Nachhilfe-Kurs Mathematik Klasse 13 Freie Waldorfschule Mitte

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Nachhilfe-Kurs Mathematik Klasse 13 Freie Waldorfschule Mitte"

Transkript

1 Nachhilfe-Kurs Mathematik Klasse 13 Freie Waldorfschule Mitte März 2008 Zusammenfassung IB 1. Lagebeziehungen zwischen geometrischen Objekten 1.1 Punkt-Gerade Ein Punkt kann entweder auf einer gegebenen Geraden liegen oder nicht. Wie testen wir, was von beidem der Fall ist? Mit dem Punkt-Gerade-Test: 1. Sei eine Gerade g durch einen Punkt A mit einen Richungsvektor m festgelegt, ihre Parametergleichung ist demnach g : OX = x a 1 m 1 x a 1 + r m 1 OA + r m bzw. g : y = a 2 + r m 2 bzw. g : y = a 2 + r m 2 z a 3 m 3 z a 3 + r m 3 2. Der Punkt P soll die Koordinaten (p 1, p 2, p 3 ) haben. Wir bilden den Ortsvektor von P : p 1 OP = 3. Die Frage Liegt der Punkt auf der Geraden? kann übersetzt werden in: Erfüllt sein Ortsvektor die Geradengleichung?. Damit meint man: Finden wir ein r, sodass OP = OA + r m? 4. Wir setzten also OP für OX ein: p 1 a 1 + r m 1 p 2 = a 2 + r m 2 p 3 a 3 + r m 3 5. Da alles bis auf den Parameter r bekannt ist, haben wir ein Gleichungssystem mit drei Gleichungen und einer Unbekannten: p 2 p 3 p 1 = a 1 + r m 1 (1) p 2 = a 2 + r m 2 (2) p 3 = a 3 + r m 3 (3) 6. Ergebnis: Wenn wir für r eine Lösung erhalten, liegt P auf der Geraden, sonst nicht. 1.2 Punkt-Ebene Um zu entscheiden, ob ein Punkt in einer Ebene liegt, machen wir den Punkt-Ebene-Test: 1. Wir bilden den Ortsvektor OP und setzen ihn anstelle von OX in unsere Ebenengleichung ein. 2. Je nachdem, welche Form unsere Gleichung hat, bekommen wir verschiedene Lösungsverfahren: (a) Ebene als Parametergleichung OX = OA + r m + s q ergibt ein Gleichungssystem mit drei Gleichungen und zwei unbekannten Parametern r und s: p 1 = a 1 + r m 1 + s q 1 (1) p 2 = a 2 + r m 2 + s q 2 (2) p 3 = a 3 + r m 3 + s q 3 (3) Wir können eine Gleichung (z.bsp. (2)) nach einem Parameter (z.bsp. s) auflösen. Diesen Parameter setzen wir dann in eine andere Gleichung ein (z.bsp. (3)) um den zweiten Parameter (also r) herauszubekommen. Wenn wir r wieder in eine der Ausgangsgleichungen einsetzen (z.bsp. (1)), bekommen wir s. Wir haben also für r und s zwei Zahlen. Ergebnis: Wenn eine der Ausgangsgleichungen mit diesen beiden Zahlen stimmt, liegt P in der Ebene, sonst nicht. 1

2 (b) Ebene als Normalengleichung OX OA n = 0 ergibt: p 1 p 2 p 3 a 1 a 2 a 3 n 1 n 3 = 0 Wenn wir die ersten beiden Vektoren zusammenziehen und das Skalarprodukt ausrechnen, erhalten wir folgende Gleichung: (p 1 a 1 ) n 1 + (p 2 a 2 ) + (p 3 a 3 ) n 3 = 0 Da wir keine Unbekannten haben, können wir die linke Seite einfach ausrechnen und schauen ob s stimmt. Ergebnis: Wenn s stimmt, liegt P in der Ebene, sonst nicht. (c) Ebene als Koordinatengleichung xn 1 + y + zn 3 = d ergibt: p 1 n 1 + p 2 + p 3 = d Da wir keine Unbekannten haben, können wir die linke Seite einfach ausrechnen und schauen ob s stimmt. Ergebnis: Wenn s stimmt, liegt P in der Ebene, sonst nicht. 1.2 Gerade-Gerade Für die Lage von zwei Geraden zueinander, gibt es drei Möglichkeiten: Fall 1: Die Geraden sind parallel (im Sonderfall sogar identisch). Der Geraden-Parallel-Test 1. Wir vergleichen die Richtungsvektoren der beiden Geraden. 2. Entweder lässt sich der eine aus dem anderen darstellen (sie sind also kollinear) oder nicht (also komplanar). 3. Nennen wir die Richtungsvektoren m und q. Sie sind kollinear, wenn gilt: m = r q oder ausformuliert: m 1 q 1 m 2 = r q 2 m 3 q 3 bzw. m 1 r q 1 m 2 = r q 2 m 3 r q 3 4. Wir haben also wieder ein Gleichungssystem mit drei Gleichungen und einer Unbekannten r. Jetzt wie gewohnt eine Gleichung nach r auflösen. Wenn wir eine Lösung erhalten, sind die beiden Richungsvektoren kollinear. 5. Ergebnis: Sind zwei Vektoren kollinear, beschreiben sie eine parallele Verschiebung. Die beiden Geraden sind also parallel. Sonderfall: Ist ein Punkt der einen Geraden auch ein Punkt der anderen (siehe Punkt-Geraden-Test), sind sie sogar identisch. Wenn die beiden Richtungsvektoren komplanar sind, gilt einer der beiden folgenden Fälle: Fall 2: Die Geraden schneiden sich. 1. Bei dem Geraden-Parallel-Test kam also heraus, dass die beiden Richtungsvektoren komplanar sind (die Geraden sind durchgefallen). Wenn die beiden Geraden sich schneiden, heißt das, sie haben einen gemeinsamen Punkt, einen Schnittpunkt S. 2. Der Geraden-Schnittpunkt-Test: Um zu testen, ob es so einen Punkt gibt, setzt man die beiden Geradengleichungen gleich und schaut, ob es eine Lösung gibt: Zwei Geraden: gleichsetzen: g 1 : OX = OA + r m OA + r m = OB + s q bzw. g 2 : OX = OB + s q a 1 + r m 1 b 1 + s q 1 a 2 + r m 2 = b 2 + s q 2 a 3 + r m 3 b 3 + s q 3 3. Das Gleichungssystem mit drei Gleichungen und den zwei unbekannten Parametern lösen (siehe Punkt-Ebene-Test). 4. Ergebnis: Wenn wir eine Lösung bekommen, schneiden sich die beiden Geraden. Ansonsten tritt Fall 3 ein. 5. Schnittpunktberechnung: Um den Schnittpunkt zu bekommen, muss man einen errechneten Parameter (z.bsp. r) in die entsprechende (wichtig: nicht in die andere!) Geradengleichung einsetzen (also g 1 ) und erhält damit OS. 6. Schnittwinkelberechnung: Der Winkel zwischen den beiden Geraden ist nichts anderes als der (kleinere) Winkel zwischen den bei Richtungsvektoren (siehe Winkelberechnung IA S.1). Fall 3: Wenn zwei Geraden durch beide Tests durchfallen, sind sie windschief. Das heißt, sie sind nicht parallel und sie schneiden sich nicht. Man kann auch sagen: sie liegen nicht in einer Ebene. 2

