zwei ganze Zahlen Klausuraufgabe SS 2010! Berechnung der Cosinus-Funktion Klausuraufgabe WS 2010/2011! Algorithmen und Datenstrukturen Wintersemester 2012/13 8. Vorlesung Algorithmen in Java Jan-Henrik Haunert Lehrstuhl für Informatik I Übersicht Berechnung der Potenz für zwei ganze Zahlen Klausuraufgabe

Mehr

- k Maximalwerte aus Menge mit n >> k Elementen (Rangfolgebestimmung von Suchmaschinen!) Die typische Operationen:

- k Maximalwerte aus Menge mit n >> k Elementen (Rangfolgebestimmung von Suchmaschinen!) Die typische Operationen: 6 Partiell geordnete binäre Bäume: Heap (Haufen) Motivation für manchen Anwendungen nur partielle Ordnung der Elemente statt vollständiger nötig, z.b. - Prioritätsschlange: nur das minimale (oder maximale)

Mehr

Kapitel 6 Elementare Sortieralgorithmen

Kapitel 6 Elementare Sortieralgorithmen Kapitel 6 Elementare Sortieralgorithmen Ziel: Kennenlernen elementarer Sortierverfahren und deren Effizienz Zur Erinnerung: Das Sortier-Problem Gegeben: Folge A von n Elementen a 1, a 2,..., a n ; Eine

Mehr

Algorithmen und Datenstrukturen Kapitel 7 Dynamische Mengen, das Suchproblem &

Algorithmen und Datenstrukturen Kapitel 7 Dynamische Mengen, das Suchproblem & Algorithmen und Datenstrukturen Kapitel 7 Dynamische Mengen, das Suchproblem & Frank Heitmann heitmann@informatik.uni-hamburg.de 25. November 2015 Frank Heitmann heitmann@informatik.uni-hamburg.de 1/122

Mehr

Vorlesung Algorithmische Geometrie. Streckenschnitte. Martin Nöllenburg 19.04.2011

Vorlesung Algorithmische Geometrie. Streckenschnitte. Martin Nöllenburg 19.04.2011 Vorlesung Algorithmische Geometrie LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 19.04.2011 Überlagern von Kartenebenen Beispiel: Gegeben zwei

Mehr

Algorithmen II Vorlesung am

Algorithmen II Vorlesung am Algorithmen II Vorlesung am 0..0 Minimale Schnitte in Graphen INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg und Algorithmen nationales Forschungszentrum

Mehr

Sortieren und Suchen. Kapitel II. Sortieren und Suchen

Sortieren und Suchen. Kapitel II. Sortieren und Suchen Kapitel II Sortieren und Suchen 43 Inhalt Kapitel II 1 Heapsort Heaps Operationen auf Heaps 2 Prioritätsschlangen 3 Quicksort Randomisiertes Quicksort 4 Vergleichskomplexität 5 Median und Selektion 44

Mehr

11.1 Grundlagen - Denitionen

11.1 Grundlagen - Denitionen 11 Binärbäume 11.1 Grundlagen - Denitionen Denition: Ein Baum ist eine Menge, die durch eine sog. Nachfolgerrelation strukturiert ist. In einem Baum gilt: (I) (II) 1 Knoten w ohne VATER(w), das ist die

Mehr

Informatik II, SS 2014

Informatik II, SS 2014 Informatik II SS 2014 (Algorithmen & Datenstrukturen) Vorlesung 7 (21.5.2014) Binäre Suche, Hashtabellen I Algorithmen und Komplexität Abstrakte Datentypen : Dictionary Dictionary: (auch: Maps, assoziative

Mehr

Effiziente Algorithmen und Datenstrukturen I. Kapitel 9: Minimale Spannbäume

Effiziente Algorithmen und Datenstrukturen I. Kapitel 9: Minimale Spannbäume Effiziente Algorithmen und Datenstrukturen I Kapitel 9: Minimale Spannbäume Christian Scheideler WS 008 19.0.009 Kapitel 9 1 Minimaler Spannbaum Zentrale Frage: Welche Kanten muss ich nehmen, um mit minimalen

