Höhere Mathematik für die Fachrichtung Physik

Größe: px
Ab Seite anzeigen:

Download "Höhere Mathematik für die Fachrichtung Physik"

Transkript

1 Karlsruher Institut für Technologie Institut für Analysis Dr. Christoph Schmoeger Michael Hott, M. Sc. WS 5/.. Höhere Mathematik für die Fachrichtung Physik Lösungsvorschläge zum 4. Übungsblatt Aufgabe 79 (Übung) Bestimmen Sie in Abhängigkeit von α,β R die Zeilennormalform der Matrix B = α β Für welche α,β sind die Zeilen linear unabhängig? Bestimmen Sie eine Basis der linearen Hülle der Zeilen von A. Lösungsvorschlag Wir führen folgende Zeilenumformungen durch: B = 4 ( ) α β α β 4 α β ( ) 4 ( ) α β α β 4 α β 4 Die letzte Matrix ist für alle α,β R in Zeilenstufenform. Ablesen liefert den Zeilenrang r = 4, für α oder β 4. Ansonsten ist r =. Nach der Vorlesung (r = n), sind die Zeilen von A damit linear unabhängig genau dann, wenn α oder β 4 gilt. Sind α = und β = 4, so ist die letzte Matrix bereits die Zeilennormalform von B und die Basis ist gegeben durch die drei ersten Zeilen der Matrix. In allen anderen Fällen ist eine Basis durch alle vier Zeilen der Ausgangsmatrix gegeben. Ist α = aber β 4, so ist B 4 β 4 β 4 β 4 β 4 4 ( 4)

2 die Zeilennormalform von B. Ist α, so sei κ = β 4 α und es gilt B 4 α β 4 κ κ 4κ κ die Zeilennormalform von B. Aufgabe 8 (Tutorium) α 4 κ a) Bestimmen Sie die Zeilennormalform der Matrix 4 A = Sind die Zeilen linear unabhängig? Bestimmen Sie eine Basis der linearen Hülle der Zeilen von A. b) Geben Sie für folgende Vektorräume jeweils eine Basis an. (i) {(x,x,x ) R x = x }, (ii) lin({x, x x, x, x x, x 7 x 5 }) Lösungsvorschlag a) Wir führen folgende Zeilenumformungen durch: A = ( ) Die letzte Matrix ist in Zeilennormalform. Ablesen liefert den Zeilenrang r =. Nach der Vorlesung (r = n), sind die Zeilen von A damit linear unabhängig und bilden damit eine Basis ihrer linearen Hülle. b) (i) Eine Basis ist gegeben durch v = (,,), v = (,,), denn aus λ v λ v = folgt (λ,λ,λ ) = (,,,), also λ = λ = ; ist ferner v {(x,x,x ) R : x = x }, so gibt es a,b R mit v = (a,b,a), also v = av bv. (ii) Wir zeigen zunächst, dass {x, x x, x, x 7 x 5 } linear unabhängig ist: Es gelte λ x λ (x x) λ (x ) λ 4 (x 7 x 5 ) =, ( )

3 also λ λ x (λ λ λ )x λ 4 x 5 λ 4 x 7 =. Da die Polynome {,x,x,x,...} P linear unabhängig sind, folgt λ =,,λ =, λ λ λ =, λ 4 =, also λ = λ = λ = λ 4 =. Damit ist {x, x x, x, x 7 x 5 } linear unabhängig. Schließlich lässt sich das Polynom x x als Linearkombination aus den restlichen Polynomen darstellen, und zwar gilt x (x x) (x ) = x x. Damit ist lin({x, x x, x, x x, x 7 x 5 }) ein 4-dimensionaler Vektorraum und ist eine Basis dieses Vektorraums. {x, x x, x, x 7 x 5 } Alternativ ist dann Offensichtlich auch {, x, x,x 7 x 5 } eine Basis (die Vektoren sind linear unabhängig und jeder Vektor lässt sich als Linearkombination der Vektoren der ersten Basis schreiben). Aufgabe 8 (Übung) Betrachten Sie das lineare Gleichungssystem α α β x x x = und entscheiden Sie, in Abhängigkeit von den Parametern α und β, ob das Gleichungssystem lösbar ist. Berechnen Sie gegebenenfalls alle Lösungen. Lösungsvorschlag Wir formen die Matrix so weit zu einer Zeilenstufenform um, wie die Allgemeinheit von α und β es zulässt. ( ) α α α β α β ( α) α α α β α α β α α Nun folgt eine Fallunterscheidung.. Fall: β α. Sei γ := α. Wir dividieren die dritte Zeile durch β α und erhalten β α α α γ ( α) ( α), ( α)γ αγ γ

4 Das Gleichungssystem ist also eindeutig lösbar. die Lösung lautet ( α)γ 4 α β α x = αγ = α( α) γ β α α β α = β α 4 β α β α α. Fall: β = α, α. Das Gleichungssystem hat die Form α α α und ist wegen α nicht lösbar, da die erweiterte Matrix mit einen höheren Rang hat als die Matrix selbst.. Fall: β = α, α = (also β = 4). Die Matrix hat die Form 4 und ist in Zeilennormalform. Ausgeschrieben lauten die Gleichungen Also x 4x =, x x =, x = 4x, x = x, x = x. x ist also ein frei wählbarer Paramter und der Lösungsraum der gegebenen Gleichung lautet 4 s,s K. Alternativ kann man in Matrixform den so genannten ( )-Trick anwenden. Ist die Matrix in Zeilennormalform, ergänze man die gesamte Matrix so durch Nullzeilen, dass die nicht erweiterte Matrix quadratisch ist und die Nicht-Nullzeilen ihre vorhandene erste Eins auf der Diagonale dieser Matrix haben (dies ist hier bereits der Fall, links steht eine -Matrix mit ihren Einsen auf der Diagonalen. Nun ersetzt man die Nullen auf der Diagonale durch ( )en. Die spezielle Lösung des Gleichungssystems ist über die Spalte ganz rechts abzulesen, der Lösungsraum der homogenen Gleichung (mit Parameter davor) ist durch die Spalten der Matrix links gegeben, die zu einer eingefügten ( ) gehören. 4 4 ( ) 4 s,s K 4