3 1.3 Gerade-Ebene Um zu zu testen, ob eine Gerade eine Ebene schneidet oder parallel zu ihr verläuft, machen wir (wer hätte es gedacht) den Gerade-Ebene-Test: 1. Zunächst muss die Gerade, genau wie beim Punkt-Gerade-Test unter 1., als ein Vektor geschrieben werden: x a 1 + r m 1 g : y = a 2 + r m 2 z a 3 + r m 3 OX 2. Jetzt die rechte Seite in die Ebenengleichung einsetzen. Und zwar, je nachdem wie die Ebene gegeben ist, als Koordinaten x, y und z oder als Vektor OX. 3. Wir bekommen entweder eine Gleichung (bei Normalen- und Koordinatenform der Ebene) oder ein Gleichungssystem (bei Parameterform). 4. Ergebnis 1: Im ersten Fall (einzelne Gleichung) ist r die einzige Unbekannte. Wenn wir r errechnen können (sprich r nicht rausfällt ), schneiden sich Ebene und Gerade, ansonsten sind sie parallel (Sonderfall: r fällt zwar raus, es entsteht aber eine wahre Aussage. Dann liegt die Gerade sogar in der Ebene). 5. Ergebnis 2: Im zweiten Fall (Gleichungssystem) erhalten wir drei Gleichungen und mit den drei unbekannten Parametern. Wenn wir das System lösen können, schneiden sich die Geraden, ansonsten sind sie parallel. Dieser Fall ist aber meistens sehr aufwendig und kostet viel Zeit. Lieber also die Parametergleichung der Ebene in eine Normalen- oder, noch besser, in eine Koordinatengleichung umwandeln. 6. Schnittpunktberechnung: Setzt man den errechneten Parameter r in die Geradengleichung ein, erhalten wir den Ortsvektor für den Schnittpunkt, also OS. 7. Schnittwinkelberechnung: Aus der Koordinatengleichung lässt sich der Normalenvektor ablesen. Wir können also wieder den (kleineren) Winkel α zwischen dem Richtungsvektor und dem Normalenvektor berechnen (siehe Zusammenfassung IA S.1). Achtung: Das ist noch nicht der gesuchte Winkel! Der Winkel γ zwischen Gerade und Ebene beträgt γ = 90 α. 1.4 Ebene-Ebene Zwei Ebenen sind entweder parallel oder schneiden sich in einer Gerade. Der Ebenen-Ebenen-Test geht am schnellsten, wenn man beide Normalenvektoren hat. 1. Berechnung der Normalenvektoren, wenn sie nicht schon ablesbar sind. 2. Testen, ob die beiden Normalenvektoren kollinear sind oder nicht. 3. Ergebnis: Wenn ja, sind die Ebenen parallel. Wenn nein, schneiden sie sich in einer Geraden. Schnittgeradenberechnung: Am einfachsten ist es, wenn man eine Ebene als Parametergleichung hat und eine als Koordinatengleichung (also notfalls eine umwandeln). 1. Die Ebene in Parameterform (in unserem Fall E 1 ) als ein Vektor schreiben, wie wir es schon von den Geraden kennen: E 1 : x y = a 1 + r m 1 + s q 1 OA + r m + s q = a 2 + r m 2 + s q 2 z a 3 + r m 3 + s q 3 OX 2. Wir setzen jetzt x, y und z von E 1 in E 2 ein, wobei E 2 als Koordinatengleichung (also in der Form E 2 : xn 1 +y +zn 3 = d) gegeben sein muss. 3. Wir erhalten eine Gleichung in der alles bekannt ist, bis auf die Parameter r und s. Wir können also die Gleichung nach einem Parameter (z.bsp. r) auflösen und erhalten ein Ergebnis in Abhängigkeit von dem anderen Parameter (also s). 4. Den so errechneten Parameter in die Parametergleichung von E 1 einsetzen. Durch einfaches Zusammenfassen der Vektoren erhält man die Parametergleichung der Schnittgeraden. Schnittwinkelberechnung: Der Winkel zwischen zwei Ebenen ist gerade der Winkel zwischen ihren Normalenvektoren. Man muss also nur die beiden Normalenvektoren aus der Koordinatenform ablesen und in die Winkelformel einsetzen. 3

4 2. Abstandsberechnung Jeder Abstand ist eine spezielle Strecke (und zwar die kürzeste Strecke zwischen zwei Objekten). Strecken gibt es aber nur zwischen zwei Punkten. Deshalb ist jede Abstandsberechnung nichts anderes als eine Punkt-Punkt-Berechnung. Wenn allerdings Geraden und Ebenen im Spiel sind, ist nicht immer einfach zu entscheiden, welche Punkte die richtigen sind. 2.1 Punkt-Ebene Hierzu brauchen wir die Normalengleichung der Ebene, die wir noch ein bißchen frisieren müssen. Was wir brauchen ist die sogenannte Hesse-Normalform (HNF) der Ebene: 1. Sei die Normalengleichung der Ebene: E : x a 1 y a 2 z a 3 OX OA n 1 n 3 Normalenvektor n = 0 2. Der Normalenvektor n hat die Länge n = 1 + n2 2 + n2 3. Wir wollen aber einen Normalenvektor, der die Länge eins hat. Den nennen wir Normaleneinheitsvektor n 0. Er berechnet sich wie folgt: n 0 = n n = 1 n n 1 n 1 n n = 2 n n n 3 3 n 3. Die Hesse-Normalform (HNF) einer Ebene ist damit fertig: E : OX OA n 0 = 0 oder ausformuliert: x a 1 y a 2 z a 3 OX OA n }{{} 0 = 0 Normaleneinheitsvektor Mit dieser HNF kann man jeden Abstand d eines Punktes zu einer Ebene einfach ausrechnen: 1. Sei ein Punkt P mit den Koordinaten P (p 1, p 2, p 3 ) gegeben. 2. OP statt OX in die HNF einsetzten. Der Betrag davon ist der gesuchte Abstand: [ d(p, E) = OP OA n 0 Gerade-Ebene Das geht natürlich nur, wenn Gerade und Ebene parallel sind. Die Berechnung ist dasselbe, wie bei Punkt-Ebene. Wir können uns einen beliebigen Punkt der Gerade raussuchen und in die HNF einsetzen, weil jeder Punkt der Gerade denselben Abstand zur Ebene hat. Ebene-Ebene Hierfür gilt dasselbe wie bei Gerade-Ebene (geht nur, wenn beide Ebenen parallel sind; ein beliebiger Punkt der zweiten Ebene tut s). 4