Mehr

Vorlesung Informatik 2 Algorithmen und Datenstrukturen. (25 Sortieren vorsortierter Daten)

Vorlesung Informatik 2 Algorithmen und Datenstrukturen. (25 Sortieren vorsortierter Daten) Vorlesung Informatik 2 Algorithmen und Datenstrukturen (25 Sortieren vorsortierter Daten) 1 Untere Schranke für allgemeine Sortierverfahren Satz Zum Sortieren einer Folge von n Schlüsseln mit einem allgemeinen

Mehr

Sortieralgorithmen. Direkte Sortierverfahren & Shellsort, Quicksort, Heapsort. Vorlesung Algorithmen und Datenstrukturen 2 im SS 2004

Sortieralgorithmen. Direkte Sortierverfahren & Shellsort, Quicksort, Heapsort. Vorlesung Algorithmen und Datenstrukturen 2 im SS 2004 Sortieralgorithmen Direkte Sortierverfahren & Shellsort, Quicksort, Heapsort Vorlesung Algorithmen und Datenstrukturen 2 im SS 2004 Prof. Dr. W. P. Kowalk Universität Oldenburg Algorithmen und Datenstrukturen

Mehr

Übungsblatt 1. f(n) = f(n) = O(g(n)) g(n) = O(f(n)) Zeigen oder widerlegen Sie: 3 n = Θ(2 n ) Aufgabe 1.2 Gegeben sei die folgende Funktion:

Übungsblatt 1. f(n) = f(n) = O(g(n)) g(n) = O(f(n)) Zeigen oder widerlegen Sie: 3 n = Θ(2 n ) Aufgabe 1.2 Gegeben sei die folgende Funktion: Übungsblatt 1 Aufgabe 1.1 Beweisen oder widerlegen Sie, dass für die im Folgenden definierte Funktion f(n) die Beziehung f(n) = Θ(n 4 ) gilt. Beachten Sie, dass zu einem vollständigen Beweis gegebenenfalls

Mehr

Suchen und Sortieren (Die klassischen Algorithmen)

Suchen und Sortieren (Die klassischen Algorithmen) Suchen und Sortieren (Die klassischen Algorithmen) Lineare Suche und Binäre Suche (Vorbedingung und Komplexität) Sortieralgorithmen (allgemein) Direkte Sortierverfahren (einfach aber langsam) Schnelle

Mehr

14. Rot-Schwarz-Bäume

14. Rot-Schwarz-Bäume Bislang: Wörterbuchoperationen bei binären Suchbäume effizient durchführbar, falls Höhe des Baums klein. Rot-Schwarz-Bäume spezielle Suchbäume. Rot-Schwarz-Baum mit n Knoten hat Höhe höchstens 2 log(n+1).

Mehr

S=[n] Menge von Veranstaltungen J S kompatibel mit maximaler Größe J

S=[n] Menge von Veranstaltungen J S kompatibel mit maximaler Größe J Greedy-Strategie Definition Paradigma Greedy Der Greedy-Ansatz verwendet die Strategie 1 Top-down Auswahl: Bestimme in jedem Schritt eine lokal optimale Lösung, so dass man eine global optimale Lösung

Mehr

Priority Queues and Heapsort

Priority Queues and Heapsort 19. ovember 2012 Prioritätswarteschlangen und Priority Queues and Ferd van denhoven Fontys Hogeschool voor Techniek en Logistiek Venlo Software ngineering 19. ovember 2012 D/FHTBM Priority Queues and 19.

Mehr

Algorithmen und Datenstrukturen Kapitel 1 Algorithmen & Algorithmenanalyse

Algorithmen und Datenstrukturen Kapitel 1 Algorithmen & Algorithmenanalyse Algorithmen und Datenstrukturen Kapitel 1 Algorithmen & Frank Heitmann heitmann@informatik.uni-hamburg.de 14. Oktober 2015 Frank Heitmann heitmann@informatik.uni-hamburg.de 1/48 Der Sprung ins Wasser...