5 Hinweis: Der Vektor (4,, ) hat hierbei ein anderes Vorzeichen als bei der oberen Methode, durch die freie Wahl von s K handelt es sich jedoch um die Gleiche Lösungsmenge. Aufgabe 8 (Tutorium) Es seien gegeben. A = a) Bestimmen Sie rg(a), rg(a b) und rg(a c)., b = 4,c = b) Bestimmen Sie dim(kerna) und geben Sie die Lösungsmenge der Gleichung Ax = an. c) Geben Sie die Lösungsmenge der Gleichungen Ax = b und Ax = c an. Lösungsvorschlag a) Wir bringen die erweiterte Matrix (A b c) auf Zeilennormalform. Wir schreiben beide Vektoren b und c in die Erweiterung, da die Zeilennormalform nur von der Matrix A abhängt und die Operationen somit bei beiden erweiterten Matrizen dieselben sind ( ) ( ) Wir erkennen somit, dass rg(a) = rg(a b) =, rg(a c) =. b) Nach Satz 4. ist dim(bilda) = rg(a) = und nach der Dimensionsformel in 4. dementsprechend (die Matrix besitzt Spalten) dim(kerna) = dim(bilda) = = 4. 5

6 Schreiben wir Ax = in der obigen Zeilennormalform zu einem Gleichungssystem um, ergibt sich x x x 4 5 x 5 x =, x 7 x x 4 x 5 5 x =, also x = x x 4 5 x 5 x, x = 7 x x 4 x 5 5 x. x = x, x 4 = x 4, x 5 = x 5, x = x. Somit ergibt sich als Lösungsmenge der Gleichung Ax =, indem wir x bis x durch beliebige Parameter ersetzen, s t 5 u v s 4t 5u v 7 s t u 5 v 7s t u 5v s s,s,t,u,v K =,s,t,u,v K, t t u v wobei wir für die zweite Menge jeden Parameter durch sein Sechsfaches ersetzt haben. Analog erhält man das Resultat über den ( )-Trick (die einzelnen Vektoren mit ihren Parametern wurden hier zu einem Vektor zusammengefasst). c) Das Gleichungssystem Ax = c ist unlösbar, da rg(a c) = = rg(a). Das Gleichungssystem Ax = b ist lösbar und die allgemeine Lösung ist gegeben als Summe einer speziellen Lösung und der allgemeinen Lösung der homogenen Gleichung. Mit dem gleichen Vorgehen wie in b) gilt nämlich u v x = 5 x x 4 5 x 5 x, x = 7 x x 4 x 5 5 x. x = x, x 4 = x 4, x 5 = x 5, x = x,

7 und somit ist die Lösungsmenge 5 s t 5 u v 7 s t u 5 v s t u v,s,t,u,v K = 5 s 4t 5u v 7s t u 5v s t u v,s,t,u,v K. Aufgabe 8 (Übung) Für eine Matrix A = (a ij ) K n n mit n N sei die transponierte Matrix A T K n n definiert durch (A T ) ij := a ji. Die Abbildung P : K n n K n n sei definiert durch Zeigen Sie: P (A) = (A AT ) = a a... a n a n... a n a n... a nn a nn a) Für alle A,B K n n, α K gilt P (αa B) = αp (A) P (B). b) Für alle A K n n gilt: P (A) = A T = A. In diesem Fall heißt A schiefsymmetrisch. c) Für alle A K n n gilt: A P (K n n ) A T = A. In diesem Fall heißt A symmetrisch. d) dim({a K n n P (A) = }) = n(n ), dim({a K n n A P (K n n )}) = n(n) Lösungsvorschlag a) Es gilt (αa) T = αa T sowie (AB) T = A T B T für α K und A,B K n n, wie man direkt anhand der Definition erkennt. Damit folgt wie zu zeigen war. P (αa B) = ( ) αa B (αa B) T = ( αa B αa T B ) T = α ( ) A A T ( ) B B T = αp (A) P (B), b) Es ist P (A) = A A T = A T = A. c) (i) Sei B K n n P (B) T = (BBT ) T = (BT B) = P (B), da (B T ) T = B anhand der Definition. Also gilt für P (K n n ) A = P (B) dann A T = A. (ii) Sei A K n n mit A T = A. Dann gilt (A AT ) = (A) = A, also P (A) = A. Es folgt A P (K n n ). Insgesamt folgt aus (i) und (ii): A P (K n n ) A T = A. 7

8 d) Eine Basis von {A K n n A P (K n n )} b) = {A K n n A = A T } wird durch die folgenden Matrizen gebildet:......,...,,...,..., (.)......,...,...,... (.) (Einsen auf der Diagonale bzw. in gegenüberliegenden Einträgen abseits der Diagonalen). Diese Matrizen sind offenbar linear unabhängig, außerdem läßt sich jede symmetrische Matrix als Linearkombination dieser Matrizen schreiben. Also bilden obige Matrizen eine Basis. Da man in der rechten oberen Dreiecksmatrix stets ein Element = wählen kann und den Rest =, besteht diese Basis aus n(n ) n (n )... = Elementen, also dim({a K n n A P (K n n )}) = n(n). Eine Basis der Menge der schiefsymmetrischen Matrizen (A T = A) erhalten wir, wenn wir bei den Matrizen in (.) je eine der beiden Einsen durch eine - ersetzen. Die Matrizen in (.) fallen weg, da diese nicht schiefsymmetrisch sind. Damit erhalten wir dim({a K n n P (A) = }) = n(n ) Hinweis: Später folgt aus der Dimensionsformel für lineare Abbildungen sofort Aufgabe 84 (Tutorium) dim({a K n n A P (K n n )}) dim({a K n n P (A) = }) = dim(k n n ) = n. a) Im C-Vektorraum C 4 seien der Vektor y = (,5i, i,c ) und der Untervektorraum U = lin i, i i, i c i c ci, i i c c i i gegeben. Bestimmen Sie alle c C, für die y U gilt. b) Sei A = K. Berechnen Sie eine Basis von KernA und von BildA. 8

9 Lösungsvorschlag a) Seien v := i,v := i i,v := i c i c ci,v 4 := i i c c i i. Gesucht sind Koeffizienten x,...,x 4 C mit 4 n= x n v n = y. Dies ist gleichbedeutend mit dem Lösen eines Gleichungssystems, dass als Spalten der Matrix die Vektoren v,...,v 4 besitzt und als rechte Seite den Vektor y. Wir bringen die zugehörige erweiterte Matrix auf Stufenform. i ( i) i i i i c 5i i c i c i i c ci i c i i i i c 4i i c i i c i c ci c i i i i c 4i c i i c ci c c i i i i c 4i c i i c ci Dieses Gleichungssystem ist genau dann lösbar, wenn der Rang der erweiterten Matrix dem Rang der nicht erweiterten entspricht (also ). Dies ist genau dann der Fall, wenn (c i)(c i) = c ci = und c i, also für (c = i oder c = i) und c i, also für c = i. Für dieses c finden wir eine Lösung, womit y U gilt, andernfalls gilt y U. b) Zunächst bringen wir A mittels Zeilenumformungen auf Zeilennormalform: ( ) ( ) Daraus erkennen wir mit dem üblichen Vorgehen, dass ( ) ( ) KernA = {x K Ax = } = s,s K = s,s K 9

10 Folglich ist eine Basis von Kern A und es gilt dim(kerna) =. Die Dimensionsformel liefert dim(bilda) = dim(kerna) = =. Da die beiden Vektoren Ae =,Ae = Bild A linear unabhängig sind, bilden diese eine Basis von Bild A, also Bild A = lin,.