5 Punkt-Ebene Gegeben ist eine Gerade g 1 : OX = OA + r m und ein Punkt P (p 1, p 2, p 3 ). Der Abstand ist gerade die Strecke von P zu dessen Lotfußpunkt L auf der Gerade. Das einzige Problem besteht darin diesen Punkt zu finden. 1. L ist der Schnittpunkt einer Hilfsebene H, die senkrecht zu g steht und den Punkt P enthält. 2. Die Normalengleichung der Hilfsebene ist schnell gefunden, denn wir brauchen nur zwei Dinge: den Normalenvektor und einen Punkt (a) Einen Punkt haben wir schon, nämlich P. (b) Der Richtungsvektor der Geraden steht senkrecht zu H, ist also gleichzeitig ein Normalenvektor von H. (c) Damit hat die Hilfsebene folgende Gleichung: H : OX OP m = 0 3. Der gesuchte Punkt L ist jetzt der Schnittpunkt von H und g. Und das berechnen wir wie unter 1.3 (Gerade als einen Vektor schreiben; den dann statt OX in H einsetzen; den Parameter r ausrechnen; den in die Geradengleichung einsetzen OL). 4. Der gesuchte Abstand ist dann die Länge der Strecke zwischen P und L, also d = (P, L) (siehe Zusammenfassung IB S.1). Gerade-Gerade Hierbei können zwei Fälle auftreten: Die Geraden sind parallel (Fall 1) oder die Geraden sind windschief (Fall 2). Mehr geht nicht, denn ansonsten schneiden sie sich ja. Fall 1: Wenn zwei Geraden parallel sind, wählen wir uns einfach einen beliebigen Punkt der einen Geraden und machen dasselbe Spiel wie bei Punkt-Gerade (aber natürlich mit der anderen Geraden). Fall 2: Was wir brauchen, ist jeweils ein Punkt auf jeder Geraden, sodass ihre Verbindungslinie die kürzeste ist. Diese zwei Punkte (wir nennen sie P und Q) liegen auf einer Geraden, die senkrecht zu den beiden anderen Geraden steht. An dieser Stelle müssen wir wieder eine Hilfebene H basteln. 1. Die Hilfsebene soll eine der beiden Geraden enthalten und gleichzeitig senkrecht zu der Gerade stehen, die durch P und Q geht. Was wir dazu brauchen sind wieder die zwei Dinge: Punkt und Normalenvektor 2. Als Punkt wählen wir uns einfach einen beliebigen Punkt A der Gerade, die in der Ebene enthalten sein soll. 3. Als Normalenvektor kann der Richtungsvektor der Geraden dienen, die durch P und Q geht. Dieser ist senkrecht zu den beiden Geraden und also auch zu den jeweiligen Richtungsvektoren. Wir können also ein Gleichungssystem zur Normalenvektorberechnung wie in IA 6.2 aufstellen und ausrechnen. 4. Wenn wir den Normalenvektor haben, können wir auch den Normaleneinheitsvektor berechnen. Wir erhalten also zusammen mit unserem Punkt A eine HNF einer Ebene H, die eine der beiden Geraden enthält. Diese Ebene H ist parallel zu der anderen Geraden. Die restliche Berechnung erfolgt also genau so wie bei Gerade-Ebene. Was ihr können müsst: 1. Entscheiden, ob ein Punkt auf einer Geraden oder in einer Ebene liegt. 2. Entscheiden, ob zwei Geraden parallel, identisch, schneidend oder windschief sind. 3. Bei schneidenden Geraden: Schnittpunkt und Schnittwinkel berechnen. 4. Bei parallelen (nicht identischen) und bei windschiefen Geraden den Abstand berechnen. 5. Entscheiden, ob zwei Ebenen parallel, identisch oder schneidend sind. 6. Bei schneidenden Ebenen: Schnittgerade berechnen. 7. Bei parallelen Ebenen den Abstand berechnen. 8. (Abstand Punkt-Gerade ist dasselbe wie Abstand paralleler Geraden und Abstand Punkt-Ebene sowie Gerade- Ebene ist dasselbe wie Abstand Ebene-Ebene.) 5 Was ich mit euch leider nicht machen konnte: Eigenschaften bestimmter geometrischer Flächen (Dreieck, Rechteck, Parallelogramm,...) und deren Fächeninhalte (könnt ihr sicher schon einiges). Elementare geometrische Körper, wie Quader, Pyramide,... und die Berechnung der Schnittmengen mit Geraden und Ebenen (seid ihr aber fast von allein in der Lage zu). Gleichungen bestimmter Ebenen und Geraden: z.bsp. Ebenen oder Geraden parallel zu den Koordinatenachsen (geht mit unseren Berechnungen aber auch). Spurgeraden, Spurpunkte (kommt selten vor und ist etwas sehr Anschauliches und schnell zu verstehen). Kugelgleichungen und die Berechnung der Schnittmengen von Gerade-Kugel, Gerade-Ebene (Buch S ). Das heißt: Für die die mehr als einen guten Pflichtteil wollen, nochmal mit dem Lehrer reden bzw. auf eigene Faust versuchen (gilt vor allem für den letzten Punkt).

Nachhilfe-Kurs Mathematik Klasse 13 Freie Waldorfschule Mitte

Nachhilfe-Kurs Mathematik Klasse 13 Freie Waldorfschule Mitte Nachhilfe-Kurs Mathematik Klasse 3 Freie Waldorfschule Mitte März 8 Aufgaben zur analytischen Geometrie Musterlösung Gegeben sind die Ebenen E und E sowie die Punkte A und B: E : 4x + y + 3z = 3 E : x

Mehr

Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen?

Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen? Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen können zwei Ebenen (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen? Wie heiÿt

Mehr

Pflichtteilaufgaben zu Gegenseitige Lage, Abstand, Baden-Württemberg

Pflichtteilaufgaben zu Gegenseitige Lage, Abstand, Baden-Württemberg Pflichtteilaufgaben zu Gegenseitige Lage, Abstand, Baden-Württemberg Hilfsmittel: keine allgemeinbildende Gymnasien Alexander Schwarz wwwmathe-aufgabencom September 7 Abituraufgaben (Haupttermin) Aufgabe

Mehr

Grundwissen. 2.Aufstellen von Geradengleichungen: Man nimmt einen Startvektor und bildet aus 2 Punkten einen Richtungsvektor!

Grundwissen. 2.Aufstellen von Geradengleichungen: Man nimmt einen Startvektor und bildet aus 2 Punkten einen Richtungsvektor! Grundwissen 1.Aufstellen eines Vektors: Merkregel: Spitze minus Fuß! 2.Aufstellen von Geradengleichungen: Man nimmt einen Startvektor und bildet aus 2 Punkten einen Richtungsvektor! 3.Aufstellen von Ebenengleichungen

Mehr

Zusammenfassung der Analytischen Geometrie

Zusammenfassung der Analytischen Geometrie Zusammenfassung der Analytischen Geometrie 1. Rechnen mit Vektoren (Addition, Subtraktion, S-Multiplikation, Linearkombinationen) 1. Gegeben sind die Punkte A(2-6 ) und B(-1 14-4), 4 4 sowie die Vektoren

Mehr

www.mathe-aufgaben.com

www.mathe-aufgaben.com Abiturprüfung Mathematik Baden-Württemberg (ohne CAS) Pflichtteil Aufgaben Aufgabe : ( VP) Bilden Sie die erste Ableitung der Funktion f mit sin() f() =. Aufgabe : ( VP) Berechnen Sie das Integral ( )

Mehr

Pflichtteilaufgaben zu Gegenseitige Lage, Abstand, Baden-Württemberg

Pflichtteilaufgaben zu Gegenseitige Lage, Abstand, Baden-Württemberg Pflichtteilaufgaben zu Gegenseitige Lage, Abstand, Baden-Württemberg Hilfsmittel: keine allgemeinbildende Gymnasien Alexander Schwarz wwwmathe-aufgabencom September 6 Abituraufgaben (Haupttermin) Aufgabe

Mehr

Geometrie 3. Lagebeziehung zwischen geometrischen Objekten. 28. Oktober Mathe-Squad GbR. Lagebeziehung zwischen geometrischen Objekten 1

Geometrie 3. Lagebeziehung zwischen geometrischen Objekten. 28. Oktober Mathe-Squad GbR. Lagebeziehung zwischen geometrischen Objekten 1 Geometrie 3 Lagebeziehung zwischen geometrischen Objekten Mathe-Squad GbR 28. Oktober 2016 Lagebeziehung zwischen geometrischen Objekten 1 Lage zweier Geraden Geraden g : #» X = #» A + λ #» u mit λ R h

Mehr

Aufgaben mit Ebenen. Parameterform Normalenform Koordinatenform. Darstellung = + r + s =0 ax 1 + bx 2 + cx 3 = d. Beispiel

Aufgaben mit Ebenen. Parameterform Normalenform Koordinatenform. Darstellung = + r + s =0 ax 1 + bx 2 + cx 3 = d. Beispiel Aufgaben mit Ebenen Parameterform Normalenform Koordinatenform Spurpunkte Zur grafischen Darstellung der Ebene die Spurpunkt berechnen. Zwei Koordinaten gleich 0 setzen und jeweils die dritte ausrechnen.