Mehr

Übung: Algorithmen und Datenstrukturen SS 2007

Übung: Algorithmen und Datenstrukturen SS 2007 Übung: Algorithmen und Datenstrukturen SS 2007 Prof. Lengauer Sven Apel, Michael Claÿen, Christoph Zengler, Christof König Blatt 5 Votierung in der Woche vom 04.06.0708.06.07 Aufgabe 12 Manuelle Sortierung

Mehr

2.3.1 Einleitung Einfache Sortierverfahren Höhere Sortierverfahren Komplexität von Sortierverfahren Spezielle Sortierverfahren

2.3.1 Einleitung Einfache Sortierverfahren Höhere Sortierverfahren Komplexität von Sortierverfahren Spezielle Sortierverfahren 2.3 Sortieren 2.3.1 Einleitung 2.3.2 Einfache Sortierverfahren 2.3.3 Höhere Sortierverfahren 2.3.4 Komplexität von Sortierverfahren 2.3.5 Spezielle Sortierverfahren 1 Selection-Sort Idee: Suche kleinstes

Mehr

Algorithmen und Datenstrukturen 1

Algorithmen und Datenstrukturen 1 Algorithmen und Datenstrukturen 1 4. Vorlesung Peter F. Stadler Universität Leipzig Institut für Informatik studla@bioinf.uni-leipzig.de 4. Sortierverfahren Elementare Sortierverfahren - Sortieren durch

Mehr

Datenstrukturen. Mariano Zelke. Sommersemester 2012

Datenstrukturen. Mariano Zelke. Sommersemester 2012 Datenstrukturen Mariano Zelke Sommersemester 2012 Prioritätswarteschlangen Mariano Zelke Datenstrukturen 2/28 Der abstrakte Datentyp Prioritätswarteschlange : Füge Elemente (mit Prioritäten) ein und entferne

Mehr

12 (2-4)-Bäume Implementierbare Funktionen. (2-4)-Bäume sind durch folgende Eigenschaften deniert: 1. Alle Äste sind gleich lang

12 (2-4)-Bäume Implementierbare Funktionen. (2-4)-Bäume sind durch folgende Eigenschaften deniert: 1. Alle Äste sind gleich lang 12 (2-4)-Bäume (2-4)-Bäume sind durch folgende Eigenschaften deniert: 1. Alle Äste sind gleich lang 2. Die Ordnung (maximale Anzahl der Söhne eines Knotens) ist gleich 4 3. Innere Knoten haben 2 Söhne

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen 11. Übung Verkettete Listen, Sortieren Insertionsort, Mergesort, Radixsort, Quicksort Clemens Lang Übungen zu AuD 19. Januar 2010 Clemens Lang (Übungen zu AuD) Algorithmen

Mehr

Datenstrukturen und Algorithmen

Datenstrukturen und Algorithmen Datenstrukturen und Algorithmen VO 708.031 27.10.2011 stefan.klampfl@tugraz.at 1 Wiederholung Wir vergleichen Algorithmen anhand des ordnungsmäßigen Wachstums von T(n), S(n), Asymptotische Schranken: O-Notation:

Mehr

Übersicht. Datenstrukturen und Algorithmen. Übersicht. Divide-and-Conquer. Vorlesung 9: Quicksort (K7)

Übersicht. Datenstrukturen und Algorithmen. Übersicht. Divide-and-Conquer. Vorlesung 9: Quicksort (K7) Datenstrukturen und Algorithmen Vorlesung 9: (K7) Joost-Pieter Katoen Lehrstuhl für Informatik 2 Software Modeling and Verification Group http://www-i2.rwth-aachen.de/i2/dsal0/ Algorithmus 8. Mai 200 Joost-Pieter