Zu zwei Matrizen A R m n und B R p q existiert das Matrizenprodukt A B n = p und es gilt dann. A B = (a ij ) (b jk ) = (c ik ) = C R m q mit c ik =

Zu zwei Matrizen A R m n und B R p q existiert das Matrizenprodukt A B n = p und es gilt dann. A B = (a ij ) (b jk ) = (c ik ) = C R m q mit c ik = H 6. Die Matrizen A, B, C und D seien gegeben durch 5 A =, B =, C = 4 5 4, D =. 5 7 5 4 4 Berechnen Sie (sofern möglich) alle Matrizenprodukte X Y mit X, Y {A, B, C, D}. Zu zwei Matrizen A R m n und B

Mehr

3. Übungsblatt zur Lineare Algebra I für Physiker

3. Übungsblatt zur Lineare Algebra I für Physiker Fachbereich Mathematik Prof. Dr. Mirjam Dür Dipl. Math. Stefan Bundfuss. Übungsblatt zur Lineare Algebra I für Physiker WS 5/6 6. Dezember 5 Gruppenübung Aufgabe G (Basis und Erzeugendensystem) Betrachte

Mehr

1 Transponieren, Diagonal- und Dreiecksmatrizen

1 Transponieren, Diagonal- und Dreiecksmatrizen Technische Universität München Thomas Reifenberger Ferienkurs Lineare Algebra für Physiker Vorlesung Mittwoch WS 2008/09 1 Transponieren, Diagonal- und Dreiecksmatrizen Definition 11 Transponierte Matrix

Mehr

Lineare Algebra und analytische Geometrie I (Unterrichtsfach) Lösungsvorschlag

Lineare Algebra und analytische Geometrie I (Unterrichtsfach) Lösungsvorschlag MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Dr E Schörner WS / Blatt 6 Übungen zur Vorlesung Lineare Algebra und analytische Geometrie I (Unterrichtsfach) Lösungsvorschlag Wir verwenden das Unterraumkriterium,

Mehr

Der Kern einer Matrix

Der Kern einer Matrix Die elementaren Zeilenoperationen p. 1 Der Kern einer Matrix Multipliziert man eine Matrix mit den Spaltenvektoren s 1,..., s m von rechts mit einem Spaltenvektor v := (λ 1,..., λ m ) T, dann ist das Ergebnis

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 18. April 2016 Übersicht über die Methoden Seien v 1,..., v r Vektoren in K n. 1. Um zu prüfen, ob die Vektoren v 1,...,

Mehr

9.2 Invertierbare Matrizen

9.2 Invertierbare Matrizen 34 9.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 7

Technische Universität München Zentrum Mathematik. Übungsblatt 7 Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 7 Hausaufgaben Aufgabe 7. Für n N ist die Matrix-Exponentialfunktion

Mehr

5.7 Lineare Abhängigkeit, Basis und Dimension

5.7 Lineare Abhängigkeit, Basis und Dimension 8 Kapitel 5. Lineare Algebra 5.7 Lineare Abhängigkeit, Basis und Dimension Seien v,...,v n Vektoren auseinemvektorraumv über einem KörperK. DieMenge aller Linearkombinationen von v,...,v n, nämlich { n

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Eine Familie von Gleichungen der Form a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... + a 2n x n = b 2............ a m1 x 1 + a m2 x 2 +... + a mn x n = b m

Mehr

6. Übungsblatt zur Mathematik I für Maschinenbau

6. Übungsblatt zur Mathematik I für Maschinenbau Fachbereich Mathematik Prof. Dr. M. Joswig Dr. habil. Sören Kraußhar Dipl.-Math. Katja Kulas 6. Übungsblatt zur Mathematik I für Maschinenbau Gruppenübung WS 2/ 25..-.2. Aufgabe G (Lineare Gleichungssysteme)

Mehr

Matrizen, Determinanten, lineare Gleichungssysteme

Matrizen, Determinanten, lineare Gleichungssysteme Matrizen, Determinanten, lineare Gleichungssysteme 1 Matrizen Definition 1. Eine Matrix A vom Typ m n (oder eine m n Matrix, A R m n oder A C m n ) ist ein rechteckiges Zahlenschema mit m Zeilen und n

Mehr

Ausgewählte Lösungen zu den Übungsblättern 4-5

Ausgewählte Lösungen zu den Übungsblättern 4-5 Fakultät für Luft- und Raumfahrttechnik Institut für Mathematik und Rechneranwendung Vorlesung: Lineare Algebra (ME), Prof. Dr. J. Gwinner Ausgewählte en zu den Übungsblättern -5 Aufgabe, Lineare Unabhängigkeit

Mehr

8.2 Invertierbare Matrizen

8.2 Invertierbare Matrizen 38 8.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

37 Gauß-Algorithmus und lineare Gleichungssysteme

37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Motivation Lineare Gleichungssysteme treten in einer Vielzahl von Anwendungen auf und müssen gelöst werden In Abschnitt 355 haben wir gesehen, dass

Mehr

Kapitel 13. Lineare Gleichungssysteme und Basen

Kapitel 13. Lineare Gleichungssysteme und Basen Kapitel 13. Lineare Gleichungssysteme und Basen Matrixform des Rangsatzes Satz. Sei A eine m n-matrix mit den Spalten v 1, v 2,..., v n. A habe den Rang r. Dann ist die Lösungsmenge L := x 1 x 2. x n x

Mehr

1 0 1, V 3 = M, und λ A = λa

1 0 1, V 3 = M, und λ A = λa Aufgabe 57. Magische Quadrate Eine reelle 3 3-Matrix A = a 11 a 12 a 13 a 21 a 22 a 23 heißt magisches Quadrat, falls alle Zeilensummen, alle Spaltensummen und die beiden Diagonalsummen a 11 + a 22 + a

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2015

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2015 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2015 4. April 2016 Zu der Vorlesung wird ein Skript erstellt, welches auf meiner Homepage veröffentlicht wird: http://www.math.uni-hamburg.de/home/geschke/lehre.html