Mehr

Das Wichtigste auf einen Blick

Das Wichtigste auf einen Blick Das Wichtigste auf einen Blick Zusammenfassung Geometrie.Parameterform einer Geraden Eine Gerade ist wie auch in der Analysis durch zwei Punkte A, B im Raum eindeutig bestimmt einer der beiden Punkte,

Mehr

d 2 b 2 c 2 d 3 b 3 c 3 , D a 1 d 1 c 1 v 3 Definiton (Verbindungsvektor): Zwei Punkte A(a 1 a 2 a 3 ) und B(b 1 b 2 b 3 ) legen den Vektor b 1 a 1

d 2 b 2 c 2 d 3 b 3 c 3 , D a 1 d 1 c 1 v 3 Definiton (Verbindungsvektor): Zwei Punkte A(a 1 a 2 a 3 ) und B(b 1 b 2 b 3 ) legen den Vektor b 1 a 1 2008/2009 Das Wichtigste in Kürze Klasse 3 Lineare Gleichungssysteme und Determinanten Definiton (Lineare Gleichungssysteme: Lineare Gleichungssysteme löst man entweder mit dem Gauß-Algorithmus oder nach

Mehr

13. Klasse TOP 10 Grundwissen 13 Geradengleichungen 01

13. Klasse TOP 10 Grundwissen 13 Geradengleichungen 01 . Klasse TOP 0 Grundwissen Geradengleichungen 0 Punkt-Richtungs-Form Geraden sind gegeben durch einen Aufpunkt A (mit Ortsvektor a) auf der Geraden und einen Richtungsvektor u: x = a + λ u, λ IR. (Interpretation:

Mehr

Das Mathematikabitur. Abiturvorbereitung Geometrie. Autor: Claus Deser Abiturvorbereitung Mathematik 1

Das Mathematikabitur. Abiturvorbereitung Geometrie. Autor: Claus Deser Abiturvorbereitung Mathematik 1 Das Mathematikabitur Abiturvorbereitung Geometrie Autor: Claus Deser Abiturvorbereitung Mathematik 1 Gliederung Was sind Vektoren/ ein Vektorraum? Wie misst man Abstände und Winkel? Welche geometrischen

Mehr

www.mathe-aufgaben.com

www.mathe-aufgaben.com Abiturprüfung Mathematik 008 Baden-Württemberg (ohne CAS) Pflichtteil Aufgaben Aufgabe 1: ( VP) x Gegeben ist die Funktion f mit f(x). x Bilden Sie die Ableitung von f und fassen Sie diese so weit wie

Mehr

Formelsammlung Analytische Geometrie

Formelsammlung Analytische Geometrie Formelsammlung Analytische Geometrie http://www.fersch.de Klemens Fersch 6. August 6 Inhaltsverzeichnis 6 Analytische Geometrie 6. Vektorrechung in der Ebene......................................... 6..

Mehr

Aufgabe 1. Zunächst wird die allgemeine Tangentengleichung in Abhängigkeit von a aufgestellt:

Aufgabe 1. Zunächst wird die allgemeine Tangentengleichung in Abhängigkeit von a aufgestellt: Aufgabe 1 1.1. Bestimmung von D max : 1. Bedingung: x >0 ; da ln(x) nur für x > 0 definiert ist. 2. Bedingung: Somit ist die Funktion f a nur für x > 0 definiert und sie besitzt eine Definitionslücke an

Mehr

Abituraufgabe zur analytischen Geometrie, Hessen 2013, B2, Grundkurs (TR)

Abituraufgabe zur analytischen Geometrie, Hessen 2013, B2, Grundkurs (TR) Abituraufgabe zur analytischen Geometrie, Hessen 2013, B2, Grundkurs (TR) 1 Bei Ausgrabungen wurden die Überreste einer 4500 Jahre alten Pyramide entdeckt. Die Abbildung zeigt die Ansicht der Pyramidenruine

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Brückenkurs Mathematik TU Dresden 2015 Lineare Gleichungssysteme Schwerpunkte: Modellbildung geometrische Interpretation Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik auf der

Mehr

1 aus allen 3 Zeilen folgt t = 1, also liegt A auf g. Orsvektor und Richtungsvektor der Geraden werden übernommen, den zweiten Spannvektor bekommt

1 aus allen 3 Zeilen folgt t = 1, also liegt A auf g. Orsvektor und Richtungsvektor der Geraden werden übernommen, den zweiten Spannvektor bekommt Lösungsskizzen Klassische Aufgaben Lösung zu Abi - PTV Punktprobe: = + t aus allen Zeilen folgt t =, also liegt A auf g. Richtungsvektor von g: u = ; Normalenvektor von E: n = Da die n und u Vielfache

Mehr

5. Geraden und Ebenen im Raum 5.1. Lineare Abhängigkeit und Unabhängigkeit von Vektoren

5. Geraden und Ebenen im Raum 5.1. Lineare Abhängigkeit und Unabhängigkeit von Vektoren 5 Geraden und Ebenen im Raum 5 Lineare Abhängigkeit und Unabhängigkeit von Vektoren Definition: Die Vektoren a,a,,a n heißen linear abhängig, wenn mindestens einer dieser Vektoren als Linearkombination

Mehr

Nachhilfe-Kurs Mathematik Klasse 13 Freie Waldorfschule Mitte April 2008

Nachhilfe-Kurs Mathematik Klasse 13 Freie Waldorfschule Mitte April 2008 Nachhilfe-Kurs Mathematik Klasse 13 Freie Waldorfschule Mitte April 8 Zusammenfassung IC Il Corso Advanzato I. Besondere Punkte, Geraden und Ebenen 1. Besondere Ebenen Koordinatenebenen: Wie in dem konkretes

Mehr

Lernkarten. Analytische Geometrie. 6 Seiten

Lernkarten. Analytische Geometrie. 6 Seiten Lernkarten Analytische Geometrie 6 Seiten Zum Ausdrucken muss man jeweils eine Vorderseite drucken, dann das Blatt wenden, nochmals einlegen und die Rückseite drucken. Am besten druckt man die Karten auf

Mehr

DAS ABI-PFLICHTTEIL Büchlein

DAS ABI-PFLICHTTEIL Büchlein DAS ABI-PFLICHTTEIL Büchlein für Baden-Württemberg Alle Originalaufgaben Haupttermine 004 0 Ausführlich gerechnete und kommentierte Lösungswege Mit vielen Zusatzhilfen X π Von: Jochen Koppenhöfer und Pascal

Mehr

Lagebeziehung von Ebenen

Lagebeziehung von Ebenen M8 ANALYSIS Lagebeziehung von Ebenen Es gibt Möglichkeiten für die Lagebeziehung zwischen zwei Ebenen. Die Ebenen sind identisch. Die Ebenen sind parallel. Die Ebenen schneiden sich in einer Geraden Um

Mehr

ToDo-Liste für s Mathe-Abi 2009

ToDo-Liste für s Mathe-Abi 2009 ToDo-Liste für s Mathe-Abi 2009 7. Februar 2009 1 Grenzwerte und Folgen 1. Unterschied arithmetische Folge zu geometrische Folge 2. Rekursive Darstellung von Zerfalls- und Wachstumsvorgängen (a) lineares

Mehr

H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Übungsbuch für die optimale Vorbereitung in Analysis, Geometrie und Stochastik mit verständlichen Lösungen

H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Übungsbuch für die optimale Vorbereitung in Analysis, Geometrie und Stochastik mit verständlichen Lösungen H. Gruber, R. Neumann Erfolg im Mathe-Abi Übungsbuch für die optimale Vorbereitung in Analysis, Geometrie und Stochastik mit verständlichen Lösungen Inhaltsverzeichnis Inhaltsverzeichnis Analysis Von der

Mehr

Analytische Geometrie II

Analytische Geometrie II Analytische Geometrie II Rainer Hauser März 212 1 Einleitung 1.1 Geradengleichungen in Parameterform Jede Gerade g in der Ebene oder im Raum lässt sich durch einen festen Punkt auf g, dessen Ortsvektor

Mehr

Repetitionsaufgaben: Lineare Funktionen

Repetitionsaufgaben: Lineare Funktionen Kantonale Fachschaft Mathematik Repetitionsaufgaben: Lineare Funktionen Zusammengestellt von Irina Bayer-Krakvina, KSR Lernziele: - Wissen, was ein Steigungsdreieck einer Geraden ist und wie die Steigungszahl