Mehr

Übung Datenstrukturen. Sortieren

Übung Datenstrukturen. Sortieren Übung Datenstrukturen Sortieren Aufgabe 1 Gegeben sei nebenstehender Sortieralgorithmus für ein Feld a[] ganzer Zahlen mit N Elementen: a) Um welches Sortierverfahren handelt es sich? b) Geben Sie möglichst

Mehr

Datenstrukturen und Algorithmen

Datenstrukturen und Algorithmen Datenstrukturen und Algorithmen VO 708.031 Bäume robert.legenstein@igi.tugraz.at 1 Inhalt der Vorlesung 1. Motivation, Einführung, Grundlagen 2. Algorithmische Grundprinzipien 3. Sortierverfahren 4. Halden

Mehr

Übungsklausur Algorithmen I

Übungsklausur Algorithmen I Universität Karlsruhe, Institut für Theoretische Informatik Prof. Dr. P. Sanders 26.5.2010 svorschlag Übungsklausur Algorithmen I Hiermit bestätige ich, dass ich die Klausur selbständig bearbeitet habe:

Mehr

Programmieren I. Kapitel 7. Sortieren und Suchen

Programmieren I. Kapitel 7. Sortieren und Suchen Programmieren I Kapitel 7. Sortieren und Suchen Kapitel 7: Sortieren und Suchen Ziel: Varianten der häufigsten Anwendung kennenlernen Ordnung Suchen lineares Suchen Binärsuche oder Bisektionssuche Sortieren

Mehr

Grundlagen: Algorithmen und Datenstrukturen

Grundlagen: Algorithmen und Datenstrukturen Technische Universität München Fakultät für Informatik Lehrstuhl für Effiziente Algorithmen Dr. Hanjo Täubig Tobias Lieber Sommersemester 2011 Übungsblatt 5 14. Juni 2011 Grundlagen: Algorithmen und Datenstrukturen

Mehr

1. Aufgabe (6 Punkte): Java-Programmierung (Arrays)

1. Aufgabe (6 Punkte): Java-Programmierung (Arrays) Der folgende Mitschrieb wurde von Prof. Alexa am 16.07.2008 als Probeklausur in der MPGI2 Vorlesung gezeigt und wurde auf http://www.basicinside.de/2008/node/94 veröffentlicht. Die Abschrift ist unter

Mehr

Algorithmen und Datenstrukturen (Th. Ottmann und P. Widmayer) Folien: Suchverfahren Autor: Stefan Edelkamp / Sven Schuierer

Algorithmen und Datenstrukturen (Th. Ottmann und P. Widmayer) Folien: Suchverfahren Autor: Stefan Edelkamp / Sven Schuierer Algorithmen und Datenstrukturen (Th. Ottmann und P. Widmayer) Folien: Suchverfahren Autor: Stefan Edelkamp / Sven Schuierer Institut für Informatik Georges-Köhler-Allee Albert-Ludwigs-Universität Freiburg

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen 1 Algorithmen und Datenstrukturen Wintersemester 2015/16 12. Vorlesung Hashing Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I 2 Übungen Begründen Sie grundsätzlich alle Behauptungen außer die Aufgabe

Mehr

Definition 15 Rot-Schwarz-Bäume sind externe Binärbäume (jeder Knoten hat 0 oder 2 Kinder) mit roten und schwarzen Kanten, so dass gilt:

Definition 15 Rot-Schwarz-Bäume sind externe Binärbäume (jeder Knoten hat 0 oder 2 Kinder) mit roten und schwarzen Kanten, so dass gilt: 2.2 Rot-Schwarz-Bäume Definition 15 Rot-Schwarz-Bäume sind externe Binäräume (jeder Knoten hat 0 oder 2 Kinder) mit roten und schwarzen Kanten, so dass gilt: 1 alle Blätter hängen an schwarzen Kanten (durchgezogene

Mehr

Algorithmen und Datenstrukturen Suchbaum

Algorithmen und Datenstrukturen Suchbaum Algorithmen und Datenstrukturen Suchbaum Matthias Teschner Graphische Datenverarbeitung Institut für Informatik Universität Freiburg SS 12 Motivation Datenstruktur zur Repräsentation dynamischer Mengen