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG P. Grohs T. Welti F. Weber Herbstsemester 2 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Mittsemesterprüfung HS, Typ A Name a a Note Vorname Leginummer Datum 29..2 2 4 6 Total

Mehr

( ) Lineare Gleichungssysteme

( ) Lineare Gleichungssysteme 102 III. LINEARE ALGEBRA Aufgabe 13.37 Berechne die Eigenwerte der folgenden Matrizen: ( ) 1 1 0 1 1 2 0 3 0 0, 2 1 1 1 2 1. 1 1 0 3 Aufgabe 13.38 Überprüfe, ob die folgenden symmetrischen Matrizen positiv

Mehr

3 Elementare Umformung von linearen Gleichungssystemen und Matrizen

3 Elementare Umformung von linearen Gleichungssystemen und Matrizen 3 Elementare Umformung von linearen Gleichungssystemen und Matrizen Beispiel 1: Betrachte das Gleichungssystem x 1 + x 2 + x 3 = 2 2x 1 + 4x 2 + 3x 3 = 1 3x 1 x 2 + 4x 3 = 7 Wir formen das GLS so lange

Mehr

3.4 Der Gaußsche Algorithmus

3.4 Der Gaußsche Algorithmus 94 34 Der Gaußsche Algorithmus Wir kommen jetzt zur expliziten numerischen Lösung des eingangs als eine Motivierung für die Lineare Algebra angegebenen linearen Gleichungssystems 341 n 1 a ik x k = b i,

Mehr

Lösung Test 2 (Nachprüfung)

Lösung Test 2 (Nachprüfung) MLAE Mathematik: Lineare Algebra für ngenieure Herbstsemester Dr Christoph Kirsch ZHAW Winterthur Aufgabe : Lösung Test (Nachprüfung a Wir verwenden den Gauss-Jordan-Algorithmus, um die erweiterte Koeffizientenmatrix

Mehr

Lineare Algebra: Determinanten und Eigenwerte

Lineare Algebra: Determinanten und Eigenwerte : und Eigenwerte 16. Dezember 2011 der Ordnung 2 I Im Folgenden: quadratische Matrizen Sei ( a b A = c d eine 2 2-Matrix. Die Determinante D(A (bzw. det(a oder Det(A von A ist gleich ad bc. Det(A = a b

Mehr

2 Die Dimension eines Vektorraums

2 Die Dimension eines Vektorraums 2 Die Dimension eines Vektorraums Sei V ein K Vektorraum und v 1,..., v r V. Definition: v V heißt Linearkombination der Vektoren v 1,..., v r falls es Elemente λ 1,..., λ r K gibt, so dass v = λ 1 v 1

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 25. April 2016 Die Dimensionsformel Definition 3.9 Sei f : V W eine lineare Abbildung zwischen zwei K-Vektorräumen. Der Kern

Mehr

10.2 Linearkombinationen

10.2 Linearkombinationen 147 Vektorräume in R 3 Die Vektorräume in R 3 sind { } Geraden durch den Ursprung Ebenen durch den Ursprung R 3 Analog zu reellen Vektorräumen kann man komplexe Vektorräume definieren. In der Definition

Mehr

Klausurvorbereitungsblatt Lineare Algebra

Klausurvorbereitungsblatt Lineare Algebra Klausurvorbereitungsblatt Lineare Algebra Sommersemester 25 Aufgabe 2 2 Sei A 3 3 8 2 4 3 R4 5. 5 2 a) Bestimmen Sie die Lösungsmenge des linearen Gleichungssystems Ax b) Ist Ax b mit b lösbar? (Begründen

Mehr

Der Rangsatz für lineare Abbildungen

Der Rangsatz für lineare Abbildungen Der Rangsatz für lineare Abbildungen Satz Sei f : V W eine lineare Abbildung Dann gilt dim V = dim Kern(f) + dim Bild(f), also gleichbedeutend dim Kern(f) = dim V rg(f) Da uns in der Regel bei gegebenem

Mehr

2.2 Lineare Gleichungssysteme (LGS)

2.2 Lineare Gleichungssysteme (LGS) 2.2 Lineare Gleichungssysteme (LGS) Definition 2.2.. Ein LGS über einem Körper K von m Gleichungen in n Unbekannten x,..., x n ist ein Gleichungssystem der Form a x + a 2 x 2 +... + a n x n = b a 2 x +

Mehr

[5], [0] v 4 = + λ 3

[5], [0] v 4 = + λ 3 Aufgabe 9. Basen von Untervektorräumen. Bestimmen Sie Basen von den folgenden Untervektorräumen U K des K :. K = R und U R = span,,,,,.. K = C und U C = span + i, 6, i. i i + 0. K = Z/7Z und U Z/7Z = span

Mehr

Erneut: Matrizen und lineare Abbildungen

Erneut: Matrizen und lineare Abbildungen Erneut: Matrizen und lineare Abbildungen Mit Hilfe der Matrixmultiplikation lässt sich die Korrespondenz zwischen linearen Abbildungen und Matrizen elegant ausdrücken: Satz. e 1, e 2,..., e n sei die Standardbasis

Mehr

8. Elemente der linearen Algebra 8.5 Quadratische Matrizen und Determinanten

8. Elemente der linearen Algebra 8.5 Quadratische Matrizen und Determinanten Einheitsmatrix Die quadratische Einheitsmatrix I n M n,n ist definiert durch I n = 1 0 0 0 1 0 0 0 1 (Auf der Hauptdiagonalen stehen Einsen, außerhalb Nullen Durch Ausmultiplizieren sieht man I n A = A

Mehr

4. Vektorräume und Gleichungssysteme

4. Vektorräume und Gleichungssysteme technische universität dortmund Dortmund, im Dezember 2011 Fakultät für Mathematik Prof Dr H M Möller Lineare Algebra für Lehramt Gymnasien und Berufskolleg Zusammenfassung der Abschnitte 41 und 42 4 Vektorräume

Mehr

Beispiele 1. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix (A

Beispiele 1. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix (A 133 e 1. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix 1 3 2 1 1 2 3 0. 1 3 2 1 2. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix 1 3 2 1 1 2 3 0. 1 3 2 1 Schritte des

Mehr

Lösungen Serie 6 (Vektorräume, Skalarprodukt)

Lösungen Serie 6 (Vektorräume, Skalarprodukt) Name: Seite: 1 Fachhochschule Nordwestschweiz (FHNW) Hochschule für Technik Lösungen Serie 6 (Vektorräume, Skalarprodukt) Dozent: R. Burkhardt Büro: 4.613 Klasse: 1. Studienjahr Semester: 1 Datum: HS 28/9