Mehr

Grundwissen Abitur Geometrie 15. Juli 2012

Grundwissen Abitur Geometrie 15. Juli 2012 Grundwissen Abitur Geometrie 5. Juli 202. Erkläre die Begriffe (a) parallelgleiche Pfeile (b) Vektor (c) Repräsentant eines Vektors (d) Gegenvektor eines Vektors (e) Welcher geometrische Zusammenhang besteht

Mehr

Mathematik Analytische Geometrie

Mathematik Analytische Geometrie Mathematik Analytische Geometrie Grundlagen:. Das -Dimensionale kartesische Koordinatensystem: x x x. Vektoren und Ortsvektoren: a x = x x ist ein Vektor, der eine Verschiebung um x -Einheiten in x-richtung,

Mehr

Sollten sich (Flüchtigkeits )Fehler eingeschlichen haben, bitte ich um eine kurze Nachricht an hans

Sollten sich (Flüchtigkeits )Fehler eingeschlichen haben, bitte ich um eine kurze Nachricht an hans Sollten sich (Flüchtigkeits )Fehler eingeschlichen haben, bitte ich um eine kurze Nachricht an hans josef.coenen@web.de Abitour Analytische Geometrie Leistungskurs Aufgaben 1. Welche Lagebeziehungen zwischen

Mehr

u + v = v + u. u + (v + w) = (u + v) + w. 0 V + v = v + 0 V = v v + u = u + v = 0 V. t (u + v) = t u + t v, (t + s) u = t u + s u.

u + v = v + u. u + (v + w) = (u + v) + w. 0 V + v = v + 0 V = v v + u = u + v = 0 V. t (u + v) = t u + t v, (t + s) u = t u + s u. Universität Stuttgart Fachbereich Mathematik Prof. Dr. C. Hesse PD Dr. P. H. Lesky Dipl. Math. D. Zimmermann Msc. J. Köllner FAQ 3 Höhere Mathematik I 4..03 el, kyb, mecha, phys Vektorräume Vektorräume

Mehr

Analytische Geometrie Aufgaben und Lösungen

Analytische Geometrie Aufgaben und Lösungen Analytische Geometrie Aufgaben und Lösungen http://www.fersch.de Klemens Fersch. Januar Inhaltsverzeichnis Punkte:Vektor - Abstand - Steigung - Mittelpunkt. Aufgaben....................................................

Mehr

Lernzettel 2 für die Mathematikarbeit. 1. Erstellen einer Parametergleichung mit Hilfe von 3 Punkten:

Lernzettel 2 für die Mathematikarbeit. 1. Erstellen einer Parametergleichung mit Hilfe von 3 Punkten: Die Ebenenformen 1. Erstellen einer Parametergleichung mit Hilfe von 3 Punkten: P (4/7/3); Q(1/1/1); R(2/-2/) Ein Punkt dient als Stützvektor, die anderen beiden werden von diesem abgezogen und dienen

Mehr

(x 1. Vektoren. g: x = p + r u. p r (u1. x 2. u 2. p 2

(x 1. Vektoren. g: x = p + r u. p r (u1. x 2. u 2. p 2 Vektoren Mit der Vektorrechnung werden oft geometrische Probleme gelöst. Wenn irgendwelche Aufgabenstellungen geometrisch darstellbar sind, z.b. Flugbahnen oder Abstandsberechnungen, dann können sie mit

Mehr

Analytische Geometrie I

Analytische Geometrie I Analytische Geometrie I Rainer Hauser Januar 202 Einleitung. Geometrie und Algebra Geometrie und Algebra sind historisch zwei unabhängige Teilgebiete der Mathematik und werden bis heute von Laien weitgehend

Mehr

Aufgabe A7/08 Die Ebene geht durch die Punkte 1,5 0 0,!0 3 0 und " Untersuchen

Aufgabe A7/08 Die Ebene geht durch die Punkte 1,5 0 0,!0 3 0 und  Untersuchen Aufgabe A6/08 Gegeben sind die zwei parallelen Gerade und durch 2 3 1 6 : 9 4, : 2 8;, 4 1 5 2 Bestimmen Sie den Abstand der beiden Geraden. (Quelle Abitur BW 2008 Aufgabe 6) Aufgabe A7/08 Die Ebene geht

Mehr

ÜBERBLICK ÜBER DAS KURS-ANGEBOT

ÜBERBLICK ÜBER DAS KURS-ANGEBOT ÜBERBLICK ÜBER DAS KURS-ANGEBOT Alle aufgeführten Kurse sind 100 % kostenfrei und können unter http://www.unterricht.de abgerufen werden. ANALYSIS / INFINITESIMALRECHNUNG Nullstellen * Nullstellen einer

Mehr

Ebenen in Normalenform

Ebenen in Normalenform Ebenen in Normalenform Normalenvektoren und Einheitsvektoren Definition Normalenvektor Ein Normalenvektor einer Ebene ist ein Vektor, der senkrecht auf einer Ebene steht (siehe Seite 12). Berechnung eines

Mehr

Lehrskript Mathematik Q12 Analytische Geometrie

Lehrskript Mathematik Q12 Analytische Geometrie Lehrskript Mathematik Q1 Analytische Geometrie Repetitorium der analytischen Geometrie Eine Zusammenfassung der analytischen Geometrie an bayerischen Gymnasien von Markus Baur, StR Werdenfels-Gymnasium

Mehr

Abstände Das Buch Inhaltsverzeichnis Stichwortverzeichnis Aufgaben zum Selberrechnen Die Strukturierung

Abstände Das Buch  Inhaltsverzeichnis Stichwortverzeichnis Aufgaben zum Selberrechnen Die Strukturierung Abstände 1 Das Buch: Dieses Kapitel ist Teil eines Buches. Das vollständige Buch können Sie unter www.mathe-laden.de bestellen falls Sie das möchten). Sie werden in diesem Buch ein paar Sachen finden,

Mehr

Abstände und Zwischenwinkel

Abstände und Zwischenwinkel Abstände und Zwischenwinkel Die folgenden Grundaufgaben wurden von Oliver Riesen, KS Zug, erstellt und von Stefan Gubser, KS Zug, überarbeitet. Aufgabe 1: Bestimme den Abstand der beiden Punkte P( 3 /

Mehr

Teil II. Geometrie 19

Teil II. Geometrie 19 Teil II. Geometrie 9 5. Dreidimensionales Koordinatensystem Im dreidimensionalen Koordinatensystem gibt es acht Oktanten, oben I bis VI und unten VI bis VIII. Die Koordinatenachsen,x 2 und stehen jeweils

Mehr

Ausführliche Lösungen

Ausführliche Lösungen Bohner Ott Deusch Mathematik für berufliche Gymnasien Lineare Algebra Vektorgeometrie Ausführliche Lösungen zu im Buch gekennzeichneten Aufgaben ab. Auflage 6 ISBN 978--8-68-5 Das Werk und seine Teile

Mehr

Mathematik Zusammenfassung JII.1 #1

Mathematik Zusammenfassung JII.1 #1 Mathematik Zusammenfassung JII. # Ableiten Definition Eine Ableitung zeigt die Steigung einer Funktion an einer bestimmten Stelle x an. Hier sind die Funktion und ihre Ableitung dargestellt. Möchte ich

Mehr

Mathematik-Aufgabenpool > Grundaufgaben zur Vektorrechnung I

Mathematik-Aufgabenpool > Grundaufgaben zur Vektorrechnung I Michael Buhlmann Mathematik-Aufgabenpool > Grundaufgaben zur Vektorrechnung I Einleitung: Elemente der Vektorrechnung im dreidimensionalen reellen kartesischen x -x -x 3-Koordinatensystem sind Punkte P(p

Mehr

Schnittmengen. V.02 Schnittmengen

Schnittmengen. V.02 Schnittmengen Schnittmengen V.0 Schnittmengen Es wird ja immer wieder behauptet, Mathe hätte nicht so viel mit dem richtigen Leben zu tun. Das ist natürlich völlig aus der Luft gegriffen und wirklich nicht wahr. Zum