Mehr

2. Felder (Arrays) 2.1 Suchen in Feldern. lineares Suchen: siehe Kapitel 1. Binäres Suchen. Vor.: Elemente (z.b. aufsteigend) sortiert

2. Felder (Arrays) 2.1 Suchen in Feldern. lineares Suchen: siehe Kapitel 1. Binäres Suchen. Vor.: Elemente (z.b. aufsteigend) sortiert 10 2.1 Suchen in Feldern 2. Felder (Arrays) lineares Suchen: siehe Kapitel 1 Binäres Suchen Vor.: Elemente (z.b. aufsteigend) sortiert ( später) Idee: Divide & Conquer (teile und herrsche) public

Mehr

Kap. 4.4: B-Bäume Kap. 4.5: Dictionaries in der Praxis

Kap. 4.4: B-Bäume Kap. 4.5: Dictionaries in der Praxis Kap. 4.4: B-Bäume Kap. 4.5: Dictionaries in der Praxis Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 13./14. VO DAP2 SS 2009 2./4. Juni 2009 1 2. Übungstest

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Lehrstuhl für Informatik I Algorithmen und Datenstrukturen Wintersemester 2013/14 Organisatorisches Vorlesung: Übungsbetreuung: Übungen: Programmiertutorium: Alexander Wolff (E29) Krzysztof Fleszar (E13)

Mehr

Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2014 / Vorlesung 10, Donnerstag 8.

Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2014 / Vorlesung 10, Donnerstag 8. Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2014 / 2015 Vorlesung 10, Donnerstag 8. Januar 2015 (Verkettete Listen, Binäre Suchbäume) Junior-Prof. Dr.

Mehr

4 Greedy-Algorithmen (gierige Algorithmen)

4 Greedy-Algorithmen (gierige Algorithmen) Greedy-Algorithmen (gierige Algorithmen) Greedy-Algorithmen werden oft für die exakte oder approximative Lösung von Optimierungsproblemen verwendet. Typischerweise konstruiert ein Greedy-Algorithmus eine

Mehr

AVL-Bäume Analyse. Theorem Ein AVL-Baum der Höhe h besitzt zwischen F h und 2 h 1 viele Knoten. Definition Wir definieren die nte Fibonaccizahl:

AVL-Bäume Analyse. Theorem Ein AVL-Baum der Höhe h besitzt zwischen F h und 2 h 1 viele Knoten. Definition Wir definieren die nte Fibonaccizahl: AVL-Bäume Analyse (Folie 85, Seite 39 im Skript) Theorem Ein AVL-Baum der Höhe h besitzt zwischen F h und 2 h 1 viele Knoten. Definition Wir definieren die nte Fibonaccizahl: 0 falls n = 0 F n = 1 falls

Mehr

Kapitel 4: Dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2012/13. Prof. Dr. Sándor Fekete

Kapitel 4: Dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2012/13. Prof. Dr. Sándor Fekete Kapitel 4: Dynamische Datenstrukturen Algorithmen und Datenstrukturen WS 2012/13 Prof. Dr. Sándor Fekete 4.4 Binäre Suche Aufgabenstellung: Rate eine Zahl zwischen 100 und 114! Algorithmus 4.1 INPUT: OUTPUT:

Mehr

2 Sortieren. Beispiel: Es seien n = 8 und a = i : a i : ϕ(i) : a ϕ(i) :

2 Sortieren. Beispiel: Es seien n = 8 und a = i : a i : ϕ(i) : a ϕ(i) : 2 Sortieren Das Sortieren einer Datenfolge ist eines der am leichtesten zu verstehenden und am häufigsten auftretenden algorithmischen Probleme. In seiner einfachsten Form besteht das Problem darin, eine