Mehr

Serie 8: Fakultativer Online-Test

Serie 8: Fakultativer Online-Test Prof Norbert Hungerbühler Lineare Algebra I Serie 8: Fakultativer Online-Test ETH Zürich - D-MAVT HS 215 1 Diese Serie besteht nur aus Multiple-Choice-Aufgaben und wird nicht vorbesprochen Die Nachbesprechung

Mehr

(Allgemeine) Vektorräume (Teschl/Teschl 9)

(Allgemeine) Vektorräume (Teschl/Teschl 9) (Allgemeine) Vektorräume (Teschl/Teschl 9) Sei K ein beliebiger Körper. Ein Vektorraum über K ist eine (nichtleere) Menge V, auf der zwei Operationen deniert sind, die bestimmten Rechenregeln genügen:

Mehr

2.2 Kern und Bild; Basiswechsel

2.2 Kern und Bild; Basiswechsel 22 Kern und Bild; Basiswechsel 22 Kern und Bild; Basiswechsel 35 Jede lineare Abbildung definiert charakteristische Unterräume, sowohl im Ausgangsraum als auch im Bildraum 22 Satz Sei L: V W eine lineare

Mehr

Vektorräume und Lineare Abbildungen

Vektorräume und Lineare Abbildungen Vektorräume und Lineare Abbildungen Patricia Doll, Selmar Binder, Lukas Bischoff, Claude Denier ETHZ D-MATL SS 07 11.04.2007 1 Vektorräume 1.1 Definition des Vektorraumes (VR) 1.1.1 Grundoperationen Um

Mehr

2.3 Lineare Abbildungen und Matrizen

2.3 Lineare Abbildungen und Matrizen 2.3. LINEARE ABBILDUNGEN UND MATRIZEN 89 Bemerkung Wir sehen, dass die Matrix à eindeutig ist, wenn x 1,...,x r eine Basis ist. Allgemeiner kann man zeigen, dass sich jede Matrix mittels elementarer Zeilenumformungen

Mehr

Mathematik IT 2 (Lineare Algebra)

Mathematik IT 2 (Lineare Algebra) Lehrstuhl Mathematik, insbesondere Numerische und Angewandte Mathematik Prof Dr L Cromme Mathematik IT (Lineare Algebra für die Studiengänge Informatik, IMT und ebusiness im Sommersemester 3 Lineare Gleichungssysteme

Mehr

Lineare Algebra und analytische Geometrie I Lösungsvorschlag zum 8. Tutoriumsblatt

Lineare Algebra und analytische Geometrie I Lösungsvorschlag zum 8. Tutoriumsblatt Mathematisches Institut der Universität München Wintersemester 24/5 Daniel Rost Lukas-Fabian Moser Lineare Algebra und analytische Geometrie I Lösungsvorschlag zum 8. Tutoriumsblatt Aufgabe T-. a) Die

Mehr

$Id: linabb.tex,v /01/09 13:27:34 hk Exp hk $

$Id: linabb.tex,v /01/09 13:27:34 hk Exp hk $ Mathematik für Ingenieure I, WS 8/9 Freitag 9. $Id: linabb.tex,v.3 9//9 3:7:34 hk Exp hk $ II. Lineare Algebra 9 Lineare Abbildungen 9. Lineare Abbildungen Der folgende Satz gibt uns eine einfachere Möglichkeit

Mehr

In diesem Abschnitt betrachten wir nur quadratische Matrizen mit Komponenten aus einem Körper K, also A K n n für ein n N. Wenn (mit einem n > 1)

In diesem Abschnitt betrachten wir nur quadratische Matrizen mit Komponenten aus einem Körper K, also A K n n für ein n N. Wenn (mit einem n > 1) 34 Determinanten In diesem Abschnitt betrachten wir nur quadratische Matrizen mit Komponenten aus einem Körper K, also A K n n für ein n N Wenn (mit einem n > 1) a 11 a 12 a 1n a 21 a 22 a 2n A =, (1)

Mehr

Lineare Algebra und Analytische Geometrie I für die Fachrichtung Informatik

Lineare Algebra und Analytische Geometrie I für die Fachrichtung Informatik Universität Karlsruhe (TH) Institut für Algebra und Geometrie Dr. Klaus Spitzmüller Dipl.-Inform. Wolfgang Globke Lineare Algebra und Analytische Geometrie I für die Fachrichtung Informatik Lösungen zum

Mehr

3.6 Eigenwerte und Eigenvektoren

3.6 Eigenwerte und Eigenvektoren 3.6 Eigenwerte und Eigenvektoren 3.6. Einleitung Eine quadratische n n Matrix A definiert eine Abbildung eines n dimensionalen Vektors auf einen n dimensionalen Vektor. c A x c A x Von besonderem Interesse

Mehr

Eigenwerte und Diagonalisierung

Eigenwerte und Diagonalisierung Eigenwerte und Diagonalisierung Wir wissen von früher: Seien V und W K-Vektorräume mit dim V = n, dim W = m und sei F : V W linear. Werden Basen A bzw. B in V bzw. W gewählt, dann hat F eine darstellende

Mehr

2.2 Lineare Gleichungssysteme

2.2 Lineare Gleichungssysteme Lineare Algebra I WS 2015/16 c Rudolf Scharlau 55 22 Lineare Gleichungssysteme Das Lösen von Gleichungen (ganz unterschiedlichen Typs und unterschiedlichen Schwierigkeitsgrades) gehört zu den Grundproblemen

Mehr

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2015/2016

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2015/2016 Aussagenlogik 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl B: a + b < a + b, a, b R C: 2 ist eine Primzahl D: 7 7 E: a + 1 b, a, b R F: 3 ist Teiler von 9 Bestimmen Sie den Wahrheitswert

Mehr

Lineare Gleichungssysteme - Grundlagen

Lineare Gleichungssysteme - Grundlagen Lineare Gleichungssysteme - Grundlagen Betrachtet wird ein System linearer Gleichungen (im deutschen Sprachraum: lineares Gleichungssystem mit m Gleichungen für n Unbekannte, m, n N. Gegeben sind m n Elemente

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme 1 Wiederholung Eine Menge von Vektoren a 1, a 2,, a k heisst linear unabhängig, wenn eine Linearkombination c 1 a 1 + c 2 a 2 + + c k a k = k c i a i (1) i=1 nur dann Null sein

Mehr

Lineare Algebra I Zusammenfassung

Lineare Algebra I Zusammenfassung Prof. Dr. Urs Hartl WiSe 10/11 Lineare Algebra I Zusammenfassung 1 Vektorräume 1.1 Mengen und Abbildungen injektive, surjektive, bijektive Abbildungen 1.2 Gruppen 1.3 Körper 1.4 Vektorräume Definition

Mehr

6 Eigenwerte und Eigenvektoren

6 Eigenwerte und Eigenvektoren 6.1 Eigenwert, Eigenraum, Eigenvektor Definition 6.1. Es sei V ein Vektorraum und f : V V eine lineare Abbildung. Ist λ K und v V mit v 0 und f(v) = λv gegeben, so heißt die Zahl λ Eigenwert (EW) von f,

Mehr

Allgemeines Gleichungssystem mit zwei Gleichungen und zwei Variablen. Der erste Index bezeichnet die Nummer der Zeile, der zweite die der Spalte.