Mehr

Gleiche Vorgehensweise wie beim Einheitsvektor in der Ebene (also wie bei 2D).Beispiel:

Gleiche Vorgehensweise wie beim Einheitsvektor in der Ebene (also wie bei 2D).Beispiel: VEKTOREN Vektoren im Raum (3D) Länge/Betrag eines räumlichen Vektors Um die Länge eines räumlichen Vektors zu bestimmen, berechnen wir dessen Betrag. Auch hier rechnet man genauso wie bei einem zweidimensionalen

Mehr

Übungsblatt Analytische Geometrie - Geraden und Ebenen - 6C /07

Übungsblatt Analytische Geometrie - Geraden und Ebenen - 6C /07 Übungsblatt Analytische Geometrie - Geraden und Ebenen - 6C - 6/7. Gegenseitige Lage von Geraden Gesucht ist die gegenseitige Lage der Geraden g durch die beiden Punkte A( ) und B( 5 9 ) und der Geraden

Mehr

Geometrie. Bei der Addition von Vektoren erhält man einen Repräsentanten des Summenvektors +, indem man die Repräsentanten von aneinanderfügt:

Geometrie. Bei der Addition von Vektoren erhält man einen Repräsentanten des Summenvektors +, indem man die Repräsentanten von aneinanderfügt: Geometrie 1. Vektoren Die Menge aller zueinander parallelen, gleich langen und gleich gerichteten Pfeile werden als Vektor bezeichnet. Jeder einzelne Pfeil heißt Repräsentant des Vektors. Bei Ortsvektoren:

Mehr

Gleichungen Lösen. Ein graphischer Blick auf Gleichungen

Gleichungen Lösen. Ein graphischer Blick auf Gleichungen Gleichungen Lösen Was bedeutet es, eine Gleichung zu lösen? Was ist überhaupt eine Gleichung? Eine Gleichung ist, grundsätzlich eine Aussage über zwei mathematische Terme, dass sie gleich sind. Ein Term

Mehr

Leitprogramm Vektorgeometrie

Leitprogramm Vektorgeometrie Leitprogramm Vektorgeometrie Torsten Linnemann Pädagogische Hochschule FHNW Gymnasium Oberwil E-mail:torsten.linnemann@fhnw.ch 18. September 2011 Dank: Ich danke der Klasse 4aL, Kantonsschule Solothurn,

Mehr

entspricht der Länge des Vektorpfeils. Im R 2 : x =

entspricht der Länge des Vektorpfeils. Im R 2 : x = Norm (oder Betrag) eines Vektors im R n entspricht der Länge des Vektorpfeils. ( ) Im R : x = x = x + x nach Pythagoras. Allgemein im R n : x x = x + x +... + x n. Beispiele ( ) =, ( 4 ) = 5, =, 4 = 0.

Mehr

Vektorrechnung: Anwendungsaufgaben zu Graden und Ebenen

Vektorrechnung: Anwendungsaufgaben zu Graden und Ebenen Vektorrechnung: Anwendungsaufgaben zu Graden und Ebenen ) Ein Flugzeug fliegt auf geradem Weg von A(; 4; ) nach B(5; ; ) und benötigt dafür eine Minute. Die Koordinaten wurden in km angegeben. Es fliegt

Mehr

Mündliches Abitur in IViathematik

Mündliches Abitur in IViathematik Mündliches Abitur in IViathematik Zusatzprüfung: Kurzvortrag mit Prüfungsgespräcti Ziele: Nachweis von fachlichem Wissen und der Fähigkeit, dies angemessen darzustellen erbringen fachlich überfachlich

Mehr

Pflichtteilaufgaben zu Beschreiben und Begründen. Baden-Württemberg

Pflichtteilaufgaben zu Beschreiben und Begründen. Baden-Württemberg Pflichtteilaufgaben zu Beschreiben und Begründen Baden-Württemberg Hilfsmittel: keine allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com September 06 Abituraufgaben (Haupttermin) Aufgabe

Mehr

V 2 B, C, D Drinks. Möglicher Lösungsweg a) Gleichungssystem: 300x + 400 y = 520 300x + 500y = 597,5 2x3 Matrix: Energydrink 0,7 Mineralwasser 0,775,

V 2 B, C, D Drinks. Möglicher Lösungsweg a) Gleichungssystem: 300x + 400 y = 520 300x + 500y = 597,5 2x3 Matrix: Energydrink 0,7 Mineralwasser 0,775, Aufgabenpool für angewandte Mathematik / 1. Jahrgang V B, C, D Drinks Ein gastronomischer Betrieb kauft 300 Dosen Energydrinks (0,3 l) und 400 Liter Flaschen Mineralwasser und zahlt dafür 50, Euro. Einen

Mehr

Anwendungsaufgaben zur Vektorrechnung (Abstände bestimmen)

Anwendungsaufgaben zur Vektorrechnung (Abstände bestimmen) Anwendungsaufgaben zur Vektorrechnung (Abstände bestimmen) 1) a) Ein Flugzeug fliegt von A(4; 2; 5) nach B(12; 6; 10). In S(10; 10; 4,75) befindet sich die Spitze eines Berges. Wie weit fliegt das Flugzeug

Mehr

n n x a 1 a 2 = 0 n 1 x 1 + n 2 x 2 + ( n 1 a 1 n 2 a 2 )

n n x a 1 a 2 = 0 n 1 x 1 + n 2 x 2 + ( n 1 a 1 n 2 a 2 ) IX. Normalformen ================================================================== 9.1 Die Normalenform einer Geradengleichung im 2-dimensionalen Punktraum ----------------------------------------------------------------------------------------------------------------

Mehr

Analytische Geometrie Seite 1 von 6. Die Addition von Vektoren kann veranschaulicht werden durch das Aneinanderhängen von Pfeilen.

Analytische Geometrie Seite 1 von 6. Die Addition von Vektoren kann veranschaulicht werden durch das Aneinanderhängen von Pfeilen. Analytische Geometrie Seite 1 von 6 1. Wichtige Formeln AB bezeichnet den Vektor, der die Verschiebung beschreibt, durch die der Punkt A auf den Punkt B verschoben wird. Der Vektor, durch den die Verschiebung

Mehr

Kursstufe K

Kursstufe K Kursstufe K 6..6 Schreiben Sie die Ergebnisse bitte kurz unter die jeweiligen Aufgaben, lösen Sie die Aufgaben auf einem separaten Blatt. Aufgabe : Berechnen Sie das Integral Lösungsvorschlag : exp(3x

Mehr

Geometrie Q11 und Q12

Geometrie Q11 und Q12 Skripten für die Oberstufe Geometrie Q und Q. E: x + 3x 4 = 0 A 3 H. Drothler 0 www.drothler.net Geometrie Oberstufe Seite Inhalt 0. Das räumliche Koordinatensystem... 0. Vektoren...3 03. Vektorketten...4

Mehr

b 1 b 2 b 3 a 1 b 1 a 2 b 2 a 2 b 2 a b a b a 1 b 1 a 2 b 2 a 3 b 3

b 1 b 2 b 3 a 1 b 1 a 2 b 2 a 2 b 2 a b a b a 1 b 1 a 2 b 2 a 3 b 3 1. Rechnen mit Vektoren Skalarprodukt a b a b cos a 1 a 2 a 3 b 1 b 2 b 3 a 1 b 1 a 2 b 2 a 2 b 2 b a 1. Betrag Länge eines Vektors: a a a a 2 1 a 2 2 a 2 3 2. Winkel zwischen 2 Vektoren: cos a b a b a

Mehr

Lineare Algebra in der Oberstufe

Lineare Algebra in der Oberstufe Lineare Algebra in der Oberstufe Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz 16. April 2016 Stefan Ruzika 1: Schulstoff 16. April 2016 1 / 32 Übersicht Ziel dieses Kapitels