Mehr

Sortieren durch Einfügen. Prof. Dr. W. Kowalk Sortieren durch Einfügen 1

Sortieren durch Einfügen. Prof. Dr. W. Kowalk Sortieren durch Einfügen 1 Sortieren durch Einfügen Prof. Dr. W. Kowalk Sortieren durch Einfügen 1 Schon wieder aufräumen Schon wieder Aufräumen, dabei habe ich doch erst neulich man findet alles schneller wieder Bücher auf Regal

Mehr

Datenstrukturen und Algorithmen

Datenstrukturen und Algorithmen Joost-Pieter Katoen Datenstrukturen und Algorithmen 1/32 Datenstrukturen und Algorithmen Vorlesung 7: Sortieren (K2) Joost-Pieter Katoen Lehrstuhl für Informatik 2 Software Modeling and Verification Group

Mehr

Informatik II Vorlesung am D-BAUG der ETH Zürich

Informatik II Vorlesung am D-BAUG der ETH Zürich Informatik II Vorlesung am D-BAUG der ETH Zürich Vorlesung 9, 2.5.2016 [Nachtrag zu Vorlesung : Numerische Integration, Zusammenfassung Objektorientierte Programmierung] Dynamische Datenstrukturen II:

Mehr

Kapitel 9 Suchalgorithmen

Kapitel 9 Suchalgorithmen Kapitel 9 Suchalgorithmen Suchverfahren: Verfahren, das in einem Suchraum nach Mustern oder Objekten mit bestimmten Eigenschaften sucht. Vielfältige Anwendungsbereiche für Suchverfahren: u.a. Suchen in

Mehr

1. Einfach verkettete Liste unsortiert 2. Einfach verkettete Liste sortiert 3. Doppelt verkettete Liste sortiert

1. Einfach verkettete Liste unsortiert 2. Einfach verkettete Liste sortiert 3. Doppelt verkettete Liste sortiert Inhalt Einführung 1. Arrays 1. Array unsortiert 2. Array sortiert 3. Heap 2. Listen 1. Einfach verkettete Liste unsortiert 2. Einfach verkettete Liste sortiert 3. Doppelt verkettete Liste sortiert 3. Bäume

Mehr

a) Geben Sie für die folgenden Paare von Mengen jeweils die Teilmengenbeziehung mit Hilfe der Symbole, und = an. lässt sich wie folgt umformen:

a) Geben Sie für die folgenden Paare von Mengen jeweils die Teilmengenbeziehung mit Hilfe der Symbole, und = an. lässt sich wie folgt umformen: Prof. aa Dr. Ir. Joost-Pieter Katoen Datenstrukturen und Algorithmen SoSe 0 Klausur 0.09.0 Christian Dehnert Jonathan Heinen Thomas Ströder Sabrina von Styp Aufgabe (O-Notation: (9 + 4 + 7 = 0 Punkte a

Mehr

Suchen und Sortieren

Suchen und Sortieren Suchen und Sortieren Suchen Sortieren Mischen Zeitmessungen Bewertung von Sortier-Verfahren Seite 1 Suchverfahren Begriffe Suchen = Bestimmen der Position (Adresse) eines Wertes in einer Datenfolge Sequentielles

Mehr

Sortieralgorithmen. Jan Pöschko. 18. Januar Problemstellung Definition Warum Sortieren?... 2

Sortieralgorithmen. Jan Pöschko. 18. Januar Problemstellung Definition Warum Sortieren?... 2 Jan Pöschko 18. Januar 2007 Inhaltsverzeichnis 1 Problemstellung 2 1.1 Definition................................... 2 1.2 Warum Sortieren?.............................. 2 2 Einfache Sortieralgorithmen

Mehr

Lösungsvorschlag 1. Vorlesung Algorithmentechnik im WS 09/10

Lösungsvorschlag 1. Vorlesung Algorithmentechnik im WS 09/10 Institut für Theoretische Informatik Lehrstuhl Prof. Dr. D. Wagner Lösungsvorschlag Vorlesung Algorithmentechnik im WS 09/0 Problem : Dynamisches Array (Amortisierte Analyse) [vgl. Kapitel 0.3 im Skript]