Allgemeines Gleichungssystem mit zwei Gleichungen und zwei Variablen. Der erste Index bezeichnet die Nummer der Zeile, der zweite die der Spalte. Lineare Gleichungssysteme. Einleitung Lineare Gleichungssysteme sind in der Theorie und in den Anwendungen ein wichtiges Thema. Theoretisch werden sie in der Linearen Algebra untersucht. Die Numerische

Mehr

3 Matrizenrechnung. 3. November

3 Matrizenrechnung. 3. November 3. November 008 4 3 Matrizenrechnung 3.1 Transponierter Vektor: Die Notation x R n bezieht sich per Definition 1 immer auf einen stehenden Vektor, x 1 x x =.. x n Der transponierte Vektor x T ist das zugehörige

Mehr

Definitionen. b) Was bedeutet V ist die direkte Summe von U und W? V ist direkte Summe aus U und W, falls V = U + W und U W = {0}.

Definitionen. b) Was bedeutet V ist die direkte Summe von U und W? V ist direkte Summe aus U und W, falls V = U + W und U W = {0}. Technische Universität Berlin Wintersemester 7/8 Institut für Mathematik 9. April 8 Prof. Dr. Stefan Felsner Andrea Hoffkamp Lösungsskizzen zur Nachklausur zur Linearen Algebra I Aufgabe ++ Punkte Definieren

Mehr

Matrizen - I. Sei K ein Körper. Ein rechteckiges Schema A = wobei a ij K heißt Matrix bzw. eine m n Matrix (mit Elementen aus K).

Matrizen - I. Sei K ein Körper. Ein rechteckiges Schema A = wobei a ij K heißt Matrix bzw. eine m n Matrix (mit Elementen aus K). Matrizen - I Definition. Sei K ein Körper. Ein rechteckiges Schema A = a 11 a 12...... a 1n a 21 a 22...... a 2n............ a m1 a m2...... a mn wobei j K heißt Matrix bzw. eine m n Matrix (mit Elementen

Mehr

Mathematik für Wirtschaftswissenschaftler im WS 2013/14 Lösungen zu den Übungsaufgaben (Vortragsübung) Blatt 7

Mathematik für Wirtschaftswissenschaftler im WS 2013/14 Lösungen zu den Übungsaufgaben (Vortragsübung) Blatt 7 Mathematik für Wirtschaftswissenschaftler im WS 203/4 Lösungen zu den Übungsaufgaben (Vortragsübung) Blatt 7 Aufgabe 27 Sei eine lineare Abbildung f : R 4 R 3 gegeben durch f(x, x 2, x 3 ) = (2 x 3 x 2

Mehr

Kurs über Lineare Gleichungssysteme. PD Dr. Karin Halupczok

Kurs über Lineare Gleichungssysteme. PD Dr. Karin Halupczok Kurs über Lineare Gleichungssysteme PD Dr. Karin Halupczok Mathematisches Institut Albert-Ludwigs-Universität Freiburg http://home.mathematik.unifreiburg.de/halupczok/diverses.html karin.halupczok@math.uni-freiburg.de

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mathematik für Informatiker I Wintersemester 3/ Aufgabenblatt 6. Januar Präsenzaufgaben

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 5

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 5 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 5): Lineare Algebra und analytische Geometrie 5 5. (Herbst 9, Thema 3, Aufgabe ) Betrachtet werde die Matrix A := 3 4 5 5 7 7 9 und die lineare Abbildung

Mehr

4.4. Rang und Inversion einer Matrix

4.4. Rang und Inversion einer Matrix 44 Rang und Inversion einer Matrix Der Rang einer Matrix ist die Dimension ihres Zeilenraumes also die Maximalzahl linear unabhängiger Zeilen Daß der Rang sich bei elementaren Zeilenumformungen nicht ändert

Mehr

Definitionen. Merkblatt lineare Algebra. affiner Teilraum Menge, die durch Addition eines Vektors v 0 zu allen Vektoren eines Vektorraumes V entsteht

Definitionen. Merkblatt lineare Algebra. affiner Teilraum Menge, die durch Addition eines Vektors v 0 zu allen Vektoren eines Vektorraumes V entsteht Seite 1 Definitionen affiner Teilraum Menge, die durch Addition eines Vektors v 0 zu allen Vektoren eines Vektorraumes V entsteht ähnliche Matrizen Matrizen, die das gleiche charakteristische Polynom haben

Mehr

Lineare Gleichungssysteme: eine Ergänzung

Lineare Gleichungssysteme: eine Ergänzung Lineare Gleichungssysteme: eine Ergänzung Ein lineares Gleichungssystem, bei dem alle Einträge auf der rechten Seite gleich sind heiÿt homogenes lineares Gleichungssystem: a x + a 2 x 2 +... + a n x n

Mehr

Kapitel 16. Aufgaben. Verständnisfragen. Rechenaufgaben

Kapitel 16. Aufgaben. Verständnisfragen. Rechenaufgaben Kapitel 16 Aufgaben Verständnisfragen Aufgabe 16.1 Ist das Produkt quadratischer oberer bzw. unterer Dreiecksmatrizen wieder eine obere bzw. untere Dreiecksmatrix? Aufgabe 16.2 Bekanntlich gilt im Allgemeinen

Mehr

4 Lineare Algebra (Teil 2): Quadratische Matrizen

4 Lineare Algebra (Teil 2): Quadratische Matrizen 4 Lineare Algebra (Teil : Quadratische Matrizen Def.: Eine (n n-matrix, die also ebensoviele Zeilen wie Spalten hat, heißt quadratisch. Hat sie außerdem den Rang n, sind also ihre n Spalten linear unabhängig,

Mehr

Aufgaben zu Kapitel 14

Aufgaben zu Kapitel 14 Aufgaben zu Kapitel 14 1 Aufgaben zu Kapitel 14 Verständnisfragen Aufgabe 14.1 Haben (reelle) lineare Gleichungssysteme mit zwei verschiedenen Lösungen stets unendlich viele Lösungen? Aufgabe 14.2 Gibt