Mehr

V.01 Grundlagen (Kurzform)

V.01 Grundlagen (Kurzform) Punkte, Geraden, Ebenen V.0 Grundlagen (Kurzform) V.0.0 Zeichnen im D Koordinatensystem ( ) Ein D Koordinatensystem hat natürlich drei Achsen. Die Achsen heißen Koordinatenachsen. Die erste Achse heißt

Mehr

3. Übungsblatt Aufgaben mit Lösungen

3. Übungsblatt Aufgaben mit Lösungen . Übungsblatt Aufgaben mit Lösungen Aufgabe : Gegeben sind zwei Teilmengen von R : E := {x R : x x = }, und F ist eine Ebene durch die Punkte A = ( ), B = ( ) und C = ( ). (a) Stellen Sie diese Mengen

Mehr

Mathematik LK 12 M1, 3. Kursarbeit Analytische Geometrie Lösung

Mathematik LK 12 M1, 3. Kursarbeit Analytische Geometrie Lösung Mathematik LK M,. Kursarbeit Analytische Geometrie Lösung 7..4 Aufgabe : Wandle die Gleichungen der folgenden Geraden und Ebenen in die angegebene Form um.. g : x= +t 6 4 =+6t II. x =+4t in die Koordinatenform.

Mehr

Analytische Geometrie - Schnittwinkel. u 1, u 2 Richtungsvektoren der Geraden

Analytische Geometrie - Schnittwinkel. u 1, u 2 Richtungsvektoren der Geraden Analytische Geometrie - Schnittwinkel. Möglichkeiten und Formeln Gerade / Gerade: cos( ) = u u 2 u u 2 Gerade / Ebene: sin( ) = n u n u Ebene / Ebene: cos( ) = n n 2 n n 2 u, u 2 Richtungsvektoren der

Mehr

Lösungen zur Prüfung 2014: Pflichtteil

Lösungen zur Prüfung 2014: Pflichtteil Pflichtteil Lösungen zur Prüfung : Pflichtteil Benötigte Kenntnisse: Analysis: Ableiten mit Produktregel, Integral mit Stammfunktion berechnen, Gleichung lösen, Kosinusfunktion, Nullstellen, Funktionswerte

Mehr

Vektorgeometrie. Inhaltsverzeichnis. Fragen und Antworten. (bitte nur für den Eigengebrauch verwenden)

Vektorgeometrie. Inhaltsverzeichnis. Fragen und Antworten. (bitte nur für den Eigengebrauch verwenden) fua3673 Fragen und Antworten Vektorgeometrie (bitte nur für den Eigengebrauch verwenden) Inhaltsverzeichnis Vektorgeometrie im Raum. Fragen................................................. Allgemeines..........................................

Mehr

Abiturprüfung Mathematik 2014 Baden-Württemberg Allgemeinbildende Gymnasien Pflichtteil Lösungen

Abiturprüfung Mathematik 2014 Baden-Württemberg Allgemeinbildende Gymnasien Pflichtteil Lösungen Abiturprüfung Mathematik Baden-Württemberg Allgemeinbildende Gymnasien Pflichtteil Lösungen klaus_messner@web.de www.elearning-freiburg.de Pflichtteil Aufgabe : Bilden Sie die Ableitung der Funktion f

Mehr

Über den Zusammenhang zwischen geometrischer Parallaxe und der Entfernung des Mondes

Über den Zusammenhang zwischen geometrischer Parallaxe und der Entfernung des Mondes Über den Zusammenhang zwischen geometrischer Parallaxe und der Entfernung des Mondes U. Backhaus Universität Duisburg-Essen Wenn man ein entferntes Objekt von verschiedenen Orten aus anpeilt, dann unterscheiden

Mehr

Basistext Geraden und Ebenen

Basistext Geraden und Ebenen Basistext Geraden und Ebenen Parameterdarstellung Geraden Eine Gerade ist durch zwei Punkte P und Q, die auf der Geraden liegen, eindeutig festgelegt. Man benötigt zur Darstellung den Vektor. Dieser wird

Mehr

Vektorgeometrie. 1. Vektoren eingeben, Norm, Skalarprodukt. 2 In einem kartesischen Koordinatensystem sind die Vektoren. , v. und. gegeben.

Vektorgeometrie. 1. Vektoren eingeben, Norm, Skalarprodukt. 2 In einem kartesischen Koordinatensystem sind die Vektoren. , v. und. gegeben. Vektorgeometrie 1. Vektoren eingeben, Norm, Skalarprodukt 2 In einem kartesischen Koordinatensystem sind die Vektoren u 14, 5 11 10 v 2 und w 5 gegeben. 10 10 a) Zeigen Sie, dass die Vektoren einen Würfel

Mehr

Analytische Geometrie

Analytische Geometrie Analytische Geometrie Wiederholung (Klasse 0) zur Vektorrechnung Hausaufgabe ( Vorbereitung als Vortrag): C:\Users\Hagen\Documents\Dr. H. Fritsch\Eigene Dateien\Gymnasium-Muecheln\ Mathematik\Klasse \Kl--Wdhlg-Vektor.docx

Mehr

Abiturprüfung Mathematik 0 Baden-Württemberg (ohne CAS) Pflichtteil Aufgaben Aufgabe : ( VP) Bilden Sie die erste Ableitung der Funktion f mit f() = ( sin() + 7) 5. Aufgabe : ( VP) Berechnen Sie eine Stammfunktion

Mehr

Geometrie / Lineare Algebra. Rechenregeln. Geometrische Deutung. Vektoren

Geometrie / Lineare Algebra. Rechenregeln. Geometrische Deutung. Vektoren Vektoren Geometrie / Lineare Algebra Vektoren und Rechenregeln Länge, Winkel, Abstand Darstellung von Geraden und Ebenen Umformungen Abstandsbestimmungen Lage, Schnitte, Schnittwinkel Spiegelungen E-Mail:

Mehr

ohne Anspruch auf Vollständigkeit

ohne Anspruch auf Vollständigkeit Abi-Crash-Kurs Analytische Geometrie (G Niveau) ohne Anspruch auf Vollständigkeit Inhalt 1 Punkte, Vektoren und Geraden im R³... 2 2 Rechnen mit Vektoren... 4 2.1 Skalarprodukt... 4 2.2 Vektorprodukt...

Mehr

5 Geraden im R Die Geradengleichung. Übungsmaterial 1

5 Geraden im R Die Geradengleichung. Übungsmaterial 1 Übungsmaterial 5 Geraden im R 5. Die Geradengleichung Eine Gerade ist eindeutig festgelegt durch zwei Punkte oder durch einen Punkt und eine Richtung. Beispiel: Die Gerade g durch die Punkte A(-//) und

Mehr

Analytische Geometrie mit dem Voyage 1

Analytische Geometrie mit dem Voyage 1 Analytische Geometrie mit dem Voyage. Vektoren Vektoren lassen sich definieren in eckigen Klammern. Setzt man ein Semikolon zwischen die einzelnen Komponenten, so ergibt sich ein Spaltenvektor. Ein Spaltenvektor

Mehr

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt - 17 - Die Frage ist hier also: Für welche x R gilt x = x + 1? Das ist eine quadratische Gleichung für x. Es gilt x = x + 1 x x 3 = 0, und man kann quadratische Ergänzung machen:... ( ) ( ) x x + = 3 +

Mehr

Hauptprüfung Abiturprüfung 2014 (ohne CAS) Baden-Württemberg

Hauptprüfung Abiturprüfung 2014 (ohne CAS) Baden-Württemberg Baden-Württemberg: Abitur 04 Pflichtteil www.mathe-aufgaben.com Hauptprüfung Abiturprüfung 04 (ohne CAS) Baden-Württemberg Pflichtteil Hilfsmittel: keine allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com

Mehr

Abschlussprüfung Realschule Bayern II / III: 2009 Haupttermin B 1.0 B 1.1

Abschlussprüfung Realschule Bayern II / III: 2009 Haupttermin B 1.0 B 1.1 B 1.0 B 1.1 L: Wir wissen von, dass sie den Scheitel hat und durch den Punkt läuft. Was nichts bringt, ist beide Punkte in die allgemeine Parabelgleichung einzusetzen und das Gleichungssystem zu lösen,

Mehr

Abiturprüfung Mathematik 200 Baden-Württemberg (ohne CAS) Wahlteil Aufgaben Analytische Geometrie II, 2 Gegeben sind der Punkt A(,/6/,) sowie die Gerade g: x = 0 + t. a) Bestimmen Sie den Schnittpunkt

Mehr

Algebra 3.