Mehr

Kapitel 9. Komplexität von Algorithmen und Sortieralgorithmen

Kapitel 9. Komplexität von Algorithmen und Sortieralgorithmen 1 Kapitel 9 Komplexität von Algorithmen und Sortieralgorithmen Ziele 2 Komplexität von Algorithmen bestimmen können (in Bezug auf Laufzeit und auf Speicherplatzbedarf) Sortieralgorithmen kennenlernen:

Mehr

Technische Universität Wien Institut für Computergraphik und Algorithmen Abteilung für Algorithmen und Datenstrukturen

Technische Universität Wien Institut für Computergraphik und Algorithmen Abteilung für Algorithmen und Datenstrukturen Technische Universität Wien Institut für Computergraphik und Algorithmen Abteilung für Algorithmen und Datenstrukturen 186.114 Algorithmen und Datenstrukturen 1 UE 2.0 186.099 Programmiertechnik und theoretische

Mehr

Binäre Suchbäume. Mengen, Funktionalität, Binäre Suchbäume, Heaps, Treaps

Binäre Suchbäume. Mengen, Funktionalität, Binäre Suchbäume, Heaps, Treaps Binäre Suchbäume Mengen, Funktionalität, Binäre Suchbäume, Heaps, Treaps Mengen n Ziel: Aufrechterhalten einer Menge (hier: ganzer Zahlen) unter folgenden Operationen: Mengen n Ziel: Aufrechterhalten einer

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Wintersemester 2012/13 22. Vorlesung Tiefensuche und Topologische Sortierung Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I Vorlesungsumfrage Nutzen Sie die Vorlesungsbefragung

Mehr

Randomisierte Algorithmen 2. Erste Beispiele

Randomisierte Algorithmen 2. Erste Beispiele Randomisierte Algorithmen Randomisierte Algorithmen 2. Erste Beispiele Thomas Worsch Fakultät für Informatik Karlsruher Institut für Technologie Wintersemester 2016/2017 1 / 35 Randomisierter Identitätstest

Mehr

Dynamische Mengen. Realisierungen durch Bäume

Dynamische Mengen. Realisierungen durch Bäume Dynamische Mengen Eine dynamische Menge ist eine Datenstruktur, die eine Menge von Objekten verwaltet. Jedes Objekt x trägt einen eindeutigen Schlüssel key[x]. Die Datenstruktur soll mindestens die folgenden

Mehr

Algorithmen und Datenstrukturen VO UE 2.0 Nebentermin Vorlesungsprüfung / 4. Übungstest SS

Algorithmen und Datenstrukturen VO UE 2.0 Nebentermin Vorlesungsprüfung / 4. Übungstest SS Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen 8.089 VO.0 + 8. UE.0 Nebentermin Vorlesungsprüfung

Mehr

Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2014 / 2015 Vorlesung 3, Donnerstag 6.

Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2014 / 2015 Vorlesung 3, Donnerstag 6. Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2014 / 2015 Vorlesung 3, Donnerstag 6. November 2014 (O-Notation, Theta, Omega) Junior-Prof. Dr. Olaf Ronneberger

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Werner Struckmann Wintersemester 2005/06 6. Bäume 6.1 Bäume 6.2 Binäre Suchbäume 6.3 Ausgeglichene Bäume 6.4 Heapsort Listen und Bäume Listen und Bäume: Listen: Jedes Listenelement

Mehr

Wiederholung ADT Menge Ziel: Verwaltung (Finden, Einfügen, Entfernen) einer Menge von Elementen

Wiederholung ADT Menge Ziel: Verwaltung (Finden, Einfügen, Entfernen) einer Menge von Elementen Was bisher geschah abstrakter Datentyp : Signatur Σ und Axiome Φ z.b. ADT Menge zur Verwaltung (Finden, Einfügen, Entfernen) mehrerer Elemente desselben Typs Spezifikation einer Schnittstelle Konkreter