Mehr

Kap 5: Rang, Koordinatentransformationen

Kap 5: Rang, Koordinatentransformationen Kap 5: Rang, Koordinatentransformationen Sei F : V W eine lineare Abbildung. Dann ist der Rang von F erklärt durch: rang F =dim ImF. Stets gilt rang F dimv, und ist dimv

Mehr

1 Singulärwertzerlegung und Pseudoinverse

1 Singulärwertzerlegung und Pseudoinverse Singulärwertzerlegung und Pseudoinverse Singulärwertzerlegung A sei eine Matrix mit n Spalten und m Zeilen. Zunächst sei n m. Bilde B = A A. Dies ist eine n n-matrix. Berechne die Eigenwerte von B. Diese

Mehr

Lineare Algebra I (WS 13/14)

Lineare Algebra I (WS 13/14) Lineare Algebra I (WS 13/14) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 29.11.2013 Alexander Lytchak 1 / 13 Wiederholung Der Rang einer linearen Abbildung ist gleich dem Spaltenrang der darstellenden

Mehr

In diesem Kapitel wird der Vektorraumbegriff axiomatisch eingeführt und einige grundlegende Begriffe erläutert, etwa. Unterraum,

In diesem Kapitel wird der Vektorraumbegriff axiomatisch eingeführt und einige grundlegende Begriffe erläutert, etwa. Unterraum, 2 Vektorräume In diesem Kapitel wird der Vektorraumbegriff axiomatisch eingeführt und einige grundlegende Begriffe erläutert, etwa Unterraum, Linearkombination, lineare Unabhängigkeit und Erzeugendensystem.

Mehr

1 Matrizenrechnung zweiter Teil

1 Matrizenrechnung zweiter Teil MLAN1 1 Literatur: K. Nipp/D. Stoffer, Lineare Algebra, Eine Einführung für Ingenieure, VDF der ETHZ, 4. Auflage, 1998, oder neuer. 1 Matrizenrechnung zweiter Teil 1.1 Transponieren einer Matrix Wir betrachten

Mehr

Kapitel 15. Lösung linearer Gleichungssysteme

Kapitel 15. Lösung linearer Gleichungssysteme Kapitel 15. Lösung linearer Gleichungssysteme Lineare Gleichungssysteme Wir befassen uns nun mit der Lösung im allgemeinen nichthomogener linearer Gleichungssysteme in zweifacher Hinsicht. Wir studieren

Mehr

8 Lineare Abbildungen und Matrizen

8 Lineare Abbildungen und Matrizen 8 Lineare Abbildungen und Matrizen 8.1 Lineare Abbildungen Wir beschäftigen uns nun mit Abbildungen zwischen linearen Räumen. Von besonderem Interesse sind Abbildungen, die die Struktur der linearen Räume

Mehr

IV.3. RANG VON MATRIZEN 81

IV.3. RANG VON MATRIZEN 81 IV3 RANG VON MATRIZEN 8 Ist b,,b n eine Basis des reellen Vektorraums V, dann bildet b,,b n auch eine Basis des komplexen Vektorraums V C Mit V ist daher auch V C endlichdimensional und es gilt dim C V

Mehr

Lineare Algebra I. Lösung 9.2:

Lineare Algebra I. Lösung 9.2: Universität Konstanz Wintersemester 2009/2010 Fachbereich Mathematik und Statistik Lösungsblatt 9 Prof. Dr. Markus Schweighofer 20.01.2010 Aaron Kunert / Sven Wagner Lineare Algebra I Lösung 9.1: Voraussetzung:

Mehr

Vektorräume. Kapitel Definition und Beispiele

Vektorräume. Kapitel Definition und Beispiele Kapitel 3 Vektorräume 3.1 Definition und Beispiele Sei (V,,0) eine abelsche Gruppe, und sei (K, +,, 0, 1) ein Körper. Beachten Sie, dass V und K zunächst nichts miteinander zu tun haben, deshalb sollte

Mehr

Mathematik 2 für ET. Vektoren in R n und C n. Addition von Vektoren Multiplikation von Vektor und Skalar. Der Nullvektor 0 =

Mathematik 2 für ET. Vektoren in R n und C n. Addition von Vektoren Multiplikation von Vektor und Skalar. Der Nullvektor 0 = Mathematik 2 für ET # 0 by Clifford Wolf # 0 Antwort Diese Lernkarten sind sorgfältig erstellt worden, erheben aber weder Anspruch auf Richtigkeit noch auf Vollständigkeit Das Lernen mit Lernkarten funktioniert

Mehr

Aufgabensammlung aus Mathematik 2 UMIT, SS 2010, Version vom 7. Mai 2010

Aufgabensammlung aus Mathematik 2 UMIT, SS 2010, Version vom 7. Mai 2010 Aufgabensammlung aus Mathematik 2 UMIT, SS 2, Version vom 7. Mai 2 I Aufgabe I Teschl / K 3 Zerlegen Sie die Zahl 8 N in ihre Primfaktoren. Aufgabe II Teschl / K 3 Gegeben sind die natürliche Zahl 7 und

Mehr

Anhang A. Etwas affine Geometrie. A.1 Die affine Hülle

Anhang A. Etwas affine Geometrie. A.1 Die affine Hülle Anhang A Etwas affine Geometrie In diesem Anhang stellen wir die wichtigsten Grundbegriffe aus der affinen Geometrie zusammen, soweit sie eben für uns von Nutzen sind. Für weiterführende Ergebnisse sei

Mehr

4 Lineare Abbildungen und Matrizen

4 Lineare Abbildungen und Matrizen Mathematik I für inf/swt, Wintersemester /, Seite 8 4 Lineare Abbildungen und Matrizen 4 Kern und Injektivität 4 Definition: Sei : V W linear Kern : {v V : v } ist linearer eilraum von V Ü68 und heißt

Mehr

Vorbereitungskurs Mathematik zum Sommersemester 2011 Tag 7

Vorbereitungskurs Mathematik zum Sommersemester 2011 Tag 7 Vorbereitungskurs Mathematik zum Sommersemester 2011 Tag 7 Timo Stöcker Erstsemestereinführung Informatik TU Dortmund 22. März 2011 Heute Themen Lineare Gleichungssysteme Matrizen Timo Stöcker https://fsinfo.cs.tu-dortmund.de/studis/ese/vorkurse/mathe