Algebra 3. Algebra 3 www.schulmathe.npage.de Aufgaben 1. In einem kartesischen Koordinatensystem sind die Punkte A( 3), B( ) sowie für jedes a (a R) ein Punkt P a (a a a) gegeben. a) Zeigen Sie, dass alle Punkte

Mehr

1 lineare Gleichungssysteme

1 lineare Gleichungssysteme Hinweise und Lösungen: http://mathemathemathe.de/lineare-algebra-grundlagen 1 lineare Gleichungssysteme Übung 1.1: Löse das lineare Gleichungssystem: I 3x + 3y + 7z = 13 II 1x 2y + 2, 5z = 1, 5 III 4x

Mehr

Inhaltsverzeichnis Bausteine Analytische Geometrie

Inhaltsverzeichnis Bausteine Analytische Geometrie Graf-Zeppelin-Gmnasium Bausteine Analtische Geometrie Inhaltsvereichnis Bausteine Analtische Geometrie Umgang mit Vektoren1 Länge von Vektoren1 Winkel φ wischen wei Vektoren1 Normale u wei (linear unabhängigen)

Mehr

Geometrische Maße oder,... wie kann man quantitative Aussagen über geometrische Objekte erhalten?

Geometrische Maße oder,... wie kann man quantitative Aussagen über geometrische Objekte erhalten? In der euklidischen Geometrie der Mittelstufe ging es zumeist um geometrische Konstruktionen und um qualitative Aussagen über geometrische Objekte in Bezug zueinander. Möchte man, insbesondere im dreidimensionalen

Mehr

5. Wie bringt man einen Vektor auf eine gewünschte Länge? Zuerst bringt man ihn auf die Länge 1, dann multipliziert man mit der gewünschten Länge.

5. Wie bringt man einen Vektor auf eine gewünschte Länge? Zuerst bringt man ihn auf die Länge 1, dann multipliziert man mit der gewünschten Länge. 1. Definition von drei Vektoren sind l.u. 2. Wie überprüft man 3 Vektoren mit Hilfe eines LGS auf lineare Unabhängigkeit? 3. Definition von Basis?... wenn sich der Nullvektor nur als triviale LK darstellen

Mehr

Pflichtteil Wahlteil Analysis Wahlteil Analysis Wahlteil Analysis Wahlteil Analytische Geometrie 1...

Pflichtteil Wahlteil Analysis Wahlteil Analysis Wahlteil Analysis Wahlteil Analytische Geometrie 1... Pflichtteil Wahlteil Analysis 8 Wahlteil Analysis Wahlteil Analysis 9 Wahlteil Analytische Geometrie Wahlteil Analytische Geometrie 9 Lösungen: Pflichtteil Lösungen zur Prüfung : Pflichtteil Benötigte

Mehr

A(3/1/2) B(6/2/2) C(5/9/4) D(1/4/3)

A(3/1/2) B(6/2/2) C(5/9/4) D(1/4/3) Ein Raumviereck ABCD kann eben sein oder aus zwei gegeneinander geneigten Dreiecken bestehen. In einem ebenen Viereck schneiden sich die Diagonalen. Überprüfen Sie, ob die gegebenen Vierecke eben sind.

Mehr

Abitur 2013 Mathematik Geometrie V

Abitur 2013 Mathematik Geometrie V Seite 1 http://www.abiturloesung.de/ Seite Abitur 1 Mathematik Geometrie V Teilaufgabe b ( BE) Ein auf einer horizontalen Fläche stehendes Kunstwerk besitzt einen Grundkörper aus massiven Beton, der die

Mehr

Lagebeziehungen zwischen Geraden und Ebenen mit Hilfe der Normalenform

Lagebeziehungen zwischen Geraden und Ebenen mit Hilfe der Normalenform Lagebeziehungen zwischen Geraden und Ebenen mit Hilfe der Normalenform Bernhard Scheideler Albrecht-Dürer-Gymnasium Hagen Hilfen zur Analytischen Geometrie (). Dezember 0 Inhalt: Die Lagebeziehungen zwischen

Mehr

Abiturprüfung Mathematik 2012 Baden-Württemberg Allgemeinbildende Gymnasien Pflichtteil Lösungen

Abiturprüfung Mathematik 2012 Baden-Württemberg Allgemeinbildende Gymnasien Pflichtteil Lösungen Abiturprüfung Mathematik 202 Baden-Württemberg Allgemeinbildende Gymnasien Pflichtteil Lösungen klaus_messner@web.de www.elearning-freiburg.de Pflichtteil 202 2 Aufgabe : Bilden Sie die erste Ableitung

Mehr

Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3

Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3 Lineare Funktionen Inhaltsverzeichnis 1 Proportionale Funktionen 3 1.1 Definition............................... 3 1.2 Eigenschaften............................. 3 2 Steigungsdreieck 3 3 Lineare Funktionen

Mehr

Lehrplan 2013: Klassenstufe 11: 2015/16 Klassenstufe 12: 2016/17 Analytische Geometrie und Vektorrechnung

Lehrplan 2013: Klassenstufe 11: 2015/16 Klassenstufe 12: 2016/17 Analytische Geometrie und Vektorrechnung Lehrplan 2013: Klassenstufe 11: 2015/16 Klassenstufe 12: 2016/17 Analytische Geometrie und Vektorrechnung Erfurt, 05.03.2015 Wolfgang Häfner Analytische Geometrie und Vektorrechnung Änderungen im Lehrplan

Mehr

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren Lineargleichungssysteme: Additions-/ Subtraktionsverfahren W. Kippels 22. Februar 2014 Inhaltsverzeichnis 1 Einleitung 2 2 Lineargleichungssysteme zweiten Grades 2 3 Lineargleichungssysteme höheren als

Mehr

K2 MATHEMATIK KLAUSUR. Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max) 28 15 15 2 60 Punkte Notenpunkte

K2 MATHEMATIK KLAUSUR. Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max) 28 15 15 2 60 Punkte Notenpunkte K2 MATHEMATIK KLAUSUR 26.2.24 Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max 28 5 5 2 6 Punkte Notenpunkte PT 2 3 4 5 6 7 8 9 P. (max 2 2 2 4 5 3 3 4 3 Punkte WT Ana A.a b A.c Summe P. (max 7 5

Mehr

Mathematischer Vorkurs Lösungen zum Übungsblatt 5

Mathematischer Vorkurs Lösungen zum Übungsblatt 5 Mathematischer Vorkurs Lösungen zum Übungsblatt 5 Prof. Dr. Norbert Pietralla/Sommersemester 2012 c.v.meister@skmail.ikp.physik.tu-darmstadt.de Aufgabe 1: Berechnen Sie den Abstand d der Punkte P 1 und

Mehr

8 SKALARPRODUKT VON VEKTOREN BERECHNEN GEOMETRISCHER GRÖSSEN

8 SKALARPRODUKT VON VEKTOREN BERECHNEN GEOMETRISCHER GRÖSSEN 8 SKALARPRODUKT VON VEKTOREN BERECHNEN GEOMETRISCHER GRÖSSEN 7 7. a) s = ; s = 5, 5, 5 Über den Satz des Pythagoras ist die Länge der Vektoren bestimmbar. Die Länge von = ist = + +. s 6,9 m und s 6,97

Mehr