Mehr

Datenstrukturen & Algorithmen Lösungen zu Blatt 6 FS 14

Datenstrukturen & Algorithmen Lösungen zu Blatt 6 FS 14 Eidgenössische Technische Hochschule Zürich Ecole polytechnique fédérale de Zurich Politecnico federale di Zurigo Federal Institute of Technology at Zurich Institut für Theoretische Informatik 2. April

Mehr

Übung Algorithmen I

Übung Algorithmen I Übung Algorithmen I 18.5.16 Lukas Barth lukas.barth@kit.edu (Mit Folien von Julian Arz, Timo Bingmann, Sebastian Schlag und Christoph Striecks) Roadmap Sortieren Kleine Wiederholung Visualisierungen Adaptives

Mehr

Erster Sortier-Algorithmus: Bubblesort

Erster Sortier-Algorithmus: Bubblesort Erster Sortier-Algorithmus: Bubblesort Die Idee des Algo: Vergleiche von links nach rechts jeweils zwei Nachbarelemente und vertausche deren Inhalt, falls sie in der falschen Reihenfolge stehen; Wiederhole

Mehr

Vorlesung Informatik 2 Algorithmen und Datenstrukturen

Vorlesung Informatik 2 Algorithmen und Datenstrukturen Vorlesung Informatik 2 Algorithmen und Datenstrukturen (18 Bäume: Grundlagen und natürliche Suchbäume) Prof. Dr. Susanne Albers Bäume (1) Bäume sind verallgemeinerte Listen (jedes Knoten-Element kann mehr

Mehr

Algorithmen und Datenstrukturen VO 3.0 Vorlesungsprüfung 19. Oktober 2007

Algorithmen und Datenstrukturen VO 3.0 Vorlesungsprüfung 19. Oktober 2007 Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen 1 186.089 VO 3.0 Vorlesungsprüfung 19. Oktober

Mehr

Kap. 4.2: Binäre Suchbäume

Kap. 4.2: Binäre Suchbäume Kap. 4.2: Binäre Suchbäume Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 11. VO DAP2 SS 2009 26. Mai 2009 1 Zusätzliche Lernraumbetreuung Morteza Monemizadeh:

Mehr

Datenstrukturen & Algorithmen

Datenstrukturen & Algorithmen Datenstrukturen & Algorithmen Matthias Zwicker Universität Bern Frühling 2010 Übersicht Binäre Suchbäume Einführung und Begriffe Binäre Suchbäume 2 Binäre Suchbäume Datenstruktur für dynamische Mengen

Mehr

Programmiertechnik II

Programmiertechnik II Bäume Symboltabellen Suche nach Werten (items), die unter einem Schlüssel (key) gefunden werden können Bankkonten: Schlüssel ist Kontonummer Flugreservierung: Schlüssel ist Flugnummer, Reservierungsnummer,...

Mehr

Punktlokalisierung. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK

Punktlokalisierung. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Vorlesung Algorithmische Geometrie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 22.05.2012 Nachtrag: Dynamische Bereichsabfragen Letzte Woche: kd-trees und Range-Trees

Mehr

JAVA - Suchen - Sortieren

JAVA - Suchen - Sortieren Übungen Informatik I JAVA - Suchen - Sortieren http://www.fbi-lkt.fh-karlsruhe.de/lab/info01/tutorial Übungen Informatik 1 Folie 1 Inhalt Suchen/Sortieren binary search mergesort bubblesort Übungen Informatik

Mehr

Pro Informatik 2009: Objektorientierte Programmierung Tag 17. Marco Block-Berlitz, Miao Wang Freie Universität Berlin, Institut für Informatik

Pro Informatik 2009: Objektorientierte Programmierung Tag 17. Marco Block-Berlitz, Miao Wang Freie Universität Berlin, Institut für Informatik Tag 17 Marco Block-Berlitz, Miao Wang Freie Universität Berlin, Institut für Informatik 08.09.2009 Agenda Tag 16 Datenstrukturen Abstrakte Datentypen, ADT Folge: Stack, Queue, Liste, ADT Menge: Bäume:

Mehr