Mehr

Lösungen der Aufgaben zu Abschnitt 5.4

Lösungen der Aufgaben zu Abschnitt 5.4 A Filler: Elementare Lineare Algebra Lösungen zu Abschnitt 54 Lösungen der Aufgaben zu Abschnitt 54 B ist linear unabhängig, wenn die Vektorgleichung ( ) ( ) ( ) ( ) 456 λ + λ + λ = bzw das LGS λ +4λ +λ

Mehr

Serie 10: Inverse Matrix und Determinante

Serie 10: Inverse Matrix und Determinante D-ERDW, D-HEST, D-USYS Mathematik I HS 5 Dr Ana Cannas Serie 0: Inverse Matrix und Determinante Bemerkung: Die Aufgaben dieser Serie bilden den Fokus der Übungsgruppen vom und 5 November Gegeben sind die

Mehr

Ergänzung zum HM Tutorium

Ergänzung zum HM Tutorium Ergänzung zum HM Tutorium Patrik Hlobil Niko Kainaris Dieses Dokument erhebt keinen Anspruch auf Vollständigkeit oder Korrektheit. Es stellt keine Vorlesungszusammenfassung dar, sondern soll euch lediglich

Mehr

Themenheft mit viel Trainingsmaterial (Siehe Vorwort!) Unabhänge Vektoren und Erzeugung von Vektoren Gauß-Algorithmus Rang einer Matrix.

Themenheft mit viel Trainingsmaterial (Siehe Vorwort!) Unabhänge Vektoren und Erzeugung von Vektoren Gauß-Algorithmus Rang einer Matrix. LINEARE ALGEBRA Lösbarkeit von linearen Gleichungssystemen Themenheft mit viel Trainingsmaterial (Siehe Vorwort!) Unabhänge Vektoren und Erzeugung von Vektoren Gauß-Algorithmus Rang einer Matrix Gleichungssysteme

Mehr

Klausur HM I H 2005 HM I : 1

Klausur HM I H 2005 HM I : 1 Klausur HM I H 5 HM I : 1 Aufgabe 1 4 Punkte): Zeigen Sie mit Hilfe der vollständigen Induktion: n 1 1 + 1 ) k nn k n! für n. Lösung: Beweis mittels Induktion nach n: Induktionsanfang: n : 1 ) 1 + 1 k

Mehr

6 Symmetrische Matrizen und quadratische Formen

6 Symmetrische Matrizen und quadratische Formen Mathematik für Ingenieure II, SS 9 Freitag 9.6 $Id: quadrat.tex,v. 9/6/9 4:6:48 hk Exp $ 6 Symmetrische Matrizen und quadratische Formen 6. Symmetrische Matrizen Eine n n Matrix heißt symmetrisch wenn

Mehr

Lösungen zur Mathematik für Informatiker I

Lösungen zur Mathematik für Informatiker I Lösungen zur Mathematik für Informatiker I Wintersemester 00/03 Prof Dr H Lenzing Blatt 7 Sei M Ihre Matrikelnummer mit den Ziffern m, m, m 3, m 4, m 5, m 6, m 7 Aufgabe 6 ( Bonuspunkt): Wir betrachten

Mehr

Tutorium Mathematik II, M Lösungen

Tutorium Mathematik II, M Lösungen Tutorium Mathematik II, M Lösungen März 03 *Aufgabe Bestimmen Sie durch Hauptachsentransformation Lage und Typ der Kegelschnitte (a) 3x + 4x x + 3x 4x = 0, (b) 3x + 4x x + 3x 4x 6 = 0, (c) 3x + 4x x +

Mehr

Lineare Algebra II 8. Übungsblatt

Lineare Algebra II 8. Übungsblatt Lineare Algebra II 8. Übungsblatt Fachbereich Mathematik SS 11 Prof. Dr. Kollross 1./9. Juni 11 Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G1 (Minitest) Sei V ein euklidischer oder unitärer Vektorraum.

Mehr

Lineare Algebra Weihnachtszettel

Lineare Algebra Weihnachtszettel Lineare Algebra Weihnachtszettel 4..008 Die Aufgaben auf diesem Zettel sind zum Üben während der Weihnachtspause gedacht, sie dienen der freiwilligen Selbstkontrolle. Die Aufgaben müssen nicht bearbeitet

Mehr

Übungen zu Einführung in die Lineare Algebra und Geometrie

Übungen zu Einführung in die Lineare Algebra und Geometrie Übungen zu Einführung in die Lineare Algebra und Geometrie Andreas Cap Wintersemester 2014/15 Kapitel 1: Einleitung (1) Für a, b Z diskutiere analog zur Vorlesung das Lösungsverhalten der Gleichung ax

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Mathematik I für Biologen, Geowissenschaftler und Geoökologen 28. November 2011 Definition Beispiel: Wassermengen und Konzentrationen in einem Fluss Beispiel Zeilenstufenform Beispiel (Fortsetzung) Anhang

Mehr

Klausur zur Vorlesung Lineare Algebra II, SoSe 2016,

Klausur zur Vorlesung Lineare Algebra II, SoSe 2016, Klausur zur Vorlesung Lineare Algebra II, SoSe 6, 6.7.6 Vokabelbuch In diesem Teil soll getestet werden, inwieweit Sie in der Lage sind, wichtige Definitionen und Sätze aus der Vorlesung korrekt zu formulieren

Mehr

Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 3

Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 3 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 205/6): Lineare Algebra und analytische Geometrie 3 3. (Herbst 997, Thema 3, Aufgabe ) Berechnen Sie die Determinante der reellen Matrix 0 2 0 2 2

Mehr

2.3 Basis und Dimension

2.3 Basis und Dimension Lineare Algebra I WS 205/6 c Rudolf Scharlau 65 2.3 Basis und Dimension In diesem zentralen Abschnitt werden einige für die gesamte Lineare Algebra fundamentale Grundbegriffe eingeführt: Lineare Abhängigkeit

Mehr

Lineare Algebra II 6. Übungsblatt

Lineare Algebra II 6. Übungsblatt Lineare Algebra II 6 Übungsblatt Fachbereich Mathematik SS 2011 Prof Dr Kollross 18/19 Mai 2011 Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G1 (Minimalpolynom) Bestimmen Sie das Minimalpolynom der

Mehr

LINEARE ALGEBRA Ferienkurs. Hanna Schäfer Philipp Gadow

LINEARE ALGEBRA Ferienkurs. Hanna Schäfer Philipp Gadow LINEARE ALGERA Ferienkurs Hanna Schäfer Philipp Gadow INHALT Lineare Gleichungssysteme und Determinanten. Lineare Gleichungssysteme.2 Determinanten 3 iii 2 LINEARE GLEIHUNGSSYSTEME UND DETERMINANTEN KAPITEL

Mehr